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Abstract: Developing intelligent robots for complex manipulation tasks in house-1

hold and factory settings remains challenging due to long-horizon tasks, contact-2

rich manipulation, and the need to generalize across a wide variety of object3

shapes and scene layouts. While Task and Motion Planning (TAMP) offers a4

promising solution, its assumptions such as kinodynamic models limit applicabil-5

ity in novel contexts. Neural object descriptors (NODs) have shown promise in6

object and scene generalization but face limitations in addressing broader tasks.7

Our proposed TAMP-based framework, NOD-TAMP, extracts short manipulation8

trajectories from a handful of human demonstrations, adapt these trajectories using9

NOD features, and compose them to solve broad long-horizon tasks. Validated in10

a simulation environment, NOD-TAMP effectively tackles varied challenges and11

outperforms existing methods, establishing a cohesive framework for manipula-12

tion planning. For videos and other supplemental material, see the project website:13

https://sites.google.com/view/nod-tamp/.14

Keywords: Task and Motion Planning; Learning from Demonstration; Neural15

Object Representations16

1 Introduction17

Developing intelligent robots that can automate complex manipulation tasks in households or fac-18

tories has been a longstanding goal for robotics and AI. Among the multitudes of challenges, three19

key factors stand out. We illustrate these challenges in a simulated tabletop cleaning task in Fig. 1.20

First, these tasks are often long-horizon and full of sequential dependencies. For example, the robot21

must reason about the best pose to grasp a mug in order to stow it in a tight cabinet, among other22

steps to organize the entire table. Second, the contact-rich manipulation steps, such as the process23

of stowing the mug, can make model-based planning intractable [1]. Finally, to be effective in broad24

environments, the robot must handle a wide variation of object shapes and scene layouts.25

Task and Motion Planning (TAMP) [2, 3] has been the de facto solution for such problems be-26

cause it can effectively resolve sequential dependencies through hybrid symbolic-continuous plan-27

ning. However, TAMP systems typically require accurate, special-purpose perception and hand-28

engineered manipulation skills. This makes it difficult to apply these methods to previously unseen29

objects and tasks with complex dynamics such as contact-rich manipulation. Recent works have30

proposed to learn manipulation skills from demonstration [4, 5] to partially relax these constraints.31

However, their generalization ability remains bounded by the training data, which is costly and32

difficult to collect at scale [6].33

At the same time, neural representation models trained on broad data have shown remarkable poten-34

tial in enabling generalizable manipulation systems [7–10]. In particular, neural object descriptors35

(NODs) [8, 11, 12] emerged as a powerful tool to extract dense, part-level features that generalize36

across object instances. Simeonov and Du et al. [8] showed that Neural Descriptor Fields (NDF),37
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a type of NOD that encodes SE(3) poses relative to a given object, can adapt key-frame actions38

(e.g. grasp poses) for one object instance to others in the same object category (e.g. mugs), thereby39

achieving category-level generalization. However, despite this progress, existing NOD-based meth-40

ods [8, 13, 14] are limited to adapting individual key-frame poses instead of solving a long-horizon41

task, and they struggle with contact-rich manipulation because they still rely on conventional mo-42

tion planners to generate the approaching trajectories. Leveraging NODs to solve long-horizon tasks43

requires addressing a number of fundamental limitations, including planning long action sequences44

and generating trajectories for contact-rich manipulation.45

NOD-TAMP

Demonstration

Tasks for Testing

Figure 1: Overview. A subset of the diverse long-horizon
tasks NOD-TAMP can solve with just a handful of demon-
strations.

To address these limitations, we in-46

troduce NOD-TAMP, a TAMP-based47

framework that extracts adaptable48

skills from a handful of human49

demonstrations using NOD features50

and compose the skills to solve di-51

verse long-horizon tasks. Central52

to NOD-TAMP is a skill reasoning53

module that composes short-horizon54

skills to solve novel long-horizon55

goals never seen in demonstration. To synthesize fine-grained manipulation trajectories and adapt56

to new objects, we propose a NOD-based trajectory adaptation module that can consistently adapt a57

recorded skill trajectory according to the observed objects. Finally, NOD-TAMP can flexibly switch58

between adapting recorded trajectories and using existing kinematic motion planning ability of a59

TAMP system to generalize to drastically different scene layout.60

We evaluate NOD-TAMP with simulated multi-step manipulation tasks that evaluate different fac-61

tors of generalization across long-horizon and contact-rich tasks, including object shapes, number62

of objects, scene layout, task length, and task objectives. We empirically demonstrate that NOD-63

