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Abstract

Diffusion models have made significant advancements in recent years. However,
their performance often deteriorates when trained or fine-tuned on imbalanced
datasets. This degradation is largely due to the disproportionate representation of
majority and minority data in image-text pairs. In this paper, we propose a general
fine-tuning approach, dubbed PoGDiff, to address this challenge. Rather than
directly minimizing the KL divergence between the predicted and ground-truth
distributions, PoGDiff replaces the ground-truth distribution with a Product of
Gaussians (PoG), which is constructed by combining the original ground-truth
targets with the predicted distribution conditioned on a neighboring text embed-
ding. Experiments on real-world datasets demonstrate that our method effectively
addresses the imbalance problem in diffusion models, improving both generation
accuracy and quality.

1 Introduction

The development of diffusion models [1, 2] and their subsequent extensions [3–5] has significantly
advanced the learning of complex probability distributions across various data types, including
images [6–9], audio [10], and 3D biomedical imaging data [11–14]. For these generative models, the
amount of training data plays a critical role in determining both the accuracy of probability estimation
and the model’s ability to generalize, which enables effective extrapolation within the probability
space.

Data diversity and abundance are key to improving the generative capabilities of large-scale models,
enabling them to capture intricate details within a vast probability space [15–19]. However, many
data-driven modeling tasks often rely on small, imbalanced real-world datasets, leading to poor
generation quality, particularly for minority groups. For example, when training and fine-tuning a
diffusion model with an imbalanced dataset of individuals, existing models often struggle to generate
accurate images for those who appear less frequently in the training data (Fig. 1). This challenge
is further compounded when accuracy is prioritized over simply high resolution. For example,
generated images of individuals need to match the identity of at least one individual in the training
set (Fig. 1). Addressing this gap is crucial for deploying diffusion models in real-world applications
where correctness is paramount, such as personalized content generation or medical imaging.

This limitation is true even for finetuning large diffusion models pretrained on large-scale datasets like
LAION-5B [21], e.g., Stable Diffusion [7]. Imagine an imbalanced dataset consisting of employees
in a small company, senior employees might have more photos available, while new employees only

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Ground
Truth

Stable
Diffusion CBDM

PoGDiff 
(Ours)

Je
an

et
te

 M
ac

D
on

al
d

Ed
w

ar
d 

G
. R

ob
in

so
n

J.P
. M

or
ga

n

A
lb

er
t 

Ei
ns

te
in

J. 
W

ill
ar

d 
M

ar
ri

ot
t

Ground
Truth

Stable
Diffusion CBDM

PoGDiff 
(Ours)

Ground
Truth

Stable
Diffusion CBDM

PoGDiff 
(Ours)

Ground
Truth

Stable
Diffusion CBDM

PoGDiff 
(Ours)

Ground
Truth

Stable
Diffusion CBDM

PoGDiff 
(Ours)

High Density

Low Density

Figure 1: PoGDiff for imbalanced text-to-image generation. Existing methods, e.g., Stable
Diffusion [7] and CBDM [20], fall short for minority data (Low Density). In contrast, Our PoGDiff
successfully generates high-quality images even for minority data, outperforming all baselines.

have a very limited number of them. Since none of the employees appear in the LAION-5B dataset,
generating photos of them requires finetuning the Stable Diffusion model. Unfortunately, finetuning
the model on such an imbalanced dataset might enable the model to generate accurate images for the
majority group (i.e., senior employees), but it will perform poorly for the minority group (i.e., new
employees).

To address this challenge, we propose a general fine-tuning approach, dubbed PoGDiff. Rather than
directly minimizing the KL divergence between the predicted and ground-truth distributions, PoGDiff
replaces the ground-truth distribution with a Product of Gaussians (PoG), which is constructed
by combining the original ground-truth targets with the predicted distribution conditioned on a
neighboring text embedding. Our contributions are as follows:

• We identify the problem of imbalanced text-to-image generation (IT2I) and introduce the
first general diffusion model, dubbed Product-of-Gaussians Diffusion Models (PoGDiff), to
address this problem.

• Our theoretical analysis shows that training of PoGDiff is equivalent to training a normal
diffusion model while encouraging the model to generate the same image given similar text
prompts (conditions).

• We propose a new metric, “Generative Recall” (gRecall), which evaluates the generative
diversity of a model when generation accuracy is strictly enforced.

• Our empirical results on real-world datasets demonstrate the effectiveness of our method,
outperforming all state-of-the-art baselines.

2 Related Work

Long-Tailed Recognition. Addressing the challenges posed by long-tailed data distributions has been
a critical area of research in machine learning, for both classification and regression problems [22–
24]. Traditional methods, such as re-sampling and re-weighting techniques, have been used to
mitigate class imbalances by either over-sampling minority classes or assigning higher weights to
them during training [25–29]. Such algorithms fail to measure the distance in continuous label
space and fail to handle high-dimensional data (e.g., images, and text). Deep imbalanced regression
methods [22, 30–32, 23] address this challenge by reweighting the data using the effective label
density during representation learning. However, all methods above are designed for recognition
tasks such as classification and regression and are therefore not applicable to our generation task.

Diffusion Models Related to Long-Tailed Data. There are also works related to both diffusion
models and long-tailed data [33]. They aim at improving generation robustness using feature
engineering [34–36], feature augmentation [37], noisy label [38], improving fairness in image
generation [39–41], and improving classification accuracy using diffusion models [37]. More broadly,
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there are also many works focusing on reweighting for general generative models [42–45]. However,
these works have different goals and, therefore, are not applicable to our setting.

Most relevant to our work is the Class Balancing Diffusion Model (CBDM) [20], which uses a
distribution adjustment regularizer that enhances tail-class generation based on the model’s predictions
for the head class. It improves the quality of long-tailed generation by assuming one-hot conditional
labels (i.e., classification-based settings). However, this assumption does not generalize to the modern
setting where image generation is usually conditioned on free-form text prompts. As a result, when
adapted to the free-form setting, they often fail to model the similarity among different text prompts,
leading to suboptimal generation performance in minority data (as verified by empirical results
in Sec. 4).

3 Methods

3.1 Preliminaries

Diffusion models (DMs) [1] are probabilistic models that generate an output image x0 from a random
noise vector xT conditioned on text input c. DMs operate through two main processes: the forward
diffusion process and the reverse denoising process. During the diffusion process, Gaussian noise is
progressively added to a data sample x0 over T steps. The forward process is defined as a Markov
chain, where:

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
.

Here, βt is the predefined diffusion rate at step t. By denoting αt = 1− βt and ᾱt =
∏t
i=1 αi, we

can describe the entire diffusion process as:

q (x1:T |x0) =
∏T

t=1
q (xt|xt−1) , q (xt|x0) = N

(
xt;

√
ᾱtx0, (1− ᾱt)I

)
The denoising process removes noise from the sample xT , eventually recovering x0. A denoising
model ϵθ(xt, t,y) is trained to estimate the noise ϵ from xt and a text-guided embedding y = ϕ(c),
where ϕ(·) is a pretrained text encoder. Formally:

pθ (xt−1|xt, t,y) = N
(
xt−1; ϵθ(xt, t,y), σ

2
t I
)
.

The denoising process is trained by maximizing the likelihood of the data under the model or,
equivalently, by minimizing the variational lower bound on the negative log-likelihood of the data.
Ho et al. [1] shows that this is equivalent to minimizing the KL divergence between the predicted
distribution pθ(xt−1|xt,y) and the ground-truth distribution q(xt−1|xt,x0,y) at each time step t
during the backward process. The training objective then becomes:

minDKL

(
q (xt−1|xt,x0,y)

∥∥pθ (xt−1|xt,y)
)
.

This can be simplified to (i.e., Eqn. (1) in Rombach et al. [7]):

LDM = Ex,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(xt, t,y)∥22

]
.

Latent diffusion models (LDMs) [7] are diffusion models that perform the entire diffusion and
denoising process in a lower-dimensional latent space. LDMs first learn an encoder E and a decoder
D, which are then frozen during subsequent training of the diffusion models. The corresponding
objective is then simplified to (i.e., Eqn. (2) in Rombach et al. [7]):

LLDM = EE(x),ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, t,y)∥22

]
In this paper, we use Stable Diffusion (SD) [7] as our backbone model. Since our method works for
both the vanilla DMs and LDMs, for clarity, we use the notation x instead of z, as the encoder E and
decoder D are fixed during fine-tuning.

