

000 001 002 003 004 005 006 007 008 009 010 GRAPHTORQUE: TORQUE-DRIVEN REWIRING 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 GRAPH NEURAL NETWORK

028 **Anonymous authors**

029 Paper under double-blind review

030 ABSTRACT

031 Graph Neural Networks (GNNs) have emerged as powerful tools for learning
032 from graph-structured data, leveraging message passing to diffuse information and
033 update node representations. However, most efforts have suggested that native
034 interactions encoded in the graph may not be friendly for this process, motivating
035 the development of graph rewiring methods. In this work, we propose a torque-
036 driven hierarchical rewiring strategy, inspired by the notion of torque in classical
037 mechanics, dynamically modulating message passing to enhance representation
038 learning in heterophilous and homophilous graphs. Specifically, we define the
039 torque by treating the feature distance as a “lever arm vector” and the neighbor
040 feature as a “force vector” weighted by the homophily ratio disparity between node
041 pairs. We use the metric to hierarchically reconfigure each layer’s receptive field by
042 automatically pruning high-torque edges and adding low-torque links based on a
043 Bernoulli-guided learnable sampling process, suppressing the impact of irrelevant
044 information and boosting pertinent signals during message passing. Extensive
045 evaluations on benchmark datasets show that the proposed approach surpasses
046 state-of-the-art rewiring methods on both heterophilous and homophilous graphs.

047 1 INTRODUCTION

048 Graph-structured data composed of vertices and edges encode entities and their relationships. Graph
049 neural networks (GNNs) have emerged as a powerful framework for processing such data, with
050 widespread applications in biomolecular modelling Gligorjević et al. (2021); Xia et al. (2023),
051 recommendation systems Chen et al. (2024); Anand & Maurya (2025) and beyond Jiang et al. (2023);
052 Liu et al. (2025); Huang et al. (2025). At the heart of GNNs lies message passing, which iteratively
053 propagates and aggregates information along edges to enrich node representations. Therefore, the
054 graph structure not only encodes entity interactions but also critically determines model performance
055 Zhang et al. (2020); Yang et al. (2023); Qian et al. (2024).

056 In practice, however, raw graphs frequently harbour spurious or missing links arising from noise
057 or sampling artefacts, compromising their effectiveness as substrates for message propagation. In
058 response, recent work has devised diverse graph rewiring strategies that selectively remove or add
059 edges to optimize message passing and boost predictive accuracy Xue et al. (2023); Bi et al. (2024);
060 Liang et al. (2025). Such dynamic topology adjustment is crucial not only for mitigating spurious
061 connections but also for addressing heterophily, where nodes with dissimilar labels or features
062 tend to be connected Yang et al. (2021); Zheng et al. (2023); Li et al. (2025). In such scenarios,
063 homophily-based GNNs can be misled by abundant heterophilous connections, yielding entangled
064 representations and degraded classification accuracy.

065 One of the core challenges in graph rewiring is quantifying the significance of edges on message
066 passing. A key factor in this process is the similarity between node pairs, often measured using
067 the Euclidean distance, a widely used metric for assessing similarity. In general, the greater the
068 distance between nodes, the weaker their interaction strength, and the less useful information can
069 be transmitted, as supported by previous studies that employed node similarity as a proxy for edge
070 weights Wang et al. (2020); Zhou et al. (2024). To intuitively observe this, we simulate adversarial
071 attacks by injecting adversarial edges into raw graphs and visualize the distance distribution of the
072 edges, enabling us to examine whether adversarial and original edges exhibit distinct distributional
073 patterns. As shown in Fig. 1(a)–(d), the distribution trends in both homophilous datasets (Cora

and Pubmed) and heterophilous ones (Wisconsin and Texas) consistently reveal that adversarial edges (in red) tend to connect node pairs with larger feature distances. This suggests that adversarial attacks preferentially create long-range links so that they disrupt message passing at their target nodes. Furthermore, we observe that normal edges in heterophilous datasets also exhibit a distribution skewed toward larger distances, more markedly than in homophilous datasets. This arises because heterophilous graphs contain a substantially higher proportion of heterophilous edges, which typically connect node pairs with low similarity. Given that a minority of long-range neighbors can convey crucial information while nearby neighbors may propagate misleading signals, the feature quality of neighboring nodes should be considered another key factor in assessing edge significance.

This brings to mind the concept of **Torque** in classical mechanics, which is mathematically defined as the cross product of a lever arm (the position vector from the axis of rotation to the point of force application) and a force. Recently, torque has found applications in fields such as biology Tang et al. (2023); Dzhimak et al. (2022); Drobotenko et al. (2025) and spintronics Kovarik et al. (2024); Camarasa-Gómez et al. (2024). Heuristically, we extend this concept to graphs by treating the distance vector between nodes as the lever arm and the feature vector of a neighboring node as the force. Their product yields a graph torque, which measures an edge’s negative impact: higher torque value flags greater interference. To our knowledge, this is the first work to integrate a physics-inspired torque into graph rewiring, enabling an interference-aware message passing.

Specifically, we devise a Torque-driven Hierarchical Rewiring strategy (THR) for GNNs, which dynamically refines message passing to excel in both homophilous and heterophilous graph. In THR, each edge is assigned a torque value that quantifies its interference strength, with larger torques indicating less reliable connections. Torque is defined by treating the difference between node representations as a “lever arm vector”, which emphasizes long-range or heterophilous links. Meanwhile, the neighbor feature is regarded as a “force vector” weighted by the disparity in the node-level homophily ratios. This disparity captures the difference in their local label homophily, which has been theoretically shown to jointly influence the expressive power of GNNs, alongside feature distance. Leveraging this torque value, THR hierarchically reconfigures each layer’s receptive field via automatically removing undesirable edges that degrade performance and introducing low-torque significant connections through a Bernoulli-guided learnable sampling process. This enables interference-resistant and importance-aware propagation. This rewiring is performed end-to-end, where message passing operates on the continuously updated graph, while the evolving node representations enhance torque computation.

Contributions: 1) To the best of our knowledge, we are the first to apply the concept of torque from physics to graph rewiring, resulting in THR, which enhances GNNs’ resilience to both homophily and heterophily. 2) We propose a hierarchical rewiring strategy that adaptively determines each layer’s receptive field by automatically pruning undesirable connections and learnably sampling significant edges. 3) Comprehensive experiments indicate that THR improves the performance of various GNNs and outperforms existing state-of-the-art rewiring strategies.

2 RELATED WORK

Standard message passing in GNNs, which aggregates information from local neighbourhoods, struggles to capture long-range dependencies. A common remedy is to stack multiple layers to

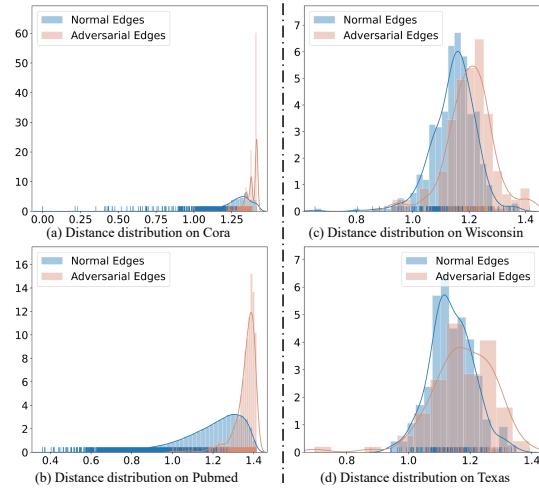


Figure 1: Density distributions of distances for normal vs. adversarial edges on homophilous graphs
 (a) Cora and (b) Pubmed and heterophilous graphs
 (c) Wisconsin and (d) Texas.

expand the receptive field Wu et al. (2019); Chen et al. (2020); Xu et al. (2025), but this often leads to fundamental issues such as over-smoothing and over-squashing. To overcome these bottlenecks, graph rewiring techniques have recently emerged as an effective strategy for restructuring connectivity and enhancing information flow. For example, Expander GNNs and ExPhormer perform graph rewiring by merging multi-hop neighbourhoods or injecting virtual nodes Gabrielsson et al. (2023); Shirzad et al. (2023). Karhadkar et al. (2022) adds edges based on spectral expansion to mitigate over-smoothing and over-squashing, while degree-preserving local edge-flip algorithms are proposed by Banerjee et al. (2022). Saber & Salehi-Abari (2025) introduces a causal method to assess the impact of graph rewiring on over-squashing, enabling selective rewiring. Topping et al. (2022); Di Giovanni et al. (2023) analyze the root causes of over-squashing, demonstrating that both spatial and spectral rewiring can effectively counteract this bottleneck.

Moreover, Bo et al. (2021) highlights the challenge posed by heterophilous edges, where the aggregation of dissimilar node signals can entangle representations and cause misclassifications. To alleviate the impact of such undesirable connections, several methods employ graph rewiring to improve representation learning. For instance, Bi et al. (2024) compares the neighbourhood feature and label distributions between node pairs, pruning heterophilous edges while introducing homophilous ones. Bose et al. (2025) leverages autoencoders to derive reweighted similarity coefficients, thereby strengthening graph homophily. Other approaches, such as Yan et al. (2022); Luan et al. (2022); Liang et al. (2023), adopt signed message propagation, assigning positive weights to homophilous links and negative weights to heterophilous ones. This enables differentiated updates on heterophilous graphs, amplifying similarity among homophilous nodes while suppressing misleading signals from heterophilous nodes. However, Liang et al. (2024) shows that although a single-hop signed adjacency matrix aids in separating class features, extending this to multi-hop propagation often degrades performance.

