Under review as a conference paper at ICLR 2025

TOWARDS STABILIZABLE SEQUENTIAL SMOOTHING
SPLINE INTERPOLATION BY POINT FORECASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential smoothing spline interpolators exhibit unstable behavior under low-
delay response requirements. That is, instability issues are observed when a
smoothing spline interpolator is forced to provide an interpolated trajectory piece
subject to processing only a few to no incoming data points at each time stamp.
Typically, the above instability setback is solved by increasing the delay, sacrific-
ing some degree of smoothness in the interpolated trajectory, or a combination of
both. However, stable sequential smoothing spline interpolation strategies work-
ing under low delay and without compromising their degree of smoothness seem
vastly unexplored in the literature. To the best of our knowledge, this work formal-
izes the internal instability and asserts the controllability of sequential smoothing
spline interpolators for the first time. Specifically, we model the trajectory as-
sembled by a smoothing spline interpolator as a discrete dynamical system of the
spline coefficients, facilitating the analysis of its internal instability and control-
lability. From these results, we propose a stabilizing strategy based on data point
forecasting capable of operating even under delayless regimes and without sacri-
ficing any smoothness of the interpolated trajectory. Our claims are theoretically
confirmed, or experimentally supported by extensive numerical results otherwise.

1 INTRODUCTION

By interpolation, one typically refers to any estimation method aiming at computing an unobserved
value, usually a data point, within the range of a set of observed data points. Among the plethora
of estimators meeting the above definition, spline interpolators (Schoenberg, [1973; [Spéthl [1995])
stand out in terms of popularity. This is arguably thanks to their model simplicity and outstanding
approximation capacity to arbitrarily complex patterns. Successful applications comprise trajec-
tory planning (Tordesillas & How, |[2021; |Marcucci et al., [2023)), computer-aided design (Versprille}
1975)), data compression (Lakshminarasimhan et al.; [2011}; |Chiarot & Silvestri, 2023), and missing
data imputation (Junger & De Leon, 2015} Bilos et al.,[2022), among others.

Spline models are generally regarded as piecewise polynomial functions whose derivatives are con-
tinuous up to a certain derivative order. Despite this widely adopted conception, spline models
can be found under (equivalent) different representations. For example, they can be expressed as a

Figure 1: Visual comparison between an unstable sequential smoothing spline interpolator (left) and
a stable one (right), over the same non-uniformly sampled and noisy stream of data points.

Under review as a conference paper at ICLR 2025

reproducing kernel Hilbert space (RKHS) basis expansion (Wahbal, 1990} Nosedal-Sanchez et al.|
2012)) or as a minimal support basis expansion known as B-splines (Unser et al.,|1993a:b)), to name
a few. More specifically, spline interpolators are usually determined as minimizers of an adequate
measure of roughness (Wahba, [1978)), e.g., the energy of the spline model, subject to interpolation
constraints, i.e., to pass through all observed data points. Alternatively, smoothing spline interpo-
lators are typically obtained as minimizers of a trade-off between the sum of squared residuals and
the roughness measure (Eilers & Marx| [2010). From this perspective, spline interpolators can be
viewed as a particular limit case of smoothing spline interpolators. Thus, the latter is often prefer-
able, especially for noisy data.

Regardless of the chosen representation, the optimal computation of the smoothing spline interpo-
lator requires the whole set of data points to be interpolated. This global character of smoothing
spline interpolators can be problematic. Under some circumstances, e.g., while operating under a
certain delay for streaming data, limited processing memory, or restricted computational capacity,
accessing the whole set of observed data points becomes infeasible, or even impossible. In such
cases, the corresponding smoothing spline interpolator cannot be determined in a straightaway man-
ner. In fact, instability issues may arise if one tries to naively interpolate the streaming data using
smoothing splines on the fly. That is, the sequentially interpolated trajectory may grow unbounded
even for bounded streaming data, as shown in Figure[I]

Existing sequential smoothing spline interpolators for streaming data, trade-off some accuracy of
the solution, i.e., of the interpolated trajectory, for the ability to operate in an online manner. In
the literature, this is done by interpolating a serialized subset of adjacent data points using a win-
dowed or delay mechanism, e.g., (de Carvalho & Hanson, [1986;|Yu et al.l 2010; [Ogniewski, [2019).
However, this delay mechanism poses an important drawback that must be taken into account for
some spline representations in low-delay regimes. Taking the RKHS representation as an example,
the overlapping between the (contributing) basis elements necessarily distorts the so-far interpolated
trajectory when adding a new term to the basis expansion. Even B-splines having minimal support
basis representation, suffer from this overlapping issue (Ruiz-Moreno et al.| [2023b)). Thus, a mini-
mal delay is necessary and not all applications can afford it.

On the contrary, the piecewise spline representation is not affected by this impediment, since the
spline pieces do not overlap between themselves by design. Nonetheless, this representation choice
leads to an unstable behavior if one aims at sequentially minimizing the optimization objective that
determines the interpolator while preserving the degree of smoothness in the overall interpolation.
In this case, some strategies gain robustness or even overcome the instability issue by relaxing the
optimization problem by just assuring a lower degree of smoothness. For instance, by using cu-
bic Hermite splines (De Boor & De Boorl, [1978), or variants (Debski, 2020; 2021; |Ruiz-Moreno
et al.l2023a)). But again, some applications require a higher degree of smoothness, rendering these
strategies insufficient.

Finally, there seems to be a lack of literature explicitly discussing the presented instability issue,
either theoretically or practically.

Contribution. To the best of our knowledge, this paper formally describes for the first time the
source of instability of sequential smoothing spline interpolators. Based on this, it elaborates a
sequential smoothing spline interpolation strategy able to achieve stability, even under demanding
low-delay regimes. Specifically, we first (equivalently) characterize the solution of the smoothing
spline interpolation problem as the trajectory given by a discrete dynamical system of the spline co-
efficients. Then, we detect when such a dynamical system is internally unstable. This occurs for all
smoothing spline configurations except for the linear case. Lastly, we corroborate its controllability
and therefore our ability to stabilize the system.

The proposed strategy takes advantage of the stability of the (well-established) delay mechanism
through data point forecasting. In this way, the predicted data points act as a surrogate of the data
points that would have been observed after waiting for the corresponding delay. On the other hand,
the local adaptability of spline models tends to favor equally: nearsighted forecasting methods at the
data trend level and farsighted forecasting techniques at the data fluctuation level. Because of this,
the former can be used without a significant drop in performance. Our strategy is successfully tested
for several time series forecasting models and sources of streaming data points, thus experimentally
validating its effectiveness.

Organization. The rest of the paper is organized as follows. Section [2| formulates the smoothing
spline interpolation problem. Section [3| characterizes the dynamics of the sequential smoothing

Under review as a conference paper at ICLR 2025

spline interpolator, confirms its internal instability, and asserts its controllability. Then, the proposed
stabilization strategy is described and validated in Section [4 and Section [5] concludes the paper.
Finally, some complementary content can be found in the Appendices.