3.2 Product-of-Gaussians Diffusion Models (PoGDiff)

3.2.1 Main Idea

Method Overview. Given an image dataset D = {x(i), c(i)}Ni=1, where c(i) is the text description for
image x(i), we use a fixed CLIP encoder to produce c(i)’s corresponding text embedding y = ϕ(c).
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Typical diffusion models minimize the KL divergence between the predicted distribution
pθ(xt−1|xt,y) = N (xθ(xt, t,y), λ

−1
y I) and the ground-truth distribution q(xt−1|xt,x0,y) =

N (xt−1, λ
−1
t I) at each time step t during the backward denoising process. Here, λy and λt represent

the precision. In contrast, our PoGDiff replaces the ground-truth target with a Product of Gaussians
(PoG) [46] and instead minimizes the following KL divergence (for each t)

LPoGDiff
t−1 = DKL

(
q (xt−1|xt,x0,y) ◦ pθ (xt−1|xt,y′)

∥∥pθ (xt−1|xt,y)
)
, (1)

<latexit sha1_base64="QSJq4h0rixKbdySoMEGH4z0P1Hk=">AAAB9XicbVBNS8NAEJ34WetX1aOXYBW8WBLx61jw4rGC/YA2ls120y7dbMLuRC0h/8OLB0W8+l+8+W/ctjlo64OBx3szzMzzY8E1Os63tbC4tLyyWlgrrm9sbm2XdnYbOkoUZXUaiUi1fKKZ4JLVkaNgrVgxEvqCNf3h9dhvPjCleSTvcBQzLyR9yQNOCRrpPu34QfqUZd0UT9ysWyo7FWcCe564OSlDjlq39NXpRTQJmUQqiNZt14nRS4lCTgXLip1Es5jQIemztqGShEx76eTqzD4ySs8OImVKoj1Rf0+kJNR6FPqmMyQ40LPeWPzPaycYXHkpl3GCTNLpoiARNkb2OAK7xxWjKEaGEKq4udWmA6IIRRNU0YTgzr48TxqnFfeicn57Vq4e5nEUYB8O4BhcuIQq3EAN6kBBwTO8wpv1aL1Y79bHtHXBymf24A+szx/YiJKn</latexit>xt�1…

neighborssampling …

…

<latexit sha1_base64="b3yYZQe7gEp0GGbYBtfTSnF9pus=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJ6KolI9Vjw4rGC/YA0lM120y7d7IbdiRBCfoYXD4p49dd489+4bXPQ1gcDj/dmmJkXJoIbcN1vZ219Y3Nru7JT3d3bPzisHR13jUo1ZR2qhNL9kBgmuGQd4CBYP9GMxKFgvXB6N/N7T0wbruQjZAkLYjKWPOKUgJX8fBBGeVYUQ+9iWKu7DXcOvEq8ktRRifaw9jUYKZrGTAIVxBjfcxMIcqKBU8GK6iA1LCF0SsbMt1SSmJkgn59c4HOrjHCktC0JeK7+nshJbEwWh7YzJjAxy95M/M/zU4hug5zLJAUm6WJRlAoMCs/+xyOuGQWRWUKo5vZWTCdEEwo2paoNwVt+eZV0rxpes9F8uK633DKOCjpFZ+gSeegGtdA9aqMOokihZ/SK3hxwXpx352PRuuaUMyfoD5zPHy7IkSU=</latexit>

y0
1

<latexit sha1_base64="0xqs2BisvYjB6dXvO9+M6cN7whs=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LBbRU0mKVI8FLx4r2A9oQ9lsN+3SzW7Y3Qgh5Gd48aCIV3+NN/+N2zYHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV8tEEdohkkvVD7CmnAnaMcxw2o8VxVHAaS+Y3c393hNVmknxaNKY+hGeCBYygo2VBtkwCLM0z0eNy1G15tbdBdA68QpSgwLtUfVrOJYkiagwhGOtB54bGz/DyjDCaV4ZJprGmMzwhA4sFTii2s8WJ+fowipjFEplSxi0UH9PZDjSOo0C2xlhM9Wr3lz8zxskJrz1MybixFBBlovChCMj0fx/NGaKEsNTSzBRzN6KyBQrTIxNqWJD8FZfXifdRt1r1psP17WWW8RRhjM4hyvw4AZacA9t6AABCc/wCm+OcV6cd+dj2VpyiplT+APn8wcwTZEm</latexit>

y0
2

<latexit sha1_base64="zhY8xWdsT2ZL5cmSSHtbuCLRmmw=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ6KolI9Vjw4rGC/YA0lM120y7d7IbdjRBCfoYXD4p49dd489+4bXPQ1gcDj/dmmJkXJpxp47rfztr6xubWdmWnuru3f3BYOzruapkqQjtEcqn6IdaUM0E7hhlO+4miOA457YXTu5nfe6JKMykeTZbQIMZjwSJGsLGSnw/CKM+KYji9GNbqbsOdA60SryR1KNEe1r4GI0nSmApDONba99zEBDlWhhFOi+og1TTBZIrH1LdU4JjqIJ+fXKBzq4xQJJUtYdBc/T2R41jrLA5tZ4zNRC97M/E/z09NdBvkTCSpoYIsFkUpR0ai2f9oxBQlhmeWYKKYvRWRCVaYGJtS1YbgLb+8SrpXDa/ZaD5c11tuGUcFTuEMLsGDG2jBPbShAwQkPMMrvDnGeXHenY9F65pTzpzAHzifP4bqkV8=</latexit>

y0
k

<latexit sha1_base64="Cyavm9xzx+3xwLCtKCnVy5HSqwI=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbRU0lEqseCF48V7Ie0oWy2m3bp7ibsboQQ8iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8IOZMG9f9dkpr6xubW+Xtys7u3v5B9fCoo6NEEdomEY9UL8CaciZp2zDDaS9WFIuA024wvZ353SeqNIvkg0lj6gs8lixkBBsrPWaDIMzSPD8fVmtu3Z0DrRKvIDUo0BpWvwajiCSCSkM41rrvubHxM6wMI5zmlUGiaYzJFI9p31KJBdV+Nj84R2dWGaEwUrakQXP190SGhdapCGynwGail72Z+J/XT0x442dMxomhkiwWhQlHJkKz79GIKUoMTy3BRDF7KyITrDAxNqOKDcFbfnmVdC7rXqPeuL+qNd0ijjKcwClcgAfX0IQ7aEEbCAh4hld4c5Tz4rw7H4vWklPMHMMfOJ8/AoaQgQ==</latexit>

y0 <latexit sha1_base64="lkvOjIsBSf8jSdQy54EivIUS/6A=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vjw4rGC/YA2lM120y7dbOLuRAihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7a+sbm1Xdop7+7tHxxWjo7bJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJ7czvPHFtRKweMEu4H9GREqFgFK3UzftBmGfT6aBSdWvuHGSVeAWpQoHmoPLVH8YsjbhCJqkxPc9N0M+pRsEkn5b7qeEJZRM64j1LFY248fP5vVNybpUhCWNtSyGZq78nchoZk0WB7Ywojs2yNxP/83ophjd+LlSSIldssShMJcGYzJ4nQ6E5Q5lZQpkW9lbCxlRThjaisg3BW355lbQva169Vr+/qjbcIo4SnMIZXIAH19CAO2hCCxhIeIZXeHMenRfn3flYtK45xcwJ/IHz+QOe3JBQ</latexit>

y

<latexit sha1_base64="hbq4zsf99IP6HpUzydr7rBIeF4I=">AAAB83icbVDLSsNAFL3xWeur6tLNYBVclUR8LQtuXFboC5pQJtNJO3QyCTMTsQz5DTcuFHHrz7jzb5y2WWjrgQuHc+7l3nvClDOlXffbWVldW9/YLG2Vt3d29/YrB4dtlWSS0BZJeCK7IVaUM0FbmmlOu6mkOA457YTju6nfeaRSsUQ09SSlQYyHgkWMYG0l3/hhZJ7yvG+aeb9SdWvuDGiZeAWpQoFGv/LlDxKSxVRowrFSPc9NdWCw1Ixwmpf9TNEUkzEe0p6lAsdUBWZ2c47OrDJAUSJtCY1m6u8Jg2OlJnFoO2OsR2rRm4r/eb1MR7eBYSLNNBVkvijKONIJmgaABkxSovnEEkwks7ciMsISE21jKtsQvMWXl0n7ouZd164eLqv10yKOEhzDCZyDBzdQh3toQAsIpPAMr/DmZM6L8+58zFtXnGLmCP7A+fwBxSySFQ==</latexit>xT
<latexit sha1_base64="IgEZ4z+FdTIBfOGT6JjTny2ktIA=">AAAB83icbVBNS8NAEJ3Ur1q/qh69BKvgqSTi17HgxWMF+wFNKJvtpl262YTdiVhC/oYXD4p49c9489+4bXPQ1gcDj/dmmJkXJIJrdJxvq7Syura+Ud6sbG3v7O5V9w/aOk4VZS0ai1h1A6KZ4JK1kKNg3UQxEgWCdYLx7dTvPDKleSwfcJIwPyJDyUNOCRrJy7wgzJ7yvJ9h3q/WnLozg71M3ILUoECzX/3yBjFNIyaRCqJ1z3US9DOikFPB8oqXapYQOiZD1jNUkohpP5vdnNunRhnYYaxMSbRn6u+JjERaT6LAdEYER3rRm4r/eb0Uwxs/4zJJkUk6XxSmwsbYngZgD7hiFMXEEEIVN7fadEQUoWhiqpgQ3MWXl0n7vO5e1S/vL2qNkyKOMhzBMZyBC9fQgDtoQgsoJPAMr/BmpdaL9W59zFtLVjFzCH9gff4A9cySNQ==</latexit>xt

<latexit sha1_base64="fSDCFcTODJdc85TMXfiuas+7j1o=">AAAB83icbVDLSsNAFL2pr1pfVZduBqvgqiTia1lw47KCfUATymQ6aYdOJmEeYgn5DTcuFHHrz7jzb5y2WWjrgQuHc+7l3nvClDOlXffbKa2srq1vlDcrW9s7u3vV/YO2SowktEUSnshuiBXlTNCWZprTbiopjkNOO+H4dup3HqlULBEPepLSIMZDwSJGsLaSn/lhlD3leT9z83615tbdGdAy8QpSgwLNfvXLHyTExFRowrFSPc9NdZBhqRnhNK/4RtEUkzEe0p6lAsdUBdns5hydWmWAokTaEhrN1N8TGY6VmsSh7YyxHqlFbyr+5/WMjm6CjInUaCrIfFFkONIJmgaABkxSovnEEkwks7ciMsISE21jqtgQvMWXl0n7vO5d1S/vL2qNkyKOMhzBMZyBB9fQgDtoQgsIpPAMr/DmGOfFeXc+5q0lp5g5hD9wPn8AjniR8Q==</latexit>x0

Figure 2: Overview of our PoGDiff. During fine-
tuning, PoGDiff collects k neighbors of the current
text embedding y and samples one y′ from them
based on Eqn. (8). Both y and y′ will then be em-
ployed to denoise the current image xt to xt−1.

where ◦ represents the product of two Gaus-
sian distributions, y′ is a selected neighbor-
ing embedding from other samples in the
training dataset (more details below), and
pθ(xt−1|xt,y′) denotes the predicted distribu-
tion when using y′ as the input text embedding.

