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ABSTRACT

Rule learning is critical to improving knowledge graph (KG) reasoning due to their
ability to provide logical and interpretable explanations. Recently, Graph Neural
Networks (GNNs) with tail entity scoring achieve the state-of-the-art performance
on KG reasoning. However, the theoretical understandings for these GNNs are
either lacking or focusing on single-relational graphs, leaving what the kind of rules
these GNNs can learn an open problem. We propose to fill the above gap in this
paper. Specifically, GNNs with tail entity scoring are unified into a common frame-
work. Then, we analyze their expressivity by formally describing the rule structures
they can learn and theoretically demonstrating their superiority. These results
further inspire us to propose a novel labeling strategy to learn more rules in KG rea-
soning. Experimental results are consistent with our theoretical findings and verify
the effectiveness of our proposed method. The code is publicly available at https:
//github.com/LARS-research/Rule-learning-expressivity.

1 INTRODUCTION

A knowledge graph (KG) (Battaglia et al., 2018; Ji et al., 2021) is a type of graph where edges
represent multiple types of relationships between entities. These relationships can be of different
types, such as friend, spouse, coworker, or parent-child, and each type of relationship is represented by
a separate edge. By encapsulating the interactions among entities, KGs provide a way for machines to
understand and process complex information. KG reasoning refers to the task of deducing new facts
from the existing facts in KG. This task is important because it helps in many real-world applications,
such as recommendation systems (Cao et al., 2019) and drug discovery (Mohamed et al., 2019).

With the success of graph neural networks (GNNs) in modeling graph-structured data, GNNs have
been developed for KG reasoning in recent years. Classical methods such as R-GCN (Schlichtkrull
et al., 2018) and CompGCN (Vashishth et al., 2020) are proposed for KG reasoning by aggregating
the representations of two end entities of a triplet. And they are known to fail to distinguish the
structural role of different neighbors. GraIL (Teru et al., 2020) and RED-GNN (Zhang & Yao, 2022)
tackle this problem by encoding the subgraph around the target triplet. GraIL predicts a new triplet
using the subgraph representations, while RED-GNN employs dynamic programming for efficient
subgraph encoding. Motivated by the effectiveness of heuristic metrics over paths between a link,
NBFNet (Zhu et al., 2021) proposes a neural network based on Bellman-Ford algorithm for KG
reasoning. AdaProp (Zhang et al., 2023) and A⋆Net (Zhu et al., 2022) enhance the scalability of
RED-GNN and NBFNet respectively by selecting crucial nodes and edges iteratively. Among these
methods, NBFNet, RED-GNN and their variants score a triplet with its tail entity representation
and achieve state-of-the-art (SOTA) performance on KG reasoning. However, these methods are
motivated by different heuristics, e.g., Bellman-Ford algorithm and enclosing subgraph encoding,
which make the understanding of their effectiveness for KG reasoning difficult.

In this paper, inspired by the importance of rule learning in KG reasoning, we propose to study
expressivity of SOTA GNNs for KG reasoning by analyzing the kind of rules they can learn. First,
we unify SOTA GNNs for KG reasoning into a common framework called QL-GNN, based on the
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Figure 1: The existence of a triplet in KG is determined by the corresponding rule structure. We
investigates the kind of rule structures can be learned by SOTA GNNs for KG reasoning (i.e., QL-
GNN), and proposes EL-GNN, which can learn more rule structures compared to QL-GNN.

observation that they score a triplet with its tail entity representation and essentially extract rule
structures from subgraphs with same pattern. Then, we analyze the logical expressivity of QL-GNN
to study its ability of learning rule structures. The analysis helps us reveal the underneath theoretical
reasons that contribute to the empirical success of QL-GNN, elucidating their effectiveness over
classical methods. Specifically, our analysis is based on the formal description of rule structures in
graph, which differs from previous analysis that relies on graph isomorphism testing (Xu et al., 2019;
Zhang et al., 2021) and focuses on the expressivity of distinguishing various rules. The new analysis
tool allows us to understand the rules learned by QL-GNN and reveals the maximum expressivity that
QL-GNN can generalize through training. Based on the new theory, we also uncover the deficiencies
of QL-GNN in learning rule structures and we propose EL-GNN based on labeling trick as an
improvement upon QL-GNN to improve its learning ability. In summary, our paper has the following
contributions:

• Our work unifies state-of-the-art GNNs for KG reasoning into a common framework named
QL-GNN, and analyzes their logical expressivity to study their ability of learning rule structures,
explaining their superior performance over classical methods.

• The logical expressivity of QL-GNN demonstrates its capability in learning a particular class of
rule structures. Consequently, based on further theoretical analysis, we introduce EL-GNN, a novel
GNN designed to learn rule structures that are beyond the learning capacity of QL-GNN.

• Synthetic datasets are generated to evaluate the expressivity of various GNNs, whose experimental
results are consistent with our theory. Also, results of the proposed labeling method show improved
performance on real datasets.

2 A COMMON FRAMEWORK FOR THE STATE-OF-THE-ART METHODS

To study the state-of-the-art GNNs for KG reasoning, we find that they (e.g., RED-GNN and NBFNet)
essentially learn rule structures from GNN’s tail entity representation which encodes subgraphs with
the same pattern, i.e., a subgraph with the query entity as the source node and the tail entity as the
sink node. Based on this observation, we are motivated to derive a common framework for these
SOTA methods and analyze their ability of learning rule structures with the derived framework.

Given a query (h,R, ?), the labeling trick of query entity h ensures the SOTA methods to extract rules
from a graph with the same pattern because it makes the query entity distinguishable among all entities
in graph. Therefore, we unify NBFNet, RED-GNN and their variants to a common framework called
Query Labeling (QL) GNN (see correspondence in Appdendix B). For a query (h,R, ?), QL-GNN
first applies labeling trick by assigning special initial representation e

(0)
h to entity h, which make the

query entity distinguishable from other entities. Base on these initial features, QL-GNN aggregates
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entity representations with a L-layer message passing neural network (MPNN) for each candidate
t ∈ V . MPNN’s last layer representation of entity t in QL-GNN is denoted as e

(L)
t [h] indicating

its dependency on query entity h. Finally, QL-GNN scores new facts (h,R, t) with tail entity
representation e

(L)
t [h]. For example, NBFNet uses the score function s(h,R, t) = FFN(e

(L)
t [h]) for

new triplet (h,R, t) where FFN(·) denotes a feed-forward neural network.

Even RED-GNN, NBFNet and their variant may take the different MPNNs to calculate e
(L)
t [h],

without loss of generality, their MPNNs can take the following form in QL-GNN (omit [h] for
simplicity):

e(k)v = δ
(
e(k−1)
v , ϕ

({
{ψ(e(k−1)

u , R)|u ∈ NR(v), R ∈ R}
}))

, (1)

where δ and ϕ are combination and aggregation functions respectively, ψ is the message function
encoding the relation R and entity u neighboring to v, {{· · · }} is a multiset, and NR(v) is the
neighboring entity set {u|(u,R, v) ∈ E}.

3 EXPRESSIVITY OF QL-GNN

In this section, we explore the logical expressivity of QL-GNN to analyze the types of rule structures
QL-GNN can learn. First, we provide the logic to describe rules in KGs. Then, we analyze logical
expressivity of QL-GNN using Theorem 3.2 and Corollary 3.3, formally demonstrating the kind of
rule structures it can learn. Finally, we compare QL-GNN with classical methods and highlight its
superior expressivity in KG reasoning.

3.1 EXPRESSIVITY ANALYSIS WITH LOGIC OF RULE STRUCTURES

From previous works of rule mining on KG (Yang et al., 2017; Sadeghian et al., 2019), rule structures
are usually described as a formula in first-order logic. We also follow this way to formally describe
the rule structures in KG. Therefore, we have the following correspondence between the elements in
rule structures and logic:

• Variable: variables denoted with lowercase italic letters x, y, z represent entities in a KG;
• Unary predicate: unary predicate Pi(x) is corresponding to the entity property Pi in a KG, e.g.,

red(x) denotes the color of an entity x is red;
• Binary predicate: binary predicate Rj(x, y) is corresponding to the relation Rj in a KG, e.g.,

father(x, y) denotes x is the father of y;
• Constant: constant denoted with lowercase letters h, c with serif typestyle is the unique identifier of

some entity in a KG.

Except from the above elements, the quantifier ∃ expresses the existence of entities satisfying a
condition, ∀ expresses universal quantification, and ∃≥N represents the existence of at leastN entities
satisfying a condition. The logical connective ∧ denotes conjunction, ∨ denotes disjunction, and ⊤
and ⊥ represent true and false, respectively. Using these symbols, rule structures can be represented
by describing their elements directly. For example, C3(x, y) := ∃z1z2, R1(x, z1) ∧ R2(z1, z2) ∧
R3(z2, y) in Figure 2 describes a chain-like structure between x and y with three relationsR1, R2, R3.
Rule structures can be represented using the rule formulaR(x, y), and the existence of a rule structure
for the triplet (h,R, t) is equivalent to the satisfaction of the rule formula R(x, y) at the entity pair
(h, t). In this paper, logical expressivity of GNN is a measurement of the ability of GNN to learn
logical formulas and is defined as the set of logical formulas that GNN can learn. Therefore, since rule
structures can be described by logical formulas, the logical expressivity of QL-GNN can determine
their ability to learn rule structures in KG reasoning.