We draw inspiration from torque in physics to develop a novel rewiring mechanism that hierarchically eliminates undesirable connections and incorporates task-relevant edges. By dynamically reshaping the receptive field during training, our method enhances the discriminative power of GNNs on both homophilous and heterophilous graphs.

3 PRELIMINARIES

3.1 NOTATIONS

Let us define an undirected graph dataset as $\mathcal{G} = (V, \mathcal{E})$, comprising N nodes $\{v_i \in V\}_{i=1}^N$ and K edges $\{e_k \doteq \langle i, j \rangle \in \mathcal{E}\}_{k=1}^K$, where each edge k encodes a connection between nodes v_i and v_j . We denote the adjacency matrix by $\mathbf{A} \in \{0, 1\}^{N \times N}$, where $A_{\langle i, j \rangle} = 1$ iff nodes v_i and v_j are connected, 0 otherwise. Furthermore, $\widehat{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ indicates \mathbf{A} with added self-loops, and $\widetilde{\mathbf{A}} = \widehat{\mathbf{D}}^{-1/2} \widehat{\mathbf{A}} \widehat{\mathbf{D}}^{-1/2}$ denotes the symmetrically normalized adjacency matrix with $\widehat{D}_{\langle i, i \rangle} = \sum_{j=1}^N \widehat{A}_{\langle i, j \rangle}$. Each node is associated with a feature vector, and we denote the node feature matrix by $\mathbf{X} \in \mathbb{R}^{N \times d}$, where the i -th row, $\mathbf{x}_i \in \mathbb{R}^d$, represents the d -dimensional features of node v_i . Among N nodes, N_{lab} nodes are labeled, with ground-truth labels encoded in a matrix $\mathbf{Y} \in \mathbb{R}^{N_{lab} \times c}$, where each row \mathbf{y}_i is a one-hot vector indicating the class label among c categories.

3.2 MESSAGE PASSING

Consider a graph with adjacency matrix \mathbf{A} and node feature matrix \mathbf{X} . Message passing in a GNN proceeds by iteratively propagating and aggregating neighborhood information as

$$\mathbf{h}_i^{(l+1)} = \text{Upd}(\mathbf{h}_i^{(l)}, \sum_{v_j \in \mathcal{N}_i} \text{Agg}(\mathbf{h}_j^{(l)}, A_{\langle i, j \rangle})), \quad (1)$$

where $\mathbf{h}_i^{(0)} = \mathbf{x}_i$, and $\mathbf{h}_i^{(l+1)} \in \mathbb{R}^m$ is the representation of node v_i in the $(l+1)$ -th layer. $\text{Agg}(\cdot)$ computes the incoming message from a neighbor v_j , and $\text{Upd}(\cdot)$ updates the representation of node v_i . Rather than relying on the raw adjacency matrix \mathbf{A} , most GNNs adopt a modified propagation operator \mathcal{A} . For example, GAT Velickovic et al. (2018) replaces each non-zero entry of \mathbf{A} with a learned attention coefficient that depends on the representations of the corresponding node pair.

162 3.3 NODE-LEVEL HOMOPHILY AND HETEROPHILY
163

164 For a set of nodes with labels, the homophily ratio of each node quantifies the tendency of the node
165 to share the same label as its neighbors Pei et al. (2020); Luan et al. (2022). Considering a node v_i
166 and its set of neighbors \mathcal{N}_i , the homophily ratio h_i^+ of v_i is defined as: $h_i^+ = \frac{|\{\mathbf{y}_i = \mathbf{y}_j | v_j \in \mathcal{N}_i\}|}{|\mathcal{N}_i|}$. The
167 value of h_i^+ lies in the range $[0, 1]$, where values closer to 1 indicate a higher degree of homophily (or
168 lower heterophily), while values nearer to 0 signify the opposite. To quantify the homophily of the
169 entire graph \mathcal{G} , we compute the average homophily across all nodes: $\mathcal{H}(\mathcal{G}) = \frac{\sum_{i=1}^N h_i^+}{N}$.
170

171 4 METHODOLOGY
172

173 In this section, we propose a novel graph rewiring strategy that unfolds in three key stages: (i)
174 computing edge torques, (ii) rewiring propagation matrix, and (iii) adjusting message passing. The
175 full algorithmic pseudocode is provided in Appendix A.
176

177 4.1 DERIVE GRAPH TORQUE
178

179 In classical mechanics, **torque** is defined as the vector cross product of a force and its lever arm:
180

$$181 \mathbf{T} = \mathbf{r} \times \mathbf{F}, \quad |\mathbf{T}| = |\mathbf{r}||\mathbf{F}| \sin \theta, \quad (2)$$

182 where \mathbf{r} denotes the position vector, \mathbf{F} indicates the force vector, and θ is the angle between them.
183 The magnitude of torque in classical mechanics governs an object’s tendency to rotate under an
184 applied force. Similarly, in GNNs, the strength of node interactions, which depends on factors
185 such as node similarity, determines how the central node is updated by its neighbors. Just as torque
186 in mechanics results from the interaction between force and lever arm, the graph structure and
187 node features determine the propagation and aggregation of information, ultimately optimizing node
188 representations. Specifically, the torque on a graph can be conceptualized by treating the displacement
189 vector $\mathbf{D}_{\langle i,j \rangle}$ between a central node v_i and its neighbor v_j as the “lever arm”, while the features
190 of the neighbor \mathbf{x}_j act as the applied “force”. However, the contribution of this force varies across
191 different central nodes. Recent studies Mao et al. (2023); Huang et al. (2025) have demonstrated that
192 the generalization of GNNs is influenced by two key factors: the proximity of aggregated features
193 and the disparity in homophily ratios, with smaller values yielding better generalization. Inspired by
194 this, we introduce the homophily ratio disparity term $E_{\langle i,j \rangle}$ to modulate the force, thereby capturing
195 the heterogeneous influences of neighboring nodes and unifying these two factors within the torque
196 framework to enhance model performance on test data.
197

198 Mathematically, for an edge k connecting nodes v_i and v_j , we define the corresponding torque as
199 follow,

$$200 \mathbf{T}_{e_k} = \mathbf{D}_{\langle i,j \rangle} \times E_{\langle i,j \rangle} \mathbf{x}_j. \quad (3)$$

201 Its magnitude, denoted T_{e_k} , quantifies the impact of message passing along edge e_k on node v_i . The
202 value increases with larger distance or higher homophily ratio disparity, with edges maximizing both
203 factors yielding the greatest torque value that represents the highest priority for graph rewiring. A
204 central goal is therefore to provide a principled definition of the displacement vector $\mathbf{D}_{\langle i,j \rangle}$ and the
205 homophily ratio disparity $E_{\langle i,j \rangle}$ in Eq. 3, followed by a detailed description of their construction.
206

207 **Metric 1: Displacement Vector.** To mitigate the effect of noise in raw graphs and features, we
208 compute the displacement vector $\mathbf{D}_{\langle i,j \rangle}$ using optimized node representations and obtain the distance
209 value $D_{\langle i,j \rangle}$ as follows

$$210 \mathbf{D}_{\langle i,j \rangle} = \mathbf{h}_i - \mathbf{h}_j, \quad D_{\langle i,j \rangle} = \|\mathbf{h}_i - \mathbf{h}_j\|_2, \quad (4)$$

211 where $\mathbf{h}_i = \text{gCov}(\mathbf{x}_i, \mathbf{A}; \Theta)$ ¹ denotes the representation of v_i obtained via a graph convolution
212 operator “gCov” parameterized by Θ .

213 **Metric 2: Homophily Ratio Disparity.** Considering that recent studies emphasize the importance of
214 capturing the homophily ratio disparity in addressing heterophilous graphs, we weight the neighboring
215 features using this disparity, incorporating it into the torque formulation. To estimate node-level
216 homophily, it is essential to annotate the labels of neighboring nodes around a given node. Given

217 ¹ “gCov” can be instantiated with any standard GNN layer, such as GCN, GPRGNN, or APPNP.

216 the scarcity of labeled data, we leverage the model’s outputs to generate pseudo-labels for unlabeled
 217 nodes, with their accuracy improving as the model undergoes progressive optimization. Formally,
 218 $E_{\langle i,j \rangle}$ is computed by
 219

$$220 \quad E_{\langle i,j \rangle} = |h_i^+ - h_j^+|, \quad h_i^+ = \frac{|\{v_j | \hat{\mathbf{y}}_i = \hat{\mathbf{y}}_j, v_j \in \mathcal{N}_i\}|}{|\mathcal{N}_i|}. \quad (5)$$

222 Here, $\hat{\mathbf{y}}_i$ denotes the ground-truth label for labeled nodes or the pseudo-label for unlabeled nodes.
 223 Finally, the torque value of edge e_k is computed by:
 224

$$225 \quad T_{e_k} = \|\mathbf{D}_{\langle i,j \rangle} \times (E_{\langle i,j \rangle} \mathbf{h}_j)\|_2 = \sqrt{D_{\langle i,j \rangle}^2 \cdot (E_{\langle i,j \rangle} \|\mathbf{h}_j\|_2)^2 - (E_{\langle i,j \rangle} \mathbf{D}_{\langle i,j \rangle} \cdot \mathbf{h}_j)^2}.^2 \quad (6)$$

227 This formulation captures the combined effects of distance and disparity, facilitating a physics-inspired
 228 approach to graph rewiring.
 229