As shown in Fig. 2, intuitively, PoGDiff’s de-
noising model ϵθ(xt, t,y) (or pθ(xt−1|xt,y))
is optimized towards two target distributions,
equivalently increasing the weights for minority
instances (more details below). This enhances
the text-to-image mapping by leveraging the
statistical strength of neighboring data points,
thereby improving and quality of the generated images, especially for minority images.

Intuition behind the Product of Gaussians (PoG). During fine-tuning, typical diffusion models
“lock” the text conditional embedding y = ψ(c) to the corresponding image x. Consequently, if the
dataset follows a long-tailed distribution, the fine-tuned or post-trained diffusion model becomes
heavily biased toward the majority data, performing poorly on minority data. Fig. 3 demonstrates our
intuition. When training using a text-image pair (y,x), our PoGDiff “borrows” information from
neighboring text conditional embedding y′, thereby effectively increasing the data density in the
minority region and leading to smoother (less imbalanced) effective density, as shown in Fig. 3 (right).
However, since the text embedding is fixed during fine-tuning (i.e., ϕ is frozen), directly smoothing
the text embedding space is not feasible. Instead, we rely on the properties of PoG.

By definition, given two Gaussian distributions, N (µ1, λ
−1
1 I) and N (µ2, λ

−1
2 I), their product is still

a Gaussian distribution:

N (µ1, λ
−1
1 ) ◦ N (µ2, λ

−1
2 ) = N

(
λ1µ1 + λ2µ2

λ1 + λ2
, (λ1 + λ2)

−1

)
≜ N

(
µPoG, λ

−1
PoG

)
, (2)

which can be treated as a “composition” of two individual Gaussians, incorporating information from
both. This intuition is key to developing our PoGDiff objective function.

3.2.2 Theoretical Analysis and Algorithmic Design

Based on Eqn. (1), we then derive a concrete objective function following Proposition 3.1 below.

Proposition 3.1. Assume λy = λPoG ≜ λt + λy′ , we have our loss function

LPoGDiff
t−1 = Eq

[
λy
2

∥µθ(xt,y)− µPoG∥2
]
+ C. (3)

Here, C is a constant, and µPoG denotes the mean of the PoG, with the expression defined in Eqn. (2).
Then, through derivations based on Gaussian properties, we obtain

LPoGDiff
t−1 ≤ Eq

[
A(λt) ∥ϵθ(xt,y)− ϵ∥2 +A(λy′) ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
+ C (4)

where the function A(λ) ≜
λ(1− αt)

2

2αt(1− ᾱt)
.

The proof is available in Appendix A. Eqn. (4) in Proposition 3.1 provides a upper bound for the KL
divergence (Eqn. (1)) we aim to minimize.
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In diffusion model literature [1, 7], one typically sets A(λt) = 1 to eliminate the dependency on the
time step t, and thus Eqn. (4) can be written as1:

LPoGDiff
simple = Ex∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[
∥ϵθ(xt,y)− ϵ∥2 + λy′

λt
∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
. (5)

For convenience, we rewrite λy′

λt
=

σ2
t

σ2
y′

. Note that this weight still depends on the time step t. There-

fore, to be consistent with the literature [1, 7], we hypothetically define σ2
y′ =

σ2
t

ψ[(x,y),(x′,y′)] to cancel
out the term σ2

t , thereby effectively removing the time step dependency; here ψ [(x,y) , (x′,y′)] de-
notes the similarity between the two image-text pairs. By shortening the notation ψ [(x,y) , (x′,y′)]
to ψ, we can further rewrite the objective function for PoGDiff as:

LPoGDiff
simple = Ex∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[
∥ϵθ(xt,y)− ϵ∥2 + ψ ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
. (6)

3.2.3 Computing the Similarity ψ

Next, we discuss the choice of ψ in Eqn. (6). Given an image-text dataset D,
the similarities between each image-text pair need to be considered in two parts:
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Figure 3: Comparing denoising networks of typi-
cal diffusion models [1, 7] and our PoGDiff. Left:
In conditional text-to-image diffusion models, a
data point (i.e., x) is mainly affected by its text
embedding (besides random latent codes). Right:
In PoGDiff, neighbors participate to modulate the
final effective density. Here, y denotes the text
prompts, which are the embeddings of the text
descriptions of the images; x denotes the associ-
ated images. The tightly packed circles at the top
indicate higher density, while the sparse circles
indicate lower density.

ψ ≜ ψimg-sim (x,x′) · ψinv-txt-den (y) , (7)

where ψimg-sim(x,x
′) is the similarity between

images x and x′, and ψinv-txt-den(y) is the prob-
ability density of the text embedding y (more
details below).

Image Similarity ψimg-sim. For all x ∼ D, we
apply a pre-trained image encoder to obtain the
latent representations z. We then calculate the
cosine similarities between each z and select the
k nearest neighbors with the highest similarity
values for all samples in the dataset D, denoted
as [sj ]

k
j=1, where sj represents the cosine sim-

ilarity scores between x and other images in D,
sorted in descending order. These values are
then normalized to produce the weights for each
neighbor:

wj =
sj∑
j sj

. (8)

For each data pair (x,y), we then randomly sam-
ple a neighboring pair (x′,y′) from a categori-
cal distribution Cat([wj ]kj=1) (“Cat” is short for
“Categorical”), i.e., withwj serving as the proba-
bility weight, and compute their image similarity
as:

ψimg-sim (x,x′) ≜ max
(
0, sa1+a2·1[I(x)̸=I(x′)]

)
, (9)

where s ∈ {sj}kj=1 denotes the cosine similarity sampled according to the weights {wj}kj=1

in Eqn. (8), 1 [·] denotes the indicator function, and I(·) retrieves the class/identity of the cur-
rent input image; 1 [I(x) ̸= I(x′)] = 0 if x and x′ are two photos of the same person (e.g., Albert
Einstein), and 1 [I(x) ̸= I(x′)] = 1 if x and x′ are photos of two different persons (e.g., x is Einstein
and x′ Reagan). More details on I(·) can be found in Appendix K.7. a1, a2 are hyperparameters that
control the scale of the similarities. For example, if the cosine similarity (s) between x and x′ is 0.4,
and a1 = a2 = 1: if x and x′ are of the same person, the image similarity will be 0.41, whereas if x
and x′ are not of the same person, the image similarity will be 0.42, which is smaller. The intuition is
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Algorithm 1 Training Algorithm for PoGDiff

1: Inputs: A dataset D = {x(i), c(i)}Ni=1.
2: repeat
3: (x0, c) ∼ D
4: y = ϕ(c)
5: t ∼ Uniform(1, · · · , T )
6: ϵ ∼ N (0, I)
7: Sample y′ and ψ from Eqn. (12)
8: Calculate xt =

√
ᾱtx0 +

√
1− ᾱtϵ

9: Take gradient descent step on
10: ∇θ

[
∥ϵ− ϵθ(xt,y)∥22 + ψ∥ϵθ(xt,y

′)− ϵθ(xt,y)∥22
]

11: until converged

to compute the image similarity according to both the image content similarity, i.e., s, and identity
similarity, i.e., I(x) and I(x′).

Inverse Text Densities ψinv-txt-den. Inspired by LDS in DIR [22] and the theoretical analysis in
VIR [23], re-weighting the label distribution of an imbalanced dataset can increase the optimization
scale for minority classes and reduce the emphasis on majority classes, resulting in better performance
under imbalanced conditions. However, both DIR and VIR partition the label space into bins, treating
it as a classification problem. This is not applicable to our setting because in text-to-image generation,
the “label” is actually text embeddings. Instead, we train a variational autoencoder (VAE) on this
dataset and then approximate its likelihood p(y) through its evidence lower bound, or ELBO:

p(y) = elog p(y) ≈ eELBOVAE(y). (10)

The evidence for minority data will be lower than for majority classes. This then motivates our
inverse text densities defined as follows:

ψinv-txt-den (y) ≜
1

a3
e−ELBOVAE(y), (11)

where a3 is a hyperparameter that controls the scale of the inverse text densities. By combin-
ing Eqn. (9) and Eqn. (11) to Eqn. (7), we can then compute ψ as follows 2:

ψ = max
(
0,
sa1+a2·1[I(x)̸=I(x′)]

a3

)
· e−ELBOVAE(y). (12)

3.2.4 Final Objective Function

By collecting all the components discussed above, we arrive at our final training objective:

LPoGDiff
final = Ex∼q(x0),ϵ∼N (0,I),t∼U(1,T )

[
∥ϵθ(xt,y)− ϵ∥2 + ψ ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
, (13)

where ψ is defined in Eqn. (12). Alg. 1 summarizes our algorithm.