2 SMOOTHING SPLINE INTERPOLATION

In this Section, we introduce the standard formulation of the smoothing spline interpolation prob-
lem. Next, we present an alternative but equivalent formulation from a dynamic programming (DP)
perspective (Bellman, [1966) which will allow us to better understand the dynamics of the solution
to the sequential smoothing spline interpolation problem.

2.1 STANDARD FORMULATION

Given a space W, of real functions defined over the domain (xo,z7r+1) € R with p — 1 abso-
lutely continuous derivatives and whose pth derivative is square integrable, and a set of data points
{(z¢,y¢)}E ,, with time stamps satisfying 9 < z; < --- < o7 < Tr41, the smoothing spline
interpolation problem is usually formulated as

T TT+41 9
min Zf(f(xt)wt) +17/ (D2 f(x)) dx o, (1)
few, P} Zo
where ¢ : R — R is a measure of fit that depends on f only via f(z1),..., f(z7), and D? refers to

the pth derivative with respect to (the variable) z.

The hyperparameters p € N and 7 € R are used to control the behavior of the solution to some
extent. On the one hand, p determines the search function space W, and specifies the objective
roughness, i.e., the second term in @ On the other hand, 7 controls the trade-off between the
solution fit to the data points and its roughness. These hyperparameters can be used to accommo-
date prior knowledge about the solution, e.g., the minimum degree of smoothness of the solution.
Preferably, they can be tuned to reduce the generalization error of the solution (Bischl et al., [2023).
However, in this work, these hyperparameters are assumed given, thus leaving the question of how
to tune them out of the scope of this paper. Accordingly, the hyperparameter dependencies in the
notation across the paper are purposely omitted, when clear by context.

Provided that 7" > p, the unique solution to (1) is a univariate natural spline defined with the aid of T’
knots (Schoenberg| |1964a:b; Wahba) [1990). That is, a real function f with the following properties:

i) fellr~!forz € (xo, z1]UlrT, 2741),
ii) fell?*~!forz € [v,7441]andt =1,...,T — 1, and
iii) f e O for (zo,2741),

where II¥ is the class of polynomials of degree k or less, and C* is the class of functions with k
continuous derivatives.

2.2 DYNAMIC PROGRAMMING APPROACH

The smoothing spline interpolation problem can be formulated from a state-action perspective (Ruiz-
Moreno et al.,[2023a). From this point of view, the form of the optimal solution described in Section
[2.1] i.e., the natural spline, is explicitly taken into account; the corresponding interpolator plays the
role of an agent, and the set of interpolated data points, i.e., O1.7 := {0;}1_; with 0; := (¢, y1),
is considered as a sequence of observations of the environment. Specifically, the coefficients of the
piecewise spline representation {a;}~_, C R?” are viewed as a sequence of actions and every tth
interpolation state (or simply state) o, encodes the necessary information to resume the interpolation
task from the previous time step ¢ — 1. More specifically, the state dynamics are governed by the
following state update mechanism

Oi+1 = folor, ai;00) = (24, €4),)

where e, € R??~! contains a scaled limit of the first 2p — 1 derivative values of the interpolated
trajectory when approaching the time stamp x; from the left.

Under review as a conference paper at ICLR 2025

Formally, problem (T is equivalent to

min {J (01; Onr) - 01 = (20, €)},)

where

J (o4;Opr) = min {Zk (0i,a;;0; } (4a)

{a;cA(o;)
subject to: 0,41 = fo(04,a4;0:), Vi€ {t,..., T — 1}, (4b)

denotes the optimal cost from a given interpolation state and the corresponding sequence of (re-
maining) observations. A(c;) := {a € R* : [a]i.2,—1 = e;_1} denotes the set of admissible
actions from a given state, i.e., those spline coefficients that satisfy the degree of smoothness of the
optimal solution when resuming the interpolation task. Finally, the mapping &£ computes the instan-
taneous cost, i.e., the weighted sum between a given measure of fit and the roughness, incurred by
an interpolation piece. See Appendix |B| for more details.

In many applications, rather than finding the initial boundary conditions, as in (I) and (3), they
are imposed, e.g., due to physical constraints like the starting position, velocity, and so on. In
such cases, the smoothing spline interpolation problem simplifies to evaluating J (o1; O1.7) where
o1 and Oq.7 are given. This can be done by finding the optimal sequence of spline coefficients
{a3y,...,ak} through the following DP algorithm:

Set

a; = argaenjl(g {k(o1,a;01) + J (fy(01,a;01); Oa.1) }, 5)

and
o3 = fo (01,a7;01). (6)
Then, sequentially going forward fort = 2,..., T, set

ai =arg rﬂl(n {k(of,a;0)) + J (fo(0],a;0¢); Ory1.1)}, D

and
o1 = fo(07,a;;00). (®)

3 DYNAMICS OF THE ACTION UPDATE MECHANISM

The DP algorithm presented in Section [2.2] can help us to model the dynamics of the sequence of
actions. From here, we can study the internal stability as well as the controllability by borrowing
well-established methodologies from control theory (Kirk, 2004; Doyle et al.,2013), as follows.

The DP step (7) can be rewritten as
a; = Ay_1a;_| + Baj_, ©)
where the input mapping
o =a(oy;Our) (10a)
= arg;réknp {k(o;.Ce;_, + Ba;o,) + J* (f-(07,Ce;_y + Ba;o); Orprir) b, (10b)
results from redefining the optimization variable in the DP step by incorporating the smooth-

ness constraints, i.e., [ath:gp_l = ej_,, into the optimization objective with the help of auxiliary
matrices

C:= [I2p—170(2p71)xlf € R¥*(E01), (11a)
T
B = [01x(2p-1), Ii] € R¥XY, (11b)

and where the matrix A,_; € R2?°*2¢ captures the relation between the two consecutive ac-
tions a;_; and a;, under the smoothness constraints. Explicitly, each element [A,]; ; =

Under review as a conference paper at ICLR 2025

wl T T, (G — £) with uy, == x; — 2,1, except for the last row, in which [A;]s,; = 0. Vi-
sually,
(1w w2 - uf‘kl 1 0
0 1 2u -- (2p — Dur—? 0
0 0 2 (2p—2)(2p — V)u;”™ 0
A= . . : ,andB=|.|. (12)
. _ 0
: Ug H?£1 “(2p — i) 1
0 0 o0 |

Particularly, with o} as input mapping, we obtain the optimal sequence of actions. Howeyver, these
dynamics can be studied for (any other) different sequence of inputs a1, as, . .., @;—1, i.e.,

a; = A;_1a4_1 + Boy_;. (13)

How to choose such a sequence of inputs under low-delay regimes is of paramount importance in
this work, and is the central topic discussed in the ensuing sections.

3.1 INTERNAL STABILITY

We can assert the internal stability of the action update mechanism (I3)) by studying how the system
evolves without any external input, i.e., a; = A;_1a;_1. Specifically, we are interested in knowing
if for any initial bounded action a4, i.e., ||a1|| < oo, we reach a bounded final tth action a,
regardless of the number of time step t.

Theorem 1 (Internal Stability). The action update mechanism (13)) is internally stable for p = 1
and internally unstable for any p > 1 regardless of the arrangement of (strictly increasing) time
stamps.