TAMP can consistently solve the evaluation tasks, despite using just a small set of short-horizon64

demonstrations. NOD-TAMP also outperforms other methods [8, 15] that share a subset of its traits,65

highlighting the value of building a cohesive manipulation planning system.66

2 Related Work67

TAMP. Task and Motion Planning (TAMP) is a powerful paradigm for addressing long-horizon68

manipulation challenges by decomposing a complex planning problem into a series of simpler sub-69

problems [2, 3, 16–18]. Nonetheless, TAMP techniques presuppose knowledge of the object models70

and the underlying kinodynamic systems. Such presuppositions can be limiting, particularly for71

real-world domains with diverse objects and steps that involve compelex physical processes such as72

contact-rich manipulation.73

Learning for TAMP. Recent works have set to address such limitations by replacing hand-crafted74

components in a TAMP system with learned ones. Examples include environment models [19–75

22], skill operator models [4, 23], skill samplers [24, 25], and learning to imitate actions from76

TAMP supervisors [26–28]. However, these learned components are often limited to the tasks and77

environments that they are trained on. Two notable exceptions are M0M [29] and GenTP [30], but78

both methods plan with predefined manipulation skills and assume the skills are robust to variations79

in tasks and environments. In contrast, our work directly tackles the generalization challenge at80

the level of motion generation. Closely related to our work are methods that learn manipulation81

skills for TAMP systems [4, 31, 32]. However, the resulting systems remain bottlenecked by the82

generalizability of the skills, which are trained using conventional Reinforcement Learning [31] or83

Behavior Cloning [4, 32] algorithms. Instead, our work develops skills with object category-level84

generalization ability and integrates such skills with the existing planning ability of a TAMP system.85

Learning from Human Demonstrations. Modern deep imitation learning techniques have shown86

remarkable performance in solving real-world manipulation tasks [6, 33–37]. However, the promi-87
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nent data-centric view of imitation learning [6, 37, 38], i.e., scaling up robot learning via brute-88

force data collection, remains limited by the sample efficiency of the existing learning algorithms89

and the challenges in collecting demonstrations for long-horizon tasks in diverse settings. Other90

recent works have proposed to replay a small set of human demos in new situations to facilitate91

sample-efficient generalization [15, 39–44], but replay without adaptation can fail for novel object92

instances. Some other works leverage pretrained object representations to dramatically improve the93

generalization of policies given a handful of demonstrations [8, 10, 14]. However, these methods94

are limited to adapting a short skill [10] or a single manipulation action [8]. Our work develops95

a long-horizon planning framework that seamlessly integrates skills augmented with latent object96

representations into a classical TAMP framework.97

3 Problem Formulation98

We seek to apply NDFs [45], a type of Neural Object Descriptor, to robot manipulation. First,99

we review background on NDF for category-consistent frame estimation (Section 3.1). Then, we100

describe our problem setting (Section 3.2).101

3.1 Neural Descriptor Fields (NDF)102

NDF [8] were first proposed for category-invariant modeling of object rigid transformations. A NDF103

model F (T | P ) takes in an object shape that is represented as a point cloud P ∈ RN×3 and a set104

of query positions {R · xi + t | xi ∈ X}. Let T = [R | t] ∈ SE(3) be a rigid transformation105

and X ∈ RM×3 be a vector of query points. The NDF outputs features corresponding to the query106

points:107

z ← F (T | P ) ≡
⊕
xi∈X

f(R · xi + t | P ).

A key advantage of NDF features is that they are only related to the queries in the object’s local108

frame, therefore a rigid transformation R ∈ SE(3) applied to both the shape and the query pose has109

no affect on the feature:110

F (R · T | R · P ) = F (T | P ).

NDFs are typically used to solve an inverse problem: recover a transformation T that corresponds111

to a query feature z. This can be framed as the following optimization problem and solved by112

1) randomly initializing the transform, 2) backpropgating to compute the error gradient, and 3)113

iteratively moving along the gradient to minimize the error:114

NDF-OPTIMIZE(F, P, z) ≡ argmin
T
||z − F (T | P )||.

