Under review as a conference paper at ICLR 2026

GRAPHTORQUE: TORQUE-DRIVEN REWIRING
GRAPH NEURAL NETWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have emerged as powerful tools for learning
from graph-structured data, leveraging message passing to diffuse information and
update node representations. However, most efforts have suggested that native
interactions encoded in the graph may not be friendly for this process, motivating
the development of graph rewiring methods. In this work, we propose a torque-
driven hierarchical rewiring strategy, inspired by the notion of torque in classical
mechanics, dynamically modulating message passing to enhance representation
learning in heterophilous and homophilous graphs. Specifically, we define the
torque by treating the feature distance as a “lever arm vector” and the neighbor
feature as a “force vector” weighted by the homophily ratio disparity between node
pairs. We use the metric to hierarchically reconfigure each layer’s receptive field by
automatically pruning high-torque edges and adding low-torque links based on a
Bernoulli-guided learnable sampling process, suppressing the impact of irrelevant
information and boosting pertinent signals during message passing. Extensive
evaluations on benchmark datasets show that the proposed approach surpasses
state-of-the-art rewiring methods on both heterophilous and homophilous graphs.

1 INTRODUCTION

Graph-structured data composed of vertices and edges encode entities and their relationships. Graph
neural networks (GNNs) have emerged as a powerful framework for processing such data, with
widespread applications in biomolecular modelling |Gligorijevi€ et al.| (2021)); Xia et al.| (2023),
recommendation systems |Chen et al.|(2024)); |]Anand & Mauryal(2025)) and beyond Jiang et al.| (2023);
Liu et al.|(2025); Huang et al.| (2025)). At the heart of GNNs lies message passing, which iteratively
propagates and aggregates information along edges to enrich node representations. Therefore, the
graph structure not only encodes entity interactions but also critically determines model performance
Zhang et al.| (2020); Yang et al.| (2023); |Qian et al.| (2024).

In practice, however, raw graphs frequently harbour spurious or missing links arising from noise
or sampling artefacts, compromising their effectiveness as substrates for message propagation. In
response, recent work has devised diverse graph rewiring strategies that selectively remove or add
edges to optimize message passing and boost predictive accuracy |Xue et al.|(2023); |B1 et al.| (2024);
Liang et al.|(2025)). Such dynamic topology adjustment is crucial not only for mitigating spurious
connections but also for addressing heterophily, where nodes with dissimilar labels or features
tend to be connected |Yang et al.| (2021)); |[Zheng et al.[ (2023); |L1 et al.| (2025). In such scenarios,
homophily-based GNNs can be misled by abundant heterophilous connections, yielding entangled
representations and degraded classification accuracy.

One of the core challenges in graph rewiring is quantifying the significance of edges on message
passing. A key factor in this process is the similarity between node pairs, often measured using
the Euclidean distance, a widely used metric for assessing similarity. In general, the greater the
distance between nodes, the weaker their interaction strength, and the less useful information can
be transmitted, as supported by previous studies that employed node similarity as a proxy for edge
weights Wang et al.|(2020); |Zhou et al.|(2024)). To intuitively observe this, we simulate adversarial
attacks by injecting adversarial edges into raw graphs and visualize the distance distribution of the
edges, enabling us to examine whether adversarial and original edges exhibit distinct distributional
patterns. As shown in Fig. a)—(d), the distribution trends in both homophilous datasets (Cora
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and Pubmed) and heterophilous ones (Wisconsin and Texas) consistently reveal that adversarial
edges (in red) tend to connect node pairs with larger feature distances. This suggests that adversarial
attacks preferentially create long-range links so that they disrupt message passing at their target
nodes. Furthermore, we observe that normal edges in heterophilous datasets also exhibit a distri-
bution skewed toward larger distances, more markedly than in homophilous datasets. This arises
because heterophilous graphs contain a substantially higher proportion of heterophilous edges, which
typically connect node pairs with low similarity. Given that a minority of long-range neighbors can
convey crucial information while nearby neighbors may propagate misleading signals, the feature
quality of neighboring nodes should be considered another key factor in assessing edge significance.

Normal Edges.
Adversarial Edges

This brings to mind the concept of Torque in = \omaities
classical mechanics, which is mathematically

defined as the cross product of a lever arm (the
position vector from the axis of rotation to the
point of force application) and a force. Re-
cently, torque has found applications in fields

50

40

30

20

O N W & U o N
S—
=

104
1

|
i
i
i
i
i
i
i
. + |
such as biology [Tang et al.| (2023); Dzhimak| N abl ; e (11 NS
et al. (2022), Drobotenko et al. (2025) and Spin- O'O(Oa) ]())iifanc%nglrﬁ;azonlézoCurlaz5 | (c)Dis&gcc distr}b?niun unl\‘illsconsille
|
i
i
i
i
i
i
i
i
i
i

tronics |[Kovarik et al.| (2024); |Camarasa-GOmez| 5| ~ normai dges

Adversarial Edges

Normal Edges
Adversarial Edges

fy

\

J"‘ ‘
/
A
A D

08 1.0 12 14
(d) Distance distribution on Texas

et al.| (2024). Heuristically, we extend this con- 1
cept to graphs by treating the distance vector |
between nodes as the lever arm and the fea-
ture vector of a neighboring node as the force.
Their product yields a graph torque, which mea- «
sures an edge’s negative impact: higher torque 2| »
value flags greater interference. To our knowl- ° 0¢ o6 o5 10 12 14
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edge, this is the first work to integrate a physics-
inspired torque into graph rewiring, enabling an  Figure 1: Density distributions of distances for nor-
interference-aware message passing. mal vs. adversarial edges on homophilous graphs
(a) Cora and (b) Pubmed and heterophilous graphs

Specifically, we devise a Torque-driven (c) Wisconsin and (d) Texas.

Hierarchical Rewiring strategy (THR) for
GNNs, which dynamically refines message
passing to excel in both homophilous and
heterophilous graph. In THR, each edge is assigned a torque value that quantifies its interference
strength, with larger torques indicating less reliable connections. Torque is defined by treating the
difference between node representations as a “lever arm vector”, which emphasizes long-range or
heterophilous links. Meanwhile, the neighbor feature is regarded as a “force vector” weighted by the
disparity in the node-level homophily ratios. This disparity captures the difference in their local
label homophily, which has been theoretically shown to jointly influence the expressive power of
GNNgs, alongside feature distance. Leveraging this torque value, THR hierarchically reconfigures
each layer’s receptive field via automatically removing undesirable edges that degrade performance
and introducing low-torque significant connections through a Bernoulli-guided learnable sampling
process. This enables interference-resistant and importance-aware propagation. This rewiring is
performed end-to-end, where message passing operates on the continuously updated graph, while the
evolving node representations enhance torque computation.