230 4.2 ADJUST MESSAGE PASSING

231 **Edge-removal High-order Rewiring.** Herein, we propose an automated threshold learning mecha-
 232 nism that identifies the optimal number of edges to prune by pinpointing the largest successive torque
 233 gap. Specifically, we first rank all K edges in descending order of their torque values to form a
 234 torque-sorted list (TSL), denoting its k -th entry as \tilde{e}_k with torque \tilde{T}_{e_k} , so that $\tilde{T}_{e_1} \geq \tilde{T}_{e_2} \geq \dots \geq \tilde{T}_{e_K}$.
 235 We then calculate the torque gap between two consecutive links by
 236

$$237 \quad G_{k,k+1} = \mu_k \times \frac{\tilde{T}_{e_k}}{\tilde{T}_{e_{k+1}} + \delta}, \quad (7)$$

239 where δ is a small constant to prevent division by zero, and the weight μ_k reflects the proportion
 240 of anomalous edges, those whose distance D , disparity E and torque T all exceed their respective
 241 means, that are captured within the top k torque-ranked set, emphasizing the boundary between
 242 desirable and undesirable connections. The computation formula of μ_k is defined as
 243

$$244 \quad \mu_k = \frac{|High_e \cap Top_k|}{|High_e|}, \quad (8)$$

$$246 \quad High_e = \{e_k \doteq \langle i, j \rangle | D_{\langle i,j \rangle} \geq \bar{D}, E_{\langle i,j \rangle} \geq \bar{E}, T_{\langle i,j \rangle} \geq \bar{T}, \langle i, j \rangle \in \mathcal{E}\},$$

$$247 \quad Top_k = \{e_k \doteq \langle i, j \rangle | Top_k\{T_{\langle i,j \rangle}\}, \langle i, j \rangle \in \mathcal{E}\},$$

249 where $\bar{D}, \bar{E}, \bar{T}$ denote the mean values of distance, disparity and torque, respectively, computed
 250 over all K edges. The set $High_e$ comprises edges exhibiting above-average values across all three
 251 metrics, while Top_k contains the top k connections in TSL. According to Eq. 7, we can identify the
 252 optimal cutoff by locating the largest torque gap $\mathcal{K} = \arg \max_{1 \leq k \leq K-1} G_{k,k+1}$, which separates the edge
 253 set into two groups: undesirable connections $(\tilde{e}_1, \dots, \tilde{e}_{\mathcal{K}})$ and desirable connections $(\tilde{e}_{\mathcal{K}+1}, \dots, \tilde{e}_K)$.
 254

255 In practice, multi-layer GNNs, such as APPNP Klicpera et al. (2019) and GCNII Chen et al. (2020),
 256 are widely adopted to enlarge the receptive field of graph convolutions. To enable each layer to adapt
 257 adjacency relationships based on evolving node features and capture different structural properties,
 258 we design a hierarchical rewiring strategy. Building on the torque formulation introduced above,
 259 we extend this mechanism across multiple propagation layers. In specific, for each layer l , we
 260 construct a dedicated propagation matrix that enables selective filtering of undesirable high-order
 261 interactions. Notably, to avoid misleading representations in the early stages of training, where
 262 unreliable representations could cause the model to discard informative neighbors or propagate
 263 spurious signals, rewiring at each layer is always performed with respect to the original input graph.
 264 Let $\mathbf{h}^{(l)}$ denote the node representation gained by the l -th layer. The torque is then recomputed as
 265 follows:
 266

$$267 \quad \mathbf{T}_{e_k}^{(l+1)} = (\mathbf{h}_i^{(l)} - \mathbf{h}_j^{(l)}) \times E_{\langle i,j \rangle} \mathbf{h}_j^{(l)}, \quad (9)$$

268 where $l = 0, \dots, L-1$. Consequently, we gain the $(l+1)$ -th order torque $T^{(l+1)}$ and the corre-
 269 sponding gap $G^{(l+1)}$ using Eqs. 6-8, from which we derive a pruned propagation matrix $\mathcal{A}^{(l+1)*}$
 270 with $(K - \mathcal{K})$ non-zero elements.
 271

²This form follows directly from the vector identity $\|\mathbf{a} \times \mathbf{b}\|^2 = \|\mathbf{a}\|^2 \|\mathbf{b}\|^2 - (\mathbf{a} \cdot \mathbf{b})^2$.

270 **Edge-addition High-order Rewiring.** In the previous steps, we remove undesirable neighbors by
 271 computing the torque of existing edges based on two key attributes. Extending this strategy, we also
 272 consider expanding the receptive field by adding edges that are initially absent but potentially benefi-
 273 cial for message passing. However, evaluating torque across all missing edges is computationally
 274 intractable. We construct a candidate set \mathcal{T} by selecting, for each node, its top- t most similar peers
 275 using cosine similarity. We then compute the $(l+1)$ -th order torque $T^{(l+1)}$ for the resulting $N \times t$
 276 candidate edges, and select $r \times N \times t$ edges with the lowest torque values, where r is a sampling ratio.
 277 Nevertheless, this hard selection process is inherently non-differentiable and thus cannot be used
 278 in gradient-based optimization. To overcome this, we adopt a Bernoulli-guided learnable sampling
 279 process. Specifically, the Gumbel-Softmax reparameterization trick Jang et al. (2017) is leveraged,
 280 which enables differentiable sampling by approximating discrete decisions with a continuous relax-
 281 ation. For each candidate edge k , we define its logits $\pi_k = [\pi_{k0}, \pi_{k1}]$, where $\pi_{k0} = T_{e_k}^{(l+1)}$ (discard)
 282 and $\pi_{k1} = 1 - T_{e_k}^{(l+1)}$ (select). Drawing independent noise $g_{kj} \sim \text{Gumbel}(0, 1)$, the soft selection
 283 probabilities are computed via

$$p_{kj} = \frac{\exp\left(\frac{\log(\pi_{kj}) + g_{kj}}{\tau}\right)}{\sum_{m=0}^1 \exp\left(\frac{\log(\pi_{km}) + g_{km}}{\tau}\right)}, \forall j = 0, 1, k \in \{1, 2, \dots, N \times t\}, \quad (10)$$

289 where τ is a temperature parameter controlling the sharpness of the Gumbel-Softmax distribution. p_{k1}
 290 serves as a differentiable weight indicating the likelihood of selecting candidate edge k . Finally, we
 291 construct the rewired propagation matrix $\mathcal{A}^{(l+1)}$ by augmenting $\mathcal{A}^{(l+1)*}$ with these probabilistically
 292 weighted candidate edges, followed by the standard renormalization procedure.

293 **Messaging Passing on Rewired Graph.** By rewiring the adjacency matrix \mathbf{A} as described, each
 294 propagation layer is equipped with an expanded receptive field, allowing for the capture of more
 295 effective multi-level interactions. To evaluate the effectiveness of the proposed THR in capturing
 296 high-order information in multi-layer GNNs, we use the deep-based APPNP model as an example.
 297 Subsequent ablation studies and parameter analyses are conducted within this framework. Let
 298 $\mathcal{N}_i^{(l+1)} = \{v_j | \mathcal{A}_{\langle i, j \rangle}^{(l+1)} \neq 0\}$ denotes the refined $(l+1)$ -layer neighborhood of node v_i ; then the
 299 forward propagation at the $(l+1)$ -th layer of APPNP can be reformulated as:

$$\mathbf{h}_i^{(l+1)} = \text{ReLU}\left(\sum_{j \in \{v_i\} \cup \mathcal{N}_i^{(l+1)}} \alpha \mathbf{h}_j^{(l)} + (1 - \alpha) \mathbf{h}_i^{(0)}\right). \quad (11)$$

301 Here, α controls the trade-off between the hidden representation and the residual connection. The
 302 initial representation $\mathbf{h}_i^{(0)} = \mathbf{x}_i \Theta$, where $\Theta \in \mathbb{R}^{d \times m}$, is computed through a linear transformation
 303 of the input feature \mathbf{x}_i . The final node representations from the last layer are passed through
 304 a fully connected layer parameterized by $\Phi \in \mathbb{R}^{m \times c}$, yielding the predicted class probabilities.
 305 These predictions are compared against the ground-truth labels using a cross-entropy loss, which is
 306 minimized through gradient-based optimization.

5 COMPLEXITY ANALYSIS

315 The dominant computational cost of THR lies in: 1) Torque computation and graph rewiring. For
 316 each order l , we compute torque values only on the edges in $\mathcal{A}^{(l)}$, costing $\mathcal{O}(|\mathcal{A}^{(l)}|)$, and then sort
 317 these values in $\mathcal{O}(|\mathcal{A}^{(l)}| \log |\mathcal{A}^{(l)}|)$. When adding edges, if the candidate set size is B , the combined
 318 probability calculation and sorting cost is $\mathcal{O}(B + B \log B)$. 2) Message passing on the rewired graph
 319 $\mathcal{A}^{(l)}$. For the input layer with parameter $\Theta \in \mathbb{R}^{d \times m}$ on $\mathbf{X} \in \mathbb{R}^{N \times d}$, it costs $\mathcal{O}(Ndm)$. Aggregation
 320 over $\mathcal{A}^{(l)}$ then costs $\mathcal{O}(m|\mathcal{A}^{(l)}|)$ per layer. The output layer with $\Phi \in \mathbb{R}^{m \times c}$ requires $\mathcal{O}(Nmc)$.
 321 Putting these costs for an L -layer network and assuming $B \ll |\mathcal{A}^{(l)}|$ for all l , the overall complexity
 322 is $\mathcal{O}(Ndm + \sum_{l=1}^L |\mathcal{A}^{(l)}| \log |\mathcal{A}^{(l)}|)$, which is slightly higher than that of standard methods with
 323 $\mathcal{O}(Ndm + m \sum_{l=1}^L |\mathcal{A}^{(l)}|)$.