4 Experiments

4.1 Experimental Setup

Datasets. To demonstrate the effectiveness of PoGDiff in terms of both accuracy and quality, we
evaluate our method on four widely used imbalanced datasets, i.e., AgeDB [47], DigiFace [48],
VGGFace2 [49] and CIFAR-100-LT [50].

AgeDB-IT2I-L & AgeDB-IT2I-S: AgeDB-IT2I-L(arge) is constructed from the AgeDB dataset [47].
It consists of 976 images across 223 identities, with each majority class containing 30 images and

1For clarification, our A(λt) is equivalent to λt in [1], with the difference that in our paper, λ refers to the
precision of the Gaussian distribution.

2For simplicity, we set a1, a2, a3 to 1 without tuning them
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Table 1: Performance based on FID score.
Datasets (-IT2I) AgeDB DigiFace VGGFace CIFAR-100

Size Small Large Large Large Large

Metric FID ↓
Shot All Few All Few All Few All Few All Few

VANILLA 14.88 13.72 7.67 11.67 7.18 12.23 7.59 12.08 7.19 11.46
CBDM 14.72 14.13 7.18 11.12 6.96 12.72 7.23 11.91 7.26 11.94
T2H 14.85 13.66 7.61 11.64 7.14 12.22 7.34 12.02 7.10 11.39
POGDIFF (OURS) 14.15 12.88 6.03 10.16 6.84 11.21 6.29 10.97 6.24 9.41

Table 2: Performance based on DINO score.

Datasets (-IT2I) AgeDB DigiFace VGGFace CIFAR-100

Size Small Large Large Large Large

Metric DINO ↑
Shot All Few All Few All Few All Few All Few

VANILLA 0.42 0.37 0.34 0.25 0.42 0.36 0.41 0.29 0.48 0.32
CBDM 0.54 0.09 0.41 0.26 0.34 0.16 0.46 0.22 0.52 0.28
T2H 0.43 0.39 0.37 0.26 0.44 0.36 0.42 0.28 0.45 0.30
POGDIFF (OURS) 0.77 0.73 0.66 0.52 0.64 0.49 0.69 0.55 0.73 0.61

Table 3: Performance based on human evalu-
ation. The evaluation is a binary decision: the
image is either judged as representing the same
individual (score 1.0) or not (score 0.0).

Datasets (-IT2I) AgeDB VGGFace CIFAR-100

Size Small Large Large Large

Metric Human Score ↑
Shot All Few All Few All Few All Few

VANILLA 0.50 0.00 0.60 0.20 0.62 0.16 0.72 0.30
CBDM 0.50 0.00 0.56 0.12 0.54 0.10 0.63 0.24
T2H 0.50 0.00 0.60 0.20 0.62 0.16 0.72 0.30
POGDIFF (OURS) 1.00 1.00 0.84 0.68 0.78 0.64 0.84 0.72

Table 4: Performance on AgeDB-IT2I based
on GPT-4o evaluation. The scores are from 0 to
10, with higher scores indicating the individual
resembles the well-known person.

Datasets (-IT2I) AgeDB VGGFace CIFAR-100

Size Small Large Large Large

Metric Human Score ↑
Shot All Few All Few All Few All Few

VANILLA 5.20 3.20 4.90 3.60 4.50 2.90 6.00 3.20
CBDM 4.50 1.10 3.10 1.70 2.80 1.30 3.40 2.00
T2H 5.50 3.10 4.70 3.90 4.60 3.10 6.20 3.60
POGDIFF (OURS) 9.10 8.40 8.50 8.00 8.20 7.60 8.40 8.00

each minority class containing 2 images. We also construct AgeDB-IT2I-S(mall), which contains 32
images across 2 identities, where each majority class consists of 30 images and each minority class
consists of 2 images. Additionally, we construct AgeDB-IT2I-M(edium), and more details can be
found in Appendix C.

DigiFace-IT2I: DigiFace-IT2I is derived from the DigiFace dataset [48]. It contains 985 images
across 179 identities, where each majority class consists of 30 images and each minority class
consists of 2 images. We use a process similar to AgeDB-IT2I to collect text-image pairs, forming
this DigiFace-IT2I dataset.

VGGFace-IT2I: VGGFace-IT2I is a subset of VGGFace2 [49]. It contains 1933 images across 193
identities, where each majority class consists of 49 images and each minority class consists of 2
images.

CIFAR-100-IT2I: CIFAR-100-IT2I is constructed from CIFAR-100-LT dataset [50]. We set the
imbalance ratio to 250, where the largest class contains 500 images and the smallest class contains
only 2 images. The dataset consists of 9502 images in total. During fine-tuning, to mitigate the
dominance of majority classes, we downsample these classes in each epoch. Specifically, the most
frequent class is reduced to 49 images per epoch out of its original 500 images.

Baselines. We employ Stable Diffusion v1.5 [7] as the backbone diffusion model. As this is the first
work to explore imbalanced text-to-image (IT2I) diffusion models with natural text prompts, we
adapt the current state-of-the-art methods designed for long-tailed T2I diffusion models with one-hot
text prompts to serve as baselines. The baselines are described below:

• Vanilla: The Vanilla model simply fine-tunes a Stable Diffusion model without additional
modifications.

• CBDM: CBDM [20] is a Class Balancing Diffusion Model that incorporates a distribution adjust-
ment regularizer during training. During fine-tuning, we sample an additional text embedding y′

from the entire fine-tuning dataset and apply the CBDM objective function. All hyperparameters
are kept the same as in the original paper, with further details available in Qin et al. [20].

• T2H: T2H [37] is a Long-Tailed Diffusion Model with Oriented Calibration. It is a feature
augmentation method, but is not directly applicable to our setting. Specifically, T2H relies on the
class frequency, which is not available in our experiments. We adapted this method to our settings
by using the density for each text prompt embedding to serve as the class frequency in T2H [37].

Evaluation Protocols and Metrics. We use three types of evaluation metrics: generation diversity,
generation accuracy, and generation quality.

For generation diversity, we propose a new metric, generative recall (gRecall), which evaluates the
generative diversity of a model when generation accuracy is strictly enforced.
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Figure 4: Example generated images from different methods. Our PoGDiff outperforms the baselines
in both generation accuracy and quality. Regarding the ground truth (GT), the training set for the
minority class (left two columns) contains only 2 images per individual while the majority class has
more than 8 samples per individual.

• gRecall in the Context of Image Generation: “Correct Image” and “Covered Image”. For
each generated image, we classify it as a “correct image” if its distance to at least one ground-truth
(GT) image is below a predefined threshold. For instance, suppose we have two training-set
images for Einstein, denoted as x1 and x2. A generated image xg is a “correct image” if the
cosine similarity between xg and either x1 or x2 is above some threshold (e.g., we set to 0.7 here).
For example, if the cosine similarity xg and x1 is larger than 0.7, we say that xg is a “correct
image”, and that x1 is a “covered image”. Intuitively, a training-set image (e.g., x1) is covered if
a diffusion model is capable of generating a similar image.

• Cosine Similarity between Images. Note that in practice, we compute the cosine similarity
between DINO embeddings of images rather than raw pixels.

• Formal Definition for gRecall. Formally, for each model, we compute the gRecall per ID as
follows:

gRecall =
1

c

c∑
i=1

# of unique covered images for ID i

# of images for ID i in the training set

where c is the number of IDs in a training set.
• Analysis. This metric evaluates the generational diversity of a model. For example, if the training

dataset contains two distinct images of Einstein, x1 and x2, and a model generates only images
resembling x1, the gRecall, in this case, would be 0.5. While the model may achieve high
accuracy in terms of facial identity ( Table 3 and Table 4), it falls short in diversity because it fails
to generate images resembling x2. In contrast, if a model generates images that cover both x1 and
x2, the gRecall for this ID will be 1; for instance, if the model generates 10 images for Einstein,
where 6 of them resemble x1, and 4 of them resemble x2, the gRecall would be 1, indicating high
diversity and coverage.

To assess generation accuracy, for each minority class, we did sample 100 images rather than 10.
For the human evaluation metric, we then sampled 10 images out of these 100 due to the high cost of
human evaluation. We then gather feedback from both the GPT-4o model [51] and human evaluators
to score the accuracy of identity recognition. Additionally, we employ a pre-trained DINO model [52]
for calculating the DINO score for image similarities. More details about the evaluation process,
including prompts we used, are in Appendix E.

For general text-to-image generation quality, we report the widely used Fréchet Inception Distance
(FID) score [53]. For all the facial datasets, we use a pre-trained face recognition model as the feature
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extractor rather than traditional Inception-v3 [54]; since our goal is to evaluate the ability to recognize
humans, we need to capture facial features rather than general features. For CIFAR-100-LT, we
employ the original feature extractor (i.e., Inception-v3 [54]). More details are in Appendix E.

4.2 Results

Generation Quality and Accuracy. We report the performance of different methods in terms of
FID score, human evaluation score, GPT-4o score, and DINO score in Table 1, Table 2, Table 3 and
Table 4, respectively3. Full results are included in Appendix G. Across all tables, we observe that our
PoGDiff consistently outperforms all baselines. More results and discussions are in Appendix K.5.
Notably, PoGDiff demonstrates significant improvements, especially in few-shot scenarios (i.e., for
minority classes). It is also worth noting that CBDM [20] performs extremely poorly on AgeDB-IT2I-
S dataset. This is because their method samples text conditions from the entire space, which may
work in one-hot class settings, but in our context (natural text conditions), this sampling technique
misguides the model during training.