3.2 WHAT KIND OF RULE STRUCTURES CAN QL-GNN LEARN?

In this section, we analyze the logical expressivity of QL-GNN regarding what kind of rule structure
it can learn. Given a query (h,R, ?), we first have the following proposition about the rule formula
describing a rule structure.
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Proposition 3.1. The rule structure for query (h,R, ?) can be described with rule formula R(x, y)
or rule formula R(h, x) 1 where h is the logical constant assigned to query entity h.

QL-GNN applies labeling trick to the query entity h, which can be equivalently seen as assigning
constant h to query entity h2.With Proposition 3.1 (proven in Appendix A), the logical expressivity
of QL-GNN can be analyzed by the types of rule formula R(h, x) it can learn. In this case, the rule
structure of triplet (h,R, t) exists if and only if the logical formula R(h, x) is satisfied at entity t.

3.2.1 EXPRESSIVITY OF QL-GNN

Before presenting the logical expressivity of QL-GNN, we start by explaining how QL-GNN learns
the rule formula R(h, x). Following the definition in Barceló et al. (2020), we treat R(h, x) as a
binary classifier. When given a candidate tail entity t, if the triplet (h,R, t) exists in a KG, the binary
classifier R(h, x) should output true; otherwise, it should output false. If QL-GNN can learn the rule
formula R(h, x), it implies that QL-GNN can estimate binary classifier R(h, x). Consequently, if the
rule formula R(h, x) is satisfied at entity t, the representation e

(L)
t [h] is mapped to a high probability

value, indicating the existence of triplet (h,R, t) in KG. Conversely, when the rule formula is not
satisfied at t, e(L)

t [h] is mapped to a low probability value, indicating the absence of the triplet.

The rule structures that QL-GNN can learn are described by a family of logic called graded modal
logic (CML) (De Rijke, 2000; Otto, 2019). CML is defined by recursion with the base elements
⊤,⊥, all unary predicates Pi(x), and the recursion rule: if φ(x), φ1(x), φ2(x) are formulas in
CML, ¬φ(x), φ1(x) ∧ φ2(x),∃≥Ny (R(y, x) ∧ φ(y)) are also formulas in CML. Since QL-GNN
introduces a constant h to the query entity h, we use the notation CML[G, h] to denote the CML
recursively built from base elements in G and constant h (equivalent to constant predicate Ph(x)).
Then, the following theorem and corollary show the expressivity of QL-GNN for KG reasoning.
Theorem 3.2 (Logical expressivity of QL-GNN). For KG reasoning, given a query (h,R, ?), a rule
formula R(h, x) is learned by QL-GNN if and only if R(h, x) is a formula in CML[G, h].
Corollary 3.3. The rule structures learned by QL-GNN can be constructed with the recursion:
• Base case: all unary predicates Pi(x) can be learned by QL-GNN; the constant predicate Ph(x)

can be learned by QL-GNN;
• Recursion rule: if the rule structures R1(h, x), R2(h, x), R(h, y) are learned by QL-GNN,
R1(h, x) ∧R2(h, y), ∃≥Ny (Ri(y, x) ∧R(h, y)) are learned by QL-GNN.

Theorem 3.2 (proved in Appendix C) provides the logical expressivity of QL-GNN with rule formula
R(h, x) in CML[G, h], which shows that querying labeling transforms R(x, y) to R(h, x) and enable
QL-GNN to learn the corresponding rule structure. To gain a concrete understanding of the rule
structures learned by QL-GNN, Corollary 3.3 provides the recursive definition for these rule structures.
Note that Theorem 3.2 cannot be directly applied to analyze the expressivity of QL-GNN when
learning more than one rule structures. The ability of learning more than one rule structures relates to
the capacity of QL-GNN, which we take as a future direction. Theorem 3.2 also reveals the maximum
expressivity that QL-GNN can generalize through training, and its proof also provides some insights
about the design QL-GNN with better generalization (more discussions are provided in Appendix F.1).
Besides, our results in this section can be reduced to single relational-graph by restricting the relation
type to a single relation type, and we give these results as corollaries in Appendix E.

3.2.2 EXAMPLES

We analyze several rule structures and their corresponding rule formulas in Figure 2 as illustrative
examples, demonstrating the application of our theory in analyzing the rule structures that QL-GNN
can learn. The real examples of these rule structures are shown in Figure 1. In Appdendix A, we have
detailed analysis of rule structures discussed in the paper and present some rules from real datasets.

Chain-like rules, e.g., C3(x, y) in Figure 2, are basic rule structures investigated in many previous
works (Sadeghian et al., 2019; Teru et al., 2020; Zhu et al., 2021). QL-GNN assigns constant h to

1The rule formula R(h, x) is equivalent to ∃zR(z, x) ∧ Ph(z) where Ph(x) denotes the assignment of
constant h to x and is called constant predicate in our paper.

2The initial representation of an entity should be unique among all entities to be regarded as constant in logic.
The initial representation assigned to query entity are indeed unique in NBFNet, RED-GNN and their variants.
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query entity h, thus triplets with relation C3 can be predicted by learning the rule formula C3(h, x).
C3(h, x) are formulas in CML[G, h] and can be recursively defined with rules in Corollary 3.3
(proven in Corollary A.2). Therefore, our theory gives a general proof of QL-GNN’s ability to learn
chain-like structures.

Rule structure Rule formula

		𝑧! 		𝑧"𝑅! 𝑅" 𝑅#

query entity

tail entity

		𝑧!

		𝑧"

𝑅! 𝑅"

𝑅#

C3(x, y) :=∃z1z2, R1(x, z1) ∧ R2(z1, z2)

∧ R3(z2, y)
C3(h, x) :=∃z1z2, R1(h, z1) ∧ R2(z1, z2)

∧ R3(z2, x)

I1(h, x) :=∃z1, z2, R1(h, z1) ∧ R3(z2, z1)

∧ R2(z1, x)

Figure 2: Example of rule structures and their corresponding rule
formulas QL-GNN can learn.

The second type of rule struc-
ture I1(h, x) in Figure 2 is com-
posed of a chain-like structure
from query entity to tail entity
along with additional entity z2
connected to the chain. I1(h, x)
are formulas in CML[G, h] and
can be defined with recursive
rules in Corollary 3.3 (proven in
Corollary A.3), which indicates
that I1(h, x) can be learned by
QL-GNN. These structures are
important in KG reasoning be-
cause the entity connected to the
chain can bring extra information about property of the entity it connected to (see examples of rule in
Appendix A).

3.3 COMPARISON WITH CLASSICAL METHODS

Classical methods such as R-GCN and CompGCN perform KG reasoning by first applying MPNN
(1) to compute the entity representations e

(L)
v , v ∈ V and then scoring the triplet (h,R, t) by

s(h,R, t) = Agg(e(L)
h , e

(L)
t ) with aggregation function Agg(·, ·). For simplicity, we take CompGCN

as an example to analyze the expressivity of the classical methods on learning rule structures.

Since CompGCN scores a triplet using its query and tail entity representations without applying
labeling trick, the rule structures learned by CompGCN should be in the form of R(x, y). In
CompGCN, the query and tail entities’ representations encode different subgraphs. However, the
joint subgraph they represent may not necessarily be connected. This suggests that the rule structures
learned by CompGCN are non-structural, indicating there is no path between its query and tail entities
except for relation R. This observation is proven with the following theorem.

Theorem 3.4 (Logical expressivity of CompGCN). For KG reasoning, CompGCN can learn the
rule formula R(x, y) = fR ({φ(x)}, {φ′(y)}) where fR is a formula involving sub-formulas from
{φ(x)} and {φ′(y)} which are the sets of formulas in CML[G].

Remark. Theorem 3.4 indicates that representations of two end entities encoding two formulas
respectively, and these two formulas are independent. Thus, the rule structures learned by CompGCN
should be two disconnected subgraphs surrounding the query and tail entities respectively.

Similar to Theorem 3.2, CompGCN learns rule formula R(x, y) by treating it as a binary classifier.
In a KG, the binary classifier R(x, y) should output true if the triplet (h,R, t) exists; otherwise, it
should output false. If CompGCN can learn the rule formula R(x, y), it implies that it can estimate
the binary classifier R(x, y). Consequently, if the rule formula R(x, y) is (not) satisfied at entity pair
(h, t), the score s(h,R, t) is a high (low) value, indicating the existence (absence) of triplet (h,R, t).

