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Abstract
We study shallow quadratic and cubic polynomial neural networks of width 2. In this setting, the ambient space
is the space of symmetric polynomials, which is finite-dimensional. We consider four target functions that
correspond to rank-2 and rank-3 symmetric matrices, and rank-2 and rank-3 symmetric tensors. We compare the
learning dynamics when the target function lies within versus outside the function space (neuromanifold), and we
analyze the patterns of critical points in both the parameter space and the corresponding functional space.

1. Introduction
The family of polynomial neural networks (PNNs) with fixed input and output dimensions defines a finite-dimensional
semialgebraic set (Bochnak et al., 1998). For a quadratic (resp. cubic) activation function, the corresponding functional
space is the space of symmetric matrices (resp. symmetric tensors). The study of PNNs is also related to tensor decomposi-
tions (Kileel et al., 2019), and tools from algebraic geometry can be used to analyze the functional space—particularly to
understand the set of critical points of a given loss function.

If the hidden width is R, then only matrices (or tensors) of rank at most R are reachable. In the case of a quadratic activation
function, the functional space is in fact the determinantal variety (Kubjas et al., 2024)

VR = {A ∈ Symn(R) | rank(A) ≤ R},

where A is a symmetric matrix. Therefore, PNNs are good candidates for studying learning dynamics and the structure of
the set of critical points, particularly when the functional space is well understood—as in the case of quadratic activation.

2. Related Work
A line of work has taken an algebraic-geometric view of PNNs. Most relevant is Arjevani et al. (2025), who classify width
regimes and give concrete bounds for expressivity. Other work on implicit bias (Ji & Telgarsky, 2019; Cai et al., 2025)
and algebraic geometry (Arjevani et al., 2025; Kohn, 2023) suggests that the geometry of the loss landscape is worth
investigating, as neural networks often get stuck during training at singularities that correspond to subarchitectures of the
original network with lower dimension. For example, when attempting to learn rank-3 matrices using a network with layer
dimensions d = (3, 3, 1), training sometimes fails to recover the target function. However, the functions that are learned
instead correspond to lower-rank matrices. Our study is complementary: we stay in the low-dimensional regime (R ≤ n)
and aim to take an empirical step in this direction.

3. Experiment set-up
We study the capacity of a shallow polynomial neural network (SPNN) with architecture

d = (3, 2, 1), fw(x) = W2 σ
(
W1x

)
, σ(z) = z◦r,

where r = 2 or r = 3. Here x ∈ [−1, 1]3 ⊂ R3, W1 ∈ R2×3 and W2 =
[
b1, b2

]
∈ R2. For example, with the square

activation function, the network learns a degree-2 homogeneous polynomial:

fw(x) = b1 ℓ1(x)
2 + b2 ℓ2(x)

2, ℓi(x) = ⟨wi,x⟩,
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which is a quadratic form
fw(x) = xT (W⊤

1 diag(W2)W1)x ∈ Sym3(R).

We pick this architecture to make things easier to visualise and because these activations are well understood. For the
quadratic case, let Aw be the matrix such that

fw(x) = x⊤Awx.

W1 has at most two rows we always have rankW1 ≤ 2 and therefore we cannot learn targets where Aw has rank 3 (Comon
& Mourrain, 1996). For the cubic case, Aw is the symmetric tensor ∈ R3 ×R3 ×R3 associated with the homogenous cubic
polynomial. For each run we draw and set y(k) = ftg(x1, x2, x3),

x(k) i.i.d.∼ N (0, I3), k = 1, . . . , 1000.

Protocol. We perform 500 independent runs. For every run we store initial and final weights, the associated tensor
Ainit

w , Afinal
w , and the final mean-squared error (MSE). We then apply principal–component analysis (PCA) to

θ
(
vec(W1), vec(W2)

)
∈ R8, vec(Coefficients) ∈ {R6,R10},

and project both the parameter space and the corresponding coefficient space to R3. Final points are coloured by
log10(MSE). We use Adam with a learning rate of 5e-3, betas = (0.9, 0.999) and a full batch size of 1000 trained for
5000 epochs.

Neuron Strength. For each final parameter vector we reconstruct W1 ∈ R2×3 and W2 ∈ R2 and define a
per-neuron “strength”

sj = |(W2)j |
∥∥(W1)j,:

∥∥2, j ∈ {1, 2}.

The ratio r = s1/s2 is then classified with a ±10% tolerance:

balanced : 0.9 < r < 1.1, neuron 1 dominates : r ≥ 1.1, neuron 2 dominates : r ≤ 0.9,

while sj ≈ 0 flags a collapsed neuron.

4. Experiments
4.1. Experiment 1

For the first experiment, we pick ftg(x) = x2
1 + x2

2 + x2
3.

Expected outcomes.

1. Non-zero loss floor With width R = 2 the network can realise only rankAw ≤ 2. Because the target quadratic has
full rank 3, the optimum MSE is strictly positive.

2. Three attraction basins. Symmetry predicts three basins based on neuron strengths: (i) balanced – both neurons
active, (ii) neuron-1 dominant, (iii) neuron-2 dominant. A degenerate both-zero may also appear.

3. Geometry. In parameter space PCA, a 2-D symmetry torus should appear as a ring (balanced) with wedges (single-
neuron) and a vertical spindle (both-zero). Mapping to Aw and PCA projecting R6→R3 collapses the torus into a thin
ellipse: the balanced cluster occupies the low-loss arc, the two single-neuron clusters form two teal lobes, and there
should be high-loss points.