3.2 Problem Setting115

We address controlling a robot to perform multi-stage manipulation. The robot is tasked with manip-116

ulating one or more movable objects o ∈ O in the world to achieve a goal. The robot observes RGB-117

D images, which it can process into segmented point clouds for each object P = {o : Po | o ∈ P}.118

Although we assume that we can detect the category of each object, critically, we do not assume119

instance detection or have a geometric model of any object (e.g. mesh).120

The state of the world is described by robot configuration q ∈ Rd and frame state S = {o : T o
w |121

o ∈ O}, where T f1
f2
∈ SE(3) represents a rigid transformation from frame f1 to f2 and w is the122

world frame. Let Sf1
f2

be shorthand for the rigid transformation from frame f1 to f2 in state S. The123

robot takes actions a = T e
a that correspond to target end-effector poses, where e is the end-effector124

frame. These task-space set points are converted to joint-space commands using Operational-Space125

Control (OSC) [46].126

We are interested in re-purposing a set of demonstrations for a ensemble of tasks into manipulation127

policy that is effective in scenes with new objects and varying initial poses. To that end, we assume128

3



a dataset of demonstrations that is collected by human teleoperation or some other process. Let a129

demonstration trajectory τ = [⟨S1, a1⟩, ..., ⟨Sh, ah⟩] be a sequence of state-action pairs ⟨S, a⟩. At130

training time, we assume that we can observe or estimate frame states; however, this assumption131

does not hold at test time.132

3.3 Skill Demonstrations133

In order to deploy demonstrations new 1) objects and 2) tasks, we need to understand more about134

the context behind each action involving which objects are interacting or are about to interact as135

well as qualitatively how they are interacting. In this work, we assume that each state-action pair136

⟨S, a⟩ can be labeled with an interaction type l, a source movable object o, and target coordinate137

frame f , forming a tuple ⟨l, o, f, S, a⟩. Our technique will be to characterize the motion of o relative138

to f using NDFs and then adapt it to new circumstances. Figure 2 demonstrates a pair of insertion139

interactions involving pegs and holes that vary in geometry. Here, the movable object o is the peg140

and the target frame f is the hole.141

Base frame

Hole frame Hole’ frame

[R|t]i

[R|t]i+1

[R’|t’]i

[R’|t’]i+1

Peg’ frame

Peg frame

Figure 2: Trajectory Adaptation. Il-
lustration of generating motion trajec-
tory for test scenario based on the ref-
erence demonstration.

Once provided a labeled demonstration, we can142

temporally segment and collapse contiguous state-143

action pairs with the same label into a sequence144

of trajectories, producing a segmented demonstration145

[⟨l1, o1, f1, τ1⟩, ..., ⟨lh, oh, fh, τh⟩], where each segment146

represents a skill. Still, these demonstrations are currently147

specialized toward specific 1) object geometries and 2)148

initial poses.149

To generalize them, we transform them using NDFs by150

extracting the pose of the target frame f relative to the151

observed object o. Specifically, for each demonstration152

data point ⟨o, f, S, a⟩ and current point cloud Po for ob-153

ject o, we compute the NDF feature z←F (Sf
w | Po) of154

the pose of frame f relative to observed object o. When155

applied to a state-action trajectory τ , this results in a fea-156

ture trajectory Z = [z1, ..., zk]. And when applied to a segmented demonstration, this produces157

a feature demonstrations d = [⟨l1, o1, f1,Z1⟩, ..., ⟨lh, oh, fh,Zh⟩]. Thus, we accumulate a skill158

dataset of feature demonstrations D = {d1, ..., dn}, which can includes demonstrations that span159

multiple tasks.160

3.4 Peg-in-Hole Example161

Continuing the “Peg-in-Hole” running example in figure 2, we discuss relevant skills and plans. It162

requires two types of interactions: 1) moving the end-effector to grasp an object and 2) inserting a163

grasped object into another entity. These interactions can be formalized by the following planning164

operators, where l ∈ {GRASP, ATTACH}:165

1. GRASP(o, e;Z): move to grasp object o with end-effector frame e using feature trajectory166

Z .167

2. INSERT(o, f ;Z): while grasping object o, move to insert o relative to frame f using feature168

trajectory Z .169

A plan that directly adapts the demonstrations has the following form:170

π = [GRASP(peg, ee;Z1), INSERT(peg, hole;Z2)].