Proof. Formally, the action update mechanism mentioned above is internally stable iff

lim Hat|| = lim ||At_1At_2 B A1a1|| < 00, (14)
t—o00 t—o0

for all bounded a;.

By construction, every u; := x; — x;—1 > 0. Therefore, every A; is an upper triangular matrix with
strictly positive entries above the main diagonal. Additionally, all matrices in {A; f;i share the
same set of eigenvalues (the diagonal entries), i.e., eig(A;) = {j!}?i}l u{0}fori e {1,...,t—1}.
Thanks to these properties, the product A; 1 A;_5--- A is another upper triangular matrix with
strictly positive entries above the main diagonal and with eig(A;_1 A;_o--- A1) = {(j1)!! }?i}l U
{0}. Thus, even when the sequence of u; values is given such that the upper diagonal entries of
A; 1A, o--- Aj tend to a finite value, if there is at least one eigenvalue greater than the unit, the
limit in (T4)) diverges for some bounded a;. This occurs for any natural p value except for p = 1,
i.e., linear interpolation. In that case, notice that max eig(A;_1A;_1 --- A1) = 1 regardless of the
U, ..., Uus_1 values. O

3.2 CONTROLLABILITY

By controllability, we refer to the ability of the action update mechanism to reach, in a finite
number of time steps ¢, any possible action configuration a;; (by using a sequence of inputs, i.e.,
a1, Qo, ..., a), regardless of the initial action a;. Then, if controllability holds; or in other words,
if the action update mechanism (13) is controllable, we can ensure bounded sequences of actions
(even for an infinite time horizon), through an adequate sequence of inputs.

'For the sake of completeness, it is also implicitly assumed that the sequence of observations is bounded in
the sense that max{|y;|}:=; < oo and max{u;}i—; < oo for all t.

Under review as a conference paper at ICLR 2025

§l§,

/I\) 6t+1 6t+H ‘
Ot—1 O¢ :)

| o O)/\/\/\> k(at,at;ot)
D j—> a:
g th'I(_) o1+1 by
1

Figure 2: Diagram scheme of the proposed stabilization strategy for the sequential smoothing spline
interpolation problem. The robot represents the interpolator, or agent. The telescope aiming at
the globe symbolizes the sampling step. The thought bubble illustrates the data point forecasting
procedure. Lastly, h; stands for the agent memory (Zhang et al., 2016) at time step ¢, e.g., a hidden
state (of fixed size) that encodes a representation of all previously observed data point values.

The controllability of the action update mechanism can be asserted by noticing that

a> = Aia1 + Bay, (15a)
as — AQ (A1a1 + BOél) + BOéQ, (le)
a1 — AtA; 1o Ajay = [AjA; - AsB,...,A;B, Bl ay, (15¢)

where o = [ag,0s... ,at}T € R!. Specifically, the left-hand side term in (I5d) can always
be set zero-valued iff the action update mechanism is controllable; or equivalently, if the matrix
M, :=[AA; 1 - A3B, ..., A;B, B] € R?**! s full row rank, i.e., rank(M;) = 2p.

Result 1. The action update mechanism (13)) is controllable for p = 2 regardless of the sequence of
u; values.

Proof. 1t suffices to verify that My = [A4A3 A2 B, AyA3 B, A, B, B] € R** is full rank. Since
det(M,) = 864uiuzu’ — 216usu; — 432uguzuy + 90uguf + 216u3u; — 36uszus (16)
cannot be set to zero for any us, ug, us > 0, we can conclude that rank (M) = 4. O

Conjecture 1. The action update mechanism (13)) is controllable for any p regardless of the se-
quence of us values.

We numerically support Conjecture (1| for each p € {3,...,10} for 1000 different realizations of
{u; ~U1073,2)}772,.

From Result[I] we are guaranteed that the sequential smoothing spline interpolator is controllable,
hence stabilizable for cubic splines, i.e., for p = 2. Cubic splines are most commonly used to
exploit the local approximation capacity of splines (de Carvalho & Hanson, |1986). This is because,
as the degree of the spline increases the spline interpolation will behave more like a polynomial
fit. However, if a higher degree of smoothness is needed, e.g., an interpolated trajectory in C2°~2,
Conjecture[T]extends the Result[T] for any natural p value.

4 A STABILIZATION STRATEGY

Section [3] provides a theoretical framework that can describe the sequential smoothing spline in-
terpolation instability phenomena. It also outlines that a sequential smoothing spline interpolation
procedure can be stabilized by adequately choosing the inputs that determine the spline coefficients.
Moreover, thanks to the equivalence between the standard and the DP formulations presented in Sec-
tion 2.1 and [2.2]respectively, the optimal input mapping (I0) guarantees a stable sequence of actions
as long as the result of (1)) is bounded. Therefore, approximating such an optimal input mapping

Under review as a conference paper at ICLR 2025

Figure 3: Diagram scheme of the offline learning setting (left) and the online learning setting (right)
for the parametrized predictors discussed in Section The teacher exemplifies the computation
of any distance mapping d (in this case, for H = 1) between the forecasted data point value ¢, and
the actual one ;.

seems a sensible starting point for developing stabilizing input strategies when optimality cannot be
achieved.

A relevant study case in which the optimal input mapping cannot be readily evaluated is the family
of smoothing spline interpolation problems subject to delay response requirements. This is because
at any rth time step, future data points Q1.7 may be unavailable; that is, the wait needed to receive
them violates the delay constraints. Consequently, the optimal cost-to-go (@) cannot be evaluated,
and by extension neither the optimal input mapping (T0).

Notice that the dynamic programming step (7)) is implicitly describing the following policy evalua-
tion,

7 (o1, Opr) i= argaenjl(rtly {k(o1,a;0:) + J (fs(0t,0;0:); Orp1.7)}s a7

or equivalently, a; = 7 (0, Op.1) = [e] 1, a(0; Onr)]T. Next, we describe and justify an ap-

proximation strategy to capable of achieving stability under low-delay requirements.

4.1 STABILIZATION THROUGH DELAY

Suppose the delay constraint allows for waiting for L data points before forcing us to take action. In
that case, a reasonable strategy may be following an L-step look-ahead policy (Bertsekas, [2019). In
other words, a policy that computes the cost until the Lth data point instead of the (whole) cost-to-go,
i.e., ™ (O't, Ot:T+L)~

This strategy has been successfully used in the literature in several forms, e.g., the windowed mecha-
nism presented in Section[I] Moreover, if for some delay the action update mechanism still presents
instability, it can usually be solved by further increasing the delay.

4.2 STABILIZATION THROUGH PREDICTION

Now, let us suppose that the delay constraint does not allow for waiting for any additional data
points; that is, L = 0. In that case, it has been observed that the myopic policy, i.e., 7(o; 0;) =
arg min {k (o4, a; 0;) : a € A(o)} suffers from severe instability (Ruiz-Moreno et al., 2023a).