324 **6 EXPERIMENTS**
 325

326 **Datasets.** We evaluate our method on eleven standard node classification benchmarks,
 327 which include six heterophilous datasets: Texas, Wisconsin, Cornell, Actor, Penn94 and
 328 Flickr; five homophilous graphs: Citeseer, Cora, Pubmed, Tolokers and Questions. Among
 329 them, Tolokers, Questions, Penn94 and Flickr are large-scale datasets. The statistics for
 330 these datasets are summarized in Table 1, with further details provided in Appendix B.2.
 331

332 **Baselines.** THR is a plug-in module that
 333 can be integrated into various state-of-the-
 334 art GNNs. To evaluate the improvements
 335 offered by THR for GNNs, we conduct
 336 experiments on three representative mod-
 337 els: two models designed for homophilous
 338 graphs, namely the vanilla GCN Kipf &
 339 Welling (2017) and the deep-based APPNP
 340 Klicpera et al. (2019), as well as GPRGNN
 341 Chien et al. (2020), which is designed for
 342 heterophilous graphs.

343 To evaluate the effectiveness of THR in
 344 comparison to other graph rewiring tech-
 345 niques, we select five superior methods, including First-order Spectral Rewiring (FoSR) Karhadkar
 346 et al. (2022), Batch Ollivier-Ricci Flow (BORF) Nguyen et al. (2023), Stochastic Jost and Liu
 347 Curvature Rewiring (SJLR) Giraldo et al. (2023), Deep Heterophily Graph Rewiring (DHGR) Bi et al.
 348 (2024) and randomly edge removal (DropEdge). Here, we adopt layer-wise DropEdge (Dropedge-L),
 349 as proposed by Rong et al. (2019), to ensure a fair comparison with the hierarchical structure of THR.
 350 Further details on all methods are provided in Appendix B.3.

351 **Setups.** We report node classification accuracy (ACC), defined as the proportion of correctly predicted
 352 labels. For all benchmark datasets, models are trained using the Adam optimizer. *Competitors*
 353 are performed based on their respective source code. Detailed hyperparameters and environment
 354 configurations for THR are provided in Appendix B.5, including the code link in B.1. Following
 355 prior work, we adopt the following data split strategy for all methods: 48% of the nodes are used for
 356 training, 32% for validation, and the remaining 20% for testing. Each experiment is conducted over
 357 10 runs with different random splits, and the results are reported as the mean and standard deviation.

358 Table 2: Node classification results on benchmark datasets with GCN and GPRGNN as the backbone
 359 models: Mean ACC % (Standard Deviation %). The first- and second-best results are highlighted in
 360 **red** and **green**, respectively.

361

Methods/Datasets	Citeseer	Cora	Pubmed	Texas	Wisconsin	Actor	Cornell
GCN	75.52 (2.19)	86.96 (1.27)	86.43 (0.38)	58.61 (7.18)	52.60 (8.72)	30.15 (1.03)	57.50 (4.66)
FoSR	78.03 (1.45)	87.00 (1.21)	86.34 (0.31)	74.70 (6.23)	65.58 (4.89)	30.16 (1.03)	54.59 (5.01)
BROF	78.45 (1.52)	86.86 (1.35)	86.42 (0.38)	74.51 (6.26)	65.59 (4.52)	30.20 (1.17)	60.27 (3.64)
SJLR	77.87 (1.81)	86.60 (1.64)	86.52 (1.73)	60.14 (0.89)	55.16 (0.95)	30.80 (1.34)	58.11 (6.86)
DHGR	78.68 (1.51)	86.61 (1.73)	86.40 (0.38)	60.20 (6.39)	66.07 (12.51)	34.39 (0.99)	58.68 (5.01)
DropEdge-L	74.93 (1.85)	86.62 (1.23)	83.07 (2.58)	62.74 (8.32)	58.82 (8.24)	32.97 (0.92)	54.32 (3.72)
THR	80.43 (1.52)	86.97 (1.19)	87.21 (0.45)	76.27 (4.67)	68.09 (2.71)	33.20 (0.90)	58.91 (9.11)
GPRGNN	77.37 (1.83)	87.34 (1.14)	87.21 (0.43)	89.22 (5.56)	87.94 (5.29)	37.27 (1.16)	80.27 (6.63)
FoSR	77.37 (1.83)	87.52 (1.63)	87.22 (0.46)	90.20 (5.04)	89.85 (3.45)	37.25 (1.19)	84.05 (7.88)
BORF	78.77 (1.67)	87.49 (1.24)	87.17 (0.39)	91.16 (5.15)	89.11 (4.32)	37.52 (1.06)	85.49 (4.83)
SJLR	78.38 (1.49)	86.97 (1.63)	88.11 (0.41)	90.00 (2.83)	89.26 (6.38)	34.87 (1.69)	81.62 (9.35)
DHGR	77.77 (2.06)	87.19 (1.39)	87.69 (0.47)	89.02 (4.31)	86.03 (6.32)	35.20 (1.20)	84.31 (4.56)
DropEdge-L	78.73 (1.91)	86.91 (1.07)	87.50 (0.48)	90.17 (3.06)	87.79 (6.28)	37.77 (1.16)	84.05 (9.00)
THR	79.15 (1.69)	87.60 (1.15)	88.28 (0.52)	91.96 (3.76)	91.91 (4.75)	38.00 (0.56)	86.22 (5.19)

374 **Node Classification Results.** Table 2 presents the test-set accuracy gains achieved by various rewiring
 375 approaches on GCN and GPRGNN across seven benchmark datasets. The comparison results for
 376 APPNP are provided in Appendix B.4. Several key insights can be drawn: 1) Compared to the
 377 baselines, all rewiring methods show performance improvements on most datasets, with particularly

378 notable gains on heterophilous graphs. 2) In all datasets, the proposed THR ranks among the top
 379 two performers, achieving the highest accuracy gain on the majority of benchmarks. 3) Although
 380 FoSR, BORF, and DHGR also exhibit strong performance on certain datasets, their gains are only
 381 marginally higher than those of THR. Overall, THR outperforms these methods and delivers the best
 382 results in all cases when GPRGNN is used as the downstream model. 4) DropEdge-L, which is also
 383 based on hierarchical graph rewiring, outperforms other rewiring methods on some datasets (e.g.,
 384 Texas and Actor), validating the effectiveness of the hierarchical strategy. Although DropEdge-L
 385 shows performance improvements on certain datasets, its inherent randomness negatively impacts the
 386 model’s performance, resulting in lower performance than the baseline in some cases, e.g., Citeseer.
 387 This further validates the effectiveness of the proposed torque-driven hierarchical approach.

388
 389 Table 3: Node classification results on **large-scale** datasets:
 390 Mean ACC % (ROC AUC for imbalanced Questions and
 391 Tolokers) (Standard Deviation %), where the optimal and
 392 suboptimal results are highlighted in **red** and **green**, respectively.
 393 OoM means that the model suffers from the out-of-
 394 memory error.

Methods/Datasets	Questions	Tolokers	Penn94	Flickr
GCN	75.26 (0.84)	83.79 (0.74)	80.18 (0.36)	63.52 (3.82)
FoSR	75.19 (0.71)	84.14 (0.99)	80.19 (0.35)	63.74 (4.11)
BORF	75.15 (0.84)	MemoryError	OoM	OoM
SJLR	72.07 (6.12)	84.14 (1.14)	80.20 (0.28)	64.49 (2.82)
DHGR	OoM	83.45 (2.16)	OoM	OoM
DropEdge-L	74.06 (1.11)	84.00 (0.65)	62.27 (0.35)	63.10 (3.22)
THR	75.92 (1.09)	84.43 (0.88)	80.32 (0.23)	67.53 (2.03)
GPRGNN	72.89 (1.42)	71.99 (0.93)	84.18 (0.30)	61.05 (4.24)
FoSR	72.91 (1.43)	71.99 (0.93)	84.22 (0.29)	62.35 (3.62)
BORF	72.99 (1.44)	MemoryError	OoM	OoM
SJLR	72.27 (1.24)	69.46 (1.07)	83.89 (0.20)	61.61 (3.22)
DHGR	OoM	70.96 (1.14)	OoM	OoM
DropEdge-L	72.07 (1.35)	71.98 (1.09)	83.67 (0.44)	60.77 (3.53)
THR	73.41 (0.98)	72.05 (1.24)	84.45 (0.29)	64.18 (1.37)

407 datasets already contain sufficient structural information, and the rewiring methods introduce only
 408 minor modifications. Moreover, in some instances, they result in the loss of critical semantics, which
 409 negatively impacts classification performance.