Fig. 4 shows randomly sampled generated images on low-density classes (Column 1&2) and high-
density class (Column 3) in AgeDB-IT2I-L for each method. Note that the ground-truth (GT) images
are the training images. For the high-density class, we select 8 out of 24 total images in the training
set to report in this figure. Across each column, the individual names are Albert Einstein, JW Marriott,
and Luise Rainer, respectively. PoGDiff achieves significantly better accuracy and quality for both
head and tail classes (see Appendix K for more comparisons and analysis). Specifically, both SDv1.5
and T2H fail to generate accurate individuals (green boxes), and CBDM even struggles to generate
images with correct genders (blue boxes). By contrast, our PoGDiff successfully generates accurate
individuals, even when trained on a dataset containing only two images.

Generation Diversity. Table 1 and Fig. 4 demonstrate our PoGDiff’s promising generation diversity:

• PoGDiff’s Superior FID Performance. Table 1 shows that PoGDiff achieves a lower FID score,
particularly in few-shot regions (i.e., minorities). This suggests that the images generated by our
method capture a broader range of variations present in the training dataset, such as backgrounds
or facial angles.

• PoGDiff’s Qualitative Results. As shown in Fig. 4:

– For Einstein (Column 1 for each method), the training dataset (the GT section on the right)
includes two face angles and two hairstyles. Our generated results successfully cover these
attributes.

– For JW Marriott (Column 2 for each method), the training dataset has only one face angle.
Correspondingly our results focus on generating subtle variations in facial expressions with only
one angle, as expected.

– For the majority group (Column 3 for each method), our PoGDiff’s generated images cover a
wider range of diversity while maintaining ID consistency.

Table 5: Performance based on gRecall score. See the
detailed definition of gRecall in Sec. 4.1.

Datasets (-IT2I) AgeDB VGGFace CIFAR-100

Size Small Large Large Large

Metric gRecall Score ↑
Shot All Few All Few All Few All Few

VANILLA 0.017 0.000 0.196 0.200 0.133 0.167 0.200 0.160
CBDM 0.267 0.000 0.138 0.100 0.120 0.100 0.086 0.067
T2H 0.017 0.000 0.196 0.200 0.133 0.167 0.200 0.160
POGDIFF (OURS) 0.800 1.000 0.435 0.540 0.400 0.533 0.433 0.567

Results on gRecall. Table 5 shows
the gRecall for different methods
on four datasets, AgeDB-IT2I-small,
AgeDB-IT2I-large, VGGFace-IT2I,
and CIFAR-100-IT2I. These results
show that our PoGDiff achieves much
higher gRecall compared to all base-
lines, demonstrating its impressive di-
versity and coverage of different at-
tributes of the same individual in the
training set (see Appendix I for more
discussion and examples on gRecall).

3CLIP score is not applicable here. Our text prompts are predominantly human names, while CLIP is
primarily trained on common objects, not human names; therefore, CLIP score cannot measure the matching
between images and human names.
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5 Conclusions

In this paper, we propose a general fine-tuning approach called PoGDiff to address the performance
drop that occurs when fine-tuning on imbalanced datasets. Instead of directly minimizing the KL
divergence between the predicted and ground-truth distributions, PoGDiff replaces the ground-truth
distribution with a Product of Gaussians (PoG), constructed by combining the original ground-truth
targets with the predicted distribution conditioned on a neighboring text embedding. Looking ahead,
an interesting avenue for future research would be to explore more innovative techniques for re-
weighting minority classes (as limitations discussed in Sec. H), particularly within the constraints
of (1) long-tailed generation settings, as opposed to recognition tasks, and (2) natural text prompts
rather than one-hot class labels. Exploring PoGDiff for other modalities (e.g., videos and time series)
is also an interesting future work.
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A Proofs for Proposition 3.1

Proposition A.1. Assume λy = λPoG ≜ λt + λy′ , we have our loss function

LPoGDiff
t−1 = Eq

[
λy
2

∥µθ(xt,y)− µPoG∥2
]
+ C. (14)

Here, C is a constant, and µPoG denotes the mean of the PoG, with the expression defined in Eqn. (2).
Then, through derivations based on Gaussian properties, we obtain

LPoGDiff
t−1 ≤ Eq

[
A(λt) ∥ϵθ(xt,y)− ϵ∥2 +A(λy′) ∥ϵθ(xt,y)− ϵθ(xt,y

′)∥2
]
+ C (15)

where the function A(λ) ≜
λ(1− αt)

2

2αt(1− ᾱt)
.

Proof. To prove the above inequality, we need to prove the following lemma.

Lemma A.1. Assume λy = λPoG ≜ λt + λy′ , and for simplicity we shorten the notation from
ϵθ(xt,y) and µθ(xt,y) to ϵθ(y) and µθ(y), respectively. Then we have

1

2
λt (µθ (y)− µt)

2
+

1

2
λy′ (µθ (y)− µθ (y

′))
2 ≥ 1

2
λy (µθ (y)− µPoG)

2 (16)

Proof. By the definition of Gaussian property, we have

1

2
λt (µθ(y)− µt)

2
+

1

2
λy′ (µθ(y)− µθ(y

′))
2

=
[µθ(y)]

2 − 2µtµθ(y) + µ2
t

2λ−1
t

+
[µθ(y)]

2 − 2µθ(y
′)µθ(y) + [µθ(y

′)]2

2λ−1
y′

=

(
λ−1
t + λ−1

y′

)
[µθ(y)]

2 − 2

(
µt
λy′

+
µθ(y

′)
λt

)
µθ(y) +

µ2
t

λy′
+

[µθ(y
′)]2

λt
2[λtλy′ ]−1

=

[µθ(y)]
2 − 2

(
µtλt + [µθ(y

′)]λy′

λt + λy′

)
µθ(y) +

µ2
tλt + [µθ(y

′)]2λy′

λt + λy′

2

λt + λy′

+

[
µtλt + [µθ(y

′)]λy′

λt + λy′

]2
2

λt + λy′

−

[
µtλt + [µθ(y

′)]λy′

λt + λy′

]2
2

λt + λy′

=

(
µθ(y)−

µtλt + [µθ(y
′)]λy′

λt + λy′

)2

2

λt + λy′

+
(µ2
tλt + [µθ(y

′)]2λy′)(λt + λy′)− (µtλt + [µθ(y
′)]λy′)2

2(λt + λy′)

=
1

2
λy (µθ(y)− µPoG)

2
+
λtλy′(µt − µθ(y

′))2

2(λt + λy′)
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2
λy (µθ(y)− µPoG)

2
.

Thus we complete the proof.
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From Lemma A.1, we can derive
1

2
λy ∥µθ(y)− µPoG∥2 ≡ 1

2
λy (µθ(y)− µPoG)

2

≤ 1

2
λt (µθ(y)− µt)

2
+

1

2
λy′ (µθ(y)− µθ(y

′))
2

≡ 1

2
λt ∥µθ(y)− µt∥2 +

1

2
λy′ ∥µθ(y)− µθ(y

′)∥2

≡ A(λt) ∥ϵθ(y)− ϵ∥2 +A(λy′) ∥ϵθ(y)− ϵθ(y
′)∥2 ,

where the function A(λ) ≜
λ(1− αt)

2

2αt(1− ᾱt)
, and the last equivalence is because the transform from

µθ(·) to ϵθ(·).

B Ablation Study

Table 6: Ablation Studies.
Datasets AgeDB-IT2I-Large

Size FID ↓ Human ↑ GPT-4o ↑ DINO ↑
Shot All Few All Few All Few All Few

W/O y′ (VANILLA) 7.67 11.67 0.60 0.20 4.90 3.60 0.34 0.25
W/O ψIMG-SIM 6.41 10.49 0.84 0.68 8.40 7.60 0.57 0.46
W/O ψINV-TXT-DEN 6.35 10.43 0.84 0.68 8.20 7.80 0.64 0.51
POGDIFF (OURS) 6.03 10.16 0.84 0.68 8.50 8.00 0.66 0.52

To verify the effectiveness of each
component in the second term in
our PoGDiff final objective function
from Eqn. (12), we report the accu-
racy of our proposed PoGDiff after re-
moving the y′ (i.e., same as Vanilla
model), the Image Similarity term
ψimg-sim, and/or the Inverse Text Den-
sities term ψinv-txt-den in Table 6 for
AgeDB-IT2I-L. The results show that
removing either term leads to a per-
formance drop, confirming the impor-
tance of both terms in our PoGDiff.

In addition, to verify the threshold in calculating the gRecall score, we report the performance
in Table 7 for AgeDB-IT2I-small. The results show that our method consistently outperforms the
baselines. Notably, while lowering the threshold improves the gRecall scores of the baselines, our
model still achieves higher scores and demonstrates clear advantages.

C Details for Datasets

Note that our method is designed for fine-tuning. Therefore our setup does not require large-scale,
long-tailed human datasets. Instead, we sample from these datasets, as long as they meet the following
criteria: (1) the dataset must be long-tailed, (2) traditional methods must fail to recognize the minority
classes, and (3) there must be a distinguishable difference between the majority and minority classes
(e.g., we prefer visual distinctions between the two groups to better highlight the impact of our
method). Fig. 6 shows the label density distribution of these datasets, and their level of imbalance
(see Appendix K.4 for details on data sparsity).