Taking into account that the delay can help to stabilize the action update mechanism, one plausible
strategy is to forecast future data points and use them as if they were part of a delayed sequence of
data points to evaluate the policy, i.e., 7(oy; {o:} U (’)t+1 .t+5) where (’)t+1 .+ g is the set of the
predicted next H data points. This is illustrated in Figure[2]

Since predicting the next H data points can be formulated as a time-series forecasting problem, most
of the available time-series prediction models in the literature can be directly borrowed. Naturally,
the further and more accurate predictions one can have, the closer the policy evaluation gets to the
optimal policy and therefore, the closer to guaranteed stability.

On the other hand, the trend of the data plays a decisive role and is enough information in practice.

Under review as a conference paper at ICLR 2025

That is, a prediction model able to capture relevant aspects of the trend performs relatively close to
optimal. This argument is further developed and experimentally supported in Appendix

Based on this, the chosen prediction models are relatively rudimentary but practical. They are also
representative of more sophisticated or problem-tailored approaches. That is, if a simple approach
with limited prediction capacity can achieve stability a more accurate strategy will also achieve it.
In this work, we consider a parameterless and a parameterized predictor. Within the parameterized
one, we also discuss and study whether offline or online training can be carried out while preserving
stability.

4.2.1 TIME STAMPS LOCATION FORECASTING

Recall that the observation time stamps x1, o, ..., considered in this work are not necessar-
ily uniformly arranged. Because of this, at time step ¢, we estimate the time stamps of the ob-
servations to come, i.e., Ty41,...,T¢+f, Of more specifically their relative time distance to the
previous observation time stamp, i.e., U1, .- ., U+ H, as the moving average. Formally, we set
Upp1 = -+ = Ugy g = [4t, Where

e = %Mtfl + %Ut, (18)

which leads to Z; = 2y + (i — t)uy fori =t +1,...,t + H.

4.2.2 DATA POINT VALUES FORECASTING

The simplest approach to time-series forecasting is arguably the zero-order hold (ZOH) digital-to-
analog conversion model (Pelgrom) 2013)) evaluated at the predicted time stamps, i.e., §y41 = -+ =
Yt H = Y-

Alternatively, we explore a linear model, as arguably the simplest representative of parametric mod-
els, of the form

Yir1:+H = OYi_pi1a, (19)
where Yii1.008 = |[Ger1,--5Term] € R denote the H-forecasted data point values,
Yiopr1:t = [Yt—Py1y- -, Yt T € RF, refers to the P-lagged data point values considered for

the prediction, and ® € R”*¥ contains the learnable parameters of the model.

We are also interested in the possible effect of the parameters training on stability. Therefore, we
consider an offline learning setting in which the optimal parameters are obtained from a training
dataset and an online learning setting in which the parameters are updated as data points are received,
as illustrated in Figure This can be done via least squares (LS) (Lawson & Hanson, [1995), or via
recursive least squares (RLS) (Kailath et al.l 2000).

The solution to the associated LS problem is obtained as
e=Y'Y (YY), (20)

where Y and Y denote the matrices whose rows are Yoy andy po fort=P. .. T—H,
respectively.

On the other hand, the RLS updates are computed as
O, =01+ (Yeg14+H — Ot_1Yt—pPr1:t) ylp+1;t2;1, (21a)
1 -
yt—r—P—o—l:tzt}l? (21b)

where ®; € R7*P contains the estimated parameter values, and 3; € RE*P is the estimated
sample covariance matrix, at time step .

S = -2 Py (1+ ytT_P+1:t2;11yt—P+1:t)

4.3 EXPERIMENTS

The set of observations Q7.7 to be interpolated is generated as a realization of a (stable) autore-
gressive process (Mills, |1990) AR(2) over unitary uniformly arranged values, i.e., u; = 1 for all
t € N7 with T = 300. Specifically, as g1 = @ [ys, ye—1] " -+ w; with yo = 0, autoregressive

Under review as a conference paper at ICLR 2025

10 10
—— Myopic —— Myopic
gl ——- Delay (L=1) 8 ——- Delay (L=3)
--------- ZOH (H=1) s ZOH (H=3)
61 ., — LS Linear (H=1) 61 —— LS Linear (H=3)
§ SRS RLS Linear (H=1) § ----- RLS Linear (H=3)

9] T , 0 T .
10° 10! 10? 10° 10! 107
Time step t Time step t

(a) Average cumulative norm of the spline coefficients.
4.0 4.0

351 —— Myopic 351 —— Myopic
- Delay (L=1) —_— Delay (L=3)

307 PE P ZOH (H=1) EX L ZOH (H=3)

2.5 i % — LSlLinear (H=1) 2.5 —— LS Linear (H=3)
3 2.0 N | RLSLinear (H=1) | Ga0{ [- RLS Linear (H=3)
< N <

1.5 :'::/'I \\\ 1.5

TI 10l

05{ S i 05]

0.0 57 ST _ 00 ‘ ‘

10° 10t 102 10° 10! 102
Time step t Time step t

(b) Average cumulative cost incurred by the interpolator.

Figure 4: The average and standard deviation (shaded area) over time of the cumulative norm (of
the spline coefficients) and cumulative cost (incurred by the interpolator) remain bounded showing
that the proposed interpolators are stable. On the contrary, the myopic strategy diverges at very early
time steps for both metrics.

coefficients (randomly chosen) ¢ = [0.40235509, 0.52433128] " and w; ~ N(0,0.60276338). The
same AR(2) process, but using a different realization, has been used to generate training data of
T = 500 data points. Recall that this training data is only used for the LS linear forecasting strategy.

Particularly, we have used cubic splines, i.e., p = 2 and hyperparameter = 0.01, for all strategies
discussed in Section 4] The myopic and the prediction-based strategies work under no delay, i.e.,
L = 0. The ZOH strategy uses only the previous data point value, P = 1, while the linear predictors
use the same lagged values as the original AR(2) process, i.e., P = 2.

In order to validate their effectiveness, we use the average cumulative norm (ACN), i.e.,
% 22:1 |lai||2, and average cumulative cost (ACC), i.e., + Zle k (o, a;;0;), as numerical sta-
bility proxies. This is because, for a stable interpolator, both metrics are bounded as ¢ increases.

As shown in Figure [4] all discussed strategies except the myopic one are numerically stable. As
expected, the delay mechanism achieves the lowest ACC since it uses the exact data points to come.
Moreover, we observe that increasing the prediction horizon H can help to reduce the ACN of the
spline coefficients (hence, dumping oscillations) while improving the ACC as well as reducing its
variability (standard deviation). However, it can be observed that the prediction horizon H tends to
dim the incremental improvement over the ACC, as H increases. In other words, the benefits of large
H values on reducing the ACC are marginal. This is also expected, due to the local approximation
capacity of splines; that is, neighboring data points have a larger influence in the interpolation step
than farther ones.

For additional complementary experiments over the same experimental setting, covering aspects
such as the execution time or some insights into the significance of the accuracy and horizon length

Under review as a conference paper at ICLR 2025

of the predictor, we refer the reader to the Appendices [C.2] and [C.3] Similarly, for different ex-
periment setting variations or data generated from an arguably more challenging data process see

Appendices|C.T]and [C.4] respectively.

