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Abstract001

Graph Neural Networks (GNNs) have emerged as002

a powerful tool in predicting molecular properties003

based on structural data. While GNNs excel in iden-004

tifying local patterns within molecules, their ability005

to capture global properties remains limited due to006

inherent structural challenges such as oversmooth-007

ing.008

We introduce an innovative GNN-based model009

that integrates global 3D molecular features with010

standard graph representations to enhance the pre-011

diction of molecular properties. The proposed model012

is evaluated using benchmark datasets ESOL and013

FreeSolv and it outperforms existing models. It014

demonstrates the crucial benefit of giving GNN mod-015

els easy access to global information about the graph,016

in the context of applications to chemistry.017

Additionally, the model’s architecture allows for018

efficient training with relatively modest computa-019

tional resources, making it practical for widespread020

application.021

1 Introduction022

The development of machine learning models for023

chemistry is an important direction of research.024

Many efforts have been done in this direction in ma-025

chine learning in particular for predicting molecule026

properties from their structure [1]. A particular027

kind of deep learning models, called Graph Neural028

Networks show extremely good results in a variety029

of tasks on molecule datasets [2, 3]. Indeed, the best030

models as of now are based on GNNs that sees a031

molecule as a graph with the nodes being the chem-032

ical elements and the edges being their bindings.033

They are able to recognize patterns inside molecules034

and relate them with molecule properties.035

Although GNNs are extremely good at identifying036

local patterns, they still struggle to identify or eval-037

uate more global properties of molecules. Due to038

their structure and their aggregation process, GNNs039

are prone to oversmoothing [4] and have difficulties040

grasping information from many nodes of a graph041

at the same time or from nodes far apart. These042

limitations to identify more global information also043

explain why approaches using expert-crafted descrip-044

tors are still competitive with GNNs in chemistry [5].045

However, global properties may be very important046

for the prediction of some molecule properties and 047

it is crucial that the machine learning model has an 048

easy access to them. In the case of global proper- 049

ties such as 3D shape, there exists a body of work 050

using GNNs [6] to predict them. So, in principle, 051

(special types of) GNNs are able to get this informa- 052

tion. However, the GNN models for these kinds of 053

tasks are more complex and computationally heavy. 054

Recent results, e.g. the Uni-Mol model [7],a large 055

model based on transformers, shows that molecule 056

3D information is of high importance for predicting 057

molecule properties. 058

In this work, we propose a new machine learn- 059

ing model, based on a GNN, to predict molecule 060

properties. We call it TChemGNN, for Tiny Chem- 061

istry Graph Neural Network. The novelty is that 062

we provide global 3D features as additional input 063

to the standard atom properties and graph. This 064

information is derived from chemistry principles and 065

computed from the standard molecule description. 066

We modify the structure of the GNN so that it 067

makes an efficient use of this additional features. 068

This greatly enhance the predictions. We show on 069

different benchmark datasets (ESOL and FreeSolv) 070

that it outperforms actual, much larger, models. 071

Our model is relatively small and can be trained 072

efficiently with small computer resources. This is an 073

important point for applications. 074

2 Previous work 075

In order to evaluate the efficiency of machine learn- 076

ing models on chemical tasks, several benchmark 077

datasets have been made openly available online by 078

the community. There is even a website ”Paper- 079

swithcode.com” keeping track of the performance of 080

the different models in the literature. This is very 081

convenient to test new architectures and new con- 082

cepts, such as the one presented here. We choose the 083

open-source libraries ESOL [8] and FreeSolv [9] as 084

our datasets for predicting molecular properties and 085

demonstrating the advantages of our model. The 086

task of the ESOL dataset is to predict water solu- 087

bility (log solubility in mol/L) for common small 088

organic molecules, while FreeSolv provides both ex- 089

perimental and calculated hydration free energy data 090

for small molecules in water. 091

Presently, the best models on the ESOL and 092

FREESolv datasets are: Uni-Mol, A Universal 3D 093
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Molecular Representation Learning Framework [7],094