In between the contact-involved component of these interactions are contact-adverse robot move-171

ment. We can plan motions between the end of the last component and the start of the next one in172

order to more robustly and efficiently move between segments. These segments can also be repre-173

sented by planning operators [47]:174
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1. TRANSIT(τ): while not grasping any object, move the robot along trajectory τ .175

2. TRANSFER(o; τ): while grasping object o, move the robot along trajectory τ .176

A plan that includes motion operators has the following form:177

π = [TRANSIT(τ1), GRASP(peg, ee;Z1),

TRANSFER(peg; τ2), ATTACH(peg, hole;Z2)]

4 NOD-TAMP178

Trajectory 

Adaptation

Task 

Planner

Skill 

Reasoning

Goal Specification

…
Constraint: 

Z=NDF(cabinet_query|mug)

Pick(mug1);

Place(mug1, cabinet3)

…
Execution

Demo 1 Demo n

…

Perception

Point Cloud

Selected Demos

Init. Obs.

Figure 3: System. Overview of the NOD-TAMP system.

We present a set of algorithms for179

adapting a dataset of demonstrations180

to new problems. First, we show181

how a single demonstration can be182

adapted to a new environment using183

NDFs (Section 4.1). Then, we pro-184

pose a planning algorithm that’s able185

to combine skill segments from mul-186

tiple demonstrations to maximize ef-187

fectiveness (Section 4.2). Finally, we188

use motion planning to connect each segment in order to efficiently and robustly generalize to new189

workspaces (Section 4.3).190

4.1 Trajectory Adaptation191

The first algorithm we introduce directly adapts a demonstration d to the current task. Algorithm 1192

displays the trajectory adaptation pseudocode. It iterates over each labeled feature trajectory in193

demonstration d and then over each timestep in the trajectories. For each timestep, it computes194

the target transformation Tz that corresponds to NDF feature z. Depending on whether object o is195

attached to another frame f ′ in the scene graph G, it composes the transform into a target world pose196

T f
w for manipulation frame f . It then converts this into a target end-effector pose T f

w , which will197

serve as a setpoint for a downstream controller or planner. After iterating over a labeled trajectory,198

the scene graph G is updated with the new state of the manipulated object o. This also models that199

the point cloud Po for object object o is now attached to and thus moving with frame f .200

4.2 Skill Planning201

Place
demo 2

Place
demo 1

Pick
demo 1

Goal constraints

Test Scene

Constraint
feature match?

Motion feasible?

Constraint pose
transfer

Motion planning

Deferred
trajectory
adaption

Figure 4: Skill Planning and Trajectory Generation. We
illustrate how skill planning and trajectory adaptation col-
laborated to generate mug insertion trajectories in this ex-
ample.

It can be limiting to be only able to202

reuse whole demonstrations. First, it203

is inflexible in problems where the,204

plan skeleton, or the sequence of205

skills changes. Second, segments of206

multiple demonstrations in conjunc-207

tion might better address a new prob-208

lem. For example, we may just trans-209

fer the picking part of the pick-and-210

place trajectory that work with a mug211

to interact with a new object, e.g., a212

bowl.213

Algorithm 2 displays the pseudocode214

for the NOD-TAMP planner. It takes215

in a plan skeleton π̂ that defines a se-216

quence of skill types to consider. It217

first compiles a list of skills in dataset218
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D relevant to π. Then, it iterates through all possible plans using these skills. Each candidate π is219

scored based on the compatibility of subsequent actions using NDF features, the score c is computed220

as c =
∑|π|−1

i=1 ||zi+1 − zi|| , where for specific i, the NDF feature zi and zi+1 are extracted as:221

zi, zi+1 ← F (Ti | P ), F (Ti+1 | P )

Here Ti and Ti+1 are the query pose determined at the last time step and first time step of the222

trajectories from skill i and skill i+ 1 respectively, and P is the point cloud of the target object for223

skill i and skill i+ 1 captured during demonstration.224

After we obtain all scores for all skill combinations, the plan with the lowest plan-wide NDF feature225

distance is returned. For simplicity, we present this as a Cartesian product over relevant skills, but226

this can be done more efficiently by performing a Uniform Cost Search in plan space, where the227

NDF feature distance serves as the cost function. The visualization of the feature matching process228

for a mug placing example is presented in Fig. 5, showing that the grasping on the mug rim would229

be compatible with placing the mug uprightly in a bin, and grasp on the handle would be compatible230

with inserting the mug into a cabinet.231

4.3 Transit & Transfer Motion232

Figure 5: Feature Matching. We show the fea-
ture matching distance for different skill combi-
nations when placing the mug.