5 CONCLUSION

This work is meant as a first step towards stabilization strategies for the problem of sequential
smoothing spline interpolation under few to no delay constraints. The proposed strategies for stable
sequential smoothing spline interpolation are envisioned to be applied to streaming time-series data
points sampled from smooth processes, under possibly no delay constraints. However, the sequential
nature of the proposed strategies makes them equally useful for processing data sets that are too large
to fit in memory and are accessed sequentially.

Limitations. Future work could be focused on proving formally Conjecture 1] that affirms that any
bounded trajectory regardless of its degree of smoothness (determined by 2p — 2), can be controlled
and thus, stabilized. Similarly, whether it is possible to delimit the effectiveness of the proposed
stabilization strategies theoretically remains an open problem.

REFERENCES
Richard Bellman. Dynamic programming. science, 153(3731):34-37, 1966.
Dimitri Bertsekas. Reinforcement learning and optimal control, volume 1. Athena Scientific, 2019.

Marin Bilo§, Emanuel Ramneantu, and Stephan Giinnemann. Irregularly-sampled time series mod-
eling with spline networks. arXiv preprint arXiv:2210.10630, 2022.

Bernd Bischl, Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek
Thomas, Theresa Ullmann, Marc Becker, Anne-Laure Boulesteix, et al. Hyperparameter opti-
mization: Foundations, algorithms, best practices, and open challenges. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 13(2):e1484, 2023.

Giacomo Chiarot and Claudio Silvestri. Time series compression survey. ACM Computing Surveys,
55(10):1-32, 2023.

Carl De Boor and Carl De Boor. A practical guide to splines, volume 27. springer-verlag New York,
1978.

Joao Marques de Carvalho and John V Hanson. Real-time interpolation with cubic splines and
polyphase networks. Canadian Electrical Engineering Journal, 11(2):64-72, 1986.

Roman Debski. Real-time interpolation of streaming data. Computer Science, 21, 2020.

Roman Debski. Streaming hermite interpolation using cubic splinelets. Computer Aided Geometric
Design, 88:102011, 2021.

John C Doyle, Bruce A Francis, and Allen R Tannenbaum. Feedback control theory. Courier
Corporation, 2013.

Paul HC Eilers and Brian D Marx. Splines, knots, and penalties. Wiley Interdisciplinary Reviews:
Computational Statistics, 2(6):637-653, 2010.

WL Junger and A Ponce De Leon. Imputation of missing data in time series for air pollutants.
Atmospheric Environment, 102:96-104, 2015.

Thomas Kailath, Ali H Sayed, and Babak Hassibi. Linear estimation. Prentice Hall, 2000.
Donald E Kirk. Optimal control theory: an introduction. Courier Corporation, 2004.

Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham, Rob Ross, and
Nagiza F Samatova. Compressing the incompressible with isabela: In-situ reduction of spatio-
temporal data. In Euro-Par 2011 Parallel Processing: 17th International Conference, Euro-Par
2011, Bordeaux, France, August 29-September 2, 2011, Proceedings, Part I 17, pp. 366-379.
Springer, 2011.

10

Under review as a conference paper at ICLR 2025

Charles L Lawson and Richard J Hanson. Solving least squares problems. SIAM, 1995.

Tobia Marcucci, Parth Nobel, Russ Tedrake, and Stephen Boyd. Fast path planning through large
collections of safe boxes. arXiv preprint arXiv:2305.01072, 2023.

Robert C Merton. Option pricing when underlying stock returns are discontinuous. Journal of
financial economics, 3(1-2):125-144, 1976.

Terence C Mills. Time series techniques for economists. Cambridge University Press, 1990.

Alvaro Nosedal-Sanchez, Curtis B Storlie, Thomas CM Lee, and Ronald Christensen. Reproducing
kernel hilbert spaces for penalized regression: A tutorial. The American Statistician, 66(1):50-60,
2012.

Jens Ogniewski. Cubic spline interpolation in real-time applications using three control points.
WSCG 2019, pp. 1, 2019.

Marcel JM Pelgrom. Analog-to-digital conversion. Springer, 2013.

Luciano Ramalho. Fluent Python: Clear, concise, and effective programming. ~ O’Reilly Media,
Inc.”, 2015.

Emilio Ruiz-Moreno, Luis Miguel Lépez-Ramos, and Baltasar Beferull-Lozano. A trainable ap-
proach to zero-delay smoothing spline interpolation. /EEE Transactions on Signal Processing,
71:4317-4329, 2023a.

Emilio Ruiz-Moreno, Luis Miguel Lépez-Ramos, and Baltasar Beferull-Lozano. Zero-delay
consistent signal reconstruction from streamed multivariate time series. arXiv preprint
arXiv:2308.12459, 2023b.

Isaac J Schoenberg. Spline functions and the problem of graduation. Proceedings of the National
Academy of Sciences, 52(4):947-950, 1964a.

Isaac J Schoenberg. Cardinal spline interpolation. SIAM, 1973.

Isaac Jacob Schoenberg. On interpolation by spline functions and its minimal properties. In On
Approximation Theory/Uber Approximationstheorie: Proceedings of the Conference held in the
Mathematical Research Institute at Oberwolfach, Black Forest, August 4—10, 1963/Abhandlun-
gen zur Tagung im Mathematischen Forschungsinstitut Oberwolfach, Schwarzwald, vom 4.—10.
August 1963, pp. 109-129. Springer, 1964b.

Helmuth Spith. One dimensional spline interpolation algorithms. AK Peters/CRC Press, 1995.

Jesus Tordesillas and Jonathan P How. Mader: Trajectory planner in multiagent and dynamic envi-
ronments. IEEE Transactions on Robotics, 38(1):463-476, 2021.

Michael Unser, Akram Aldroubi, and Murray Eden. B-spline signal processing. i. theory. IEEE
transactions on signal processing, 41(2):821-833, 1993a.

Michael Unser, Akram Aldroubi, and Murray Eden. B-spline signal processing. ii. efficiency design
and applications. IEEE transactions on signal processing, 41(2):834-848, 1993b.

Kenneth James Versprille. Computer-aided design applications of the rational b-spline approxima-
tion form. Syracuse University, 1975.

Grace Wahba. How to smooth curves and surfaces with splines and cross-validation. In 24th Design
of Experiments Conference, Madison, WI, 3, pp. 167-192, 1978.

Grace Wahba. Spline models for observational data. STAM, 1990.

Lu Yu, Qingwei Jin, John E Lavery, and Shu-Cherng Fang. Univariate cubic I 1 interpolating splines:
spline functional, window size and analysis-based algorithm. Algorithms, 3(3):311-328, 2010.

Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel. Learning deep
neural network policies with continuous memory states. In 2016 IEEE international conference
on robotics and automation (ICRA), pp. 520-527. IEEE, 2016.

11

Under review as a conference paper at ICLR 2025

APPENDICES

[A_Remarks| 12
[A.1 Sampledelay| e 12
[A.2 Multivariate trajectory interpolation|o oo 12

(B Dynamic Programming Algorithm for the Smoothing Spline Interpolation Problem| 13

|C Additional Experiments| 15
[C.1 Some experiment variations|. 15
[C.2 Execution time per interpolated prece| 18
[C.3 Some 1nsights into the importance of the predictor’s accuracy and horizon length| . 18
|C.4 Validation over a more challenging environment| 20

A REMARKS

This section is meant to expand on some important concepts and implications indirectly covered in
the main document.