Theorem 3.4 (proven in Appendix C) shows that CompGCN can only learn rule formula R(x, y)
for non-structural rules. One important type of relation in this category is the similarity between
two entities (experiments in Appendix D.2), like same_color(x, y) indicating entities with the
same color. However, structural rules are more commonly observed in KG reasoning (Lavrac &
Dzeroski, 1994; Sadeghian et al., 2019; Srinivasan & Ribeiro, 2020). Since Theorem 3.4 indicates
CompGCN fails to learn connected rule structures that are not independent, the structural rules in
Figure 2 cannot be learned by CompGCN. Such a comparison shows why QL-GNN is more efficient
than classical methods, e.g., R-GCN and CompGCN, in real applications. Compared with previous
work on single-relational graphs, Zhang et al. (2021) shows CompGCN cannot distinguish many
non-isomorphic links, while our paper derives expressivity of CompGCN for learning rule structures.
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4 ENTITY LABELING GNN BASED ON RULE FORMULA TRANSFORMATION

QL-GNN is proven to be able to learn the class of rule structures defined in Corollary 3.3. For rule
structures outside this class, we try to learn them with a novel labeling trick based on QL-GNN. Our
general idea is to transform the rule structures outside this class into the rule structures in this class
by adding constants to the graph. The following proposition and corollary show how to add constants
to a rule structure so that it can be described by formulas in CML and how to apply labeling trick to
make it learnable for QL-GNN.
Proposition 4.1. Let R(h, x) describe a single-connected rule structure G in G. If we assign
constants c1, c2, · · · , ck to all k entities with out-degree larger than one in G, the rule structure G
can be described with a new rule formula R′(h, x) in CML[G, h, c1, c2, · · · , ck].
Corollary 4.2. Applying labeling trick with unique initial representations to entities assigned with
constants c1, c2, · · · , ck in Proposition 4.1, the rule structure G can be learned by QL-GNN.

For instance, in Figure 3, the rule structure U cannot be distinguished from the rule structure
T by recursive definition in Corollary 3.3, thus cannot be learned by QL-GNN. In this example,
Proposition 4.1 suggests assigning constant c to the entity colored with gray in Figure 3, then a new
rule formula

U ′(h, x) := R1(h, c) ∧
(
∃z2, z3, R2(c, z2) ∧R4(z2, x) ∧R3(c, z3) ∧R5(z3, x)

)

in CML[G, h, c] (Corollary A.5) can describe the rule structure of U . Therefore, the rule structure
of U can be learned with U ′(h, x) by QL-GNN with constant c and cannot be learned by classical
methods and vanilla QL-GNN.

Algorithm 1 Entity Labeling
Require: query (h,R, ?), knowledge graph G, degree threshold d.

1: compute the out-degree dv of each entity v in G;
2: for entity v in G do
3: if dv > d then
4: assign a unique representation e

(0)
v to entity v;

5: end if
6: end for
7: assign initial representation e

(0)
h to the query entity h;

8: Return: initial representation of all entities.

U(h, x) :=∃1z1, R1(h, z1) ∧
(
∃z2, z3, R2(z1, z2)

∧ R4(z2, x) ∧ R3(z1, z3) ∧ R5(z3, x)
)		𝑧!

		𝑧"

𝑅!

𝑅"

𝑅# 		𝑧#

𝑅$

𝑅%

		𝑧! 		𝑧"𝑅! 𝑅"

𝑅#
		𝑧"

𝑅$

𝑅%		𝑧!
𝑅!

T (h, x) :=∃z1z2, R1(h, z1) ∧ R2(z1, z2) ∧ R4(z2, x)

∧ ∃z1z2, R1(h, z1) ∧ R3(z1, z2) ∧ R5(z2, x)

Rule structure Rule formula

query entity

tail entity

Figure 3: Two rule structures cannot be distinguished by QL-
GNN.

Based on Corollary 4.2, we need
apply labeling trick to entities
other than the query entities
in QL-GNN to learn the rule
structures outside the scope of
Corollary 3.3. The new method
is called Entity-Labeling (EL)
GNN shown in Algorithm 1 and
is different from QL-GNN in as-
signing constants to all the enti-
ties with out-degree larger than d.
We choose the degree threshold
d as a hyperparameter because a
small d (such as 1) will introduce too many constants to KG, which impedes the generalization of
GNN (Abboud et al., 2021) (see an explanation from logical perspective in Appendix F.2). In fact, a
smaller d makes GNN learn the rule formulas with many constants and results bad generalization,
while a larger d may not be able to transform indistinguishable rules into formulas in CML. As a
result, the degree threshold d should be tuned to balance the expressivity and generalization of GNN.
Same as the constant h in QL-GNN, we add a unique initial representation e

(0)
v for entities v whose

out-degree dv > d in steps 3-5. For the query entity h, we assign it with a unique initial representation
e
(0)
h in step 7. In Algorithm 1, it can be seen that the additional time of EL-GNN comes from

traversing all entities in the graph. The additional time complexity is linear with respect to the number
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of entities, which is negligible compared to QL-GNN. For convenience, GNN initialized with EL
algorithm is denoted as EL-GNN (e.g., EL-NBFNet) in our paper.

Discussion In Figure 1, we visually compare the expressivity of QL-GNN and EL-GNN. Classical
methods, e.g., R-GCN and CompGCN, are not compared here because they can solely learn non-
structural rules which are not commonly-seen in real applications. QL-GNN, e.g., NBFNet and
RED-GNN, excels at learning rule structures described by formula R(h, x) in CML[G, h]. The
proposed EL-GNN, encompassing QL-GNN as a special case, can learn rule structures described by
formula R(h, x) in CML[G, h, c1, · · · , ck] which has a larger description scope than CML[G, h].

5 RELATED WORKS

5.1 EXPRESSIVITY OF GRAPH NEURAL NETWORK (GNN)

GNN (Kipf & Welling, 2016; Gilmer et al., 2017) has shown good performance on a wide range
of tasks involving graph-structured data, thus many existing works try to analyze the expressivity
of GNNs. Most of these works analyze the expressivity of GNNs from the perspective of graph
isomorphism testing. A well-known result (Xu et al., 2019) shows that the expressivity of vanilla
GNN is limited to WL test and the result is extended to KG by Barcelo et al. (2022). To improve the
expressivity of GNNs, most of the existing works either design GNNs motivated by high-order WL
test (Morris et al., 2019; 2020; Barcelo et al., 2022) or apply special initial representations (Abboud
et al., 2021; You et al., 2021; Sato et al., 2021; Zhang et al., 2021). Except for using graph isomorphism
testing, Barceló et al. (2020) analyze the logical expressivity of GNNs and identify that the logical
rules from graded modal logic can be learned by vanilla GNN. However, their analysis is limited
to node classification on the single-relational graph. Except from the expressivity of vanilla GNN,
Tena Cucala et al. (2022) propose monotonic GNN whose prediction can be explained by symbolical
rules in Datalog and the expressivity of monotonic GNN is further analyzed in Cucala et al. (2023).

Regarding the expressivity of GNNs for link prediction, Srinivasan & Ribeiro (2020) demonstrate
that GNNs’ structural node representations alone are insufficient for accurate link prediction. To
overcome this limitation, they introduce a method that incorporates Monte Carlo samples of node
embeddings obtained from network embedding techniques instead of relying solely on GNNs.
However, Zhang et al. (2021) discovered that by leveraging the labeling trick in GNNs, it is indeed
possible to learn structural link representations for effective link prediction. This finding provides
reassurance regarding the viability of GNNs for this task. Nonetheless, their analysis is confined to
single-relational graphs, and their conclusions are limited to the fact that the labeling trick enables
distinct representations for some non-isomorphic links, which other approaches cannot achieve. In
this paper, we delve into the analysis of GNNs’ logical expressivity to study their ability of learning
rule structures. By doing so, we aim to gain a comprehensive understanding of the rule structures that
SOTA GNNs can learn in graphs. Our analysis encompasses both single-relational graph and KGs,
thus broadening the applicability of our findings.

A concurrent work by Huang et al. (2023) analyzes the expressivity of GNNs for NBFNet (a kind of
QL-GNN in our paper) with conditional MPNN while our work unifies state-ot-the-art GNNs into
QL-GNN and analyzes the expressivity from a different perspective focusing on the understanding of
relationship between labeling trick and constants in logic.

5.2 KNOWLEDGE GRAPH REASONING

KG reasoning is the task to predict new facts based on the known facts in a KG G = (V, E ,R) where
V, E ,R are sets of entities, edges and relation types in the graph respectively. The facts (or edges,
links) are typically expressed as triplets in the form of (h,R, t), where the head entity h and tail entity
t are related with the relation type R. KG reasoning can be modeled as the process of predicting
the tail entity t of a query in the form (h,R, ?) where h is called the query entity in our paper. The
head prediction (?, R, t) can be transformed into tail prediction (t, R−1, ?) with inverse relation R−1.
Thus, we focus on tail prediction in this paper.