410 **Ablation Study.** We conduct an
 411 ablation study to assess the impact
 412 of edge removal and addition operations
 413 in THR, using GCN, GPRGNN,
 414 and APPNP as backbone models.
 415 THR has three variants: edge-addition
 416 THR (A-THR), edge-removal THR
 417 (R-THR), and mixed THR (M-THR).
 418 As illustrated in Figure 2, most
 419 rewiring variants significantly outper-
 420 form their base GNNs. However,
 421 on the Wisconsin dataset, GPRGNN
 422 slightly surpasses GPRGNN with R-
 423 THR, likely because GPRGNN effec-
 424 tively allocates signed edges to dis-
 425 tinguish class information, while R-
 426 THR removes heterophilous links, in-
 427 advertently causing the model to lose
 428 some discriminative features. On the
 429 Flickr dataset, R-THR improves per-
 430 formance for all models, while A-THR and M-THR degradate the performance of APPNP. Similarly,
 431 on PubMed, both A-THR and M-THR reduce the performance of GCN. These results suggest that,
 for these graphs, excessive edge addition leads to information interference and confusion of node
 features, whereas GPRGNN mitigates this effect through its signed edge strategy. In conclusion,

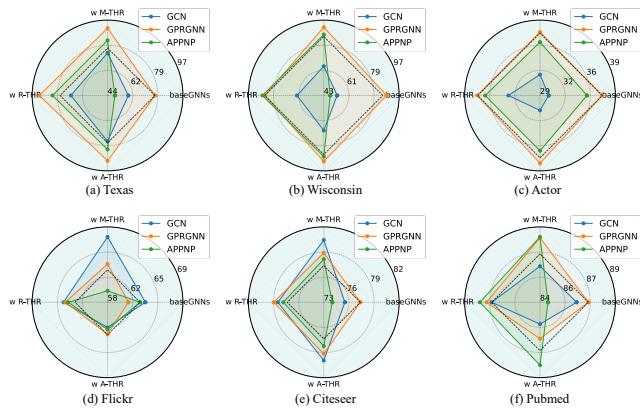


Figure 2: Ablation study: Performance comparison of GCN, GPRGNN, and APPNP with various THR variants across six datasets.

Results on Larger Graphs. Scalability of rewiring techniques on large graphs is crucial, particularly for end-to-end methods that dynamically add and remove edges during training. In THR, the primary computational cost arises from computing torques and the corresponding gaps, which incurs a complexity of $\mathcal{O}(|\mathcal{A}^{(l)}| \log |\mathcal{A}^{(l)}|)$ (see Section 5 for details). Despite this overhead, THR remains computationally feasible for large graphs. Table 3 compares several rewiring schemes on larger datasets, with THR consistently outperforming all alternatives. Notably, with the exception of the Flickr dataset, all rewiring methods show only marginal improvements, and in some cases, even lead to a decline in performance. This can be attributed to the fact that the raw graphs of these

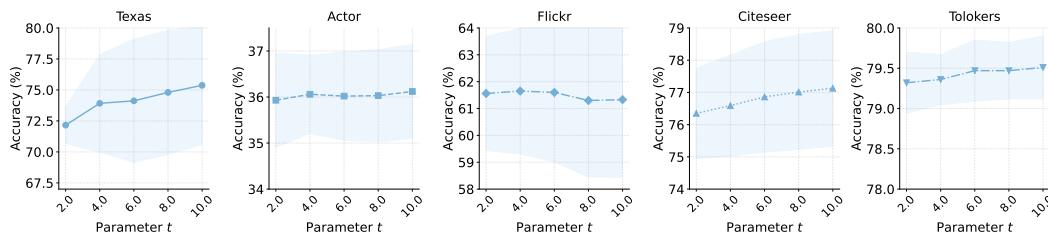
432 the THR strategy excels in improving model performance, although it adopted to achieve optimal
 433 performance varies across datasets with different characteristics.
 434

435 Moreover, to investigate the significance of the proposed torque, which integrates feature distance
 436 and homophily ratio disparity from a physical perspective, we evaluate THR and its variants based
 437 on the edge-removal strategy. $THR_{dis.}$ refers to the rewiring method based solely on the distance
 438 metric between node pairs. $THR_{\text{torque w/o homo.}}$ leverages the torque without considering the disparity
 439 in homophily ratio. $THR_{w/o H}$ denotes the version of THR without hierarchical rewiring, where all
 440 layers share the same graph. Table 4 displays the ablation results, showing that the node classification
 441 accuracy of variants that do not use the proposed torque decreases across all heterophilous datasets.
 442 Moreover, on the Cornell and Flickr datasets, $THR_{w/o H}$ outperforms THR, suggesting that layer-wise
 443 rewiring may excessively complicate their graph structures, thereby hindering the propagation of
 444 effective information. In summary, both THR and $THR_{w/o H}$ rely on the proposed torque for graph
 445 rewiring and both rank in the top two across all datasets. This validates that THR effectively models
 446 heterophilous graphs by integrating the distance and homophily ratio disparities between node pairs
 447 from a physical perspective.

448 Table 4: Ablation study: A comparison of THR and its variants by removing specific components.
 449 The optimal and suboptimal results are highlighted in bold and underlined, respectively.

Datasets	Texas	Wisconsin	Cornell	Actor	Penn94	Flickr
$THR_{dis.}$	70.39 (9.62)	74.56 (7.21)	76.22 (8.53)	35.80 (1.27)	74.98 (0.55)	61.51 (4.32)
$THR_{\text{torque w/o homo.}}$	67.84 (10.96)	72.94 (8.71)	76.03 (8.40)	35.57 (1.31)	75.94 (0.57)	61.23 (4.74)
$THR_{w/o H}$	70.98 (8.12)	75.29 (4.45)	78.65 (6.78)	35.96 (1.33)	76.14 (0.63)	64.13 (2.27)
THR	72.01 (6.13)	75.89 (3.46)	77.30 (7.17)	36.28 (1.15)	76.21 (0.47)	63.28 (1.56)

450
 451
 452
 453
 454
 455
 456 **Parameter Analysis.** Since the edge-removal procedure automatically determines the cutoff \mathcal{K} ,
 457 we investigate the main hyperparameter t of THR, which defines the number of candidate edges
 458 for addition. As shown in Figure 3, we present the performance curves for varying t values in
 459 $\{2, 4, 6, 8, 10\}$ across five datasets. On both homophilous and heterophilous datasets, accuracy
 460 increases as t grows, demonstrating that the proposed edge-addition scheme aids the model in
 461 capturing global information. However, this does not imply that adding more edges is always
 462 beneficial. For instance, on the Flickr dataset, performance decreases when $t = 8$, as excessive edge
 463 addition may introduce noise, as highlighted in the ablation study. Sensitivity analysis of α and L is
 464 provided in Appendix B.4.



465
 466 Figure 3: Parameter sensitivity: Performance curves on five datasets as the number of candidate
 467 edges t varies from 2 to 10.
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478

7 CONCLUSION

479 In this paper, we proposed a **Torque**-driven **Hierarchical Rewiring** strategy (THR), which dynamically
 480 refined the graph structures to enhance representation learning on heterophilous and homophilous
 481 graphs. By introducing an interference-aware torque metric, the product of the displacement vector
 482 and the feature vector weighted by the homophily ratio disparity, THR automatically removed unde-
 483 sirable connections and introduced beneficial ones during message passing. This hierarchical rewiring
 484 yielded interference-resilient, importance-aware propagation tailored to each layer’s receptive field.
 485 Extensive evaluations across homophilous and heterophilous benchmark datasets demonstrated that
 486 THR consistently obtained the performance gains and outperformed other rewiring methods.

486 REFERENCES
487

488 Vineeta Anand and Ashish Kumar Maurya. A survey on recommender systems using graph neural
489 network. *ACM Transactions on Information Systems*, 43(1):1–49, 2025.

490 Pradeep Kr Banerjee, Kedar Karhadkar, Yu Guang Wang, Uri Alon, and Guido Montúfar. Over-
491 squashing in gnns through the lens of information contraction and graph expansion. In *Proceedings*
492 of the 58th Annual Allerton Conference on Communication, Control, and Computing, pp. 1–8,
493 2022.

494 Wendong Bi, Lun Du, Qiang Fu, Yanlin Wang, Shi Han, and Dongmei Zhang. Make heterophilic
495 graphs better fit gnn: A graph rewiring approach. *IEEE Transactions on Knowledge and Data
496 Engineering*, pp. 1–14, 2024.

497 Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
498 convolutional networks. In *Proceedings of the AAAI conference on artificial intelligence*, pp.
499 3950–3957, 2021.

500 Kushal Bose, Saptarshi Banerjee, and Swagatam Das. Can graph neural networks tackle heterophily?
501 yes, with a label-guided graph rewiring approach! *IEEE Transactions on Neural Networks and
502 Learning Systems*, pp. 1–15, 2025.

503 María Camarasa-Gómez, Daniel Hernangómez-Pérez, and Ferdinand Evers. Spin–orbit torque in
504 single-molecule junctions from ab initio. *The Journal of Physical Chemistry Letters*, 15(21):
505 5747–5753, 2024.

506 Hao Chen, Yuanchen Bei, Qijie Shen, Yue Xu, Sheng Zhou, Wenbing Huang, Feiran Huang, Senzhang
507 Wang, and Xiao Huang. Macro graph neural networks for online billion-scale recommender
508 systems. In *Proceedings of the ACM Web Conference*, pp. 3598–3608, 2024.

509 Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
510 convolutional networks. In *Proceedings of the International Conference on Machine Learning*, pp.
511 1725–1735, 2020.

512 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
513 graph neural network. *arXiv preprint arXiv:2006.07988*, 2020.

514 Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
515 Bronstein. On over-squashing in message passing neural networks: The impact of width, depth, and
516 topology. In *Proceedings of the International Conference on Machine Learning*, pp. 7865–7885,
517 2023.