A.1 SAMPLE DELAY

The term delay is rather vague and admits several interpretations. For example, in the context of this
work, it could have been used to express the time difference between observed data points at any
time step, e.g., z; — ;—1, or the time needed by the interpolator to process the incoming data and
produce its outcome, i.e., the time needed to interpolate a piece of the trajectory.

In this work, the term delay is exclusively used to refer to the number of (incoming or accessed)
samples needed to be processed before a trajectory piece is proposed. In this sense, a sequential
smoothing interpolator operating under no delay has to provide, at every time step ¢, the interpolated
trajectory piece between any two consecutive data points (41, y;—1) and (z, y;) without knowing
any of the ensuing data points, i.e., 0441, ..., O0r.

A.2 MULTIVARIATE TRAJECTORY INTERPOLATION

A (multivariate) trajectory can be expressed as 1(x) = [¢1(z),...,¥n ()], where every v, (z)
describes a (univariate) curve along the nth dimension. In this work, we mainly refer to the index z
as time. However, it is worth noting that the trajectories we discuss here are not only limited to time
functions.

When an N-variate trajectory ¥ (x) is sampled at 21, ...,z we obtain T' data points, where every
tth data point is of the form o; := (x, ¥1(x¢), ..., ¥n(2¢)). Notice that (if N > 1), we can split
T
the sequence {o;}7_; into N sequences of the form {ogl)} ooy {OEN)} , where oE") =
t=1

t=1
(xt, yt(n)), and yt(n) := ¢, (x¢). In this way, each of the resulting nth sequences of data points

describes the sampled curve in the corresponding nth dimension. Moreover, each of these new
sequences can be interpolated separately, possibly in parallel. Then, the (multivariate) interpolated
trajectory is obtained by combining the (univariate) interpolated curves.

The above preprocessing step allows us to employ the interpolation strategy presented in this paper
to any multivariate trajectory. For example, this has been used for the target trajectory (dashed line)
in Figure |1} which corresponds to 9 (z) = [¢01(2), ¢2(x)] " where ¢y (z) = Llog(z)sin(x/4), and

o(x) = 5log(x)cos(x/4). 2

12

Under review as a conference paper at ICLR 2025

B DYNAMIC PROGRAMMING ALGORITHM FOR THE SMOOTHING SPLINE
INTERPOLATION PROBLEM

This section presents a step-by-step derivation of the dynamic programming algorithm for the
smoothing spline interpolation problem presented in Section [2.2]

The solution to the smoothing spline interpolation problem (1)) can be expressed in general as

g1(x), ifz € (xg,x1]

J@) = L), itz e (vt 22)

gTJrl(l‘), ifz e ($T7$T+1)

where every piece g; : (x;—1, 2] — R is a linear combination of polynomials of the form

9:(z) = a; pi(z), (23)

with combination coefficients a; € R?? and basis vector function p; : (g1, 2] — R2” constructed
as

po(x) = Lo — 2y, (@ —221)% oo (@ —)] 24)

By using the form of the solution stated in (22)), (23)), and its properties stated in Section the
optimization problem (IJ) can be equivalently rewritten as

T o 9
min {Eyﬂﬁmumw»+n/ (dﬁ@@DcM} (252)

T
{a:eR?r}{_, =1 Tio1

subject to: lim aj_lpilf)l(x) = lim a:pgk) (), Vt=2,...,TandVk =1,...,2p— 2,
I—)It71 I—)$t71

(25b)
where superindexing the basis vector, i.e., pgk), is shorthand notation for the kth derivative with re-
spect to the variable x. Additionally, we have explicitly imposed our knowledge about the roughness
of the last spline piece gr41, which is zero. This imposition is unnecessary since it is a property
of the solution and therefore arises naturally. However, making it explicit will simplify algebraic
manipulations in the next derivations.

Regarding the right-hand side of the equality constraints in (23b)), it can be further simplified by
using the following relation

k
p” (x)L = (z —a0) T F][3), (26)
j=1
because
. kKl ifi=k+1
x—:g:tl [pt (x)L {O otherwise. @7)
In this way,
lim ap{" (z) = Kl ai,, . (28)
T—=x]
and
1 i
. T 1) 29
[at]z (l - 1)!33*:1;:__10’1571;'13—1 (‘/E) (a)
1 2p i—1
— i—1 .
& (1) 2 [l @ —@e2) [1G-0 (29b)
Jj=1 =1
= [es—1]; - (29¢)

13

Under review as a conference paper at ICLR 2025

Tt—1 T

Figure 5: Action-state representation of the smoothing spline interpolation problem at time step ¢.
The signal state components x;_; and e;_ are highlighted in blue, the th spline coefficients in a;
are illustrated in orange and the rth observation elements z; and y; are displayed in gray.

Equivalently,
[at]l:prl = €¢—1, (30)
where the components of every e;_; € R??~! are constructed as in (295).

In a similar way, the second term in the cost (25a) can be further simplified by making use of the
following relation

Tt 2 Tt
/ (ajpgp) (J:)) dr = a: [/ pi”) (x) pﬁp) (a:)de a; 31

where we define R, € S as

Tt
R, := / P (2) p{” (x) " dx, (32)
Tt—1
with [Rt]m. = 0 forany i, j < p, and
(T @] [
Ry, ; = /Ml [pt } [pt L dx (33a)
Tt o P
= / (@ —20) 2T~ R~ k) (33b)
B Jos k=1
(xt _ xt_l)i+j—2p—1 f[) '
= (i — k)7 — k), (33c)
t+j5—2p-1 P

otherwise.

On the other hand, notice that by making use of the relations in @) and (B;ZI), and given ey, i.e.,
the vector that contains the initial 2p — 1 spline derivative values at time stamp xg (for which the
last p — 1 elements, i.e., [eg] pt1:2p» A€ zero-valued due to the natural boundary conditions of the
solution stated in Section [2.T)), the problem (23]) becomes

T
{aterlgi‘g}f:l {t:zlg (a:pt(xt)’yt)) ! na:Rtat} .
subject to: [at]1:2p—1 =e;_1, (34b)
1 2p o iml
e, = mZ[at]j (2 — 2 G -0 (34c)
j=1 1=1

In practice, the nonzero-valued boundary conditions of the solution [eo],. , (or equivalently, [a1];.)

are also learned. However, for the convenience of future derivations, we assume that their values are
given within ey.

Now, notice that every additive term in the cost along with their corresponding constraints in
and (B4c) can be constructed from the tuple (z;_1, T, ys, €11, a¢). This allows us to identify

14

Under review as a conference paper at ICLR 2025

an equivalent action-state problem representation for (34) where the combination coefficients a; €
R2? are understood as actions and the tth signal state, defined as o := (x¢—1,€et—1), encodes the
necessary information to resume the trajectory reconstruction from the previous time step ¢ — 1,
as illustrated in Figure |5l From this perspective the set of data points, i.e., O1.7 := {0;}{_; with
o; := (x4, y:), is seen as a set of observations of the environment. Moreover, we can capture the
signal state dynamics through

i1 = folOr,as;04), (35)

where f,, represents the signal state update mechanism. This is because o1 is constructed from
z; and e; by definition, which in turn are obtained from the tth observation o;, and the x;_; time
stamp (within o) and rth action a; through (34¢), respectively.