Embedding-based methods like TransE (Bordes et al., 2013), ComplEx (Trouillon et al., 2016),
RotatE (Sun et al., 2019), and QuatE (Zhang et al., 2019) have been developed for KG reasoning.
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They learn embeddings for entities and relations, and predict facts by aggregating their representations.
To capture local evidence within graphs, Neural LP (Yang et al., 2017) and DRUM (Sadeghian et al.,
2019) learn logical rules based on predefined chain-like structures. However, apart from chain-like
rules, these methods failed to learn more complex structures in KG (Hamilton et al., 2018; Ren et al.,
2019). GNNs have also been used for KG reasoning, such as R-GCN (Schlichtkrull et al., 2018) and
CompGCN (Vashishth et al., 2020), which aggregate entity and relation representations to calculate
scores for new facts. However, these methods struggle to differentiate between the structural roles
of different neighbors (Srinivasan & Ribeiro, 2020; Zhang et al., 2021). GraIL (Teru et al., 2020)
addresses this by extracting enclosing subgraphs to predict new facts, while RED-GNN (Zhang &
Yao, 2022) employs dynamic programming for efficient subgraph extraction and predicts new facts
based on the tail entity representation. To extract relevant structures from graph, AdaProp (Zhang
et al., 2023) improves RED-GNN by employing adaptive propagation to filter out irrelevant entities
and retain promising targets. Motivated by the effectiveness of heuristic path-based metrics for link
prediction, NBFNet (Zhu et al., 2021) proposes a neural network aligned with Bellman-Ford algorithm
for KG reasoning. Zhu et al. (2022) propose A⋆Net to learn a priority function to select important
nodes and edges at each iteration. Specifically, AdaProp and A⋆Net are variants of RED-GNN and
NBFNet, respectively, designed to enhance their scalability. Among these methods, RED-GNN,
NBFNet, AdaProp, and A⋆Net achieve state-of-the-art performance on KG reasoning.

6 EXPERIMENT

In this section, we validate our theoretical findings from Section 3 and showcase the efficacy of our
proposed EL-GNN (Section 4) on synthetic and real datasets through experiments. All experiments
were implemented in Python using PyTorch and executed on A100 GPUs with 80GB memory.

6.1 EXPERIMENTS ON SYNTHETIC DATASETS

We generate six KGs based on rule structures in Figure 2, 3, 6 to validate our theory on expressivity
and verify the improved performance of EL-GNN. These rule structures are either analyzed in
the previous sections, or representative for evaluating GNN’s ability for learning rule structures.
We evaluate R-GCN, CompGCN, RED-GNN, NBFNet, EL-RED-GNN, and EL-NBFNet (using
RED-GNN/NBFNet as backbone with Algorithm 1). Our evaluation metric is prediction Accuracy
which measures how well a rule structure is learned. We report testing accuracy of classical methods,
QL-GNN, and EL-GNN on six synthetic graphs. Hyperparameters for all methods are automatically
tuned with Ray (Liaw et al., 2018) based on the validation accuracy.

Table 1: Accuracy on synthetic data.
Method Method C3 C4 I1 I2 T U

Classical R-GCN 0.016 0.031 0.044 0.024 0.067 0.014
CompGCN 0.016 0.021 0.053 0.039 0.067 0.027

QL-GNN RED-GNN 1.0 1.0 1.0 1.0 1.0 0.405
NBFNet 1.0 1.0 1.0 1.0 1.0 0.541

EL-GNN EL-RED-GNN 1.0 1.0 1.0 1.0 1.0 0.797
EL-NBFNet 1.0 1.0 1.0 1.0 1.0 0.838

Dataset generation Given a target relation, there are three steps to generate a dataset: (1) rule
structure generation: generate specific rule structures according to their definition; (2) noisy triplets
generation: generate noisy triplets to avoid GNN from learning naive rule structures; (3) missing
triplets completion: generate missing triplets based on the target rule structure because the noisy
triplets generation step could add triplets satisfying the target rule structure. We use triplets generated
from rule structure and noisy triplets generation steps as known triplets in graph. Triplets with the
target relation are separated into training, validation, and testing sets. Our experimental setting differs
slightly from previous works as all GNNs in the experiments only perform message passing on the
known triplets in the graph. This setup is reasonable and allows for evaluating the performance of
GNNs in learning rule structures because the presence of a triplet can be determined based on the
known triplets in the graph, following the rule structure generation process.
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Results Table 1 presents the testing accuracy of classical GNN methods, QL-GNN, and EL-GNN
on six synthetic datasets (denoted as C3, C4, I1, I2, T, and U ) generated from their corresponding
rule structures. The experimental results support our theory. CompGCN performs poorly on all six
datasets, as it fails to learn the underlying rule structures discussed in examples of Section 3 (refer to
Section D.2 for experiments of CompGCN). QL-GNN achieves perfect predictions (100% accuracy)
for triplets with relations Cl, Ii, and T , successfully learning the corresponding rule formulas from
CML[G, h]. EL-GNN demonstrates improved expressivity, as evidenced by its performance on
dataset U , aligning with the analysis in Section 4. Furthermore, EL-GNN effectively learns rule
formulas C(h, x) and I(h, x), validating its expressivity.
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Figure 4: Accuracy versus out-degree d of
EL-GNN on the dataset with relation U .

Furthermore, we demonstrate the impact of the degree
threshold d on EL-GNN with dataset U . The testing
accuracy in Figure 4 reveals that an excessively small
or large out-degree d hinders the performance of EL-
GNN. Therefore, it is important to empirically fine-tune
the hyperparameter d. To test the robustness of QL-
GNN and EL-GNN in learning rules with incomplete
structures, we randomly remove triplets in the training
set to evaluate the accuracy of learning rule structures.
The results can be found in Appendix D.4.

6.2 EXPERIMENTS ON REAL DATASETS

In this section, we follow the standard setup as Zhu et al. (2021) to test EL-GNN’s effectiveness on
four real datasets: Family (Kok & Domingos, 2007), Kinship (Hinton et al., 1986), UMLS (Kok &
Domingos, 2007), WN18RR (Dettmers et al., 2017), and FB15k-237 (Toutanova & Chen, 2015).
For a fair comparison, we evaluate EL-NBFNet and EL-RED-GNN (applying EL to NBFNet and
RED-GNN) using the same hyperparameters as NBFNet and RED-GNN and handcrafted d. We
compare it with embedding-based methods (RotatE, QuatE), rule-based methods (Neural LP, DRUM),
and GNN-based methods (CompGCN, NBFNet, RED-GNN). To evaluate performance, we provide
testing accuracy and standard deviation obtained from three repetitions for thorough evaluation.

In Table 2, we present our experimental findings. The results first show that NBFNet and RED-GNN
(QL-GNN) outperform CompGCN. Furthermore, the proposed EL algorithm improves the accuracy
of RED-GNN and NBFNet on real datasets. However, the degree of improvement varies across
datasets due to the number and variations of rule types, and the quality of missing triplets in training
sets. More experimental results, e.g., time cost and more performance metrics, are in Appendix D.5.
Table 2: Accuracy and standard deviation on real datasets. The best (and comparable best) results are
in “bold”, the second (and comparable second) best are underlined.

Method Class Methods Family Kinship UMLS WN18RR FB15k-237

Embedding-
based

RotatE 0.865±0.004 0.704±0.002 0.860±0.003 0.427±0.003 0.240±0.001
QuatE 0.897±0.001 0.311±0.003 0.907±0.002 0.441±0.002 0.255±0.004

Rule-based Neural LP 0.872±0.002 0.481±0.006 0.630±0.001 0.369±0.003 0.190±0.002
DRUM 0.880±0.003 0.459±0.005 0.676±0.004 0.424±0.002 0.252±0.003

GNN-based

CompGCN 0.883±0.001 0.751±0.003 0.867±0.002 0.443±0.001 0.265±0.001
RED-GNN 0.988±0.002 0.820±0.003 0.946±0.001 0.502±0.001 0.284±0.002

NBFNet 0.977±0.001 0.819±0.002 0.946±0.002 0.496±0.002 0.320±0.001

EL-RED-GNN 0.990±0.002 0.839±0.001 0.952±0.003 0.504±0.001 0.322±0.002
EL-NBFNet 0.985±0.001 0.842±0.003 0.953±0.002 0.501±0.003 0.332±0.001

7 CONCLUSION

In this paper, we analyze the expressivity of the state-of-the-art GNNs for learning rules in KG
reasoning, explaining their superior performance over classical methods. Our analysis sheds light
on the rule structures that GNNs can learn. Additionally, our theory motivates an effective labeling
method to improve GNN’s expressivity. Moving forward, we will extend our analysis to GNNs with
general labeling trick and try to extract explainable rule structures from trained GNN. Limitations
and impacts are discussed in Appendix G.
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A RULE ANALYSIS

We first give a simple proof for Proposition 3.1.

proof of Proposition 3.1. Since R(h, x) is equivalent to ∃zR(z, x) ∧ Ph(z), where Ph(z) is the
constant predicate only satisfied at entity h. Because R(z, x) can describe the rule structure of
(h,R, ?), ∃zR(z, x) ∧ Ph(z) can describe the rule structure of (h,R, ?) as well.

We use the notation G, v |= Pi (G, v ⊭ Pi) to represent that the unary predicate Pi(x) is (not)
satisfied at entity v.

Definition A.1 (Definition of graded modal logic). A formula in graded modal logic of KG G is
recursively defined as follows:

1. If φ(x) = ⊤, G, v |= φ if v is an entity in KG;

2. If φ(x) = Pc(x), G, v |= φ if and only if v has the property Pc or can be uniquely identified
by constant c;

3. If φ(x) = φ1(x) ∧ φ2(x), G, v |= φ if and only if G, v |= φ1 and G, v |= φ2;

4. If φ(x) = ¬ϕ(x), G, v |= φ if and only if G, v ⊭ ϕ;

5. If φ(x) = ∃≥Ny,Rj(y, x) ∧ ϕ(y), G, v |= φ if and only if the set of entities {u|u ∈
NRj

(v) and G, u |= ϕ} has cardinality at least N .