ChemRL-GEM, Geometry Enhanced Molecular Rep-095

resentation Learning for Property Prediction [10],096

and SPMM, the Bidirectional Generation of Struc-097

ture and Properties via a Single Molecular Foun-098

dation Model [11] or for FREESolv, ChemBFN, A099

Bayesian Flow Network Framework for Chemistry100

Tasks [12]. Most of the current best models are101

large models based on the Transformer architecture.102

They are trained in a self-supervised manner on103

large datasets. Their latent representations are then104

used for classification or regression tasks on other,105

possibly smaller, datasets. This approach is called106

Molecular Representation Learning (MRL). These107

models are able to to create their own representa-108

tion of molecules and perform well in a variety of109

applications related to chemistry, but they are costly110

to train.111

We can notice a smaller architecture among the112

best models called MPNN and its variants [5]. It is113

based on message passing, i.e. a graph machine learn-114

ing architecture. Before the MRL trend, graph neu-115

ral nets were commonly (and are still) used to predict116

chemical properties. In this framework, the standard117

setting is to create a graph from the molecule with118

its atoms bindings and add the atoms descriptors119

as features on the nodes. These models do not use120

any global or 3D shape information of molecules121

as input. As pointed out in [5], due to the small122

size of datasets and the reduced number of message123

passing layers, the model’s focus is more on the local124

molecular structure and connections between chem-125

ical elements (local features). It has difficulty to126

learn more global features at the scale of the entire127

molecule. They therefore add to their model some128

global molecule information at the last layer of their129

neural network. This is done by concatenating the130

latent representation with a vector of pre-computed131

global features. Our approach is somehow similar,132

but with a different architecture (graph attention133

layers) and a concatenation of global information134

directly at the node level, at the input. We also use135

a highly reduced set of global features (5 instead of136

200), focusing on only 3D properties.137

Finally, it is important to mention non-deep learn-138

ing approaches that may be still competitive. Over139

time, chemists have developed formulas and relation-140

ship between the atomic composition of a molecule141

and its properties. Many of the most important142

and useful expert-crafted descriptors can be com-143

puted using the open source Python library RDKIT144

[13]. In particular, hundreds of molecule features145

can be generated from the SMILES the ”simplified146

molecular-input line-entry system” that encode the147

structure of a molecule. These descriptors are used148

in [5] and in our model. We even run a random149

forest regression using them and show that it gives150

results on par with the largest deep learning models151

for FREESolv. 152

3 The TChemGNN model 153

3.1 Structure 154

Our GNN model is depicted on Fig. 1. It consists of 4 155

layers of Graph attention network ”GATConv” with 156

a hyperbolic tangent as their associated nonlinear 157

function. The number of hidden channels is 56 for 158

all layers. The optimizer is RMSprop. The model 159

is relatively small with a total number of learnable 160

parameters around 13K. 161

An important aspect of our model is that, at the 162

last layer, the output is a single number given by 163

a particular node of the molecule graph. We have 164

noticed that performing a global pooling operation 165

does not give satisfactory results. We hypothesize 166

that the molecule properties we predict depend only 167

on a part of the graph and the rest provide some 168

random noise that pooling is unable to filter. More 169

precisely, we have noticed that the atoms at the pe- 170

riphery of the molecule are the most able to predict 171

the quantities the model is trained for. This is the 172

case at least for the datasets ESOL and FreeSOLV. 173

It turns out that, the encoding rules of the SMILES 174