Adapting demonstrated skills is particularly ef-233

fective at generating behavior that involves con-234

tact. However, demonstrations typically con-235

tain long segments without contact (outside of236

holding an object). Because these components237

do not modify the world, it is often not produc-238

tive to replicate them. Thus, we temporally trim239

skill demonstrations to focus on the data points240

that involve contact. In our implementation, we241

simply select the 50 steps that are most close to242

the time point when the contact happening.243

After trimming, and in many cases before trim-244

ming, two adjacent skills might be quite far away in task space. While we could simply interpolate245

between them, this is not generally safe because the straight-line path may cause the robot to unex-246

pectedly collide. To address this, we use motion planning to optimize for safe and efficient motion247

that reaches the start of next the skill. Motion planning generally requires some characterization of248

the collision volume of the obstacles to avoid. Because we do not assume access to object models,249

we use the segmented point clouds P the collision representation, where each point in the cloud is a250

sphere with radius r > 0.251

Algorithm 3 displays the pseudocode for the full NOD-TAMP policy with motion planning. It dis-252

played in an manner with online motion planning and execution, but full plans can also be computed253

offline. The policy first computes a skill plan π and then adapts each labeled trajectory in sequence.254

Between trajectories, it uses PLAN-MOTION to plan a trajectory from the current robot configuration255

q to a configuration that reaches the first end-effector pose T e
w. Specifically, it samples goal config-256

urations q′ using inverse kinematics and then invokes a sampling-based motion planner between q257

and q′. Once the end-effector arrives at T e
w, for each pose yielded by the skill, the policy deploys258

OSC to track the target poses.259

A detailed example of how the system work for placing the mug into the cabinet is presented in260

Fig. 4. The skill planning process first identifies the useful trajectories of the pick skill and place261

skill through matching the constraint feature. A motion planner then generates the transition motion262

between skills. Once the motion transition among every connections between the consecutive skills263

are determined, we transfer the trajectories to the test scene through trajectory adaptation.264
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5 Experiments265

We aim to validate NOD-TAMP and how its components contribute to solve long-horizon tasks,266

perform contact-rich manipulation, and generalize to new object shapes.267

5.1 Experimental Setup268

Tasks.269

MugPicking MugInsertion TableClear TableClearHard

Pick Demo1 Place Demo1 Pick Demo2 Place Demo2

Figure 6: Demonstration Skills and Tasks. Il-
lustration of the demonstration skills and the task
setups.

We introduce four simulated [48] table organi-270

zation tasks (Fig. 6 bottom), which vary in diffi-271

culty and generalization challenges. We use 10272

mug models of varying shapes and dimensions273

from the ShapeNet dataset [49]. Demonstra-274

tions are provided for one mug and the testing275

environment randomly samples among the re-276

maining 9 mugs. We provide all methods with277

only two picking and placing skill trajectories278

on one mug instance (Fig. 6 top). The two tra-279

jectories vary by grasping pose (side vs. top)280

and placing pose (side vs. top).281

MugPicking - Pick up different mugs with varying shapes and initial poses. The task tests the ability282

to adapt the trajectory based on object shapes and poses.283

MugInsertion - Insert mugs of varying shape into a tight cabinet. Both the mug and the cabinet284

are randomly placed on the table. This task requires fine-grained manipulation for the insertion and285

adaptation to different initial configurations.286

TableClear - This long-horizon task requires the robot to place two mugs into two bins, which aims287

to test the ability to achieve long-term goals by reusing the skills.288

TableClearHard - This long-horizon task requires the robot to stow one mug into a cabinet with289

side opening and place another mug into a bin. The robot must select a feasible chain of skills290

(side-picking to side-stowing) to transport each mug.291

Baselines. We compare NOD-TAMP with ablation baselines and adapt state-of-the-art methods to292

facilitate fair comparison. All NDF-based methods share the same NDF model pretrained on mug293

shapes provided by the original implementation [8].294

NDF+ [8]: We augment the original NDF manipulation planner, which only generates key-frame295

manipulation poses, with our task planner and the skill reasoning module, which provides the base-296

line with the target object and the query pose at different stages. This baseline also uses a motion297

planner to transition between key-frame poses.298

MimicGen+ [15]: MimicGen directly pieces together contact-rich segments from human demon-299

strations and linearly interpolates the intermediate steps. The robot control poses in the contact-rich300