Corollary A.2. C3(h, x) are formulas in CML[G, h].

Proof. C3(h, x) is a formula in CML[G, h] as it can be recursively defined as follows

φ1(x) = Ph(x),

φ2(x) = ∃y,R1(y, x) ∧ φ1(y),

φ3(x) = ∃y,R2(y, x) ∧ φ2(y),

C3(h, x) = ∃y,R3(y, x) ∧ φ3(y).

Corollary A.3. I1(h, x) is a formula in CML[G, h].

Proof. I1(h, x) is a formula in CML[G, h] as it can be recursively defined as follows

φ1(x) = Ph(x),

φ2(x) = ∃y,R1(y, x) ∧ φ1(y),

φs(x) = ∃y,R3(y, x) ∧ ⊤,
φ3(x) = φs(x) ∧ φ2(x),

I1(h, x) = ∃y,R2(y, x) ∧ φ3(y).

Corollary A.4. T (h, x) is a formula in CML[G, h].

Proof. By Corollary A.2, C ′
3(h, x) := ∃z1z2, R1(h, z1) ∧ R2(z1, z2) ∧ R4(z2, x) and C⋆

3 (h, x) :=
∃z1z2, R1(h, z1) ∧R3(z1, z2) ∧R5(z2, x) are formulas in CML[G, h]. Thus T (h, x) = C ′

3(h, x) ∧
C⋆

3 (h, x) is a formula in CML[G, h].

Corollary A.5. U ′(h, x) is a formula in CML[G, h, c].
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Proof. U ′(h, x) is a formula in CML[G, h, c] as it can be recursively defined as follows

φ1(x) = Ph(x), φc(x) = Pc(x),

φ2(x) = ∃y,R1(y, x) ∧ φ1(y),

φ3(x) = φ2(x) ∧ φc(x),

φ′
4(x) = ∃y,R2(y, x) ∧ φ3(y),

φ′
5(x) = ∃y,R4(y, x) ∧ φ′

4(y),

φ′′
4(x) = ∃y,R3(y, x) ∧ φ3(y),

φ′′
5(x) = ∃y,R5(y, x) ∧ φ′′

4(y),

U ′(h, x) = φ′
5(x) ∧ φ′′

5(x)

where the constant c ensures that there is only one entity satisfied for unary predicate φ3(x).

Example of rules We can find some relations in reality corresponding to rules in Figure 2. Here
are two examples of C3 and I1:

• Relation nationality (C3): Einstein →born_in Ulm →hometown_of Born →nationality

Germany;
• Relation father (I1): A →spouse B →parent C and D →sisterhood B.

Rule structures in real datasets To show that the expressivity is meaningful in our paper, we select
three rule structures from Family and FB15k-237 in Figure 5 to show the existence of rule structures
in real datasets. With the definition of CML, the rule structure in Figure 5(a) is not a formula in
CML and rule structures in Figure 5(b) and 5(c) are formulas in CML. The real rules shows that
rules defined by CML is common in real-world datasets and the rules beyond CML also exist, which
highlights the importance of our work.

1432 12491482 fathernephew 1480
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Target Relations son

Scottish
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Figure 5: Some rule structures in real datasets. The rule structure (a) is from Family dataset and is
not a rule formula in CML[G, h], which cannot not be learned by QL-GNN. The rule structures (b)
and (c) are from FB15k-237 dataset and are rule formulas in CML[G, h], which can be learned by
QL-GNN.

Summary Here we give Table 3 to illustrate the correspondence between GNNs for KG reasoning,
rule structures, and theories presented in our paper.

Table 3: Whether GNNs investigated in our paper can learn the rule formulas in Figure 2 and 3 and
the exemplar methods of these GNNs. ✓(✗) mean the corresponding GNN can(not) lean the rule
formula.

Rule formula C3(h, x) I1(h, x) T (h, x) U(h, x) Theoretical result Exemplar Methods

Classical ✗ ✗ ✗ ✗ Theorem 3.4 R-GCN, CompGCN
QL-GNN ✓ ✓ ✓ ✗ Theorem 3.2 NBFNet, RED-GNN
EL-GNN ✓ ✓ ✓ ✓ Proposition 4.1 EL-NBFNet/RED-GNN

B RELATION BETWEEN QL-GNN AND NBFNET/RED-GNN

In this part, we show that NBFNet and RED-GNN are special cases of QL-GNN in Table 4 and 5
respectively.
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Table 4: NBFNet is a special case of QL-GNN.
NBFNet

Query representation Relation embedding
Non-query representation 0

MPNN AGGREGATE
({

MESSAGE
(
h

(t−1)
x ,wq(x, r, v)

)∣∣∣(x, r, v) ∈ E(v)
}
∪
{
h

(0)
v

})
Triplet score Feed-forward network

Table 5: RED-GNN is a special case of QL-GNN.
RED-GNN

Query representation 0
Non-query representation NULL

MPNN δ
(∑

{es,r}:(es,r,e)∈Eℓ
eq

φ
(
hℓ−1

eq,es ,h
ℓ
r

))
Triplet score Linear transformation

C PROOF

We use the notation G, (h, t) |= Rj (G, (h, t) ⊭ Rj) to denote Rj(x, y) is (not) satisfied at h, t.

C.1 BASE THEOREM: WHAT KIND OF LOGICAL FORMULAS CAN MPNN BACKBONE FOR KG
LEARN?

In this section, we analyze the expressivity of MPNN backbone (1) for learning logical formulas in
KG. This section is the extension of Barceló et al. (2020) to KG.

In a KG G = (V, E ,R), MPNN with L layers is a type of neural network that applies graph G and
initial entity representation e

(0)
v to learn the representations e(L)

v , v ∈ V . MPNN employs message-
passing mechanisms (Gilmer et al., 2017) to propagate information between entities in graph. The
k-th layer of MPNN updates the entity representation via the following message-passing formula

e(k)v = δ
(
e(k−1)
v , ϕ

(
{{ψ(e(k−1)

u , R)|u ∈ NR(v), R ∈ R}}
))

,

where δ and ϕ are combination and aggregation functions respectively, ψ is the message function
encoding the relation R and entity u neighboring to v, {{· · · }} is a multiset, and NR(v) is the
neighboring entity set {u|(u,R, v) ∈ E}.

To understand how MPNN can learn logical formulas, we regard logical formula φ(x) as a binary
classifier indicating whether φ(x) is satisfied at entity x. Then, we commence with the following
definition.

Definition C.1. A MPNN captures a logical formula φ(x) if and only if given any graph G, the
MPNN representation can be mapped to a binary value, where True indicates that φ(x) satisfies on
entity x, while False does not satisfy.

According to the above definition, MPNN can learn logical formula in KG by encoding whether these
logical formulas is satisfied in the representation of the corresponding entity. For example, if MPNN
can learn a logical formula φ(x), it implies that e(L)

v can be mapped to a binary value True/False
by a function indicating whether φ(x) is satisfied at entity v. Previous work (Barceló et al., 2020)
has proven that vanilla GNN for single-relational graph can learn the logical formulas from graded
modal logic (De Rijke, 2000; Otto, 2019) (a.k.a., Counting extension of Modal Logic, CML). In this
section, we will present a similar theory of MPNN for KG.

The insight of MPNN’s ability to learn formulas in CML lies in the alignment between cer-
tain CML formulas and the message-passing mechanism, which also holds for KG. Specifically,
∃≥Ny (Rj(y, x) ∧ φ(y)) is the formula aligned with MPNN’s message-passing mechanism and
allows to check the property of neighbor y of entity variable x. We use notation CML[G] to denote
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CML of a graph G. Then, we give the following theorem to find out the kind of logical formula
MPNN (1) can learn in KG.
Theorem C.2. In a KG G, a logical formula φ(x) is learned by MPNN (1) from its representations
if and only if φ(x) is a formula in CML[G].

Our theorem can be viewed as an extension of Theorem 4.2 in Barceló et al. (2020) to KG and is the
elementary tool for analyzing the expressivity of GNNs for KG reasoning. The proof of Theorem C.2
is in Appendix C and employs novel techniques that specifically account for relation types. Our
theorem shows that CML of KG is the tightest subclass of logic that MPNN can learn. Similarly,
our theorem is about the ability to implicitly learn logical formulas by MPNN rather than explicitly
extracting them.

C.2 PROOF OF THEOREM C.2

The backward direction of Theorem C.2 is proven by constructing a MPNN that can learn any formula
φ(x) in CML. The forward direction relies on the results from recent theoretical results in Otto
(2019). Our theorem can be seen as an extension of Theorem 4.2 in Barceló et al. (2020) to KG.

We first prove the backward direction of Theorem C.2.
Lemma C.3. Each formula φ(x) in CML can be learned by MPNN (1) from its entity representations.

