Upper Error Bounds for Score-Based Inverse Problem Solving in Imaging

Irina Dobrianski' Dominik Narnhofer> Thomas Pock >

Abstract

Diffusion models have gained tremendous pop-
ularity for generating diverse and high quality
images. We adapt diffusion models for solving
inverse problems in imaging. Moreover, we quan-
tify the uncertainties in the reconstructed images
by deriving pixel-wise upper error bounds depen-
dent on the determined variance without relying
on the ground-truth. Especially in high-stake ap-
plications such as healthcare, well-calibrated un-
certainties are vital for reliable decision making.
For example in magnetic resonance imaging, un-
dersampling the k-space plays a crucial role in
clinical applications and it is highly important to
be aware of the uncertainties as the diagnosis and
further treatments depend on the reconstructed
images. In this work, we focus on the score-based
generative models through stochastic differential
equations and show that an unconditional diffu-
sion model trained on a specific dataset (BSDS
and fastMRI) can be utilized for solving vari-
ous inverse problems, e.g. denoising, inpainting
and zero-filling and the uncertainty quantification
yields a strong correlation between the squared
error and the variance.

1. Introduction

Diffusion models are well-known for their ability to gener-
ate high-quality samples and capture large diversity. How-
ever, when handling inverse problems, it becomes crucial
to acquire knowledge about both the extent and the pre-
cise location of uncertainties in the reconstructed image.
Ill-posed inverse problems arise in various applications in
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the field of computer vision, e.g. denoising, inpainting,
super-resolution, colorization, JPEG restoration, Magnetic
Resonance Imaging (MRI) or Computed Tomography (CT)
to name just a few of them (Yang et al., 2022). Especially in
the medical field, the diagnosis and also further treatments
depend on the quality of the reconstructed images. There are
several approaches that compute the variance as a measure
for the uncertainty (Luo et al., 2023; Wolleb et al., 2021;
Xie & Li, 2022). However, they do not relate the variance to
the error between the reconstructed and the original image.
This shortfall is handled in Narnhofer et al. (2022) where
our approach is strongly based on. We apply this promising
method in combination with the emerging diffusion models
which are known for their good mode coverage and high-
quality samples and will demonstrate that we can derive
upper error bound guarantees depending on the variance.
Diffusion models operate in two stages. In the first stage,
the forward process, input data gets progressively corrupted
with noise until pure Gaussian noise with zero mean and unit
variance is reached whereby the model is trained to predict
the added noise. In the second stage, the reverse process,
the corrupted data is denoised again step-by-step. Diffu-
sion models can be subdivided into Denoising Diffusion
Probabilistic Models (DDPMs), Score-Based Generative
Models (SBGMs) and SBGMs through Stochastic Differ-
ential Equations (SDEs) (Song et al., 2021). The SBGMs
through SDEs predict the score which is the gradient of the
logarithmic probability density. We focus on the SBGMs
through Variance Preserving (VP) SDEs which can be re-
lated to the DDPMs.

To verify the approach we consider three inverse problems:
denoising, inpainting and zero-filling. In the denoising task,
the goal is to remove the noise which is particularly im-
portant as noise is part of every measurement process also
when capturing images (Szelsiki, 2022). The objective of
the inpainting problem is to reconstruct missing informa-
tion. For MRI, undersampling the k-space and thus violating
the Nyquist criterion leads to aliasing artifacts in the recon-
structed image. However, it reduces the acquisition time and
further increases the patient throughput which also helps
to save costs (Peng et al., 2022). Moreover, reducing the
acquisition time increases the patient’s comfort and also
reduces motion artifacts as the patient’s tendency to move
increases with time. We apply Bayes’ theorem to combine
diffusion models with inverse problems to solve them. The
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posterior distribution of the clean image = € RM*¥ of size
M x N given the corrupted image z € RM*¥ s according
to Bayes’ theorem p(x|z) o« p(z)p(z|x) where p(x) is the
prior and p(z|z) the likelihood term. The trained diffusion
model serves as prior and the inverse problem defines the
likelihood term itself. Usually linear inverse problems are
defined as z = Ax + € where A is the forward operator
and € ~ N(0, I). For solving the SDEs we apply the Euler-
Maruyama method and the predictor method from Song
et al. (2021). Due to the stochastic property of the diffusion
models and sampling methods we can compute the Mini-
mum Mean Squared Error (MMSE) and the variance from
several samples.