From here, problem (34)) can be reformulated from an action-state perspective as

T
J(o1;01.7) ;= min {Z k(o ar; ot)} (36a)

{arcA(a)}_,

=1
subject to: oy 1 = fo (0, ar;0), (36b)
where
A(oy) = {a e R : [a]i:2p—1 = €4_1}, 37

denotes the set of actions (the spline combination coefficients) at time step ¢ that satisfy the C2°~1
smoothness of the solution, and

k(0w ai;00) =€ (a] pi(ae), ye) + na) Reay, (38)

is shorthand notation for each of the rth additive terms in the cost (34al). Moreover, viewing the min-
imal cost incurred in problem (36) as a mapping J from signal states and sequences of observations
to the real line is handly for applying the dynamic programming algorithm as we will show next.

First, let {a},...,a%} be an optimal sequence of actions, which together with o; determines the
corresponding optimal sequence of signal states {o3, ..., o’} via the signal state dynamics (33).
Now, consider the subproblem whereby we start at o} at time step ¢ and wish to minimize the cost-
to-go from time step ¢ to T'; that is, we would like to evaluate the optimal cost J (o7}, Os.1). Then,
the truncated optimal action sequence {a},...,a%} is optimal for this subproblem. This result
is known as the principle of optimality (Bertsekas, 2019) and is the key concept that allows us to
construct the optimal sequence of actions by evaluating (36)) recursively as

J(of,0nr) = min {k(of,a;00) + J (fo(of,a;00); Oprr17) }- (39)

acA(o})

C ADDITIONAL EXPERIMENTS

Here, we present some additional complementary experiments to Section [4.3] aiming at better en-
closing the limitations while highlighting the strengths of our approach.

C.1 SOME EXPERIMENT VARIATIONS

Figure [] shows how a non-uniform sampling can affect the stability of the proposed strategy. Par-
ticularly, these graphs have been obtained under the same experimental setting as in Section[4.3]but
with a percentage of 10% missing data. Every missing data point creates a gap in time resulting in
a non-uniform distribution of time stamps. As we can see, even the H = 1 data point forecasting
strategies achieve stability.

Splines of a higher degree than the cubic spline, show unstable behavior even for the L = 1 looka-
head (or Delay) policy, as illustrated in Figure [/| Luckily, this can be mitigated with a (slightly)
larger prediction horizon H.

Finally, Figure [§] displays some of the sequentially interpolated trajectories discussed in the paper
for visual intuition.

15

Under review as a conference paper at ICLR 2025

14 —— Myopic 144 —— Myopic
12 ——- Delay (L=1) 121 ——- Delay (L=3)
- ZOH (H=1) ZOH (H=3)

10 — LS Linear (H=1) 10 — LS Linear (H=3)
5 84y | e RLS Linear (H=1) 5 - I RLS Linear (H=3)
< <

6 61
4 44
2 B 2] -7 e
Qo0 10! 102 %00 10! 102
Time step t Time step t

(a) Average cumulative norm of the spline coefficients.

14 —+— Myopic —— Myopic
12 ——- Delay (L=1) ——- Delay (L=3)
S ZOH (H=1) | | | e ZOH (H=3)

—— LS Linear (H=1)
----- RLS Linear (H=1)

—— LS Linear (H=3)
----- RLS Linear (H=3)

10t 102
Time step t Time step t

(b) Average cumulative cost incurred by the interpolator.

Figure 6: Same configuration as in Figure E| but over a sequence of non-uniformly arranged data
points.

10 —T 10
—+— Myopic —— Myopic
8 ——- Delay (L=1) 8 ——- Delay (L=3)
e ZOH (H=1) | | | e ZOH (H=3)
6 | —— LS Linear (H=1) 61 —— LS Linear (H=3)
§ RLS Linear (H=1) § ----- RLS Linear (H=3)

[}
10° 10! 10° 10! 102
Time step t Time step t

(a) Average cumulative norm of the spline coefficients.

4.0 o 4.0
3.5 i T Mvopic 35 —— Myopic
——- Delay (L=1) ——- Delay (L=3)

3.00 i ZOH (H=1) 000 ZOH (H=3)

2.59 — LS Linear (H=1) 25 —— LS Linear (H=3)
S20dl .. iEf - RLS Linear (H=1) | Qa0 ~ - RLS Linear (H=3)
I <

15{[i L5

i
10 7 1.0
7
. 0.5
0900 10? 900 10! 102
Time step t Time step t

(b) Average cumulative cost incurred by the interpolator.

Figure 7: Same configuration as in Figure E|except for p = 3.

16

Under review as a conference paper at ICLR 2025

S
v ¢ -
c > 32
S22 ®
& =2
o o
© ®
593
°
Qo
B c
£ AN
°
o
£
=
< -
\‘
\\ ‘
A -
-
-
-
°
- P - I3 - P
E] 7 E
~
¥ °
P —
<
o
— £
L P =
c > 2 “===lm
S 2 ©
2 -
® > 2
o5 o .
283«
©
QL
B c
£ AN
-
_7”
!
'
'
P P > P Py
5 H]] 2

(b) Cubic Hermite (stable), L = 0

(a) Myopic (unstable), L = 0

9]
o
c > 2
OS5
5 o 3
o 2 C
oS o
o}
282
oF
o
a c
i’
_ 7 "
i
i
i
.Jﬂ‘.yy»f.f =EEE
P
]
c >
fl=]
T 2
S =
S o
5 [a]
8w
(%]
£~
I -~

150 175 200

25

1

10.0
Time

7.5

5.0

0.0

100 125 50 175 200

Time

7.5

(d) Lookahead (delay), L = 3

(c) Lookahead (delay), L = 1

—— 1st Derivative

2nd Derivative

—— Interpolation
—— 1st Derivative

----- 2nd Derivative

25

15

Time

125 150 75 200

10.0

Time

75

5

0.0

(f) ZOH L = 0, H = 3, non-uniform sampling

() ZOHL =0,H =1

—— 3rd Derivative
----- 4th Derivative

10.0 125 15.0 17.5 20.0
Time

7.5

100

60

Time

20

(hyZOHL =0,H=3,p=3

(g)Linear L=0,H =1,P =2

Figure 8: Visualization of sequentially interpolated trajectories for different configurations discussed

along the paper. All of them for 7 = 0.01 and p = 2 except stated otherwise.

17

Under review as a conference paper at ICLR 2025

Table 1: Average execution time per interpolated piece for the experiment presented in Section
For context, this experiment has been run in an M3 Pro in Python.