Proof. Let φ(x) be a formula in CML. We decompose φ into a series of sub-formulas sub[φ] =
(φ1, φ2, · · · , φL) where φk is a sub-formula of φℓ if k ≤ ℓ and φ = φL. Assume the MPNN
representation e

(i)
v ∈ RL, v ∈ V, i = 1 · · ·L. In this proof, the theoretical analysis will based on the

following simple choice of (1)

e(i)v = σ


e(i−1)

v C+

r∑

j=1

∑

u∈NRj
(v)

e(i−1)
u ARj + b


 (2)

with σ = min(max(0, x), 1), ARj
,C ∈ RL×L and b ∈ RL. The entries of the ℓ-th columns of

ARj
,C, and b depend on the sub-formulas of φ as follows:

• Case 0. if φℓ(x) = Pℓ(x) where Pℓ is a unary predicate, Cℓℓ = 1;

• Case 1. if φℓ(x) = φj(x) ∧ φk(x), Cjℓ = Ckℓ = 1 and bℓ = −1;

• Case 2. if φℓ = ¬φk(x), Ckℓ = −1 and bℓ = 1;

• Case 3. if φℓ(x) = ∃≥Ny (Rj(y, x) ∧ φk(y)),
(
ARj

)
kℓ

= 1 and bℓ = −N + 1.

with all the other values set to 0.

Before the proof, for every entity v ∈ V , the initial representation e
(0)
v = (t1, t2, · · · , tn) has tℓ = 1

if the sub-formula φℓ = Pℓ(x) is satisfied at v, and tℓ = 0 otherwise.

Let G = (V, E ,R) be a KG. We next prove that for every φℓ ∈ sub[φ] and every entity v ∈ V it
holds that (

e(i)v

)
ℓ
= 1 if G, v |= φℓ, and

(
e(i)v

)
ℓ
= 0 otherwise,

for every ℓ ≤ i ≤ L.

Now, we prove this by induction of the number of formulas in φ.

Base case: One sub-formula in φ. In this case, the formula is an atomic predicate φ = φℓ(x) = Pℓ(x).
Because Cℓℓ = 1 and (e

(0)
v )ℓ = 1, (e

(0)
v )i = 0, i ̸= ℓ, we have (e

(1)
v )ℓ = 1 if G, v |= φℓ and

(e
(1)
v )ℓ = 0 otherwise. For i ≥ 1, e(i)v satisfies the same property.

Induction Hypothesis: k sub-formulas in φ with k < ℓ. Assume
(
e
(i)
v

)
k
= 1 if G, v |= φk and

(
e
(i)
v

)
k
= 0 otherwise for k ≤ i ≤ L.
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Proof: ℓ sub-formulas in φ. Let i ≥ ℓ. Case 1-3 should be considered.

Case 1. Let φℓ(x) = φj(x) ∧ φk(x). Then Cjℓ = Ckℓ = 1 and bℓ = −1. Then we have

(e(i)v )ℓ = σ
(
(e(i−1)

v )j + (e(i−1)
v )k − 1

)
.

By the induction hypothesis, (e(i−1)
v )j = 1 if only if G, v |= φj and (e

(i−1)
v )j = 0 otherwise.

Similarly, (e(i−1)
v )k = 1 if and only if G, v |= φk and (e

(i−1)
v )k = 0 otherwise. Then we have

(e
(i)
v )ℓ = 1 if and only if (e(i−1)

v )j+(e
(i−1)
v )k−1 ≥ 1, which means (e(i−1)

v )j = 1 and (e
(i−1)
v )k =

1. Then (e
(i)
v )ℓ = 1 if and only if G, v |= φj and G, v |= φk, i.e., G, v |= φℓ, and (e

(i)
v )ℓ = 0

otherwise.

Case 2. Let φℓ(x) = ¬φk(x). Because of Ckℓ = −1 and bℓ = 1, we have

(e(i)v )ℓ = σ
(
−(e(i−1)

v )k + 1
)
.

By the induction hypothesis, (e(i−1)
v )k = 1 if and only if G, v |= φk and (e

(i−1)
v )k = 0 otherwise.

Then we have (e
(i)
v )ℓ = 1 if and only if −(e

(i−1)
v )k + 1 ≥ 1, which means (e(i−1)

v )k = 0. Because
(e

(i−1)
v )k = 0 if and only if G, v ⊭ φk, we have (e(i)v )ℓ = 1 if and only if G, v ⊭ φk, i.e., G, v |= φℓ,

and (e
(i)
v )ℓ = 0 otherwise.

Case 3. Let φℓ(x) = ∃≥Ny (Rj(y, x) ∧ φk(y)). Because of
(
ARj

)
kℓ

= 1 and bℓ = −N + 1, we
have

(e(i)v )ℓ = σ


 ∑

u∈NRj
(v)

(e(i−1)
u )k −N + 1


 .

By the induction hypothesis, (e(i−1)
u )k = 1 if and only if G, u |= φk and (e

(i−1)
u )k = 0 other-

wise. Let m = |{u|u ∈ NRj
(v) and G, u |= φk}|. Then we have (e

(i)
v )ℓ = 1 if and only if∑

u∈NRj
(v)(e

(i−1)
u )k − N + 1 ≥ 1, which means m ≥ N . Because G, u |= φk, u is connected

to v with relation Rj , and m ≥ N , we have (e
(i)
v )ℓ = 1 if and only if G, v |= φℓ and (e

(i)
v )ℓ = 0

otherwise.

To learn a logical formula φ(x), we only apply a linear classifier to e
(L)
v , v ∈ V to extract the

component of e
(L)
v corresponding to φ. If G, v |= φ, the value of the corresponding extracted

component is 1.

Next, we prove the forward direction of Theorem C.2.

Theorem C.4. A formula φ(x) is learned by MPNN (1) if it can be expressed as a formula in CML.

To prove Theorem C.4, we introduce Definition C.5, Lemma C.6, Theorem C.7, and Lemma C.8.

Definition C.5 (Unraveling tree). Let G be a KG, v be entity in G, and L ∈ N. The unravelling of v
in G at depth L, denoted by UnrLG(v), is a tree composed of

• a node (v,R1, u1, · · · , Ri, ui) for each path (v,R1, u1, · · · , Ri, ui) in G with i ≤ L,

• an edge Ri between (v,R1, u1, · · · , Ri−1, ui−1) and (v,R1, u1, · · · , Ri, ui) when
(ui, Ri, ui−1) is a triplet in G (assume u0 is v), and

• each node (v,R1, u1, · · · , Ri, ui) has the same properties as ui in G.

Lemma C.6. Let G and G′ be two KGs, v and v′ be two entities in G and G′ respectively. Then for
every L ∈ N, the RWL test (Barcelo et al., 2022) assigns the same color/hash to v and v′ at round L
if and only if there is an isomorphism between UnrLG(v) and UnrLG′(v′) sending v to v′.
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Proof. Base Case: When L = 1, the result is obvious.

Induction Hypothesis: Relational WL (RWL) test assigns the same color to v and v′ at round L− 1
if and only if there is an isomorphism between UnrL−1

G (v) and UnrL−1
G′ (v′) sending v to v′.

Proof: In the L-th round,

• Prove “same color ⇒ isomorphism”.

cL(v) =hash(cL−1(v),
{{

(cL−1(u), Ri)|u ∈ NRi
(v), i = 1, · · · , r

}}
),

cL(v′) =hash(cL−1(v′),
{{

(cL−1(u′), Ri)|u ∈ NRi
(v′), i = 1, · · · , r

}}
).

Because cL(v) = cL(v′), we have cL−1(v) = cL−1(v′), and there exists an entity pair (u, u′), u ∈
NRi(v), u

′ ∈ NRi(v
′) that

(cL−1(u), Ri) = (cL−1(u′), Ri).

Then we have cL−1(u) = cL−1(u′). According to induction hypothesis, we have UnrL−1
G (u) ∼=

UnrL−1
G′ (u′). Also, because the edge connecting entity pair (v, u) and (v′, u′) is Ri, so there is an

isomorphism between UnrLG(v) and UnrLG′(v′) sending v to v′.

• Prove “isomorphism ⇒ same color”.

Because there exists an isomorphism π between UnrLG(v) and UnrLG′(v′) sending v to v′, assume π is
an bijective between the neighbors of v and v′, e.g, u ∈ NRi

(v), u′ ∈ NRi
(v′) and u′i = π(ui), the

relation between entity pair (u, v) and (u′, v′) is Ri.

Next we prove cL−1(u) = cL−1(u′). Because UnrLG(v) and UnrLG(v
′) are isomorphism, and π

maps u ∈ NRi
(v) to u′ ∈ NRi

(v′), for the left tree with L − 1 depth, i.e., UnrL−1
G (u) and

UnrL−1
G′ (u′), π can be the isomorphism mapping between UnrL−1

G (u) and UnrL−1
G′ (u′). According to

induction hypothesis, we have cL−1(u) = cL−1(u′). Because UnrLG(v) ∼= UnrLG′(v′), we also have
UnrL−1

G (u) ∼= UnrL−1
G′ (u′) which means cL−1(u) = cL−1(u′). After running RWL test, we have

cL(v) = cL(v′).

Theorem C.7. Let φ(x) be a unary formula in the formal description of graph G in Section 3.1. If
φ(x) is not equivalent to a formula in CML, there exist two KGsG andG′ and two entities v inG and
v′ in G′ such that UnrLG(v) ∼= UnrLG′(v′) for every L ∈ N and such that G, v |= φ but G′, v′ ⊭ φ.