To generate several samples we either use the single or
the multiple trajectories method. For the single trajectory
method we compute the metrics from the samples of the last
thousands steps of the reverse diffusion process whereby
we keep the variance of the added noise constant for these
steps. For the multiple trajectories method we split the re-
verse process after a few hundred steps and then perform the
reverse process for each sample separately. With the com-
puted variance and the squared error between the MMSE
and the original image we obtain pixel-wise error bounds
according to the method proposed in Narnhofer et al. (2022)
and can show that there is a relation between the variance
and the squared error. We apply the error quantification on
the Berkeley Segmentation DataSet (BSDS) (Martin et al.,
2001) and on the fastMRI (Zbontar et al., 2018) dataset.
For the three inverse problems, denoising, inpainting and
zero-filling, and both datasets, BSDS and fastMRI, we ob-
tain higher error bounds for higher variance values and vice
versa. Hence, if a specific region in an image is important
but contains high variance values the outcome and deci-
sions may be reconsidered due to the higher predicted error
quantile.

2. Related Work

Previous research has been carried out in quantifying the
uncertainty using the variance of reconstructed images with
diffusion models. However, the variance is rarely compared
with the error whereas we provide upper error bound guar-
antees based on the method proposed by Narnhofer et al.
(2022) combined with the popular diffusion models. Other
recent studies neglect the correlation between the variance
and the error. Ramzi et al. (2020) display solely that the re-
constructed samples vary especially in certain areas without
computing any further metrics. Xie & Li (2022) compute
the pixel-wise variance of several samples of the posterior
distribution and Jalal et al. (2021) compute the standard
deviation and compare it to the error image. A further de-
scription how the error and the variance relate is not stated.
A short statement about uncertainty can be found in Chung
& Ye (2021). They obtain higher variance values for higher

acceleration factors and state that with larger acceleration
factors also the uncertainty is higher. A more detailed expla-
nation is declared in Luo et al. (2023) where the variance
as well as the 95% interval is computed and it is figured out
that the variance is high at edges and regions where aliasing
occurs and related to the missing high-frequency informa-
tion in the undersampled k-space but it is not compared or
related to the error.

3. Theory

Inverse problems are part of numerous applications and
areas in science like geophysics, chemistry, astronomy, med-
ical imaging, optics and acoustic (Idier, 2008; Kern, 2016).
In this work the focus is on the relevant aspects for imaging.
Mathematically, a forward process of a linear inverse prob-
lem can generally be described by z = Ax + € where z € Z
is the measurement data, A : X — Z the forward operator
and x € X the ground-truth signal. Additionally, every mea-
surement acquisition is corrupted by noise €. The forward
operator A often cannot be inverted or is ill-conditioned and
therefore the inverse problem is called ill-posed according
to the definition of Hadamard.

In the denoising task we face the problem that the ground-
truth image is corrupted by noise and the goal is to re-
cover a clean image from the noisy observation. We as-
sume zero mean additive Gaussian noise € ~ N'(0, 02) with
variance 2. The inpainting problem is characterized by
restoring missing parts of an image. The forward operator
A corresponds to a binary mask which is zero for unknown
pixels and one otherwise. The zero-filling task is only rele-
vant for MR data. As MRI suffers from a high acquisition
time leading to a lower patient throughput, motion artifacts
and overall high costs, lines in the k-space can be skipped
and filled with zeros. However, undersampling the k-space
causes aliasing artifacts as the Nyquist-Shannon theorem is
violated (Zbontar et al., 2018). In this task we deal with a
binary mask in the Fourier space rather than in the image
space.