Contributions: 1) To the best of our knowledge, we are the first to apply the concept of torque from
physics to graph rewiring, resulting in THR, which enhances GNNs’ resilience to both homophily and
heterophily. 2) We propose a hierarchical rewiring strategy that adaptively determines each layer’s
receptive field by automatically pruning undesirable connections and learnably sampling significant
edges. 3) Comprehensive experiments indicate that THR improves the performance of various GNNs
and outperforms existing state-of-the-art rewiring strategies.

2 RELATED WORK

Standard message passing in GNNs, which aggregates information from local neighbourhoods,
struggles to capture long-range dependencies. A common remedy is to stack multiple layers to
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expand the receptive field[Wu et al.|(2019);|Chen et al.|(2020); |Xu et al.| (2025), but this often leads to
fundamental issues such as over-smoothing and over-squashing. To overcome these bottlenecks, graph
rewiring techniques have recently emerged as an effective strategy for restructuring connectivity
and enhancing information flow. For example, Expander GNNs and ExPhormer perform graph
rewiring by merging multi-hop neighbourhoods or injecting virtual nodes |Gabrielsson et al.| (2023);
Shirzad et al.|(2023). |Karhadkar et al.| (2022)) adds edges based on spectral expansion to mitigate
over-smoothing and over-squashing, while degree-preserving local edge-flip algorithms are proposed
by Banerjee et al.[(2022). [Saber & Salehi-Abari| (2025) introduces a causal method to assess the
impact of graph rewiring on over-squashing, enabling selective rewiring. [Topping et al.| (2022);
Di Giovanni et al.|(2023) analyze the root causes of over-squashing, demonstrating that both spatial
and spectral rewiring can effectively counteract this bottleneck.

Moreover, Bo et al.|(2021) highlights the challenge posed by heterophilous edges, where the aggrega-
tion of dissimilar node signals can entangle representations and cause misclassifications. To alleviate
the impact of such undesirable connections, several methods employ graph rewiring to improve
representation learning. For instance, Bi et al.| (2024) compares the neighbourhood feature and
label distributions between node pairs, pruning heterophilous edges while introducing homophilous
ones. Bose et al.|(2025) leverages autoencoders to derive reweighted similarity coefficients, thereby
strengthening graph homophily. Other approaches, such as|Yan et al.| (2022); Luan et al.| (2022));
Liang et al.|(2023), adopt signed message propagation, assigning positive weights to homophilous
links and negative weights to heterophilous ones. This enables differentiated updates on heterophilous
graphs, amplifying similarity among homophilous nodes while suppressing misleading signals from
heterophilous nodes. However, [Liang et al.| (2024) shows that although a single-hop signed adjacency
matrix aids in separating class features, extending this to multi-hop propagation often degrades
performance.

We draw inspiration from torque in physics to develop a novel rewiring mechanism that hierarchically
eliminates undesirable connections and incorporates task-relevant edges. By dynamically reshaping
the receptive field during training, our method enhances the discriminative power of GNNs on both
homophilous and heterophilous graphs.

3 PRELIMINARIES

3.1 NOTATIONS

Let us define an undirected graph dataset as G = (V, £), comprising N nodes {v; € V}¥, and K
edges {e), = (i, j) € E}X_,, where each edge k encodes a connection between nodes v; and v;. We
denote the adjacency matrix by A € {0, 1}V > where Ay 5y = 1iff nodes v; and v; are connected,
0 otherwise. Furthermore, A = A + I indicates A with added self-loops, and A =D 1/2AD1/2
denotes the symmetrically normalized adjacency matrix with IAD@@ = Ef\il ﬁ@) 5y~ Each node is
associated with a feature vector, and we denote the node feature matrix by X € RN >4 where the i-th
row, x; € R?, represents the d-dimensional features of node v;. Among N nodes, Ny, nodes are

labeled, with ground-truth labels encoded in a matrix Y € RMNwabX¢ wwhere each row y; is a one-hot
vector indicating the class label among c categories.

3.2 MESSAGE PASSING

Consider a graph with adjacency matrix A and node feature matrix X. Message passing in a GNN
proceeds by iteratively propagating and aggregating neighborhood information as

b = Upd(h{, 3 Age(h!”, A ), (1
vj eN;
where hl(-o) = x;, and hg”l) € R™ is the representation of node v; in the (I + 1)-th layer. Agg(-)
computes the incoming message from a neighbor v;, and Upd(-) updates the representation of node
v;. Rather than relying on the raw adjacency matrix A, most GNNs adopt a modified propagation
operator A. For example, GAT |[Velickovic et al.| (2018)) replaces each non-zero entry of A with a
learned attention coefficient that depends on the representations of the corresponding node pair.
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3.3 NODE-LEVEL HOMOPHILY AND HETEROPHILY

For a set of nodes with labels, the homophily ratio of each node quantifies the tendency of the node
to share the same label as its neighbors |Pei et al.| (2020); |Luan et al.|(2022). Considering a node v;

and its set of neighbors N;, the homophily ratio hjL of v; is defined as: h;r = % The

value of A lies in the range [0, 1], where values closer to 1 indicate a higher degree of homophily (or
lower heterophily), while values nearer to O signify the opposite. To quantify the homophily of the

N +
entire graph G, we compute the average homophily across all nodes: H(G) = LTlh

4 METHODOLOGY

In this section, we propose a novel graph rewiring strategy that unfolds in three key stages: (i)
computing edge torques, (ii) rewiring propagation matrix, and (iii) adjusting message passing. The
full algorithmic pseudocode is provided in Appendix