AgeDB-IT2I: AgeDB-IT2I is constructed from the AgeDB dataset [47]. For each image x in AgeDB,
we passed it through the pretrained LLaVA-1.6-7b model [55] to generate textual captions ỹ. Since
the identities in AgeDB are well-known individuals that the pretrained SDv1.5 [7] might have
encountered during pre-training, we masked the true names and replaced them with generic, random
names, leading to a new caption y. For example, we replace “Albert Einstein” in the caption with a
random name “Lukas”. Finally, we collect all (y,x) pairs to form our AgeDB-IT2I dataset.

Additionally, given that the identities (i.e., people or individuals) in AgeDB are well-known figures,
we sampled from AgeDB to create three datasets for comprehensive analysis: AgeDB-IT2I-L (large),
AgeDB-IT2I-M (medium), and AgeDB-IT2I-S (small). Specifically:

• AgeDB-IT2I-L (large). This dataset consists of 976 images across 223 identities, with each
majority class containing 30 images and each minority class containing 2 images.

• AgeDB-IT2I-M (medium). This dataset consists of 100 images across 10 identities, with each
majority class containing 30 images and each minority class containing 2 images.
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Table 7: Ablation Studies for threshold in gRecall in AgeDB-IT2I-small.

Shot All Few All Few All Few All Few All Few

Threshold 0.8 0.7 0.6 0.5 0.4

VANILLA 0.000 0.00 0.017 0.00 0.067 0.00 0.150 0.00 0.717 0.500
CBDM 0.100 0.000 0.267 0.000 0.283 0.000 0.817 0.500 0.883 0.500
T2H 0.000 0.000 0.017 0.000 0.067 0.000 0.150 0.000 0.717 0.500
POGDIFF 0.733 1.000 0.800 1.000 0.867 1.000 1.000 1.000 1.000 1.000

• AgeDB-IT2I-S (small). This dataset contains 32 images across 2 identities, where each majority
class consists of 30 images and each minority class consists of 2 images.

DigiFace-IT2I: DigiFace-IT2I is derived from the DigiFace dataset [48]. It contains 985 images
across 179 identities, where each majority class consists of 30 images and each minority class
consists of 2 images. We use a process similar to AgeDB-IT2I to collect text-image pairs, forming
this DigiFace-IT2I dataset.

VGGFace-IT2I: VGGFace-IT2I is a subset from VGGFace2 [49]. It contains 1933 images across
193 identities, where each majority class consists of 49 images and each minority class consists of 2
images.

D Details for Baselines

We employ Stable Diffusion v1.5 [7] as the backbone diffusion model. As this is the first work to
explore imbalanced text-to-image (IT2I) diffusion models with natural text prompts, we adapt the
current state-of-the-art methods designed for long-tailed T2I diffusion models with one-hot text
prompts to serve as baselines. The baselines are described below:

• Vanilla: We use term Vanilla to denote a model that does not incorporate any techniques for
handling imbalanced data, equivalent to fine-tuning a Stable Diffusion model without additional
modifications.

• CBDM: We use term CBDM to denote a model that incorporates the Class Balancing Diffusion
Model (CBDM) [20] approach. During fine-tuning, we sample an additional text embedding y′

from the entire fine-tuning dataset and apply the CBDM objective function. All hyperparameters
are kept the same as in the original paper, with further details available in Qin et al. [20].

• T2H: We use the term T2H to denote a model that uses Long-Tailed Diffusion Models with
Oriented Calibration (T2H) [37]. T2H is a feature augmentation method, but is not directly
applicable to our setting. Specifically, T2H [37] relies on the class frequency, which is not
available in our experiments. In this paper, we adapt this method to our settings by using the
density for each text prompt embedding to serve as the class frequency in T2H [37].

E Details for Evaluation

In this section, we provide details on our evaluation procedures.

FID Score. For each identity, we collect all images from the original AgeDB or DigiFace datasets as
the true image set. Then, In all-shot evaluation, for AgeDB-IT2I-S and AgeDB-IT2I-M, we generate
100 images per identity as the fake image set, and for AgeDB-IT2I-L, DigiFace-IT2I, VGGFace-IT2L
and CIFAR-100-IT2I, we generate 20 images per identity as the fake image set. In few-shot evaluation,
we generate 500 images per identity as the fake image set. For all generations, we employ the DDIM
sampling technique [3] with 50 steps. The prompt used during generation is “An image of {p}.”
where “p” is the name of the identity (e.g., Albert Einstein).

Human & GPT-4o Feedback. For each minority identity, we generate 5 images using DDIM
sampling [3] with 50 steps. We then ask 10 people to evaluate whether the images depict the same
person (scored as 1.0) or not (scored as 0.0). Additionally, for each image, we ask the GPT-4o model
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Table 8: Performance based on FID score.

Datasets (-IT2I) AgeDB DigiFace VGGFace CIFAR-100

Size Small Medium Large Large Large Large

Metric FID ↓
Shot All Few All Few All Few All Few All Few All Few

VANILLA 14.88 13.72 12.87 12.56 7.67 11.67 7.18 12.23 7.59 12.08 7.19 11.46
CBDM 14.72 14.13 11.63 11.59 7.18 11.12 6.96 12.72 7.23 11.91 7.26 11.94
T2H 14.85 13.66 12.79 12.52 7.61 11.64 7.14 12.22 7.34 12.02 7.10 11.39
POGDIFF (OURS) 14.15 12.88 10.89 10.64 6.03 10.16 6.84 11.21 6.29 10.97 6.24 9.41

to rate the similarity on a scale from 1 to 10. The prompt used during generation is “An image of { p
}.” where “p” is the name of the identity. The text prompt using for GPT-4o model is “It is mandatory
to give a score that how close the person in the image to a well-known individual. A score of 10.0
means they are exactly the same person, while a score of 0.0 means they are definitely not the same
person. How close you think the person in the image is to ‘p-true’.” where “p-true” denotes the
real name (well-known name) in AgeDB. Note that the GPT-4o model might occasionally refuse
to provide a score, and you may need to repeat and compel it to give a rating. For each image, we
collect 10 scores from the GPT-4o model and report the average rating.

Evaluating Image Similarities. We collect samples that are outside our training dataset (e.g.,
AgeDB-T2I-L) but belong to the original dataset (e.g., AgeDB). Using the same prompt, we generate
the corresponding images. A pre-trained DINOv2 model [52] is then applied to extract latent features,
and cosine similarities are calculated.

F Details for Implementation

For both baselines and our model, we used the same hyper-parameter settings, specifically

• AgeDB-IT2I-M & AgeDB-IT2I-S. The learning rate was set to 1 × 10−5, with a maximum of
6, 000 training steps. The effective batch size per GPU was 8, calculated as 8 (Batch Size) ×
1 (Gradient Accumulation Step).

• AgeDB-IT2I-L & DigiFace-IT2I. The learning rate was set to 1 × 10−5, with a maximum of
12, 000 training steps. The effective batch size per GPU was 32, calculated as 8 (Batch Size) ×
4 (Gradient Accumulation Steps).

• VGGFace-IT2I & CIFAR-100-IT2I. The learning rate was set to 1× 10−4, with a maximum of
24, 000 training steps. The effective batch size per GPU was 128, calculated as 32 (Batch Size)×
4 (Gradient Accumulation Steps).

G Full Results

We report the performance of different methods in terms of FID score, human evaluation score, GPT-
4o score, and DINO score in Table 8, Table 9, Table 10 and Table 11, respectively. Across all tables,
we observe that our PoGDiff consistently outperforms all baselines. More results and discussions
are in Appendix K.5. Notably, PoGDiff demonstrates significant improvements, especially in
few-shot scenarios (i.e., for minority classes). It is also worth noting that CBDM [20] performs
extremely poorly on AgeDB-IT2I-S and AgeDB-IT2I-M datasets. This is because their method
samples text conditions from the entire space, which may work in one-hot class settings, but in our
context (natural text conditions), this sampling technique misguides the model during training. In
addition, Table 12 shows the gRecall for different methods on three datasets, AgeDB-IT2I-Small,
AgeDB-IT2I-Medium, and AgeDB-IT2I-Large. These results show that our PoGDiff achieves much
higher gRecall compared to all baselines, demonstrating its impressive diversity and coverage of
different attributes of the same individual in the training set (see Appendix I for more discussion and
examples on gRecall).
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Table 9: Performance based on DINO score.

Datasets (-IT2I) AgeDB DigiFace VGGFace CIFAR-100

Size Small Medium Large Large Large Large

Metric DINO (cosine similarity) scores ↑
Shot All Few All Few All Few All Few All Few All Few

VANILLA 0.42 0.37 0.39 0.28 0.34 0.25 0.42 0.36 0.41 0.29 0.48 0.32
CBDM 0.54 0.09 0.38 0.11 0.41 0.26 0.34 0.16 0.46 0.22 0.52 0.28
T2H 0.43 0.39 0.42 0.29 0.37 0.26 0.44 0.36 0.42 0.28 0345 0.30
POGDIFF (OURS) 0.77 0.73 0.69 0.56 0.66 0.52 0.64 0.49 0.69 0.55 0.73 0.61

Table 10: Performance based on human evaluation. The evaluation is a binary decision: Image is
either judged as representing the same individual (score 1.0) or not (score 0.0).