segments are transformed to the relevant object frame and then sent to the controller without further301

adaptation. To ensure fair comparison, we augment MimicGen with a motion planner for collision302

avoidance.303

Ours w/o Skill Reasoning (Ours-SR): This ablation removes the skill reasoning module. For each304

skill, we randomly choose a reference trajectory from the collected demonstrations belonging to this305

skill, and we bridge the intermediate transition with the motion planner. This baseline validates the306

importance of skill reasoning for generalizing across tasks.307

Ours w/o Motion Planning (Ours-MP): This ablation removes the motion planning component308

and uses linear trajectory interpolation to transition between the adapted skill trajectories generated309

by the optimization. We set up this baseline to validate the benefit of leveraging motion planning, a310

capability present in TAMP systems.311
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Naive Skill Chaining (NSC): This baseline ablates both the skill reasoning and the motion planning312

component: it randomly selects a reference trajectory for each skill, adapts the skill with NDF, and313

uses linear trajectory interpolation to transition between the selected trajectories.314

5.2 Main Results315

Table 1: Evaluation results (success rate) of all
methods.

Tasks NDF+ MimicGen+ NSC Ours (-MP) Ours (-SR) Ours
MugPicking 80 70 85 80 85 85
MugInsertion 75 55 80 85 80 90
TableClear 60 75 80 75 85 85
TableClearHard 40 55 15 50 10 80

We observe that NOD-TAMP consistently316

achieves a high success rate (80-90%) across all317

tasks and outperforms the other baselines and318

ablations (see Table 1, some qualitative results319

are visualized in Fig. 8). Below, we highlight320

specific comparisons and takeaways that under-321

score the importance of the trajectory adapta-322

tion, skill planning, and motion planning components of NOD-TAMP.323

NOD-TAMP exhibits strong performance across long-horizon tasks and is able to reuse skills324

in new contexts. The TableClear task requires methods to re-use the existing two pick-and-place325

human demonstrations, which only consisted of single mug and bin interactions, to stow two mugs326

into two bins. NOD-TAMP achieves strong performance (85%) and outperforms MimicGen+ by327

15% and NDF+ by 25% on this task, showcasing a superior ability to re-purposing short-horizon328

skill demonstrations for long-horizon manipulation.329

NOD-TAMP exhibits strong generalization capability across goals, objects, and scenes in long-330

horizon tasks. The TableClearHard task requires intelligent selection and application of different331

demonstration trajectories to achieve different kinds of mug placements. The task also requires deal-332

ing with novel mug objects, and novel scene variations. Here, NOD-TAMP achieves 80%, outper-333

forming all other baselines by a wide margin (40% better than NDF+, 25% better than MimicGen+).334

We also see the clear benefit of the skill reasoning component to achieve the different goals in this335

task – NOD-TAMP outperforms (Ours-SR) by 70% and NSC by 65%. The omission of the skill336

reasoning module results in an incompatible composition of skills. For example, the robot may grip337

the rim of a mug and attempt to insert it into the cabinet, leading to collisions between the cabinet338

and the gripper. Finally, the motion planning component is also valuable in dealing with the scene339

variation – NOD-TAMP outperforms (Ours-MP) by 30%. Simply connecting end-effector trajecto-340

ries through linear interpolation without considering obstacles often leads to collisions between the341

robot or the held object and its surroundings. In particular, we frequently observed such failures342

for the Ours (-MP) approach that the gripper became obstructed by the cabinet after completing the343

insertion of the first mug.344

6 Conclusion345

Figure 7: Real Robot Executions. Key frames of three task
execution processes.

We introduced NOD-TAMP, a frame-346

work for adaptable manipulation347

planning using human demonstra-348

tions for long-horizon tasks. While349

powerful, NOD-TAMP has limita-350

tions that inspire future work. First,351

because of the expensive NDF-based352

pose optimization process, NOD-353

TAMP is slow in practice and is far from real-time. We plan to experiment with more efficient354

NOD variants and faster optimization procedure. Moreover, an important aspect of TAMP problem355

is representing and satisfying constraints. We plan to explore NOD-based constraint representations356

and incorporate constraints into the planning objectives. Finally, NOD-TAMP solves the high-level357

task plans and low-level trajectories in silos. As a next step, we aim to enable bi-level communica-358

tion in planning and extend NOD-TAMP into a full-fledged integrated TAMP system [17].359
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7 Appendix477