4.1 DERIVE GRAPH TORQUE

In classical mechanics, torque is defined as the vector cross product of a force and its lever arm:
T=rxF, |T|=]|r||F|siné, 2)

where r denotes the position vector, F indicates the force vector, and 6 is the angle between them.
The magnitude of torque in classical mechanics governs an object’s tendency to rotate under an
applied force. Similarly, in GNNs, the strength of node interactions, which depends on factors
such as node similarity, determines how the central node is updated by its neighbors. Just as torque
in mechanics results from the interaction between force and lever arm, the graph structure and
node features determine the propagation and aggregation of information, ultimately optimizing node
representations. Specifically, the torque on a graph can be conceptualized by treating the displacement
vector Dy; ;) between a central node v; and its neighbor v; as the “lever arm”, while the features
of the neighbor x; act as the applied “force”. However, the contribution of this force varies across
different central nodes. Recent studies|Mao et al.|(2023); [Huang et al.|(2025)) have demonstrated that
the generalization of GNNs is influenced by two key factors: the proximity of aggregated features
and the disparity in homophily ratios, with smaller values yielding better generalization. Inspired by
this, we introduce the homophily ratio disparity term E/; ; to modulate the force, thereby capturing
the heterogeneous influences of neighboring nodes and unifying these two factors within the torque
framework to enhance model performance on test data.

Mathematically, for an edge % connecting nodes v; and v;, we define the corresponding torque as
follow,

Te. = Dijy X B X, )
Its magnitude, denoted T, , quantifies the impact of message passing along edge e; on node v;. The
value increases with larger distance or higher homophily ratio disparity, with edges maximizing both
factors yielding the greatest torque value that represents the highest priority for graph rewiring. A
central goal is therefore to provide a principled definition of the displacement vector Dy; ;, and the
homophily ratio disparity E; ;y in Eq. E], followed by a detailed description of their construction.

Metric 1: Displacement Vector. To mitigate the effect of noise in raw graphs and features, we
compute the displacement vector D ; jy using optimized node representations and obtain the distance
value Dy; ;y as follows

Dyij) = hi =y, Di; ) = [[hi = hyll2, C5)

where h; = gCov(x;, A; G))F_] denotes the representation of v; obtained via a graph convolution
operator “gCov” parameterized by ©.

Metric 2: Homophily Ratio Disparity. Considering that recent studies emphasize the importance of
capturing the homophily ratio disparity in addressing heterophilous graphs, we weight the neighboring
features using this disparity, incorporating it into the torque formulation. To estimate node-level
homophily, it is essential to annotate the labels of neighboring nodes around a given node. Given

'“sCov” can be instantiated with any standard GNN layer, such as GCN, GPRGNN, or APPNP.



Under review as a conference paper at ICLR 2026

the scarcity of labeled data, we leverage the model’s outputs to generate pseudo-labels for unlabeled
nodes, with their accuracy improving as the model undergoes progressive optimization. Formally,
E; jy is computed by

{v;ly: = ¥5,v; € Ni}|
|N;|

Here, y; denotes the ground-truth label for labeled nodes or the pseudo-label for unlabeled nodes.
Finally, the torque value of edge ej, is computed by:

Te, = Dy x (B jyhy)llz = /D7 5 - (B gy hyll2)? = (B, Doy 'hj)2 (6)

This formulation captures the combined effects of distance and disparity, facilitating a physics-inspired
approach to graph rewiring.

Eg g = b =h7l b = )

4.2 ADIJUST MESSAGE PASSING

Edge-removal High-order Rewiring. Herein, we propose an automated threshold learning mecha-
nism that identifies the optimal number of edges to prune by pinpointing the largest successive torque
gap. Specifically, we first rank all K edges in descending order of their torque values to form a
torque-sorted list (TSL), denoting its k-th entry as ), with torque T, ,sothat T, > T, > --- > T,,..
We then calculate the torque gap between two consecutive links by

G k1 = P X i, @)

Tep o +6

where ¢ is a small constant to prevent division by zero, and the weight y;, reflects the proportion
of anomalous edges, those whose distance D, disparity F and torque 7" all exceed their respective
means, that are captured within the top k torque-ranked set, emphasizing the boundary between
desirable and undesirable connections. The computation formula of 1, is defined as

_ |High_e N Top_k|
Hi = |High_e| ’ ®
High_e = {ex = (i,§)|Dyjy > D, Ejy > E, T 3y > T, (i, j) € £},
Topk = {ex = (i, )[Tope{Tii 5}, (1, 4) € €},
where D, E, T denote the mean values of distance, disparity and torque, respectively, computed
over all K edges. The set High_e comprises edges exhibiting above-average values across all three

metrics, while T'op_k contains the top k connections in TSL. According to Eq. [/} we can identify the
optimal cutoff by locating the largest torque gap K = arg Jmax G k+1, Which separates the edge

set into two groups: undesirable connections (€1, - - - , €x) and desirable connections (€xc11, - , €x).

In practice, multi-layer GNNs, such as APPNP [Klicpera et al.|(2019) and GCNII |Chen et al.| (2020),
are widely adopted to enlarge the receptive field of graph convolutions. To enable each layer to adapt
adjacency relationships based on evolving node features and capture different structural properties,
we design a hierarchical rewiring strategy. Building on the torque formulation introduced above,
we extend this mechanism across multiple propagation layers. In specific, for each layer [, we
construct a dedicated propagation matrix that enables selective filtering of undesirable high-order
interactions. Notably, to avoid misleading representations in the early stages of training, where
unreliable representations could cause the model to discard informative neighbors or propagate
spurious signals, rewiring at each layer is always performed with respect to the original input graph.
Let h(® denote the node representation gained by the I-th layer. The torque is then recomputed as
follows: o o 0

TEH = (b = hyY) x By by, ©)

where [ = 0,--- , L — 1. Consequently, we gain the (I 4+ 1)-th order torque T(+1) and the corre-
sponding gap GU*+1) using Eqs. from which we derive a pruned propagation matrix A¢+1)"
with (K — K) non-zero elements.