Diffusion models are generative models and applied in
various fields, e.g. computer vision, natural language pro-
cessing, multi-modal generation and temporal data mod-
eling (Yang et al., 2022). The working flow of diffusion
models can be separated in a forward and a reverse process
whereby in the forward process noise is added to the data
step-by-step and in the reverse process the goal is to recon-
struct samples from the learned distribution by gradually
denoising them (Ho et al., 2020; Song & Ermon, 2019; 2020;
Song et al., 2021). In this work the focus is on the SBGMs
through SDEs from Song et al. (2021). They use a diffusion
process to transform data to noise which can be described
by an SDE in the general form of dz = f(z,t)dt + g(¢)dw
where f(x,t) is the drift coefficient, g(¢) the diffusion co-
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efficient which is modeled as a scalar independent of x
and w describes the Wiener process or Brownian motion.
The time ¢ is continuous between [0, 7] and the process
starts with 2(0) ~ po where py is the data distribution
and ends with 2(T") ~ py where pr is the prior distribu-
tion which is usually a Gaussian distribution with a cer-
tain mean and variance (Song et al., 2021). The forward
SDE can be reversed which yields the reverse-time SDE
dr = f(z,t)dt — g*(t)Vlog ps(z)dw + g(t)dw where t
starts with 7" and ends with zero and dt is negative (Song
et al., 2021). Furthermore, p;(z) is the probability density
of x(t) where x(t) ~ pot(z(t)|z(0)) and po.(x(t)]|z(0)) is
the transition kernel which is usually Gaussian. The score
function sg(x,t) ~ Vlogp:(z) is obtained by training a
score-based model whereby Song et al. (2021) define the
objective of the score-matching training with the weighting
function \ as

) ol (), 1)~
V1og por (2(6)l(0))[13] ]

0* = argmin E; [A(t)Ei(o) x(t)|z(0
0 ey

In this work we use the Variance Preserving SDEs which
are the continuous version of the DDPMs from Ho et al.
(2020). Song et al. (2021) derive the perturbation kernel for
the forward process as

por(@ (D] (0)) = N (w(t)se”

I _ Ie_%t2(ﬂmax_5min)_t/8min

1% (Bmax— Bunin) — 5 tBimin .27(0),

@)
with {B?}N 1 and B; = Bmm =+ N(N i) (Bmax — Bmin) and
for N — oo the variance is 8(¢) = Bmin + t(Bmax — Bmin)
and ¢ € [0, 1]. The advantage of the SBGMs compared to
the DDPMs is that a general SDE solver can be used in
the reverse process. For solving inverse problems with the
BSDS dataset we apply the Euler-Maruyama method

1
Ti_1 =T + §Bt (¢ + 289 (x4, 1)) At+

vV BiAte — AV, D(xs, x7)

and add the data term D(z, z) = 3|[Az — z||? to specify
the inverse problem. For the fastMRI dataset we obtained
improved results with the predictor sampler from Song et al.
(2021).

3

Error Quantification. Inverse problems and diffusion mod-
els can be combined through Bayes’ theorem which arises

for an observation z and the ground-truth z to p(z|z) =

p(z|z)p(x)
p(2)

hood and p(x) the prior. We use diffusion models as prior

and the likelihood term is defined by the inverse problem
itself. The denominator is a scaling factor and does not
depend on .

where p(x|z) is the posterior, p(z|z) the likeli-

The theory for the uncertainty quantification is based on the
method proposed by Narnhofer et al. (2022). The aim is
to get error bounds with coverage guarantees depending on
the posterior variance. We do not list all the evidences here
but we adhere to the notation in Narnhofer et al. (2022) for
better comparison. We assume an observation Z which is an
estimate for the ground-truth data X with instances z and z
respectively. Furthermore, we assume a prediction function
Z(z) which can take different forms. In this approach we
use the mean of the posterior #(z) ~ E[X|Z = 2] and
%(Z) is the prediction for X. Also the estimator function
of the posterior variance defined by #(z) ~ Var[X|Z = 2]
is available, where £(Z) = T'. The range of 7" is split into
disjoint bins 7, = [tg, tg41) for k = 1,2, 3, ... otherwise it
cannot be used in practice as there are not infinitely many
values available for a finite amount of data as stated by
Narnhofer et al. (2022).