Proof. The theorem follows directly from Theorem 2.2 in Otto (2019). Because G, v ∼# G′, v′

and UnrLG(v) ∼= UnrLG′(v′) are equivalent with the definition of counting bisimulation (i.e., notation
∼#).

Lemma C.8. If a formula φ(x) is not equivalent to any formula in CML, there is no MPNN (1) that
can learn φ(x).

Proof. Assume for a contradiction that there exists a MPNN that can learn φ(x). Since φ(x) is not
equivalent to any formula in CML, with Theorem C.7, there exists two KGsG andG′ and two entities
v in G and v′ in G′ such that UnrLG(v) ∼= UnrLG′(v′) for every L ∈ N and such that G, v |= φ and
G′, v′ ⊭ φ. By Lemma C.6, because UnrLG(v) ∼= UnrLG′(v′) for every L ∈ N, we have e

(L)
v = e

(L)
v′ .

But this contradicts the assumption that MPNN is supposed to learn φ(x).

Proof of Theorem C.4. Theorem can be obtained directly from Lemma C.8.

Proof of Theorem C.2. Theorem can be obtained directly by combining Lemma C.3 and Theorem C.4.

The following two remarks intuitively explain why MPNN can learn formulas in CML.
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Remark C.9. Theorem C.2 applies to both CML[G] and CML[G, c1, c2, · · · , ck]. The atomic unary
predicate Pi(x) in CML of graph G is learned by the initial representations e

(0)
v , v ∈ V , which

can be achieved by assigning special vectors to e
(0)
v , v ∈ V . In particular, the constant predicate

Pc(x) in CML[G, c] is learned by assigning a unique vector (e.g., one-hot vector for different
entities) as the initial representation of the entity with unique identifier c. The other sub-formulas
¬φ(x), φ1(x) ∧ φ2(x) in Definition A.1 can be learned by continuous logical operations (Arakelyan
et al., 2021) which are independent of message-passing mechanisms.

Remark C.10. Assume the (i− 1)-th layer representations e(i−1)
v , v ∈ V can learn the formula φ(x)

in CML, the i-th layer representations e(i)v , v ∈ V of MPNN can learn ∃≥Ny,Rj(y, x) ∧ φ(y) with
specific aggregation function in (1) because e

(i)
v , v ∈ V can aggregate the logical formulas in the

one-hop neighbor representation e
(i−1)
v , v ∈ V (i.e., φ(x)) with message-passing mechanisms.

The following remark clarifies the scope of Theorem C.2 and 3.2.
Remark C.11. The positive results for our theorem (e.g., a MPNN variant can learn a logical formula)
hold for MPNNs powerful than the MPNN we construct in (2), while our negative results (e.g., a
MPNN variant cannot learn a logical formula) hold for any general MPNNs (1). Hence, the backward
direction remains valid irrespective of the aggregate and combine operators under consideration. This
limitation is inherent to the MPNN architecture represented by (1) and not specific to the chosen
representation update functions. On the other hand, the forward direction holds for MPNNs that are
more powerful than (2).

C.3 PROOF OF THEOREM 3.2

Definition C.12. QL-GNN learns a rule formula R(h, x) if and only if given any graph G, the
QL-GNN’s score of a new triplet (h,R, t) can be mapped to a binary value, where True indicates
that R(h, x) satisfies on entity t, while False does not satisfy.

Proof. We set the KG as G and restrict the unary formulas in CML[G, h] to the form of R(h, x). This
theorem is directly obtained by Theorem C.2 because constant h can be equivalently transformed to
constant predicate Ph(x).

Proof of Corollary 3.3. Base case: Since the unary predicate can be encoded into the initial repre-
sentation of the entity according to Section C.1. Then the base case is obvious.

Recursion rule: Since the rule structures R(h, x), R1(h, x), R2(h, x) are unary predicate and can be
learned by QL-GNN, they are formulas in CML[G, h]. According to recursive definition of CML,
R1(h, x) ∧R2(h, y), ∃≥Ny (Ri(y, x) ∧R(h, y)) are also formulas in CML[G, h], therefore can be
learned by QL-GNN.

C.4 PROOF OF THEOREM 3.4

Definition C.13. CompGCN learns a rule formula R(x, y) if and only if given any graph G, the
QL-GNN’s score of a new triplet (h,R, t) can be mapped to a binary value, where True indicates
that R(x, y) satisfies on entity pair (h, t), while False does not satisfy.

Proof. According to Theorem C.2, the MPNN representation e
(L)
v can represent the formulas in

CML[G]. Assume φ1(x) and φ2(y) can be represented by the MPNN representation e
(L)
v , v ∈ V and

there exists two functions g1 and g2 that can extract the logical formulas from e
(L)
v , i.e., gi(e

(L)
v ) = 1

if G, v |= φi and gi(e
(L)
v ) = 0 if G, v ⊭ φi for i = 1, 2. We show how the following two logical

operators can be learned by s(h,R, t) for candidate triplet (h,R, t):

• Conjunction: φ1(x)∧φ2(y). The conjunction of φ1(x), φ2(y) can be learned with function
s(h,R, t) = g1(e

(L)
h ) · g2(e(L)

t ).
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• Negation: ¬φ1(x). The negation of φ1(x) can be learned with function s(h,R, t) =

1− g1(e
(L)
h ).

The disjunction ∨ can be obtained by ¬(¬φ1(x) ∧ ¬φ2(y)). More complex formula involving
sub-formulas from {φ(x)} and {φ′(y)} can be learned by combining the score functions above.

C.5 PROOF OF PROPOSITION 4.1

Lemma C.14. Assume φ(x) describes a single-connected rule structure G in a KG. If assign constant
to entities with out-degree large than 1 in the KG, the structure G can be described with formula
φ′(x) in CML of KG with assigned constants.

Proof. According to Theorem C.7, assume φ′(x) with assigned constants is not equivalent to a
formula in CML, there should exist two rule structures G,G′ in KG G,G′, and entity v in G and entity
v′ in G′ such that UnrLG(v) ∼= UnrLG′(v′) for every L ∈ N and such that G, v |= φ′ but G′, v′ ⊭ φ′.

Since each entity in G (G′) with out-degree larger than 1 is assigned with a constant, the rule structure
G (G′) can be uniquely recovered from its unravelling tree UnrLG(v) (UnrLG′(v)) for sufficient large
L. Therefore, if UnrLG(v) ∼= UnrLG′(v′) for every L ∈ N, the corresponding rule structures G and G′

should be isomorphism too, which means G, v |= φ′ and G′, v′ |= φ′. Thus, φ′(x) must be a formula
in CML.

Proof of Proposition 4.1. The theorem holds by restricting the unary formula to the form of R(h, x)
on Lemma C.14.

Proof of Corollary 4.2. By converting new constants c1, c2, · · · , ck to constant predicates
Pc1(x), Pc2(x), · · · , Pck(x), the corollary holds by using Theorem 3.2.

D EXPERIMENTS

D.1 MORE RULE STRUCTURES IN SYNTHETIC DATASETS

In Section 6.1, we also include the following rule structures in the synthetic datasets, i.e., C4 and I2 in
Figure 6, for experiments. C4 and I2 are both formulas from CML[G, h]. The proof of C4 is similar
to the proof of C3 in Corollary A.2. The proof of I2 is similar to that of I1 and is in Corollary D.1.

		𝑧! 		𝑧"

		𝑧# 		𝑧#

𝑅! 𝑅" 𝑅#

𝑅$ 𝑅$

		𝑧! 		𝑧" 		𝑧#𝑅! 𝑅" 𝑅# 𝑅$

I2(h, x) :=∃z1z2, R1(h, z1) ∧ R2(z1, z2)

∧ (∃≥Nz3, R4(z3, z2)) ∧ R3(z2, x)

C4(h, x) := ∃z1z2z3,R1(h, z1) ∧ R2(z1, z2)

∧ R3(z2, z3) ∧ R4(z3, x)

Rule structure Rule formula

query entity

tail entity

Figure 6: In the synthetic experiments, we also compare the performance of various GNNs on the
synthetic datasets generated from C4 and I2.

Corollary D.1. I2(h, x) is a formula in CML[G, h].
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Proof. I2(h, x) is a formula in CML[G, h] as it can be recursively defined as follows

φ1(x) = Ph(x),

φ2(x) = ∃y,R1(y, x) ∧ φ1(y),

φ3(x) = ∃y,R2(y, x) ∧ φ2(y),

φs(x) = ∃≥2y,R4(y, x) ∧ ⊤,
φ4(x) = φs(x) ∧ φ3(x),

I2(h, x) = ∃y,R3(y, x) ∧ φ4(y).

D.2 EXPERIMENTS FOR COMPGCN

The classical framework of KG reasoning is inadequate for assessing the expressivity of CompGCN
because the query (h,R, ?) assumes that certain logical formula φ(x) are satisfied at the head entity
h by default. In order to validate the expressivity of CompGCN, it is necessary to predict all missing
triplets directly based on entity representations without relying on the query (h,R, ?). To accomplish
this, we create a new dataset called S that adheres to the rule formula S(x, y) = φ⋆(x) ∧ φ⋆(y),
where the logical formula is defined as:

φ⋆(x) = ∃yR1(x, y) ∧ (∃xR2(y, x) ∧ (∃yR3(x, y))) .