2This form follows directly from the vector identity [|a x b||* = ||a||?||b||* — (a - b)>.
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Edge-addition High-order Rewiring. In the previous steps, we remove undesirable neighbors by
computing the torque of existing edges based on two key attributes. Extending this strategy, we also
consider expanding the receptive field by adding edges that are initially absent but potentially benefi-
cial for message passing. However, evaluating torque across all missing edges is computationally
intractable. We construct a candidate set 7 by selecting, for each node, its top-¢ most similar peers
using cosine similarity. We then compute the (I + 1)-th order torque 71 for the resulting N' x ¢
candidate edges, and select r x N X t edges with the lowest torque values, where 7 is a sampling ratio.
Nevertheless, this hard selection process is inherently non-differentiable and thus cannot be used
in gradient-based optimization. To overcome this, we adopt a Bernoulli-guided learnable sampling
process. Specifically, the Gumbel-Softmax reparameterization trick |Jang et al.| (2017) is leveraged,
which enables differentiable sampling by approximating discrete decisions with a continuous relax-

ation. For each candidate edge k, we define its logits 7wy = [mx0, 7k1], Where 7o = Te(,lfl) (discard)

and g =1 — Te(,iﬂ) (select). Drawing independent noise gy; ~ Gumbel (0, 1), the soft selection
probabilities are computed via

exp (m)

1 log(Tkm ) +gkm
Zm:O eXp ( T

Prj = Vi=01,ke{1,2,...,N x t}, (10)

where 7 is a temperature parameter controlling the sharpness of the Gumbel-Softmax distribution. py
serves as a differentiable weight indicating the likelihood of selecting candidate edge k. Finally, we
construct the rewired propagation matrix AU*+1) by augmenting A(‘+1)" with these probabilistically
weighted candidate edges, followed by the standard renormalization procedure.

Messaging Passing on Rewired Graph. By rewiring the adjacency matrix A as described, each
propagation layer is equipped with an expanded receptive field, allowing for the capture of more
effective multi-level interactions. To evaluate the effectiveness of the proposed THR in capturing
high-order information in multi-layer GNNs, we use the deep-based APPNP model as an example.
Subsequent ablation studies and parameter analyses are conducted within this framework. Let

j\/i(l+1) = {vﬂAEi‘S;) # 0} denotes the refined (I 4 1)-layer neighborhood of node v;; then the

forward propagation at the (I 4+ 1)-th layer of APPNP can be reformulated as:

(I+1) _ O] _ (0)
h! _ReLU( Y ah 4 (1-a)n ) an
je{’Uj}UNi(l+l)
Here, a controls the trade-off between the hidden representation and the residual connection. The

initial representation hl(.O) = x;0, where ® € R?*™ is computed through a linear transformation
of the input feature x;. The final node representations from the last layer are passed through
a fully connected layer parameterized by & € R™*¢, yielding the predicted class probabilities.
These predictions are compared against the ground-truth labels using a cross-entropy loss, which is
minimized through gradient-based optimization.

5 COMPLEXITY ANALYSIS

The dominant computational cost of THR lies in: 1) Torque computation and graph rewiring. For
each order I, we compute torque values only on the edges in A®), costing O(\A(l) ), and then sort
these values in O(]AY|log |.A®)|). When adding edges, if the candidate set size is B, the combined
probability calculation and sorting cost is O(B + B log B). 2) Message passing on the rewired graph
AW For the input layer with parameter @ € R4*™ on X € RV*9, it costs O(Ndm). Aggregation
over AW then costs O(m|.AD|) per layer. The output layer with & € R™*¢ requires O(Nmc).
Putting these costs for an L-layer network and assuming B < |.A()| for all I, the overall complexity
is O(Ndm + Zlel |AD|log | AW]), which is slightly higher than that of standard methods with

O(Ndm +m Y, |AD]).
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6 EXPERIMENTS

Datasets. We evaluate our method on eleven standard node classification benchmarks,
which include six heterophilous datasets: Texas, Wisconsin, Cornell, Actor, Penn94 and
Flickr; five homophilous graphs: Citeseer, Cora, Pubmed, Tolokers and Questions. Among
them, Tolokers, Questions, Penn94 and Flickr are large-scale datasets. The statistics for
these datasets are summarized in Table [T} with further details provided in Appendix [B.2]

Baselines. THR is a plug-in module that Table 1: Benchmark dataset statistics.

can be integrated into various state-of-the-
art GNNs. To evaluate the improvements

Datasets ~ Node Hom. #Nodes  #Edges  #Classes #Features

Texas 0.11 183 295 5 1,703

offergd by THR for GNNs, we .conduct Wisoonsin 021 251 166 5 1703
experiments on three representative mod- Cornell 0.30 183 280 5 1,703
els: two models designed for homophilous Actor 0.22 7,600 26,752 3 31
! . Citeseer 0.74 3327 4,676 7 3,703

graphs, namely the vanilla GCN Kipf & Cora 0.81 2708 5278 6 1433
Welling| (2017) and the deep-based APPNP lT’ulbrlrged 8»28 1?3;; ‘51‘1*»3(2)(7) ; 510(?

a olokers . s DL,

Klicpera et al, (2019), as well as GPRGNN ¢ i1 084 48921 153.540 > 301
Chien et al.| (2020)), which is designed for Penn94 0.47 41,554 1,362,229 2 4814
heterophilous graphs Flickr 0.32 89,250 2,724,458 7 500

To evaluate the effectiveness of THR in

comparison to other graph rewiring tech-

niques, we select five superior methods, including First-order Spectral Rewiring (FoSR) |[Karhadkar
et al.[ (2022), Batch Ollivier-Ricci Flow (BORF) Nguyen et al.| (2023), Stochastic Jost and Liu
Curvature Rewiring (SJLR) Giraldo et al.|(2023)), Deep Heterophily Graph Rewiring (DHGR)|Bi et al.
(2024) and randomly edge removal (DropEdge). Here, we adopt layer-wise DropEdge (Dropedge-L),
as proposed by [Rong et al.|(2019)), to ensure a fair comparison with the hierarchical structure of THR.
Further details on all methods are provided in Appendix [B.3]

Setups. We report node classification accuracy (ACC), defined as the proportion of correctly predicted
labels. For all benchmark datasets, models are trained using the Adam optimizer. Competitors
are performed based on their respective source code. Detailed hyperparameters and environment
configurations for THR are provided in Appendix including the code link in Following
prior work, we adopt the following data split strategy for all methods: 48% of the nodes are used for
training, 32% for validation, and the remaining 20% for testing. Each experiment is conducted over
10 runs with different random splits, and the results are reported as the mean and standard deviation.

Table 2: Node classification results on benchmark datasets with GCN and GPRGNN as the backbone
models: Mean ACC % (Standard Deviation %). The first- and second-best results are highlighted in
red and green, respectively.