In general, the Cumulative Distribution Function (CDF) is
defined by F(y) = P[Y < y] and the quantile function is
the inverse CDF F~1(q) = y, = inf{y € R : F(y) > ¢}
with ¢ € (0, 1) whereas the empirical distribution function
is defined by F'(y) = % ", ly,<y and the empirical g-
quantile by Y, = inf{y € R : F(y) > ¢}. The quantile
can be computed by Yq = Y{([nq)) With Y(,,,y denoting the
m-th smallest value of the samples. If we have a random
sample size IV + 1 whereby the last sample is the new one
then the quantile arises to P[Yy;, < Y, [N = n] > ¢
and can be computed with Y}I = Y(1(N+1)q])- To guarantee
the coverage for new samples the quantile is corrected by
1+ + and results in P[Y" < Y(H%)qUV = n] > ¢ which
can be computed by Y(1+ Ly = Y((N+1)q))- We have
i.i.d. samples (X;, Z;)" ; and the squared error S defined
by S = s(X,Z) = (X — #(Z))?. With the basics above
and the exact derivation in Narnhofer et al. (2022) it can
be shown that the goal is to compute predicting quantiles
S, = 3,((Xi, Z;)1, Z) such that P[S < S,] > ¢ with
the quantile ¢ € (0, 1). Considering the discretization of
the range of T the estimated conditional error quantile is
defined as S, = (1 + ﬁ) q with N,, = [{Si|T} € 7.}
and if (1 + N, )g > N,, it is the essential supremum
of S. For evaluation purposes we check if the true errors
are smaller than the predicted error quantiles. This means
that the mean of the binary decisions should correspond to

the selected quantile which is measured by the coverage
introduced by Narnhofer et al. (2022).

4. Experiments

We conducted a series of experiments and will list the most
important findings below and make the results comparable
to the method proposed in Narnhofer et al. (2022). The
experimental settings can be found in Appendix A.
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We evaluate the reconstructed images by computing the
Peak Signal-to-Noise Ratio (PSNR), the mutual information
between the variance and the error of the training images
and the coverage of the test images for the given quantile
as stated in Narnhofer et al. (2022). Our results (see Ta-
ble 1 and 2 in Appendix A) cannot outperform those of the
reference method in Narnhofer et al. (2022) but are very
close to it. We have to be careful when comparing these
two approaches as already the PSNR values of the corrupted
images are not consistent with each other and for the denois-
ing task the used noise levels differ in 0.5%. Furthermore,
they used only 68 test images instead of 100 for the BSDS
dataset. For the fastMRI dataset, we do not know if we eval-
uate the methods on the same middle slices in each volume
as the exact slice is not explicitly stated. Another unknown
aspect is whether the zero-filling procedure follows a ran-
dom approach, as we opted for, or an equidistant one. A
notable distinction is that our model is also trained on the
PDFS images. Even though the evaluation process does
not take the PDFS images into account we can still solve
inverse problems with this kind of images. Thus, our model
demonstrates higher generalization capabilities. This may
also explain the marginally lower values as our model is not
specially trained on the PD images. Narnhofer et al. (2022)
use 50k reverse steps which is approximately six times more
than we run and we do not need any burn in phases.