Here, φ⋆(x) is represented with parameter reusing (reusing x and y) and is a formula in CML.
Therefore, the formula S(x, y) takes the form of R(x, y) = fR({φ(x)}, {φ′(y)}) and can be learned
by CompGCN, as indicated by Theorem 3.4. To validate our theorem, we generate a synthetic
dataset S using the same steps outlined in Section 6.1, following the rule S(x, y). We then train
CompGCN on dataset S. The experimental results demonstrate that CompGCN effectively learns
the rule formula S(x, y) with 100% accuracy. Comparing it with QL-GNN is unnecessary since the
latter is specifically designed for KG reasoning setting involving the query (h,R, ?).

D.3 STATISTICS OF SYNTHETIC DATASETS

Table 6: Statistics of the synthetic datasets.
Datasets C3 C4 I1 I2 T U S

known triplets 1514 2013 843 1546 2242 2840 320

training 1358 2265 304 674 83 396 583

validation 86 143 20 43 6 26 37

testing 254 424 57 126 15 183 109

D.4 RESULTS ON SYNTHETIC WITH MISSING TRIPLETS

We randomly remove 5%, 10%, and 20% edges from synthetic datasets to test the robustness of
QL-GNN and EL-GNN for rule structures learning. The results of QL-GNN and EL-GNN are shown
in Table 7 and 8 respectively. The results show that the completeness of rule structure correlates
strongly with the performance of QL-GNN and EL-GNN.

Table 7: The accuracy of QL-GNN on synthetic datasets with missing triplets.
Triplet missing ratio C3 C4 I1 I2 T U

5% 0.899 0.866 0.760 0.783 0.556 0.329
10% 0.837 0.718 0.667 0.685 0.133 0.279
20% 0.523 0.465 0.532 0.468 0.111 0.162
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Table 8: The accuracy of EL-GNN on synthetic datasets with missing triplets.
Triplet missing ratio C3 C4 I1 I2 T U

5% 0.878 0.807 0.842 0.857 0.244 0.5
10% 0.766 0.674 0.725 0.661 0.222 0.347
20% 0.499 0.405 0.637 0.458 0.111 0.257

D.5 MORE EXPERIMENTAL DETAILS ON REAL DATASETS

MRR and Hit@10 Here we supplement MRR and Hit@10 of NBFNet and EL-NBFNet on real
datasets in Table 9. The improvement of EL-NBFNet on MRR and Hit@10 is not as significant as
that on Accuracy because the EL-NBFNet is designed for exactly learning rule formulas and only
Accuracy can be guaranteed to be improved.

Table 9: MRR and Hit@10 of NBFNet and EL-NBFNet on real datasets.
Family Kinship UMLS WN18RR FB15k-237

MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10 MRR Hit@10

NBFNet 0.983 0.993 0.900 0.997 0.970 0.997 0.548 0.657 0.415 0.599
EL-NBFNet 0.990 0.991 0.905 0.996 0.975 0.993 0.562 0.669 0.424 0.607

Different hyperparameters of d We have observed that a larger or smaller d does not necessarily
lead to better performance in Figure 4. For real datasets, we also observed similar phenomenon in
Table 10. For real datasets, we uses d = 5, 30, 100, 100, 300 for Family, Kinship, UMLS, WN18RR,
and FB15k-237, respectively.

Table 10: The accuracy of EL-NBFNet on UMLS with different d.
d = 0 d = 50 d = 100 d = 150 NBFNet

0.948 0.958 0.963 0.961 0.951

Time cost of EL-NBFNet In Table 11, we show the time cost of EL-NBFNet and NBFNet on real
datasets. The time cost is measured by seconds of testing phase. The results show that EL-NBFNet is
slightly slower than NBFNet. The reason is that EL-NBFNet needs to traverse all entities on KG to
assign constants to entities with out-degree larger than degree threshold d.

Table 11: Time cost (seconds of testing) of EL-NBFNet on real datasets.
Methods Family Kinship UMLS WN18RR FB15k-237

EL-NBFNet 270.3 14.0 6.7 35.6 20.1
NBFNet 269.6 13.5 6.4 34.3 19.8

E THEORY OF GNNS FOR SINGLE-RELATIONAL LINK PREDICTION

Our theory of KG reasoning can be easily extended to the single-relational link prediction. The
following two corollaries are the extensions of Theorem 3.2 and Theorem 3.4 to the single-relational
link prediction, respectively.

Corollary E.1 (Theorem 3.2 on single-relational link prediction). For single-relational link prediction,
given a query (h,R, ?), a rule formula R(h, x) is learned by QL-GNN if and only if R(h, x) is a
formula in CML[G, h].
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Corollary E.2 (Theorem 3.4 on single-relational link prediction). For single-relational link prediction,
CompGCN can learn the rule formulaR(x, y) = fR ({φ(x)}, {φ′(y)}) where fR is a logical formula
involving sub-formulas from {φ(x)} and {φ′(y)} which are the sets of formulas in CML[G] that can
be learned by GNN (1).

Corollary E.1 and E.2 can be directly proven by restricting the logic of KG to single-relational graph,
which means there is only one binary predicate in logic of graph.

F UNDERSTANDING GENERALIZATION BASED ON EXPRESSIVITY

F.1 UNDERSTANDING EXPRESSIVITY VS. GENERALIZATION

In this section, we provide some insights on the relation between expressivity and generalization.
Expressivity in deep learning pertains to a model’s capacity to accurately represent information,
whereas the ability of a model to achieve this level of expressivity depends on its generalization.
Considering generalization requires not only contemplating the model design but also assessing
whether the training algorithm can enable the model to achieve its expressivity. The experiments in
this paper can also show this relation about expressivity and generalization from two perspective:
(1) The experimental results of QL-GNN shows that its expressivity can be achieved with classical
deep learning training strategies; (2) In the development of deep learning, a consensus is that more
expressivity often leads to better generalization. The experimental results of EL-GNN verify this
consensus.

In addition, our theory can provide some insights on model design with better generalization. Based
on the constructive proof of Lemma C.3, if QL-GNN can learn a rule formula R(h, x) with L
recursive definition, QL-GNN can learn R(h, x) with layers and hidden dimensions no less than L.
Assuming learning r relations with QL-GNN and numbers of recursive definition for these relations
are L1, L2, · · · , Lr respectively, QL-GNN can learn these relations with layers no more thanmaxiLi

and hidden dimensions no more than
∑
Li. Since these bounds are nearly worst-case scenarios, both

the dimensions and layers can be further optimized. Also, in the constructive proof of Lemma C.3,
the aggregation function is summation, and it is difficult for mean and max/min aggregation function
to capture sub-formula ∃≥Ny (Ri(y, x) ∧R(h, y)). From the perspective of rule learning, QL-GNN
extracts structural information at each layer. Therefore, to learn rule structures, QL-GNN needs an
activation function with compression capability for information extraction from inputs. Empirically,
QL-GNN with identify activation function fails to learn with rules in synthetic dataset.

Moreover, because our theory cannot help understand generalization related to network training, the
dependence to hyperparameters of network training, e.g., the number of training examples, graph
size, number of entities, cannot be revealed from our theory.

F.2 WHY ASSIGNING LOTS OF CONSTANTS HURTS GENERALIZATION?

We take the relation C3 as an example to show why assigning lots of constants hurts generalization
from logical perspective. We add two different constants c1 and c2 to the rule formula C3(h, x),
which results two different rule formulas C ′

3(h, y) = ∃z1R1(h, z1) ∧ R2(z1, c1) ∧ R3(c1, x) and
C⋆

3 (h, y) = ∃z1R1(h, z1) ∧ R2(z1, c2) ∧ R3(c2, x). Predicting new triplets for relation C3 can
now be achieved by learning the rule formulas C3(h, x), C

′
3(h, x), or C⋆

3 (h, x). Among these rule
formulas, C3(h, x) is the rule with the best generalization, while C ′

3(h, x) and C⋆
3 (h, x) require the

rule structure to pass through the entities with identifiers of constants c1 and c2, respectively. Thus,
when adding constants, maintaining performance requires the network to learn both rule formulas
C ′

3(h, x), C
⋆
3 (h, x) simultaneously which may potentially require a network with larger capacity.

Even EL-GNN is unnecessary to learn C ′
3(h, x), C

⋆
3 (h, x) since C3(h, x) is learnable, EL-GNN

cannot avoid learning rules with more than one constant in it when the rules are out of CML.

G LIMITATIONS AND IMPACTS

Our work offers a fresh perspective on understanding GNN’s expressivity in KG reasoning. Unlike
most existing studies that focus on distinguishing ability, we analyze GNN’s expressivity based
solely on its ability to learn rule structures. Our work has the potential to inspire further studies. For
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instance, our theory analyzes GNN’s ability to learn a single relation, but in practice, GNNs are often
applied to learn multiple relations. Therefore, determining the number of relations that GNNs can
effectively learn for KG reasoning remains an interesting problem that can help determine the size
of GNNs. Furthermore, while our experiments are conducted on synthetic datasets without missing
triplets, real datasets are incomplete (e.g., missing triplets in testing sets). Thus, understanding the
expressivity of GNNs for KG reasoning on incomplete datasets remains an important challenge.
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