Methods/Datasets Citeseer Cora Pubmed Texas Wisconsin Actor Cornell
GCN 75.52 (2.19) 86.96 (1.27) 86.43(0.38) 58.61(7.18) 52.60(8.72) 30.15(1.03) 57.50 (4.66)
FoSR 78.03 (1.45) 87.00 (1.21) 86.34 (0.31) 74.70 (6.23)  65.58 (4.89)  30.16 (1.03) 54.59 (5.01)
BROF 78.45 (1.52) 86.86(1.35) 86.42(0.38) 74.51(6.26) 65.59(4.52) 30.20 (1.17) 60.27 (3.64)
SJLR 77.87 (1.81) 86.60 (1.64) 86.52(1.73) 60.14(0.89) 55.16(0.95) 30.80(1.34) 58.11 (6.86)
DHGR 78.68 (1.51) 86.61 (1.73) 86.40(0.38) 60.20 (6.39) 66.07 (12.51) 34.39(0.99) 58.68 (5.01)

DropEdge-L 74.93 (1.85) 86.62(1.23) 83.07(2.58) 62.74(8.32) 58.82(8.24) 32.97(0.92) 54.32(3.72)
THR 80.43 (1.52) 86.97 (1.19) 87.21(0.45) 76.27 (4.67) 68.09 (2.71)  33.20 (0.90) 58.91 (9.11)
GPRGNN 77.37 (1.83) 87.34(1.14) 87.21(0.43) 89.22(5.56) 87.94(5.29) 37.27(1.16) 80.27 (6.63)
FoSR 77.37 (1.83) 87.52(1.63) 87.22(0.46) 90.20(5.04) 89.85(3.45) 37.25(1.19) 84.05 (7.88)
BORF 78.77 (1.67) 87.49(1.24) 87.17(0.39) 91.16 (5.15) 89.11(4.32) 37.52(1.06) 85.49 (4.83)
SJLR 78.38 (1.49) 86.97 (1.63) 88.11(0.41) 90.00 (2.83) 89.26 (6.38) 34.87 (1.69) 81.62(9.35)
DHGR 77.77 (2.06) 87.19(1.39) 87.69 (0.47) 89.02(4.31) 86.03(6.32) 35.20(1.20) 84.31 (4.56)
DropEdge-L 78.73 (1.91) 86.91(1.07) 87.50(0.48) 90.17 (3.06) 87.79 (6.28) 37.77 (1.16)  84.05 (9.00)
THR 79.15 (1.69) 87.60 (1.15) 88.28 (0.52) 91.96 (3.76) 91.91 (4.75)  38.00 (0.56) 86.22 (5.19)

Node Classification Results. Table[2]presents the test-set accuracy gains achieved by various rewiring
approaches on GCN and GPRGNN across seven benchmark datasets. The comparison results for
APPNP are provided in Appendix [B:4] Several key insights can be drawn: 1) Compared to the
baselines, all rewiring methods show performance improvements on most datasets, with particularly
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notable gains on heterophilous graphs. 2) In all datasets, the proposed THR ranks among the top
two performers, achieving the highest accuracy gain on the majority of benchmarks. 3) Although
FoSR, BORF, and DHGR also exhibit strong performance on certain datasets, their gains are only
marginally higher than those of THR. Overall, THR outperforms these methods and delivers the best
results in all cases when GPRGNN is used as the downstream model. 4) DropEdge-L, which is also
based on hierarchical graph rewiring, outperforms other rewiring methods on some datasets (e.g.,
Texas and Actor), validating the effectiveness of the hierarchical strategy. Although DropEdge-L
shows performance improvements on certain datasets, its inherent randomness negatively impacts the
model’s performance, resulting in lower performance than the baseline in some cases, e.g., Citeseer.
This further validates the effectiveness of the proposed torque-driven hierarchical approach.

Results on Larger Graphs. Scala-

Table 3: Node classification results on large-scale datasets:
Mean ACC % (ROC AUC for imbalanced Questions and
Tolokers) (Standard Deviation %), where the optimal and
suboptimal results are highlighted in red and green, respec-
tively. OoM means that the model suffers from the out-of-
memory error.

bility of rewiring techniques on large
graphs is crucial, particularly for end-
to-end methods that dynamically add
and remove edges during training. In
THR, the primary computational cost
arises from computing torques and

the corresponding gaps, which incurs

Methods/Datasets ~ Questions Tolokers Penn94 Flickr a Complexity of O(|A(l)‘ log ‘A(l) |)
GCN 7526 (0.84)  83.79(0.74) 80.18 (0.36) 63.52(3.82)  (see Sectlonﬁ]for details). Despite this
FoSR 75.19(0.71)  84.14(099)  80.19(035) 63.74(4.11)  gverhead, THR remains computation-
BROF 75.15(0.84) MemoryError OoM OoM .

SILR 72,07 (6.12)  84.14(1.14)  80.20 (0.28) 64.49 (2.82) ally feasible for large_ graphs. Table E]
DHGR OoM 83.45 (2.16) OoM OoM compares several rewiring schemes on
DropEdge-L  74.06 (1.11)  84.00 (0.65 6227 (0.35) 63.10(3.22) . .
THR 75.92(109) 84.43(0.88) 8032(0.23) 67.53(203)  larger datas§ts, with THR cqns1stently
GPRGNN 7289 (142) 7199(093) 84.18(030) 6105 @24) ~ Outperforming all alternatives. No-
FoSR 7291 (143) 7199 (0.93) 84.22(0.29) 62.353.62)  tably, with the exception of the Flickr
BORF 72.99 (1.44) MemoryError OoM OoM st
SILR 7227 (124)  69.46 (1.07)  83.89 (0.20) 61.61(3.22) dataset, al'l rewiring methods shoyv
DHGR OoM 70.96 (1.14) OoM OoM only marginal improvements, and in
DropEdge-L 72.07 (1.35)  71.98(1.09)  83.67 (0.44) 60.77 (3.53) some cases, even lead to a decline in
THR 73.41(0.98)  72.05(1.24) 84.45(0.29) 64.18 (1.37)

performance. This can be attributed
to the fact that the raw graphs of these
datasets already contain sufficient structural information, and the rewiring methods introduce only
minor modifications. Moreover, in some instances, they result in the loss of critical semantics, which
negatively impacts classification performance.