notation always put in the first position one of these 175

peripheral nodes [14, 15]. Hence by building the 176

graph such that the node with ID 0 correspond to 177

the first atom in the SMILES encoding, we are able 178

to extract the prediction from this position. 179

3.2 Input features 180

Concerning the feature space, each node of the input 181

graph has 14 features. 9 of them are local (atom) fea- 182

tures that describe each chemical element. We add 183

to each node of the graph 5 global features, carefully 184

selected, among the set of molecular descriptors pro- 185

vided by RDKit. By concatenating these 5 features, 186

we allow a direct access to important global infor- 187

mation at the node level. We ignore edge attributes 188

in our model. 189

More precisely, the atom features are: atomic de- 190

gree, ring structure within the molecule, number 191

of hydrogen atoms, number of bonds in molecule, 192

surface area, formal charge. Note that the last 193

three features are scaled [16]. The atomic mass 194

scaled As is given by: As = (A− 10.812)/116.092, 195

where A is an atomic mass. The Van der Waals 196

radius (Rvdw) of chemical elements in a molecule 197

is scaled as: Rvdw,s = (Rvdw − 1.5)/0.6. The co- 198

valent radius scaled Rcov,s is calculated according: 199

Rcov,s = (Rcov − 0.64)/0.76, where Rcov is a cova- 200

lent radius for each chemical element in a molecule. 201

Atomic number, number of valance electron, and hy- 202

bridization can be applied for adjusting the results. 203

For the global features, computed with RDKit, one 204
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Figure 1. The architecture of the TChemGNN model
for solubility prediction (ESOL dataset). Both node
features and the molecule graph are given as input to
the Graph neural network. The feature vector at each
node contains the properties of the related chemical
element as well as 5 additional 3D global properties
(same properties for all nodes). The network is composed
of 4 layers of Graph Attention Network and hyperbolic
tangent nonlinear functions. There is no global pooling
at the end and the output of a single node is evaluated.
This output node corresponds to the first atom appearing
in the SMILES encoding of the molecule (always a weakly
connected node at the periphery).

of them is the dipole momentum. It involves the205

charge distribution between chemical elements and206

their distances and details about molecular inter-207

actions. In addition, we add the angle of general208

molecular orientation which is linked to the molec-209

ular properties that are strongly influenced by the210

molecule’s shape [17] and orientation in space. Fi-211

nally, we add three global features, the width (w),212

the height (h) and the length (l) of the molecule,213

related to its 3D configuration. To show the impor-214

tance of these spatial features, we illustrate on Fig. 2215

an example of 2 molecules with the same chemical216

formula. They have the same chemical elements but217

different spatial organization with a more or less218

compact shape. This difference causes changes in219

their behavior and properties.220

Figure 2. 3D representations of molecules with same
chemical formula C16H16ClN3O3S from the ESOL li-
brary. Even the same chemical formula and a very close
structure, these 2 molecules organize differently in space.
The graph structure is important, but the shape in 3D as
well, for predicting molecules properties. Left molecule
(Indapamide): l = 7.312, w = 11.546, h = 5.749 and
right molecule (Metolazone): l = 5.242, w = 13.002, h
= 6.328.

4 Results on ESOL dataset 221

Our first benchmark dataset is ESOL. The task is to 222

predict the solubility of a molecule. Water solubility 223

is given in log-scaled mols per liter. The dataset 224

contains 1,128 compounds. The measured solubility 225

values range from -8.057 to 1.071. 226

We list in Table 1 the current best models on 227

this dataset as reported on the website ”paperwith- 228

code” [8] and compare to our model.

Table 1. Results of our and the state-of-the-Art (SOTA)
models for solubility predictions.