Datasets (-IT2I) AgeDB VGGFace CIFAR-100

Size Small Medium Large Large Large

Metric Human Score ↑
Shot All Few All Few All Few All Few All Few

VANILLA 0.50 0.00 0.66 0.32 0.60 0.20 0.62 0.16 0.72 0.30
CBDM 0.50 0.00 0.44 0.08 0.56 0.12 0.54 0.10 0.63 0.24
T2H 0.50 0.00 0.66 0.32 0.60 0.20 0.62 0.16 0.72 0.30
POGDIFF (OURS) 1.00 1.00 0.96 0.92 0.84 0.68 0.78 0.64 0.84 0.72

H Limitations

Datasets. Our method relies heavily on “borrowing” the statistical strength of neighboring samples
from minority classes, making the results sensitive to the size of the minority class. (i.e., in our
assumption we require at least 2 for each minority class). In addition, while our AgeDB-IT2I-small
and AgeDB-IT2I-medium are actually the sparse dataset, the cardinality remains limited in our
experiments. Therefore, how to address IT2I problem under this settings are interesting directions.

Models. Our method is a general fine-tuning approach designed for datasets that the Stable Diffusion
(SD) model has not encountered during pre-training. As shown in Fig. 1, color deviation is very
common and is a known issue when one fine-tunes diffusion models (as also mentioned in [2]);
for example, we can observe similar color deviation in both baselines (e.g., CBDM and Stable
Diffusion v1.5) and our PoGDiff. This can be mitigated using the exponential moving average
(EMA) technique [2]; however, this is orthogonal to our method and is outside the scope of our paper.
Moreover, as shown in Fig. 5, the baseline Stable Diffusion also suffers from this issue. Besides,
exploring PoGDiff’s performance when training from scratch is also an interesting direction for future
work.

Methodology. The distance between the current text embedding y and the sampled y′ impacts
the final generated results, therefore in our paper, we introduced a more sophisticated approach for
computing the weight ψ, which depends on the quality of the image pre-trained model and our trained
VAE. These mechanisms ensure that data points with smaller distances are assigned higher effective
weights. Effectively producing ψ for any new, arbitrary dataset remains an open question and is an
interesting avenue for future work, as it could further enhance the method’s performance.

Evaluation. Our goal is to adapt the pretrained diffusion model to a specific dataset; therefore the
evaluation should focus on the target dataset rather than the original dataset used during pre-training.
For example, when a user fine-tunes a model on a dataset of employee faces, s/he is not interested in
how well the fine-tuned model can generate images of “tables” and “chairs”. Evaluating the model’s
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Table 11: Performance based on GPT-4o evaluation. The scores are from 0 to 10, with higher
scores indicating the individual resembles the well-known person.

Datasets (-IT2I) AgeDB VGGFace CIFAR-100

Size Small Medium Large Large Large

Metric GPT-4o Evaluation ↑
Shot All Few All Few All Few All Few All Few

VANILLA 5.20 3.20 4.30 2.90 4.90 3.60 4.50 2.90 6.00 3.20
CBDM 4.50 1.10 1.30 1.00 3.10 1.70 2.80 1.30 3.40 2.00
T2H 5.50 3.10 4.60 3.00 4.70 3.90 4.60 3.10 6.20 3.60
POGDIFF (OURS) 9.10 8.40 8.80 8.20 8.50 8.00 8.20 7.60 8.40 8.00

Table 12: Performance based on gRecall score. See the detailed definition of gRecall in Sec. 4.1.

Datasets (-IT2I) AgeDB VGGFace CIFAR-100

Size Small Medium Large Large Large

Metric gRecall Score ↑
Shot All Few All Few All Few All Few All Few

VANILLA 0.017 0.000 0.104 0.167 0.196 0.200 0.133 0.167 0.200 0.160
CBDM 0.267 0.000 0.159 0.083 0.138 0.100 0.120 0.100 0.086 0.067
T2H 0.017 0.000 0.104 0.167 0.196 0.200 0.133 0.167 0.200 0.160
POGDIFF (OURS) 0.800 1.000 0.517 0.642 0.435 0.540 0.400 0.533 0.433 0.567

performance on the original dataset used during pre-training would be an intriguing direction for
future work, but it is orthogonal to our proposed PoGDiff and out of the scope of our paper.

I Additional Details for AgeDB-IT2I-small in Table 5

For AgeDB-IT2I-small, there are two IDs, one “majority” ID with 30 images and one minority ID
with 2 images.

• For VANILLA and T2H, the gRecall for the majority ID and the minority ID is 1/30 and 0/2,
respectively. Therefore, the average gRecall score is 0.5 ∗ 1/30 + 0.5 ∗ 0/2 ≈ 0.0167.

• For CBDM, the gRecall for the majority ID and the minority ID is 16/30 and 0/2, respectively.
Therefore, the average gRecall score is 0.5 ∗ 16/30 + 0.5 ∗ 0/2 ≈ 0.2667.

• For PoGDiff (Ours), the gRecall for the majority ID and the minority ID is 18/30 and 2/2,
respectively. Therefore, the average gRecall score is 0.5 ∗ 18/30 + 0.5 ∗ 2/2 = 0.8.

J Additional Results

J.1 Base Model

All of our methods and baselines use SD 1.5 as the backbone model. Our preliminary results indicate
that different SD variants affect only low-level image features (e.g., color, sharpness) but not accuracy.
Therefore, for simplicity, we adopt the widely used SD 1.5 as our backbone. To further validate
robustness, we also conduct additional experiments on another SD variant, SD 2.1. As shown
in Table 14, the results on AgeDB-small across five metrics demonstrate that our method remains
robust across different SD variants.
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Table 13: Results for additional baselines in AgeDB-IT2I-small.

Metric FID ↓ DINO ↑ Human ↑ GPT ↑ gRecall ↑
Shot All Few All Few All Few All Few All Few

VANILLA 14.88 13.72 0.42 0.37 0.50 0.00 5.20 3.20 0.017 0.000
ITPI (0.2) 14.93 13.76 0.43 0.35 0.50 0.00 5.40 3.10 0.017 0.000
ITPI (0.5) 15.02 13.85 0.41 0.29 0.50 0.00 5.00 2.80 0.017 0.000
ITPI (0.8) 14.96 13.82 0.43 0.34 0.50 0.00 5.20 3.00 0.017 0.000
REB 14.72 13.32 0.49 0.39 0.50 0.00 5.40 3.60 0.050 0.000
POGDIFF (OURS) 14.15 12.88 0.77 0.73 1.00 1.00 9.10 8.40 0.800 1.000

Table 14: Results across five metrics in AgeDB-IT2I-small.

Metric FID ↓ DINO ↑ Human ↑ GPT ↑ gRecall ↑
Shot All Few All Few All Few All Few All Few

SD1.5 14.88 13.72 0.42 0.37 0.50 0.00 5.20 3.20 0.017 0.000
POGDIFF (SD1.5) 14.15 12.88 0.77 0.73 1.00 1.00 9.10 8.40 0.800 1.000
SD2.1 15.02 13.97 0.40 0.32 0.50 0.00 5.60 3.40 0.017 0.000
POGDIFF (SD2.1) 14.19 12.94 0.72 0.68 1.00 1.00 8.70 8.00 0.767 1.000

J.2 More Baselines

Inference-time Prompt Interpolation (ITPI). We incorporate an additional baseline, dubbed
Inference-Time Prompt Interpolation (ITPI), into AgeDB-IT2I-small. Specifically, during inference,
for a given text embedding y, we locate its nearest neighbor y′ and perform prompt interpolation
as ŷ = γy + (1 − γ)y′, where γ ∈ [0, 1] is a balancing factor. We report the performance for
γ = 0.2, 0.5, and 0.8, respectively.

Rebalanced. We incorporate another baseline, dubbed Rebalancing (ReB), into AgeDB-IT2I-small.
Specifically, we compute a similarity matrix and define the similarity score of each image as the sum
of its corresponding row. Images with lower similarity scores are more likely to belong to minority
groups. During training, we resample images inversely proportional to their similarity scores, that is,
the higher the score, the lower the sampling probability.

As shown in Table 13, ITPI performs similarly to, or even worse than, the vanilla model, since directly
manipulating the text embedding space with a simple linear direction harms generation quality. ReB
achieves comparable – or occasionally slightly better – performance than the vanilla baseline. In
contrast, our PoGDiff significantly outperforms both, demonstrating its effectiveness.

K Discussion

K.1 Problem Settings

We would like to clarify that our paper focuses on a setting different from works like DreamBooth [34],
and our focus is not on diversity, but on finetuning a diffusion model on an imbalanced dataset.
Specifically:

• Different Setting from Custom Techniques like DreamBooth [34], CustomDiffusion [35]
and PhotoMaker [36]. Previous works like CustomDiffusion and PhotoMaker focus on
adjusting the model to generate images with a single object, e.g., a specific dog. In contrast,
our PoGDiff focuses finetuning the diffusion model on an entire data with many different
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SDv1.5 CBDM PoGDiff (Ours)T2H

Figure 5: Example generated images from different methods. Our PoGDiff outperforms the baselines
in terms of both generation accuracy and generation quality.
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Figure 6: Overview of label distributions for six IT2I datasets in bar plots. The x-axis corresponds to
the identities (i.e., people or class).

objects/persons simultaneously. They are very different settings and are complementary
to each other.

• Diversity. Note that while our PoG can naturally generate images with diversity, diversity is
actually not our focus. Our goal is to fine-tune a diffusion model on an imbalanced dataset.
For example, PoGDiff can fine-tune a diffusion model on an imbalanced dataset of employee
faces so that the diffusion model can generate new images that match each employee’s
identity. In this case, we are more interested in “faithfulness” rather than “diversity”.

K.2 More Detailed Analysis: Understanding Fig. 5

Fig. 5 shows randomly sampled generated images on low-density classes in AgeDB-IT2I-L. Across
each column, the individual names are Albert Einstein, JW Marriott, J.P. Morgan, Edward G.
Robinson, Larry Ellison, and Luise Rainer, respectively. The results show that our PoGDiff achieves
significantly better accuracy and quality for tail classes.