518 Mikhail I Drobotenko, Alexandr A Svidlov, nna A Dorohova, Mikhail G Baryshev, and Stepan S
519 Dzhimak. Medium viscosity influence on the open states genesis in a dna molecule. *Journal of
520 Biomolecular Structure and Dynamics*, 43(5):2253–2261, 2025.

521 Stepan Dzhimak, Alexandr Svidlov, Anna Elkina, Eugeny Gerasimenko, Mikhail Baryshev, and
522 Mikhail Drobotenko. Genesis of open states zones in a dna molecule depends on the localization
523 and value of the torque. *International Journal of Molecular Sciences*, 23(8):4428, 2022.

524 Rickard Brüel Gabrielsson, Mikhail Yurochkin, and Justin Solomon. Rewiring with positional
525 encodings for graph neural networks. *Transactions on Machine Learning Research*, pp. 1–23,
526 2023.

527 Jhony H. Giraldo, Konstantinos Skianis, Thierry Bouwmans, and Fragkiskos D. Malliaros. On the
528 trade-off between over-smoothing and over-squashing in deep graph neural networks. In *Proceed-
529 ings of the 32nd ACM International Conference on Information and Knowledge Management*, pp.
530 566–576, 2023.

531 Vladimir Gligorijević, P Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel Beren-
532 berg, Tommi Vatanen, Chris Chandler, Bryn C Taylor, Ian M Fisk, Hera Vlamakis, et al. Structure-
533 based protein function prediction using graph convolutional networks. *Nature Communications*,
534 12(1):3168, 2021.

540 Sujia Huang, Yueyang Pi, Tong Zhang, Wenzhe Liu, and Zhen Cui. Boosting graph convolution
 541 with disparity-induced structural refinement. In *Proceedings of the ACM on Web Conference*, pp.
 542 2209–2221, 2025.

543

544 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
 545 *Proceedings of the 5th International Conference on Learning Representations*, pp. 1–13, 2017.

546

547 Jiawei Jiang, Chengkai Han, Wayne Xin Zhao, and Jingyuan Wang. Pdformer: Propagation delay-
 548 aware dynamic long-range transformer for traffic flow prediction. In *Proceedings of the AAAI
 Conference on Artificial Intelligence*, pp. 4365–4373, 2023.

549

550 Kedar Karhadkar, Pradeep Kr Banerjee, and Guido Montúfar. Fosr: First-order spectral rewiring for
 551 addressing oversquashing in gnns. *arXiv preprint arXiv:2210.11790*, pp. 1–21, 2022.

552

553 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 554 In *Proceedings of the 5th International Conference on Learning Representations*, pp. 1–13, 2017.

555

556 Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
 557 neural networks meet personalized pagerank. In *Proceedings of the 7th International Conference
 on Learning Representations*, pp. 1–15, 2019.

558

559 Stepan Kovarik, Richard Schlitz, Aishwarya Vishwakarma, Dominic Ruckert, Pietro Gambardella,
 560 and Sebastian Stepanow. Spin torque–driven electron paramagnetic resonance of a single spin in a
 561 pentacene molecule. *Science*, 384(6702):1368–1373, 2024.

562

563 Jintang Li, Zheng Wei, Yuchang Zhu, Ruofan Wu, Huizhe Zhang, Liang Chen, and Zibin Zheng.
 564 Heterophily-aware representation learning on heterogeneous graphs. *IEEE Transactions on Pattern
 Analysis and Machine Intelligence*, pp. 1–15, 2025.

565

566 Langzhang Liang, Xiangjing Hu, Zenglin Xu, Zixing Song, and Irwin King. Predicting global label
 567 relationship matrix for graph neural networks under heterophily. *Advances in Neural Information
 Processing Systems*, pp. 10909–10921, 2023.

568

569 Langzhang Liang, Sunwoo Kim, Kijung Shin, Zenglin Xu, Shirui Pan, and Yuan Qi. Sign is not a
 570 remedy: Multiset-to-multiset message passing for learning on heterophilic graphs. *arXiv preprint
 arXiv:2405.20652*, 2024.

571

572 Xurong Liang, Tong Chen, Wei Yuan, and Hogzhi Yin. Lightweight embeddings with graph rewiring
 573 for collaborative filtering. *ACM Transactions on Information Systems*, 43(4):1–29, 2025.

574

575 Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
 576 Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
 577 simple methods. *Advances in Neural Information Processing Systems*, pp. 20887–20902, 2021.

578

579 Ruitong Liu, Yanbin Wang, Haitao Xu, Jianguo Sun, Fan Zhang, Peiyue Li, and Zhenhao Guo. Vul-
 580 limgnns: Fusing language models and online-distilled graph neural networks for code vulnerability
 581 detection. *Information Fusion*, 115:102748, 2025.

582

583 Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
 584 Chang, and Doina Precup. Revisiting heterophily for graph neural networks. *Advances in Neural
 585 Information Processing Systems*, pp. 1362–1375, 2022.

586

587 Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
 588 Demystifying structural disparity in graph neural networks: Can one size fit all? In *Advances in
 589 Neural Information Processing Systems*, pp. 1–55, 2023.

590

591 Khang Nguyen, Nong Minh Hieu, Vinh Duc Nguyen, Nhat Ho, Stanley J. Osher, and Tan Minh
 592 Nguyen. Revisiting over-smoothing and over-squashing using ollivier-ricci curvature. In *Proceed-
 593 ings of the International Conference on Machine Learning*, pp. 25956–25979, 2023.

594

595 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 596 graph convolutional networks. In *Proceedings of the 8th International Conference on Learning
 597 Representations*, pp. 1–12, 2020.

594 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova.
 595 A critical look at the evaluation of gnns under heterophily: Are we really making progress? In
 596 *Proceedings of the 11th International Conference on Learning Representations*, pp. 1–15, 2023.
 597

598 Chendi Qian, Andrei Manolache, Kareem Ahmed, Zhe Zeng, Guy Van den Broeck, Mathias Niepert,
 599 and Christopher Morris. Probabilistically rewired message-passing neural networks. In *Proceedings*
 600 *of the 12th International Conference on Learning Representations*, pp. 1–26, 2024.

601 Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
 602 convolutional networks on node classification. *arXiv preprint arXiv:1907.10903*, 2019.
 603

604 Danial Saber and Amirali Salehi-Abari. Over-squashing in gnns and causal inference of rewiring
 605 strategies. *CoRR*, abs/2508.09265, 2025.

606 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 607 Collective classification in network data. *AI Magazine*, 29(3):93–93, 2008.

608 Hamed Shirzad, Ameya Velingker, Balaji Venkatachalam, Danica J Sutherland, and Ali Kemal Sinop.
 609 Exphormer: Sparse transformers for graphs. In *Proceedings of the International Conference on*
 610 *Machine Learning*, pp. 31613–31632, 2023.

611 Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
 612 *Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and*
 613 *Data Mining*, pp. 807–816, 2009.

614 Wen-Qi Tang, Xuannuo Yi, Hanxi Guan, Xiao-Wei Wang, Yue-Wen Gu, Ying-Jie Zhao, Jia Fu, Wang
 615 Li, Yue Cheng, Sha-Sha Meng, et al. Bipolar molecular torque wrench modulates the stacking of
 616 two-dimensional metal–organic framework nanosheets. *Journal of the American Chemical Society*,
 617 145(49):26580–26591, 2023.

618 Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and Michael M.
 619 Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature. In *Proceedings*
 620 *of the 10th International Conference on Learning Representations*, pp. 1–30, 2022.

621 Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 622 Bengio. Graph attention networks. In *Proceedings of the 6th International Conference on Learning*
 623 *Representations*, pp. 1–12, 2018.

624 Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-
 625 channel graph convolutional networks. In *Proceedings of the 26th ACM SIGKDD International*
 626 *Conference on Knowledge Discovery & Data Mining*, pp. 1243–1253, 2020.

627 Felix Wu, Amauri H. Souza Jr., Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Q. Weinberger.
 628 Simplifying graph convolutional networks. In *Proceedings of the 36th International Conference*
 629 *on Machine Learning*, pp. 6861–6871, 2019.

630 Jun Xia, Lecheng Zhang, Xiao Zhu, Yue Liu, Zhangyang Gao, Bozhen Hu, Cheng Tan, Jiangbin
 631 Zheng, Siyuan Li, and Stan Z Li. Understanding the limitations of deep models for molecular
 632 property prediction: Insights and solutions. *Advances in Neural Information Processing Systems*,
 633 pp. 64774–64792, 2023.

634 Shengwei Xu, Jijie Han, Yilong Liu, Haoran Liu, and Yijie Bai. Few-shot traffic classification based
 635 on autoencoder and deep graph convolutional networks. *Scientific Reports*, 15(1):8995, 2025.

636 Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. Lazygnn: Large-scale
 637 graph neural networks via lazy propagation. In *Proceedings of the International Conference on*
 638 *Machine Learning*, pp. 38926–38937, 2023.

639 Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same
 640 coin: Heterophily and oversmoothing in graph convolutional neural networks. In *Proceedings of*
 641 *the IEEE International Conference on Data Mining*, pp. 1287–1292, 2022.

648 Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo, et al. Diverse
 649 message passing for attribute with heterophily. *Advances in Neural Information Processing Systems*,
 650 pp. 4751–4763, 2021.

652 Yang Yang, Jia-Qi Yang, Ran Bao, De-Chuan Zhan, Hengshu Zhu, Xiaoru Gao, Hui Xiong, and Jian
 653 Yang. Corporate relative valuation using heterogeneous multi-modal graph neural network. *IEEE*
 654 *Transactions on Knowledge and Data Engineering*, 35(1):211–224, 2023.