Ablation Study. We conduct an
ablation study to assess the impact
of edge removal and addition opera- ‘
tions in THR, using GCN, GPRGNN, N\ e Y
and APPNP as backbone models. ‘
THR has three variants: edge-addition
THR (A-THR), edge-removal THR
(R-THR), and mixed THR (M-THR).
As illustrated in Figure 2] most
rewiring variants significantly outper-
form their base GNNs. However,
on the Wisconsin dataset, GPRGNN
slightly surpasses GPRGNN with R-
THR, likely because GPRGNN effec-
tively allocates signed edges to dis-
tinguish class information, while R-

> bageGNNs

wATHR
(a) Texas

wATHR

(b) Wisconsin

WATHR
(c) Actor

W MTHR

wMTHR wMTHR

—— GCN
GPRGNN
—o— APPNP

—— GCN
GPRGNN
—+— APPNP

—— GCN
GPRGNN
—+— APPNP

wRTHR

wATHR

(d) Flickr

wATHR
(e) Citescer

wATHR

(f) Pubmed

THR removes heterophilous links, in-
advertently causing the model to lose
some discriminative features. On the

Figure 2: Ablation study: Performance comparison of GCN,
GPRGNN, and APPNP with various THR variants across six
datasets.

Flickr dataset, R-THR improves per-

formance for all models, while A-THR and M-THR degrade the performance of APPNP. Similarly,
on PubMed, both A-THR and M-THR reduce the performance of GCN. These results suggest that,
for these graphs, excessive edge addition leads to information interference and confusion of node
features, whereas GPRGNN mitigates this effect through its signed edge strategy. In conclusion,
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the THR strategy excels in improving model performance, although it adopted to achieve optimal
performance varies across datasets with different characteristics.

Moreover, to investigate the significance of the proposed torque, which integrates feature distance
and homophily ratio disparity from a physical perspective, we evaluate THR and its variants based
on the edge-removal strategy. THRy;, refers to the rewiring method based solely on the distance
metric between node pairs. THRorque wio homo. 1€verages the torque without considering the disparity
in homophily ratio. THR,, g denotes the version of THR without hierarchical rewiring, where all
layers share the same graph. Table ] displays the ablation results, showing that the node classification
accuracy of variants that do not use the proposed torque decreases across all heterophilous datasets.
Moreover, on the Cornell and Flickr datasets, THR,, g outperforms THR, suggesting that layer-wise
rewiring may excessively complicate their graph structures, thereby hindering the propagation of
effective information. In summary, both THR and THR,,, 4 rely on the proposed torque for graph
rewiring and both rank in the top two across all datasets. This validates that THR effectively models
heterophilous graphs by integrating the distance and homophily ratio disparities between node pairs
from a physical perspective.

Table 4: Ablation study: A comparison of THR and its variants by removing specific components.
The optimal and suboptimal results are highlighted in bold and underlined, respectively.

Datasets Texas Wisconsin Cornell Actor Penn94 Flickr
THR ;. 70.39 (9.62) 74.56 (7.21) 76.22 (8.53) 35.80(1.27) 74.98 (0.55) 61.51(4.32)
THR orque wio homo.  67.84 (10.96)  72.94 (8.71)  76.03 (8.40) 3557 (1.31) 75.94(0.57) 61.23(4.74)
THRy/0 1 7098 (8.12)  75.29 (4.45) 78.65(6.78) 35.96 (1.33) 76.14 (0.63) 64.13 (2.27)
THR 72.01 (6.13) 75.89 (3.46) 77.30(7.17) 36.28 (1.15) 76.21 (0.47) 63.28 (1.56)

Parameter Analysis. Since the edge-removal procedure automatically determines the cutoff /C,
we investigate the main hyperparameter ¢t of THR, which defines the number of candidate edges
for addition. As shown in Figure [3] we present the performance curves for varying ¢ values in
{2,4,6,8,10} across five datasets. On both homophilous and heterophilous datasets, accuracy
increases as t grows, demonstrating that the proposed edge-addition scheme aids the model in
capturing global information. However, this does not imply that adding more edges is always
beneficial. For instance, on the Flickr dataset, performance decreases when ¢t = 8, as excessive edge
addition may introduce noise, as highlighted in the ablation study. Sensitivity analysis of o and L is
provided in Appendix

Texas Actor Flickr Citeseer Tolokers

N ©
N o
0 o
w
<
o o
w B

<
©
~ ©

© o

w o

~
v
=
%
o
N

z 236 o) >77 >
© ® © 61 1] ©79.0
e e e e e
5725 =1 =1 576 =1
o o S 60 o o
2 235 2 < <

70.0 75 78.5

59
67.5 34 58 74 78.0
2 0 IS S ,yee 2 0 22 ,yee 2 °
Parameter t Parameter t Parameter t Parameter t Parameter t

Figure 3: Parameter sensitivity: Performance curves on five datasets as the number of candidate
edges t varies from 2 to 10.

7 CONCLUSION

In this paper, we proposed a Torque-driven Hierarchical Rewiring strategy (THR), which dynamically
refined the graph structures to enhance representation learning on heterophilous and homophilous
graphs. By introducing an interference-aware torque metric, the product of the displacement vector
and the feature vector weighted by the homophily ratio disparity, THR automatically removed unde-
sirable connections and introduced beneficial ones during message passing. This hierarchical rewiring
yielded interference-resilient, importance-aware propagation tailored to each layer’s receptive field.
Extensive evaluations across homophilous and heterophilous benchmark datasets demonstrated that
THR consistently obtained the performance gains and outperformed other rewiring methods.
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A ALGORITHM

Algorithm T] outlines the complete workflow of APPNP with THR.

Algorithm 1: GNN with THR

Input: Node features {x; € Rd}fv: 1> candidate edge set 7, ground truth matrix Y, the number
of layers L, hyperparameters ¢ and a.

Output: The predicted class label.

Initialize network parameters ®, ®;

hgo) = ReLU(x;0);

while not convergent do

for/=1— Ldo

> Forward Propagation

Compute pairwise distance Dg)ﬁ and homophily ratio disparity £; ; with Egs. @and
Compute the Ith order torques with Eq. [6{and sort them. // Torque computation

Gain the largest torque gap C with Eqs. [/}8}

Remove the top K edges to gain A" . // Removing undesirable edges

Compute the sampling probability of candidate edges with Eq.