Figure 1 shows the upper error bound guarantees for the MR
undersampling task with R = 4. The figures for the other
inverse problems as well as the corrupted and reconstructed
images are in Appendix A. Considering all three inverse
problems and the used datasets, we observe that a higher
corruption leads to a more difficult reconstruction. Also
the PSNR values of the reconstructed images decrease, as
expected, with greater distortion of the original image. Com-
paring the single and the multiple trajectories method, the
former produces higher variance values as there is always
some small noise added in the sampling procedure. For the
multiple trajectories method there is no noise added in the
last step. This approach produces a higher linear depen-
dence between the error and the variance. The oscillations
at the minimum and maximum values are probably due to
fewer samples in these regions. The disadvantage of the
multiple trajectories method is the slower sampling process.
Therefore, we generated fewer samples for computing the
MMSE and the variance. On the other hand, the downside
of the single trajectory method is that this procedure tends
to produce smeary outcomes.

Denoising. The error images are noisier than the predicted
0.9 quantile (see Figure 3). However, both show the struc-
tures and borders of the objects. Furthermore, the estimated
error quantile increases with higher variance values.

Inpainting. The mutual information is the highest for the
inpainting task as there are mainly the mask structures rele-

vant. The error and the predicted quantile images show the
structures of the masks which have higher values in hetero-
geneous regions of the image.

Zero-Filling. In practice, acquisition time is reduced by
skipping lines of the k-space but this leads to aliasing arti-
facts when reconstructing the images by applying the inverse
Fourier transform to the k-space. This high-frequency in-
formation is masked by the zero-filling task, therefore we
obtain higher uncertainty in fine bone structures in the recon-
structed images. Furthermore, we show that the uncertainty
values increase with larger acceleration factors as there is
even more high-frequency information missing.

P[S < s|T =]
0.0

Figure 1. Left: The cumulative conditional distribution P[S <
5|T = ] of the error s and the variance # as well as the 0.9 quantile
of the zero-filling task for R = 4. Right: The 0.9 quantile image
with the range I Il 4e-2.

5. Conclusion

We applied diffusion models as prior in a variational
Bayesian setting for solving inverse problems. The spe-
cific inverse problem defined the likelihood term itself. The
advantage of this approach is that we only need to train one
model for a specific dataset and can solve various inverse
problems. With the stochastic sampling methods we com-
pute the MMSE and the variance which are further used to
obtain upper error bounds. Being aware of the uncertainty
when reconstructing images is especially important in the
medical sector. The uncertainty may play a crucial role for
accurate diagnosis and effective therapies. However, the
advantage of gaining knowledge about the uncertainty is not
yet examined in daily clinical practice. Future work may
empirically evaluate the benefits of uncertainty quantifica-
tion that doctors perceive. Furthermore, more sophisticated
model architectures can be incorporated and the reconstruc-
tion processes further enhanced and sped up. Refining the
reconstruction process can lead to improved PSNR values
that can keep up with the values proposed in Narnhofer et al.
(2022). Moreover, with better reconstruction results the
uncertainty estimation will gain higher precision and even a
higher correlation to the error may be achieved.
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A. Experiments

Experimental Settings. The BSDS consists of 400 training and test images and 100 validation images showing natural
objects and humans. We use gray-scale images and augment the images by flipping them horizontally and vertically
and cropping each of them five times into a patch size either of 64 x 64 or 96 x 96 pixels. The values of the variance
schedule are based on those stated in Song & Ermon (2020) and Song et al. (2021) and are between [0.1, 20]. We use the
U-Net (Ronneberger et al., 2015) with additional time step embeddings taken from Huang (2021) and modify it slightly for
our purposes. All models are trained on a Nvidia Titan X GPU with 12 GB memory.

The fastMRI training set consists of 973 single-coil volumes containing 34,742 slices and the validation set consists of
199 volumes containing 7,135 slices (Zbontar et al., 2018). For the training process we use the single-coil knee coronal
proton-density weighted images without fat suppression (PD images) and the images with fat suppression (PDFS images)
and crop them randomly into a patch size of 64 x 64 or 96 x 96 pixels. As the k-space is complex also the image data is
complex and is handled by using two channels, one for the real and one for the imaginary part. Instead of scaling the pixel
value range of the images, we adjust the values for the variance schedule to [1e-5, 1e-3]. For the evaluation we only use a
middle slice of the PD images as the PDFS images already contain a high noise level in the ground-truth data. Nevertheless,
the approach also works with the PDFS images.