656 Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor K. Prasanna. Graph-
 657 saint: Graph sampling based inductive learning method. In *Proceedings of the 8th International*
 658 *Conference on Learning Representations*, pp. 1–22, 2020.

660 Li Zhang, Dan Xu, Anurag Arnab, and Philip HS Torr. Dynamic graph message passing networks.
 661 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 662 3726–3735, 2020.

664 Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, and Shirui Pan. Finding the missing-
 665 half: Graph complementary learning for homophily-prone and heterophily-prone graphs. In
 666 *Proceedings of the International Conference on Machine Learning*, pp. 42492–42505, 2023.

668 Yuxuan Zhou, Xudong Yan, Zhi-Qi Cheng, Yan Yan, Qi Dai, and Xian-Sheng Hua. Blockgcn: Redefine
 669 topology awareness for skeleton-based action recognition. In *Proceedings of the IEEE/CVF*
 670 *Conference on Computer Vision and Pattern Recognition*, pp. 2049–2058, 2024.

672 A ALGORITHM

674 Algorithm 1 outlines the complete workflow of APPNP with THR.

677 Algorithm 1: GNN with THR

679 **Input:** Node features $\{\mathbf{x}_i \in \mathbb{R}^d\}_{i=1}^N$, candidate edge set \mathcal{T} , ground truth matrix \mathbf{Y} , the number
 680 of layers L , hyperparameters t and α .

681 **Output:** The predicted class label.

```

682 1 Initialize network parameters  $\Theta, \Phi$ ;  

683 2  $\mathbf{h}_i^{(0)} = \text{ReLU}(\mathbf{x}_i \Theta)$ ;  

684 3 while not convergent do  

685   4   for  $l = 1 \rightarrow L$  do  

686     5     ▷ Forward Propagation  

687     6       Compute pairwise distance  $D_{\langle i,j \rangle}^{(l)}$  and homophily ratio disparity  $E_{\langle i,j \rangle}$  with Eqs. 4 and 5;  

688     7       Compute the  $l$ th order torques with Eq. 6 and sort them. // Torque computation  

689     8       Gain the largest torque gap  $\mathcal{K}$  with Eqs. 7–8;  

690     9       Remove the top  $\mathcal{K}$  edges to gain  $\mathcal{A}^{(l)*}$ . // Removing undesirable edges  

691     10      Compute the sampling probability of candidate edges with Eq. 10;  

692     11      Add beneficial candidate edges to form the refined propagation matrix  $\mathcal{A}^{(l)}$ . // Adding  

693     12      desirable connections  

694     13      Update node representation  $\mathbf{h}_i^{(l)}$  with Eq. 11. // Message passing  

695     14      ▷ Backward Propagation  

696     15      Classifier  $f(\cdot) \leftarrow \text{LocalUpdating}(\mathbf{x}_i, \{\mathcal{A}^{(l)}\}_{l=1}^L)$  with the cross-entropy loss // Standard  

697     16      training  

698     17      Obtain  $\hat{\mathbf{y}}_i = \text{Softmax}(\mathbf{h}_i^{(L)} \Phi)$ ;  

699 18   return The predicted class label of the  $i$ -th node is given by  $\arg \max \hat{\mathbf{y}}_i$ .

```

702 **B MORE EXPERIMENTAL RESULTS**
 703

704 **B.1 CONFIGURES**
 705

706 We construct a series of experiments to assess the proposed THR. Our model is implemented in
 707 PyTorch on a workstation with AMD Ryzen 9 5900X CPU (3.70GHz), 64GB RAM and RTX
 708 3090GPU (24GB caches). Our code is available at <https://anonymous.4open.science/r/THR-FE0B/README.md>.
 709

710 **B.2 DATASETS**
 711

- 713 • Homophilous Datasets. Citeseer, Cora and Pubmed are three citation networks, and they are
 714 published in Sen et al. (2008). Specifically,
 - 715 – **Citeseer** comprises 3,327 publications classified into six categories, with each paper
 716 encoded by a 3,703-dimensional binary word-presence vector.
 - 717 – **Cora** consists of 2,708 scientific publications classified into seven research topics.
 718 Each paper is represented by a 1,433-dimensional binary feature vector indicating the
 719 presence of specific word.
 - 720 – **Pubmed** is a larger citation network of 19,717 diabetes-related articles labeled among
 721 three classes. Papers are described by 500-dimensional term frequency-inverse docu-
 722 ment frequency feature vectors, and citation edges capture scholarly references.
 - 723 – **Tolokers** Platonov et al. (2023) is built from the Toloka crowdsourcing platform,
 724 comprising 11,758 nodes and 519,000 edges that link workers who collaborated on the
 725 same task. Each node carries a 10-dimensional feature vector and is assigned one of
 726 two labels based on whether the worker was banned.
 - 727 – **Questions** Platonov et al. (2023) is an interaction graph of users on the Yandex Q
 728 question-answering platform, comprising 48,921 nodes and 153,540 edges that link
 729 users who interacted on the same question. Each node carries a 301-dimensional feature
 730 vector and a binary label for node classification.
- 731 • Heterophilous Datasets
 - 732 – **Texas, Wisconsin, Cornell** are WebKB datasets used in Pei et al. (2020), where nodes
 733 correspond to individual web pages and edges correspond to the hyperlinks between
 734 them. Every node is described by a bag-of-words feature vector extracted from its page
 735 content, and each page has been manually labeled into one of five categories.
 - 736 – **Actor** Tang et al. (2009) is the actor-only induced subgraph of a
 737 film–director–actor–writer network on Wikipedia, where each node represents
 738 an actor and an undirected edge connects two actors if they co-occur on the same
 739 Wikipedia page.
 - 740 – **Penn94** Lim et al. (2021) is a subgraph of the Facebook100 dataset featuring 41,554
 741 university students as nodes, connected by 1,362,229 undirected friendship edges. Each
 742 node is described by a five-dimensional feature vector and labeled by the gender of the
 743 students.
 - 744 – **Flickr** Zeng et al. (2020) is an undirected graph originated from NUS-wide, including
 745 89,250 nodes and 2,724,458 edges. Each node is an image with 500-dimensional bag-
 746 of-word features and each edge links two images sharing some common properties.

747 **B.3 BASELINES**
 748

749 **B.3.1 GNNs FOR HOMOPHILOUS AND HETEROPHILOUS GRAPHS**
 750

751 **GCN** generalize convolutional neural networks to graph-structured data by iteratively aggregating
 752 feature information from each node’s local neighborhood,
 753

$$754 \mathbf{h}_i^{(l)} = \sigma(\tilde{\mathbf{A}}\mathbf{h}_i^{(l-1)}\mathbf{W}^{(l)}), \quad (12)$$

755 where \mathbf{W} is the learnable parameter matrix.

756 APPNP first achieves the feature transformation by:
 757

$$\mathbf{H}^{(0)} = \mathbf{XW}, \quad (13)$$

759 and then propagating message via a Personalized PageRank scheme:
 760

$$\mathbf{H}^{(l)} = (1 - \alpha)\mathbf{P}\mathbf{H}^{(l-1)} + \alpha\mathbf{H}^{(0)}. \quad (14)$$

762 Here, $\mathbf{P} = \mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$ is the symmetrically normalized adjacency matrix and α is a trade-off
 763 hyperparameter.

764 **GPRGNN** generalizes personalized PageRank by treating each hop’s contribution as a learnable
 765 parameter:

$$\mathbf{H} = \sum_{l=1}^L \gamma^l \mathbf{P}\mathbf{H}^{(0)}, \mathbf{H}^{(0)} = \mathbf{HW}, \quad (15)$$

769 where $\gamma^l \mathbf{P}$ measures the propagation coefficient for the connection between nodes v_i and v_j .
 770

771 B.3.2 REWIRING STRATEGIES

773 **DropEdge** randomly removes edges at each training epoch to act as both data augmentation and
 774 message-passing reduction, which is used to mitigate over-fitting and over-smoothing problems.

775 **FoSR** is a preprocessing method, which aims to address the over-squashing issue by improving the
 776 graph connectivity. It adds edges by exploring the first order change in the spectral gap.

778 **BORF** uses the Ollivier-Ricci curvature to rewire graph, where minimally curved edges causing
 779 the information bottlenecks should add connections and maximally curved edges leading to over-
 780 smoothing should be removed.

781 **SJLR** combines the Jost-Liu Curvature of each edge with the embedding similarity between its
 782 incident nodes, and uses the weighted score as the probability for edge removal or addition.

783 **DHGR** compares the neighborhood feature distribution and neighborhood label distribution between
 784 node pairs; edges connecting nodes with low similarity (heterophilous) are pruned, while edges
 785 between highly similar (homophilous) nodes are added.

787 **DHGR vs. THR.** Although both methods essentially assess edge homophily or heterophily through
 788 feature and label differences, they follow distinct methodological lines. DHGR is a preprocessing
 789 approach that aggregates neighborhood features and derives local label distributions from pseudo-
 790 labels produced by a pre-trained model, a heuristic design without explicit theoretical grounding. By
 791 contrast, THR operates within the optimizing model, contrasting node representations and quantifying
 792 their homophily ratio disparity, thereby aligning with prior theoretical proofs and offering a more
 793 principled formulation.

794 B.4 EXPERIMENTS

796 **Classification Results.** Table 5 shows the performance gains brought by APPNP with diverse
 797 rewiring methods. We can observe that on most datasets, THR obtains the optimal performance,
 798 indicating its effectiveness.