Add beneficial candidate edges to form the refined propagation matrix A®). // Adding
desirable connections

Update node representation hgl) with Eq. // Message passing

> Backward Propagation

Classifier f(-) +— LocalUpdating(x;, { A}~ ) with the cross-entropy loss // Standard
training

Obtain ¥; = Softmax (hEL){));

return The predicted class label of the i-th node is given by arg max y;.

13
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B MORE EXPERIMENTAL RESULTS

B.1 CONFIGURES

We construct a series of experiments to assess the proposed THR. Our model is implemented in
PyTorch on a workstation with AMD Ryzen 9 5900X CPU (3.70GHz), 64GB RAM and RTX
3090GPU (24GB caches). Our code is available at https: //anonymous. 4open.science/
r/THR-FEOB/README . md.

B.2 DATASETS

* Homophilous Datasets. Citeseer, Cora and Pubmed are three citation networks, and they are
published in|Sen et al.|(2008). Specifically,

— Citeseer comprises 3,327 publications classified into six categories, with each paper
encoded by a 3,703-dimensional binary word-presence vector.

— Cora consists of 2,708 scientific publications classified into seven research topics.
Each paper is represented by a 1,433-dimensional binary feature vector indicating the
presence of specific word.

— Pubmed is a larger citation network of 19,717 diabetes-related articles labeled among
three classes. Papers are described by 500-dimensional term frequency—inverse docu-
ment frequency feature vectors, and citation edges capture scholarly references.

— Tolokers Platonov et al.| (2023) is built from the Toloka crowdsourcing platform,
comprising 11,758 nodes and 519,000 edges that link workers who collaborated on the
same task. Each node carries a 10-dimensional feature vector and is assigned one of
two labels based on whether the worker was banned.

— Questions Platonov et al.| (2023) is an interaction graph of users on the Yandex Q
question-answering platform, comprising 48,921 nodes and 153,540 edges that link
users who interacted on the same question. Each node carries a 301-dimensional feature
vector and a binary label for node classification.

 Heterophilous Datasets

— Texas, Wisconsin, Cornell are WebKB datasets used in |Pei et al.| (2020), where nodes
correspond to individual web pages and edges correspond to the hyperlinks between
them. Every node is described by a bag-of-words feature vector extracted from its page
content, and each page has been manually labeled into one of five categories.

— Actor [Tang et al| (2009) is the actor-only induced subgraph of a
film—director—actor—writer network on Wikipedia, where each node represents
an actor and an undirected edge connects two actors if they co-occur on the same
Wikipedia page.

— Penn94 |Lim et al.| (2021) is a subgraph of the Facebook100 dataset featuring 41,554
university students as nodes, connected by 1,362,229 undirected friendship edges. Each
node is described by a five-dimensional feature vector and labeled by the gender of the
students.

— Flickr Zeng et al.| (2020) is an undirected graph originated from NUS-wide, including
89,250 nodes and 2,724,458 edges. Each node is an image with 500-dimensional bag-
of-word features and each edge links two images sharing some common properties.

B.3 BASELINES
B.3.1 GNNSs FOR HOMOPHILOUS AND HETEROPHILOUS GRAPHS

GCN generalize convolutional neural networks to graph-structured data by iteratively aggregating
feature information from each node’s local neighborhood,

h{" = s(AR"DWO), (12)

where W is the learnable parameter matrix.
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APPNP first achieves the feature transformation by:
H® = XW, (13)
and then propagating message via a Personalized PageRank scheme:
HY = (1 - a)PHY 4+ oHO, (14)

Here, P = D~ '/2AD~1/2 is the symmetrically normalized adjacency matrix and « is a trade-off
hyperparameter.

GPRGNN generalizes personalized PageRank by treating each hop’s contribution as a learnable
parameter:

L
H=> +PH" H" =HW, (15)
=1
where 7' P measures the propagation coefficient for the connection between nodes v; and v;.

B.3.2 REWIRING STRATEGIES

DropEdge randomly removes edges at each training epoch to act as both data augmentation and
message-passing reduction, which is used to mitigate over-fitting and over-smooting problems.

FoSR is a preprocessing method, which aims to address the over-squashing issue by improving the
graph connectivity. It adds edges by exploring the first order change in the spectral gap.

BORF uses the Ollivier-Ricci curvature to rewire graph, where minimally curved edges causing
the information bottlenecks should add connections and maximally curved edges leading to over-
smoothing should be removed.

SJLR combines the Jost-Liu Curvature of each edge with the embedding similarity between its
incident nodes, and uses the weighted score as the probability for edge removal or addition.

DHGR compares the neighborhood feature distribution and neighborhood label distribution between
node pairs; edges connecting nodes with low similarity (heterophilous) are pruned, while edges
between highly similar (homophilous) nodes are added.

DHGR vs. THR. Although both methods essentially assess edge homophily or heterophily through
feature and label differences, they follow distinct methodological lines. DHGR is a preprocessing
approach that aggregates neighborhood features and derives local label distributions from pseudo-
labels produced by a pre-trained model, a heuristic design without explicit theoretical grounding. By
contrast, THR operates within the optimizing model, contrasting node representations and quantifying
their homophily ratio disparity, thereby aligning with prior theoretical proofs and offering a more
principled formulation.

B.4 EXPERIMENTS

Classification Results. Table [5] shows the performance gains brought by APPNP with diverse
rewiring methods. We can observe that on most datasets, THR obtains the optimal performance,
indicating its effectiveness.

Parameter Sensitivity. Although « balancing the contribution of the learned high-order representa-
tion and the original input features originates from APPNP, THR modifies the graph structure over
which propagation occurs. To examine how signal diffusion changes with respect to o under the
rewired graph, we perform a sensitivity analysis shown in Figure [d] where a larger « increases the
influence of the hidden representations. We observe that, for smaller heterophilous graphs (e.g.,
Texas and Actor), optimal accuracy is achieved at « = 0.05, implying that raw node features provide
sufficient discriminative power. In contrast, on larger or homophilous graphs, better performance is
observed when o = 0.5, reflecting the necessity of hidden representations to capture more complex
community structures. Moreover, for all datasets, the best results are gained at a larger o, which
demonstrates the effectiveness of excavating deep features.