SOTA models for the ESOL library RMSE
Uni-Mol: A Universal 3D Molecular Repre-
sentation

0.788

ChemRL-GEM: Geometry Enhanced Molec-
ular representation learning method (GEM)
for Chemical Representation Learning
(ChemRL)

0.798

SPMM: Structure-Property Multi Modal
foundation model

0.810

ChemBFN: Bayesian Flow Network frame-
work for Chemistry tasks

0.884

ChemBERTa-2 (MTR-77M): Masked-
language modelling (MLM) and multi-task
regression (MTR)

0.889

D-MPNN: Direct Message Passing Neural
Network

1.050

TChemGNN (Our model) 0.5669

229

Some models are not reported on the website but 230

can have better scores. For example, a model com- 231

bining long- and short-term memory units (LSTM) 232

with a graph attention network (GAT) has an RMSE 233

of 0.885 ± 0.067 [18] and a model called MPNN has 234

an RMSE of 0.700 ± 0.073 [19]. This latter model 235

provides the best RMSE score so far to our knowl- 236

edge. We can also cite the work of [20], with an even 237

better RMSE of 0.569. However, the initial dataset 238

is reduced from 1128 to 1068 molecules. Several 239

molecules that are difficult to classify were filtered 240

out. While this may be relevant for chemists (gases 241

and solids where solubility is not a meaningful prop- 242
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Figure 3. Solubility prediction with respect to ground
truth (ESOL test dataset). Our model (blue dots) is
compared to a basic GCN model (red).

erty) it can not be compared to the other ones. We243

focus our experiment on the full dataset but we no-244

ticed that our results are better than [20] on their245

subset.246

Our model TChemGNN provides the best results247

for solubility prediction and outperforms all the248

models (Table 1). The RMSE of our GNN model249

with global features is 0.5669 on the test set of the250

Uni-Mol model.251

To understand better why our model perform252

so well, we have made an ablation study. A basic253

GNN model having four standard GCN layers [21]254

has been implemented, the ”GCN model”, to see255

the impact of GAT layers and global features. We256

also have modified our network, training it without257

the 3D features. Note that the hyperparameters of258

our model (optimizer, step size) are different from259

the basic GCN model. Results are reported in Ta-260

ble 2. The Graph attention layer and the addition of261

3D features both improve the predictions on ESOL262

dataset.263

Table 2. Ablation study for our model experimented
on the ESOL library.

model RMSE
GCN model 1.047
GATConv instead of GCN 0.7014
Adding 3D features to GCN 0.7688