Note that one of our primary objectives is to generate accurate images of the same individual while
ensuring facial consistency. Therefore diversity can sometimes be harmful. For example, given a
text input of “Einstein”, generated images with high diversity would generate both male and females
images; this is obviously incorrect. Therefore it is important to strike a balance between diversity
and accuracy, a goal that our PoGDiff achieves.

Specifically, as shown in Fig. 5:

• First Three Columns of SDv1.5, CBDM, and PoGDiff: In these cases, the training dataset
contains only two images per person. With such limited data, it is impossible to introduce
meaningful diversity.
– SDv1.5 fails to generate accurate images altogether in this scenario.
– While CBDM might appear to produce the “diversity”, it does so incorrectly, as it generates

an image of a woman when the target is Einstein.
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Figure 7: TSNE visualization for all the methods for an example individual in the AgeDB-IT2M-large
dataset.

– In contrast, our PoGDiff can successfully generate accurate images (e.g., Einstein images in
Column 1) while still enjoying sufficient diversity.

• Fourth and Fifth Columns: Here, the training dataset contains a medium number of images per
person (5–7 images). Under these conditions:
– SDv1.5 can generate accurate representations of individuals, but its outputs lack diversity.
– CBDM, on the other hand, introduces “diversity” but consistently generates incorrect results.
– In contrast, our method produces accurate images of the target individual while demonstrating

greater diversity than SDv1.5.
• Sixth Column: In this case, the training dataset includes 30 images per person.

– SDv1.5 generates accurate images but with nearly identical expressions, i.e., poor diversity.
– CBDM still fails to generate accurate depictions of the individual.
– In contrast, PoGDiff successfully generates accurate images while maintaining diversity.

In summary, typical diversity evaluation in diffusion model evaluations, such as generating multiple
types of trees for a “tree” prompt, is not the focus of our setting and may even be misleading. In
our setting, the key is to balance accuracy and diversity.

K.3 Why Not Directly Smooth Text Embedding?

Preliminary results indicate that directly smoothing the text embeddings does not yield meaningful
improvements. Below we provide some insights into why this approach might fail. Suppose we have
a text embedding y and its corresponding neighboring embedding y′. Depending on their relationship,
we are likely to encounter three cases:

• Case 1: y′ = y. In this case, applying a reweighting method such as a linear combination results
in no meaningful change, as the smoothing outcome is still y.

• Case 2: y′ is far from y. If y′ is significantly distant from y, combining them becomes irrelevant
and nonsensical, as y′ no longer represents useful neighboring information.

• Case 3: y′ is very close to y. When y′ is close to y, the reweighting can be approximated
as: αy + (1 − α)y′ ≈ y + (1 − α)(y′ − y). Since y′ is nearly identical to y, this effectively
introduces a small weighted noise term (1− α)(y′ − y) into y. In our preliminary experiments,
this additional noise degraded the performance compared to the original baseline results.

Based on these observations, direct smoothing of text embeddings appears ineffective and may even
harm performance in some cases.

K.4 Our Dataset Covers Different Levels of Sparsity

Our AgeDB-IT2M-small and AgeDB-IT2M-medium datasets are actually very sparse and are meant
for evaluate the sparse data. For example, the AgeDB-IT2M-small only contains images from 2
persons, it is therefore a very sparse data setting, compared to AgeDB-IT2M-large with images across
223 persons. Fig. 6 shows the bar plot version for our datasets, while sparse settings are not our
primary focus, we agree that addressing imbalanced image generation in such setting is an interesting
and valuable direction, and we have included a discussion about this in the limitations section of the
paper.
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K.5 Discussion on FID

It is important to note that the FID score measures only the distance between Gaussian distributions
of ground-truth and generated images, relying mainly on mean and variance. As a result, it does not
fully capture the nuances of our task. This is why we include additional evaluation metrics such as
DINO Score, Human Score, and GPT-4o Score, to comprehensively verify our method’s superiority
(as shown in Table 2, Table 3 and Table 4).

Additional Experiments: Limitation of FID. In addition, we have added a figure showcasing a
t-SNE visualization for a minority class as an example, as shown in Fig. 7, to further illustrate the
limitation of FID we mentioned above. As shown in the figure:

• There are two ground-truth IDs (i.e., two ground-truth individuals) in the training set.
• Our PoGDiff can successfully generate images similar to these two ground-truth ID while

maintaining diversity.
• All baselines, including CBDM, fail to generate accurate images according to the ground-truth

IDs. In fact most generated images from the baselines are similar to other IDs, i.e., generating the
facial images of wrong individuals.

These results show that:

• Our PoGDiff significantly outperforms the baselines.
• FID fails to capture such improvements because it depends only on the mean and variance of the

distribution, losing a lot of information during evaluation.

FID Measures Both ID Consistency and Diversity. Note that our FID is computed for each ID
separately, and the final FID score in the tables (e.g., Table 1) is the average FID over all IDs.
Therefore FID measures both ID consistency and diversity.

To see why, note that the FID score measures the distance between two Gaussian distributions, where
the mean of the Gaussian represents the identity (ID) and the variance represents the diversity. For
example, the mean of the ground-truth distribution represents the embedding position of the ground-
truth ID, while the variance of the ground-truth distribution represents the diversity of ground-truth
images, and similarly for the generated images.

Therefore, a lower FID score indicates that the generated-image distribution better matches the
ground-truth distribution in terms of both ID and diversity.

K.6 Which Distribution the Model Converges to After Training

Our PoG objective introduces an additional term that encourages consistency across semantically
similar conditioning prompts, but does not fundamentally alter the underlying diffusion process.
While full convergence guarantees would be an interesting work, such analyses are rare in conditional
diffusion literature. Since our formulation preserves the standard denoising score matching structure,
its convergence behavior broadly follows that of existing diffusion models.

K.7 The Variance of the Predicted Distribution

• In our method, our predicted variance is indeed conditioned on ψ, and ψ is conditioned on
y, as mentioned in Eqn. (6).

• The definition of ψ relies on the assumption that data belongs to the same class or person
(i.e., I(·)). Although such information might not implicitly available for some datasets, We
can use a pretrained image classifier (e.g., ResNet and ViT) to obtain the label. Alternatively,
we can also use clustering method and treat the cluster ID as the class label.

• Although the definition of ψ relies on the VAE training. In our experiment, we used a simple
VAE with three-layer MLPs for both the encoder and decoder. We found that variations
in architecture, learning rate, and number of training epochs had little effect on the final
fine-tuning performance since it is very efficient and easy to train, it only costs around a few
minutes for a single GPU.
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K.8 Computational Efficiency

For the computation efficiency of our method:

• Training: Since our denoising step requires two forward passes of the denoising model, the
runtime is approximately twice that of Stable Diffusion (SD) [7]. However, we observe that
under the same training time budget (e.g., SD for 12k steps vs. PoGDiff for 6k steps), our
method is already able to generate accurate images for tail classes, while Stable Diffusion
continues to produce samples biased toward head classes.

• Inference: During inference, our generation process remains identical to that of Stable
Diffusion and thus incurs no computational overhead.

K.9 Discussions on Failure Cases

The reason why some generated individuals do not match expectations lies in the selection of y′.
Since our text prompts are fully end-to-end generated from LLAVA-NEXT, different individuals
may have higher similarity scores under ψ than the true target. For example, Einstein at age 41
(y="The image is a black and white photograph of a man named Einstein, who has a mustache,
curly hair, and a pipe in his mouth.") might appear more similar - based on textual semantics - to
CHARLIERUGGLES at age 48 (y′1="CHARLIERUGGLES is a man is a man with a mustache,
holding a pipe in his mouth.") than to Einstein at age 24 (y′2="The image is a black and white portrait
of a man named Einstein, who has a mustache and is wearing a suit."). As a result, PoGDiff may use
y′1 rather than y′2 as the neighbor y′ for y.

In general, when the dataset includes many individuals with overlapping semantic traits, it is possible
that in some steps y′ is not the same individual as y, leading to subtle deviations in facial details.
These deviations are typically small but beneficial; they help improve diversity while still preserving
overall identity correctness.

L Impact Statement

Finetuning under imbalanced datasets in specific domain presents an inescapable challenge in
generative AI. For example, when generating the counterfactual outcomes for users with specific
actions, such “user(or patient)–action–outcome” pairs are always imbalanced, as it is impossible
for any company or any hospital to obtains all the pairs. As such, to save the budget, learning the
mapping from “user(or patient)–action” (sentence description) to “outcome” (images) is where this
challenge is particularly pronounced. Our proposed method, PoGDiff, represents an innovative and
efficient solution to navigate this issue. We argue that the complexity and importance of this problem
warrant further research, given its profound implications across diverse fields. This exploration not
only advances our understanding but also opens new avenues for significant impact, underscoring the
need for continued investigation into training generative models under imbalanced datasets.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: It can be found in the Sec. 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Appendix H.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Although we do not have theoretical result like a theory paper, but we provide
the proof for our lemma in appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, they are all discussed in main paper and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: They are all public, and detailed information are in the appendix. For the code,
we will release it once this paper is accepted.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, they are all discussed in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The error bars are not applicable in our settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: They are all discussed in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

28



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: It is not applicable to our settings.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: They are discussed in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: It is not applicable to our settings.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the references.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: It is not applicable to our settings.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: It is not applicable to our settings.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: It is not applicable to our settings.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: It is not applicable to our settings.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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