Figure |5| explores the effect of network depth L. For small graphs (Texas, Citeseer and Film),
performance improves as the number of layers increases, since deeper networks are required to
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Table 5: Node classification results on benchmark datasets with APPNP as the backbone model:

Mean ACC % (Standard Deviation %). The first- and second-best accuracies are highlighted in bold
and underlined, respectively.

Methods/Datasets APPNP FoSR BROF SJLR DHGR DropEdge-L THR
Texas 49.17+£3.30  78.04 (3.70) 73.53 (7.66) 81.57 (3.94) 78.04 (4.62) 72.75(4.68) 84.12 (3.22)
Wisconsin 47.6024.54 7426 (4.47) 75.00 (4.41) 83.53(5.95) 73.82(3.77) 71.91(4.85) 87.79 (3.54)
Actor 3524 (0.56) 35.51(1.42) 3535(1.28) 35.19(1.13) 3590(1.16) 3548 (1.12) 36.34 (0.87)
Cornell 67.57 (5.54) 67.57(5.54) 68.38(7.46) 74.59(5.16) 69.46(8.80) 69.19(7.27) 77.57 (8.02)
Penn9%4 76.53 (0.28)  76.53 (0.28) OoM 79.73 (0.24)  79.10 (0.40) 76.13 (0.40)  82.56 (0.43)
Flickr 57.26 (7.69) 56.31 (6.99) OoM 61.86 (5.17)  62.20 (1.10) 61.25(3.30) 63.28 (1.56)
Citeseer 74.02 (0.38) 77.65(1.55) 77.65(1.24) 77.25(1.35) 76.89 (1.81) 77.69 (1.67) 78.74 (1.29)
Cora 85.89 (1.19) 85.89(1.19) 85.19(1.87) 86.51(1.59) 85.85(1.79) 85.54(1.14) 86.35(1.61)
Pubmed 87.19 (0.55) 87.19(0.55) 87.16(0.40) 88.84(0.40) 88.47(0.44) 87.66(0.33) 88.31(0.49)
Tolokers 75.11 (0.74)  75.11 (0.74) OoM 78.46 (1.11) 7533 (0.83) 74.64 (1.06) 79.29 (0.42)
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Figure 4: Parameter sensitivity: Performance curves on five datasets with layers changing in
{2,4,8,16, 32}.

capture sufficient high-order information. In contrast, for large graphs (Tolokers and Flickr), the
best performance is achieved with only two layers, indicating that shallow message passing already
provides sufficiently discriminative representations. However, while APPNP can alleviate over-
smoothing to some extent, it does not explicitly address this issue on these graphs; overcoming
depth-related bottlenecks therefore remains an open direction for future research.
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Figure 5: Parameter sensitivity: Performance curves on five datasets with layers changing in
{2,4,8,16,32}.

B.5 HYPERPARAMETERS
In this subsection, we present the detailed hyperparameters used in the experiments, which are

also available in the code. The hyperparameters are summarized in Tables[7]to[8] “Lr” refers to

the learning rate, “Wd” denotes the weight decay, and “PPR” is a specific hyperparameter used in
GPRGNN.

C BROADER IMPACT STATEMENT

This study aims to enhance message passing in graph neural networks through graph rewiring. As a
result, it contributes to better performance and broader applicability of GNNs across a wide range
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Table 6: Hyperparameters of THR on GCN across 11 datasets.

Datasets Lr Wwd Dropout L ¢t Normalize Data Hidden Size
Texas 0.05  0.0005 0.5 2 5 Yes 32
Wisconsin ~ 0.05  0.0005 0.5 2 5 Yes 32
Cornell 0.05 0.0005 0.5 2 10 Yes 512
Actor 0.01  0.0005 0.5 2 2 No 32
Citeseer 0.01  0.0005 0.5 2 10 Yes 32
Cora 0.01  0.005 0.5 2 2 No 32
Pubmed 0.01  0.0005 0.5 2 2 Yes 32
Tolokers  0.005 0.0 0.2 2 1 No 32
Questions  0.005 0.0 0.2 5 1 No 32
Penn%4  0.001 Se-8 0.5 2 1 No 32
Flickr 0.01  0.0005 0.3 2 1 Yes 32

Table 7: Hyperparameters of THR on GPRGNN across 11 datasets.

Datasets Lr wd Dropout L ¢t Normalize Data PPR Hidden Size
Texas 0.05  0.0005 0.5 2 5 Yes 1 32
Wisconsin ~ 0.05  0.0005 0.0 2 5 Yes 1 64
Cornell 0.05 0.0005 0.5 2 10 Yes 0.9 512
Actor 0.01 0.0 0.5 2 2 Yes 0.9 32
Citeseer 0.01 0.0 0.5 2 10 Yes 0.1 64
Cora 0.01 0.005 0.5 2 2 Yes 0.1 32
Pubmed 0.05 0.0005 0.5 2 2 Yes 0.2 32
Tolokers  0.005 0.0 0.5 2 1 No 0.1 256
Questions  0.05 5e-8 0.5 2 1 No 0.1 32
Penn94 0.01  0.0001 0.5 2 1 No 09 32
Flickr 0.05 0.0005 0.5 2 1 No 0.9 32

Table 8: Hyperparameters of THR on APPNP across 11 datasets.

Datasets Lr Wwd Dropout « L t Normalize Data Hidden Size
Texas 0.001 0.0005 0.7 005 8 5 No 512
Wisconsin ~ 0.001 0.5 0.5 005 4 5 No 512
Cornell 0.001 0.05 0.7 05 8 2 No 512
Actor 0.001 0.05 0.1 05 8 5 No 512
Citeseer  0.001 0.05 0.4 05 8 10 No 512
Cora 0.001 0.5 04 05 4 2 No 512
Pubmed 0.01 5e-8 0.4 05 4 2 No 512
Tolokers  0.001 5e-8 0.1 08 2 2 No 512
Questions  0.001 5e-8 0.1 08 2 2 No 512
Penn94 0.001 5e-8 0.1 08 2 2 No 512
Flickr 0.001 0.5 0.1 08 2 2 No 512
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of tasks, including recommendation systems, molecular property prediction, traffic forecasting, and
social network.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this paper, we use LLMs as a general-purpose assistive tool to polish writing. LLMs play a
significant role in enhancing the clarity and overall quality of the paper. However, LLMs are not
involved in research ideation and experimental design, and its contribution is limited to writing
optimization and logical structure improvement.
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