For the sampling process we either use the single or the multiple trajectories method. The multiple trajectories method takes
the last sample of each reverse sampling process whereby the trajectories share the initial reverse steps. Contrary to that, the
single trajectory method uses the samples of the last thousand steps of the reverse process whereby the variance of the added
noise is constant for these steps. For the error quantification we compute the expected value of the posterior and the variance
as well as the error to the ground-truth for the samples in the training set to obtain upper error bounds. For the validation set
we calculate the variance and with the upper error bounds we are able to generate the predicted error quantiles.

Results. Table 1 and 2 summarize the results of the error quantification. The upper error bound guarantees for the 0.9
quantile are visualized in Figure 2 for the different scenarios. The original, corrupted and reconstructed images as well
as the error and the estimated error quantile are visualized in Figure 3—6 for the different inverse problems. The results
are represented for the models trained with the larger patch size and the multiple trajectories sampling procedure as these
methods lead to improved results. The models trained with the smaller patch size tend to introduce artifacts which could be
due to the lacking context in the tiny patches. Overall, we achieved superior outcomes with the models trained with larger
image patches.

Table 1. The mutual information using the training set as well as the coverage of the 0.9 quantile and the PSNR values of the corrupted
and reconstructed images using the validation set for the denoising (5% noise level) and inpainting (10% image information loss) task of
the BSDS dataset.

Inverse Problem ‘ Denoising ‘ Inpainting
Method Mulltlple . Reference Mu}tlple .
Trajectories  Narnhofer et al. (2022) | Trajectories
Mutual Information 0.1313 0.1231 - 0.1650 0.2494
Coverage 0.9 Quantile 0.8890 0.8951 - 0.9023 0.8839
PSNR Corrupted Image in dB 21.96 24.78 14.72
PSNR Reconstructed Image in dB | 27.12 29.34 - 30.79 31.69
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Table 2. The mutual information using the training set as well as the coverage of the 0.9 quantile and the PSNR values of the corrupted
and reconstructed images using the validation set for the zero-filling tasks (R = 4 and R = 8) of the fastMRI dataset.

Acceleration Factor R=4 | R=38
Method Mu.ltlple . Reference Mu.ltlple .
Trajectories  Narnhofer et al. (2022) | Trajectories

Mutual Information 0.1233 0.1554 0.1203
Coverage 0.9 Quantile 0.8923 0.8966 0.8887

PSNR Corrupted Image in dB 20.69 10.66 19.92

PSNR Reconstructed Image in dB | 29.75 34.79 28.04

PS < s|T = ] P[S < s/ = ] Pls<sT =14 Pls < s =)

0.0 L0

Figure 2. The cumulative conditional distribution P[S < s|T = 1] of the error s and the variance £ as well as the 0.9 quantile of the
denoising (5% noise), inpainting (10% image information loss) and the zero-filling task for R = 4 and R = 8 (from left to right).

Figure 3. From left to right: The original, noisy and reconstructed images with the multiple trajectories method as well as the error and the
0.9 quantile images for the denoising task with 5% noise. The corresponding patches are in the second row. The range of the error and the
quantile image is: O I Il 4e-2.
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Figure 4. From left to right: The original, noisy and reconstructed images with the multiple trajectories method as well as the error and the
0.9 quantile images for the inpainting task with 10% image information loss. The corresponding patches are in the second row. The range
of the error and the quantile image is: O I Il 4e-2.

Figure 5. From left to right: The original, noisy and reconstructed images with the multiple trajectories method as well as the error and the
0.9 quantile images for the zero-filling task R = 4. The corresponding patches are in the second row. The range of the error and the
quantile image is: O I l 4e-2.

Figure 6. From left to right: The original, noisy and reconstructed images with the multiple trajectories method as well as the error and the
0.9 quantile images for the zero-filling task R = 8. The corresponding patches are in the second row. The range of the error and the
quantile image is: O HEENE 1l 4e-2.