799 **Parameter Sensitivity.** Although α balancing the contribution of the learned high-order representa-
 800 tion and the original input features originates from APPNP, THR modifies the graph structure over
 801 which propagation occurs. To examine how signal diffusion changes with respect to α under the
 802 rewired graph, we perform a sensitivity analysis shown in Figure 4, where a larger α increases the
 803 influence of the hidden representations. We observe that, for smaller heterophilous graphs (e.g.,
 804 Texas and Actor), optimal accuracy is achieved at $\alpha = 0.05$, implying that raw node features provide
 805 sufficient discriminative power. In contrast, on larger or homophilous graphs, better performance is
 806 observed when $\alpha = 0.5$, reflecting the necessity of hidden representations to capture more complex
 807 community structures. Moreover, for all datasets, the best results are gained at a larger α , which
 808 demonstrates the effectiveness of excavating deep features.

809 Figure 5 explores the effect of network depth L . For small graphs (Texas, Citeseer and Film),
 810 performance improves as the number of layers increases, since deeper networks are required to

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Table 5: Node classification results on benchmark datasets with APPNP as the backbone model:
Mean ACC % (Standard Deviation %). The first- and second-best accuracies are highlighted in bold
and underlined, respectively.

Methods/Datasets	APPNP	FoSR	BROF	SJLR	DHGR	DropEdge-L	THR
Texas	49.17±3.30	78.04 (3.70)	73.53 (7.66)	<u>81.57 (3.94)</u>	78.04 (4.62)	72.75 (4.68)	84.12 (3.22)
Wisconsin	47.60±4.54	74.26 (4.47)	75.00 (4.41)	<u>83.53 (5.95)</u>	73.82 (3.77)	71.91 (4.85)	87.79 (3.54)
Actor	35.24 (0.56)	35.51 (1.42)	35.35 (1.28)	<u>35.19 (1.13)</u>	35.90 (1.16)	35.48 (1.12)	36.34 (0.87)
Cornell	67.57 (5.54)	67.57 (5.54)	68.38 (7.46)	<u>74.59 (5.16)</u>	69.46 (8.80)	69.19 (7.27)	77.57 (8.02)
Penn94	76.53 (0.28)	76.53 (0.28)	OoM	<u>79.73 (0.24)</u>	79.10 (0.40)	76.13 (0.40)	82.56 (0.43)
Flickr	57.26 (7.69)	56.31 (6.99)	OoM	<u>61.86 (5.17)</u>	62.20 (1.10)	61.25 (3.30)	63.28 (1.56)
Citeseer	74.02 (0.38)	77.65 (1.55)	77.65 (1.24)	77.25 (1.35)	<u>76.89 (1.81)</u>	<u>77.69 (1.67)</u>	78.74 (1.29)
Cora	85.89 (1.19)	85.89 (1.19)	85.19 (1.87)	<u>86.51 (1.59)</u>	85.85 (1.79)	<u>85.54 (1.14)</u>	86.35 (1.61)
Pubmed	87.19 (0.55)	87.19 (0.55)	87.16 (0.40)	<u>88.84 (0.40)</u>	88.47 (0.44)	87.66 (0.33)	88.31 (0.49)
Tolokers	75.11 (0.74)	75.11 (0.74)	OoM	<u>78.46 (1.11)</u>	<u>75.33 (0.83)</u>	74.64 (1.06)	79.29 (0.42)

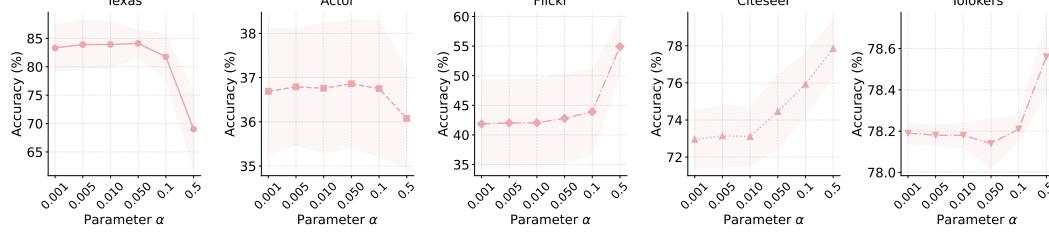


Figure 4: Parameter sensitivity: Performance curves on five datasets with layers changing in $\{2, 4, 8, 16, 32\}$.

capture sufficient high-order information. In contrast, for large graphs (Tolokers and Flickr), the best performance is achieved with only two layers, indicating that shallow message passing already provides sufficiently discriminative representations. However, while APPNP can alleviate over-smoothing to some extent, it does not explicitly address this issue on these graphs; overcoming depth-related bottlenecks therefore remains an open direction for future research.

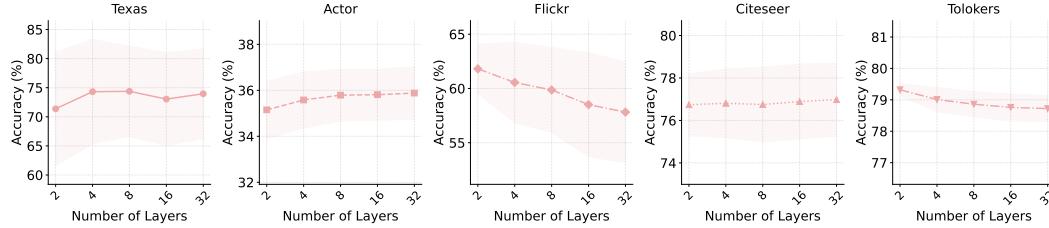


Figure 5: Parameter sensitivity: Performance curves on five datasets with layers changing in $\{2, 4, 8, 16, 32\}$.

B.5 HYPERPARAMETERS

In this subsection, we present the detailed hyperparameters used in the experiments, which are also available in the code. The hyperparameters are summarized in Tables 7 to 8. “Lr” refers to the learning rate, “Wd” denotes the weight decay, and “PPR” is a specific hyperparameter used in GPRGNN.

C BROADER IMPACT STATEMENT

This study aims to enhance message passing in graph neural networks through graph rewiring. As a result, it contributes to better performance and broader applicability of GNNs across a wide range

Table 6: Hyperparameters of THR on GCN across 11 datasets.

Datasets	Lr	Wd	Dropout	L	t	Normalize Data	Hidden Size
Texas	0.05	0.0005	0.5	2	5	Yes	32
Wisconsin	0.05	0.0005	0.5	2	5	Yes	32
Cornell	0.05	0.0005	0.5	2	10	Yes	512
Actor	0.01	0.0005	0.5	2	2	No	32
Citeseer	0.01	0.0005	0.5	2	10	Yes	32
Cora	0.01	0.005	0.5	2	2	No	32
Pubmed	0.01	0.0005	0.5	2	2	Yes	32
Tolokers	0.005	0.0	0.2	2	1	No	32
Questions	0.005	0.0	0.2	5	1	No	32
Penn94	0.001	5e-8	0.5	2	1	No	32
Flickr	0.01	0.0005	0.3	2	1	Yes	32

Table 7: Hyperparameters of THR on GPRGNN across 11 datasets.

Datasets	Lr	Wd	Dropout	L	t	Normalize Data	PPR	Hidden Size
Texas	0.05	0.0005	0.5	2	5	Yes	1	32
Wisconsin	0.05	0.0005	0.0	2	5	Yes	1	64
Cornell	0.05	0.0005	0.5	2	10	Yes	0.9	512
Actor	0.01	0.0	0.5	2	2	Yes	0.9	32
Citeseer	0.01	0.0	0.5	2	10	Yes	0.1	64
Cora	0.01	0.005	0.5	2	2	Yes	0.1	32
Pubmed	0.05	0.0005	0.5	2	2	Yes	0.2	32
Tolokers	0.005	0.0	0.5	2	1	No	0.1	256
Questions	0.05	5e-8	0.5	2	1	No	0.1	32
Penn94	0.01	0.0001	0.5	2	1	No	0.9	32
Flickr	0.05	0.0005	0.5	2	1	No	0.9	32

Table 8: Hyperparameters of THR on APPNP across 11 datasets.

Datasets	Lr	Wd	Dropout	α	L	t	Normalize Data	Hidden Size
Texas	0.001	0.0005	0.7	0.05	8	5	No	512
Wisconsin	0.001	0.5	0.5	0.05	4	5	No	512
Cornell	0.001	0.05	0.7	0.5	8	2	No	512
Actor	0.001	0.05	0.1	0.5	8	5	No	512
Citeseer	0.001	0.05	0.4	0.5	8	10	No	512
Cora	0.001	0.5	0.4	0.5	4	2	No	512
Pubmed	0.01	5e-8	0.4	0.5	4	2	No	512
Tolokers	0.001	5e-8	0.1	0.8	2	2	No	512
Questions	0.001	5e-8	0.1	0.8	2	2	No	512
Penn94	0.001	5e-8	0.1	0.8	2	2	No	512
Flickr	0.001	0.5	0.1	0.8	2	2	No	512

918 of tasks, including recommendation systems, molecular property prediction, traffic forecasting, and
919 social network.
920

921 **D THE USE OF LARGE LANGUAGE MODELS (LLMs)**
922

923 In this paper, we use LLMs as a general-purpose assistive tool to polish writing. LLMs play a
924 significant role in enhancing the clarity and overall quality of the paper. However, LLMs are not
925 involved in research ideation and experimental design, and its contribution is limited to writing
926 optimization and logical structure improvement.
927

928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971