Interpolator | Execution time per interpolated piece (ms)
Myopic ~ 3.4

Delay ~b55(L=1 ~10.7(L=23)

ZOH ~b54(H=1) ~104(H =3)

LS Linear ~b53(H=1) ~10.5(H =3)

RLS Linear | ~55(H =1) ~11(H =3)

Table 2: Total cost per interpolated piece for the experiment presented in Section

Interpolator | Execution time per interpolated piece (ms)
Batch 0.02495797

Delay 0.148 (L =1) 0.02495873 (L = 3)

ZOH 0913(H=1) 0.325(H =3)

LS Linear 0477 (H=1) 0.225(H =3)

RLS Linear | 0.448 (H =1) 0.240(H =3)

C.2 EXECUTION TIME PER INTERPOLATED PIECE

We have computed the execution time of each interpolator presented in Section @3] To do so,
we have decorated the interpolation function with a decorator that measures the execution time
(Ramalho, 2015)). Table|l|shows the (average) execution time required to interpolate a spline piece.
That is, it shows the prediction, reconstruction, and parameter training/parameter update time (if
applicable) per time step.

As you can see in Table[T] all presented interpolator execution times per time step are roughly in the
same order of magnitude.

Notice that these results favor our proposed strategy since, for an affordable increase in
execution time, e.g., compare Myopic (traditional approach unstable in this setting) vs. ZOH
(ours), we can attain a certain degree of smoothness stably.

C.3 SOME INSIGHTS INTO THE IMPORTANCE OF THE PREDICTOR’S ACCURACY AND
HORIZON LENGTH

In Table |2} you can see the total cost per interpolated piece incurred by the interpolators in the
experiment in Section 4.3

For context, the total cost per interpolated piece equals the average cumulative cost (ACC) evaluated
at the last time instant 7" = 300. For the sake of comparison, we have also added the total cost
incurred by the optimal interpolator, i.e., the solution to (T)), which cannot be computed before the
whole batch of time-series data is available. For this reason, in Table |2| we refer to it as the batch
interpolator.

As you can see in Table [2] the ZOH with a prediction horizon H = 1 performs the worst. This
result is expected since it is arguably the simplest presented predictor that shows stability. From
here, we have observed that the benefit of using a more accurate predictor, e.g., LS Linear, is not
attaining stability more robustly but a reduction in the total incurred cost. Additionally, notice that
any performance for a prediction horizon H = 1 is lower bounded by the interpolation with a delay
L = 1 because it uses the actual data point to come (this is equivalent to perfect forecasting done
by a hypothetical perfect predictor). Thus, the best case predictor would improve the ZOH strategy
(the simplest) a ~ 86% instead of a 100%. This percentage is obtained by using the batch result

18

Under review as a conference paper at ICLR 2025

. + Data points \A
1.2

1.0 *

0.6

0.4
0.2
00 N

(a) Time-series data generated from a discretized jump-diffusion process.

Time

ZOH (H=1) 14

+ Data points

oe ZOH (H=3)
07 ~ Data points
220 240 260 280 300 320 340 240 260 280 300 320 340 360
Time Time

(b) Zoom in over a jump region.

Figure 9: Visualization of the interpolated trajectory over the same time-series data, see Figure @
for a sequential interpolator using a zero-order hold (ZOH) predictor with a time horizon H = 1
and with a time horizon H = 3. Both are stable, but a higher prediction horizon H (accentuating
the local trend of the data process) helps to dump oscillations due to abrupt changes.

18 18

16 —— Myopic 16 —— Myopic

14 ——- Delay (L=1) 14 ——- Delay (L=3)
12 ZOH (H=1) 12 ZOH (H=3)

—— LS Linear (H=1) | —— LS Linear (H=3) |
gz RLS Linear (H=1) | &1 | RLS Linear (H=3)
< 8 < 8

6 6

4 4

2 2

O10U 10! 102 q.OO 10! 10?
Time step t Time step t

(a) Average cumulative norm (ACN) of the spline coefficients.

3.0 3.0
—— Myopic —— Myopic

2.5 ——- Delay (L=1) 2.5 ——- Delay (L=3)

20 ZOH (H=1) 20 ZOH (H=3)

' —— LS Linear (H=1) ' —— LS Linear (H=3)
S1sd | RLS Linear (H=1) | J1s5{ [- RLS Linear (H=3)
< <

1.0 1.0
05 o~ 05 o
100 10! 102 10° 10! 102
Time step t Time step t

(b) Average cumulative cost (ACC) incurred by the interpolator.

Figure 10: ACN of the spline coefficients and ACC incurred by each interpolator for time-series
data generated from a (discretized) jump-diffusion model. As expected from a stable behavior, both
metrics are bounded in mean and average (except for the Myopic interpolator which is unstable).

19

Under review as a conference paper at ICLR 2025

(optimal) as a baseline, i.e., (0.913 — 0.148)/(0.913 — 0.02495797) ~ 0.86. Of course, this best
case can be improved by increasing the prediction horizon.

Nevertheless, we have observed that usually a delay L = 3 is enough to perform close to
optimally (in this case, a delay L. = 3 matches the optimal result up to the 6th decimal
value), and hence, the benefits of pursuing a perfect predictor for a larger horizon would be
marginal.

C.4 VALIDATION OVER A MORE CHALLENGING ENVIRONMENT

In order to validate the proposed interpolation strategy against a more challenging environment we
have generated data from a (discretized) jump-diffusion process (Merton, [1976), i.e., a mixture of a
diffusion process with a jump process. This time-series data may suffer sudden changes (or jumps)
at random instants, e.g., see Figure which may pose a big challenge for a sequential spline
interpolator under no delay and smooth constraints.

With this data, we have carried out similar (stability) experiments to the ones presented in Section
and the results are summarized in Figure They corroborate the intuitive idea presented in
the main document that capturing a trend of the streaming data can attain a stable reconstruction.
That is, predicting a trend (or behavior) of the process has a similar (importance) weight in the
stability than accurately predicting data fluctuations but with the advantage that is usually a simpler
procedure.

Note that this observation supports the use of simpler local prediction models in most en-
vironments. Especially, since most data processes can be accurately modeled locally by a
constant or linear model.

Lastly, we would like to emphasize that the robustness of our strategy is possible due to the ability
of spline models to adapt and approximate to local trends like constants or lines (regardless of the
process generating the data). In alignment with this idea, and as an additional argument, the cubic
Hermite splines can be proven to be internally stable (by the same procedure presented in Section
[3.1) and always end an interpolated piece with linear behavior, i.e., the second derivative is zero at
the end of the interpolated piece. See Figure [8b]as an example. However, and differently from our
strategy, this is done at the expense of sacrificing smoothness (it is only continuous up to the first
derivative) in the reconstructed trajectory.

20

	Introduction
	Smoothing Spline Interpolation
	Standard Formulation
	Dynamic Programming Approach

	Dynamics of the Action Update Mechanism
	Internal Stability
	Controllability

	A Stabilization Strategy
	Stabilization through Delay
	Stabilization through Prediction
	Time Stamps Location Forecasting
	Data Point Values Forecasting

	Experiments

	Conclusion
	Remarks
	Sample delay
	Multivariate trajectory interpolation

	Dynamic Programming Algorithm for the Smoothing Spline Interpolation Problem
	Additional Experiments
	Some experiment variations
	Execution time per interpolated piece
	Some insights into the importance of the predictor's accuracy and horizon length
	Validation over a more challenging environment