Our model without 3D features 0.7904
Our model 0.5669

In order to have a better overview of the prediction264

results, we show in Fig. 3 the prediction error of265

TChemGNN for all the molecules in the test set and266

compare to the GCN model (on the same test set).267

The error does not seem to depend on the value to268

predict (the error is even smaller for extreme low269

and high values).270

5 Results for the FreeSolv 271

dataset 272

The FreeSolv dataset is an open database with hydra- 273

tion free energies for a set of 643 neutral molecules, 274

most of which are fragment-like [22]. The data val- 275

ues to predict ranges from -25.47 to 3.43. One of the 276

best models for this dataset is ChemBFN [9, 12]. It 277

is a language model trained on molecule encodings 278

(such as SMILES). The embeddings are then used 279

for classification and regression. It is relatively large 280

with 54M learnable parameters (compared to the 281

13K of our model). 282

For this dataset, we first performed a ”simple” 283

random forest regression using purely expert-crafted 284

molecule features obtained from [23] and RDKit. 285

This gave an RMSE almost as good as the best deep 286

learning model, ChemBFN. Again, expert-crafted 287

features are extremely powerful for chemistry appli- 288

cations. 289

We slightly modified TChemGNN from ESOL to 290

FREESolv: one GatConv layer was removed. On Ta- 291

ble 3, we show the results of several state-of-the-art 292

models and compare to our model and the random 293

forest experiment. Again TChemGNN outperforms 294

the other models by a large margin. The test and 295

validation datasets were randomly selected. The 296

result on the validation set was RMSE = 0.9003 ± 297

0.1414 (5 fold cross validation) and on the test set 298

it was RMSE = 1.0342 ± 0.2281. The predictions 299

were quite stable. 300

6 Results discussion 301

Our GNN model delivers better results on ESOL and 302

FREESolv compared to any other known models. 303

We now analyse why. Several of our results show 304

evidence of the crucial role of expert-crafted features, 305

particularly the global 3D features. Firstly, the ab- 306

lation study of the models trained on the ESOL 307

dataset show a big difference in the performance 308

when trained with and without the 3D features. Sec- 309

ondly, for the FREEsolv dataset, a random forest 310

ran purely on chemist’s features has almost the same 311

results as the best deep network with millions of 312

learnable parameters. These expert-crafted features 313

are underestimated in the machine learning liter- 314

ature. The ultimate proof comes from our small 315

model (1̃3K learnable parameters) equipped with a 316

few 3D features that outperforms all the state-of- 317

the-art. 318

We should emphasize here that the output of our 319

model is not standard. The final output value is 320

taken from a single node rather than performing a 321

global pooling. Any global pooling we tested per- 322

formed worse than this choice. We assume that, at 323

least for our datasets, the predicted property depend 324
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Table 3. RMSE of SOTA models for predictions of
hydration free energies of small molecules in water [9].

SOTA models for the Freesolv library RMSE
ChemBFN: A Bayesian Flow Network
Framework for Chemistry Tasks

1.418

Uni-Mol: A Universal 3D Molecular Repre-
sentation Learning Framework

1.620

SPMM: Structure and Properties Through
a Single Molecular Foundation Model

1.859

ChemRL-GEM: Geometry Enhanced Molec-
ular Representation Learning for Property
Prediction

1.877

D-MPNN: Direct Message Passing Neural
Network

2.082

GROVER (base): Self-Supervised Graph
Transformer on Large-Scale Molecular Data

2.176

GROVER (large): Self-Supervised Graph
Transformer on Large-Scale Molecular Data

2.272

N-GramRF: Unsupervised Graph Method 2.688
PretrainGNN: Pre-training Graph Neural
Networks

2.764

N-GramXGB: Simple Unsupervised Repre-
sentation for Graphs, with Applications to
Molecules

5.061

Random Forest Regression 1.4222
TChemGNN (Our model) 1.0342

on a combination of 1) global information and 2)325

particular local patterns inside the molecule. If one326

of them is missing, the accuracy drops. Hence, the327

prediction will be correct only around the position328

of the particular local pattern on the molecule graph.329

Outside this area, the prediction may be noisy or330

even random. Global pooling is therefore not suited331

to this configuration. Then, the important question332

is: which node to choose for the correct prediction?333

We found that it is the first node of the graph. In-334

deed, as discussed earlier, this first node is also, by335

construction, the first atom in the SMILES encod-336

ing. And the encoding rules of SMILES always put337

first the most peripherical node, with a weak connec-338

tion to the rest of the molecule. This atom is more339

prone to interact with other molecules and shape340

important molecule properties. It seems to be the341

case for the properties predicted in the ESOL and342

FREESolv datasets.343

In conclusion, our model performs better because344

we use efficient inductive bias. We make use of knowl-345

edge from chemistry, both in the input (3D features)346

and in the structure of the neural net (choice of the347

single node output).348

Conclusion349

Our study demonstrates significant improvements350

in predicting molecular properties on two reference351

benchmarks for chemistry applications of machine352

learning, ESOL and FREESolv. Our GNN model353

integrates both chemical element properties and354

some general properties of molecules, making it an355

hybrid deep learning architecture enhanced with a356

few inputted expert-crafted features. These features357

contain global 3D properties that reflect molecular358

shape and orientation.359

This work highlights the importance of 3D 360

molecule features for the prediction of molecule prop- 361

erties, and the limitation of GNNs to learn them 362

from the molecule graph. It suggests that further 363

modifying of feature selection and model architec- 364

ture at the interplay of local and global features 365

could lead to even greater predictive accuracy. This 366

approach could be used for other molecule properties 367

and datasets. 368

Finally, our model has a very modest size and can 369

be trained in a fast manner, even without an access 370

to GPUs, something very convenient for Chemists. 371
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