7.1 Algorithms478

We provide the pseudo-code of our proposed algorithms.479

Algorithm 1 Trajectory adaptation
Declare: Segmented point clouds P
Declare: Initial end-effector pose Se

w

Declare: Demonstration dataset D = {d1, ..., dn}
Declare: NDFs F
1: procedure ADAPT-TRAJ(P, Se

w, d;F)
2: S = {f : NDF-ESTIMATE(P, f) | f ∈ F} ∪ {e : Se

w}
3: G← { } ▷ Object scene graph
4: for ⟨l, o, f,Z⟩ ∈ d do
5: for z ∈ Z do
6: Tz ← NDF-OPTIMIZE(F [o],P[o], z)
7: Se

w, S
f
w ← S[e],S[f ] ▷ End-effector & frame

8: if o ∈ G then ▷ Relative to scene graph
9: ⟨f ′, T f ′

w ⟩ ← G[o]

10: Sf ′
w ← S[f ′]

11: T f
w ← Sf ′

w · (T f ′
w )−1 · Tz

12: else ▷ Relative to world frame
13: T f

w ← Tz

14: T e
w ← Se

w · (Sf
w)

−1 · T f
w ▷ End-effector target

15: ▷ If f = e, this reduces to T e
w ← T f

w

16: yield ⟨l, o, f, T e
w⟩ ▷ Yield target to controller

17: S[e]← T e
w

18: G[o]← ⟨f, Sf
w⟩ ▷ Set f as the parent of o

Algorithm 2 NOD-TAMP planner

Declare: Plan skeleton π̂ = [⟨l1, o1, f1⟩, ..., ⟨lh, oh, oh⟩]
1: procedure PLAN-NDF-SKILLS(P, π̂;D,F)
2: D = [ ] ▷ List of demos per skill
3: for ⟨li, oi, fi⟩ ∈ π̂ do
4: D ← D + [{⟨l, o, f,Z⟩ | d ∈ D, ⟨l, o, f,Z⟩ ∈ d.

l=li ∧ o=oi ∧ f=fi}]
5: π∗ ← None; c∗ ←∞
6: for π ∈ PRODUCT(Dπ) do ▷ All combinations
7: cπ ← 0 ▷ Feature cost
8: for i ∈ [1, ..., |π|−1] do
9: ⟨li, oi, fi,Zi⟩ ← π[i]

10: ⟨li+1, oi+1, fi+1,Zi+1⟩ ← π[i+1]
11: if oi = oi+1 then ▷ Actions with same object
12: F ← F [o]; P ← P[o]
13: Ti ← NDF-OPTIMIZE(F, P,Zi[−1])
14: Ti+1 ← NDF-OPTIMIZE(F, P,Zi+1[0])
15: zi, zi+1 ← F (Ti | P ), F (Ti+1 | P )
16: cπ ← cπ + ||zi+1 − zi||
17: if cπ < c∗ then ▷ Update best plan
18: π∗ ← π; c∗ ← cπ
19: return π∗
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Algorithm 3 NOD-TAMP policy
1: procedure NOD-TAMP-POLICY(P, π;D,F)
2: π ← PLAN-NDF-SKILLS(P, π;D,F)
3: if π = None then
4: return False ▷ Skill planning failed
5: a← None ▷ Current action
6: Se

w ← FORWARD-KIN(q)
7: for ⟨o, f, T e

w⟩ ∈ ADAPT-TRAJ(P, Se
w, π;F) do

8: if ⟨o, f⟩ ̸= a then ▷ Action changed
9: a← ⟨o, f⟩ ▷ Update current action

10: q ← OBSERVE-CONF()
11: τ ← PLAN-MOTION(P, q, T e

w)
12: if τ = None then
13: return False ▷ Motion planning failed
14: EXECUTE-TRAJ(τ)

15: q ← OBSERVE-CONF()
16: EXECUTE-OSC(q, T e

w) ▷ Operational Space
17: return True ▷ Policy succeeded

7.2 More Qualitative Results480

With TWO picking and placing trajectories on just ONE mug, we evaluate our method’s effec-481

tiveness across diverse tasks with different mug shapes, poses, and goal setups. NOD-TAMP con-482

sistently achieves a high success rate (80-90%) across all tasks, some executions are visualized in483

Fig. 8.484
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Figure 8: Qualitative Visualization. Trajectories generated by our system at different stages, the
planned scene represented as point cloud, and snapshots of the execution process.
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