4. Loss ordering. We expect balanced < single-neuron < both-zero.

4.1.1. RESULTS

1. Basin counts. Balanced 259, neuron-1 126, neuron-2 99, both-zero 16 out of R = 500 runs – three principal basins
plus the rare failure mode.
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Figure 1. Grey dots: random initialisations. Coloured dots: final trained networks (colour= log10MSE). Left: raw weights projected from
R8 to R3. Right: quadratic-form vectors projected from R6 to R3.

2. Average loss per basin.

balanced: ⟨log10 MSE⟩ = 0.32, neuron-1: 0.69,
neuron-2: 0.72, both zero: 1.73.

Hence balanced runs attain the global minimum permitted by the rank barrier, single-neuron basins incur identical
moderate error, and the both-zero outliers perform worst.

3. Parameter space PCA. The point cloud forms the predicted torus: a purple ring (balanced) interrupted by two teal
wedges (neuron-1, neuron-2) and a vertical yellow spindle through the origin (both-zero). Loss colour follows the
expected ordering.

4. Coefficient space PCA. All finals lie on a slender ellipse. The lowest-loss arc (deep purple) corresponds to balanced
solutions. Two teal patches on the ellipse represent the neuron-1 and neuron-2 clusters, while the high-loss yellow
points records the both-zero failures. The three-cluster pattern is thus what we predicted above.

4.2. Experiment 2

We now choose the rank-2 target

ftg(x) = x2
1 + x2

2, Atg =

1 0 0
0 1 0
0 0 0

 ,

which can be represented exactly by a width-2 SPNN.

Expected outcomes.

1. Exact fit for balanced runs. The rank–2 network can learn the target quadratic exactly since Atg is of rank 2. Balanced
solutions should therefore drive the MSE to machine precision.

2. Three attraction basins. Symmetry predicts three basins based on neuron strengths: (i) balanced – both neurons
active, (ii) neuron-1 dominant, (iii) neuron-2 dominant. A degenerate both-zero may also appear.

3. Geometry. Raw-weight PCA should show a ring (balanced) with wedges (single-neuron solutions) plus a central
spindle (both-zero). In A-space, the torus collapses to three discrete point clusters (balanced, single-neuron, origin).

4. Loss ordering. We expect balanced < single-neuron < both-zero .
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4.2.1. RESULTS

1. Cluster counts. Balanced 299, neuron-1 99, neuron-2 86, both-zero 16 out of R = 500 runs, confirming the predicted
three-basin structure (with a tiny fourth degenerate set).

2. Average loss per basin.

balanced: ⟨log10 MSE⟩ = −12.65, neuron-1: 0.40,
neuron-2: 0.40, both zero: 1.45.

These numbers match the theory: balanced runs hit the numerical floor, the two single-neuron basins attain identical
moderate error, and the both-zero outliers perform worst.

3. Parameter space PCA. The ring splits into a deep-purple arc (balanced) and two yellow wedges (neuron-1 and
neuron-2); the wedges lie adjacent on the ring and therefore look almost like a single cluster in 3-D. The spindle
through the origin contains the high-error both-zero points.

4. Coefficient space PCA. The right panel exhibits three point-like clusters — a lone deep-purple optimum (balanced),
a compact yellow aggregate (merged neuron-1 and neuron-2 solutions), and a second yellow point at the origin
(both-zero). Thus, there are three discrete functional optima.

Figure 2. Experiment 2. Grey = initial; colour = log10 MSE after training. Left: raw weights projected from R8 to R3. Right: quadratic-
form vectors projected from R6 to R3.

Initial distance vs. final error, rotational invariance

For each run we measured the Euclidean distance dinit from its initial point to the nearest converged point on the solution
sheet and correlated it with the final error.

Experiment 1 had corr(dinit, log10 MSE) = −0.201 with p = 5.87× 10−6 (Appendix Figure 3 left), and Experiment 2 had
corr(dinit, log10 MSE) = −0.267 with p = 1.41× 10−9 (Appendix Figure 3 right).
We also randomly rotated the target to ensure that our observed effects were due to rank and not due to Adam. Our results
were as expected.

4.3. Experiment 3

We learn two cubic polynomials:
g1(x) = x3

1 + x3
2 + x3

3, g2(x) = x3
1 + x3

2.

We observe that for g1, there are at least 10 critical points in the parameter space, which appear to cluster into two families:
one with 4 points of higher loss and another with 6 points of lower loss. The corresponding critical points in the functional
space form two connected components: a closed loop and a small cluster.
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For g2, as expected—since g2 lies within the neuromanifold (i.e., the functional space of the network)—the network is able
to learn it exactly. This is reflected in the functional space, where the loop of near-solutions collapses into a single cluster of
optimal solutions.

(a) Weights in the parameter space projected to R3 (b) Cubic form coefficients projected to R3

Figure 3. g1(x) = x3
1 + x3

2 + x3
3

(a) Weights in the parameter space projected to R3 (b) Scaled cubic form coefficients projected to R3

Figure 4. g2(x) = x3
1 + x3

2

5. Conclusion
Our geometry-based investigation illustrates how shallow polynomial networks navigate rank constraints in quadratic and
cubic settings. When the target quadratic exceeds the model’s rank capacity, Adam steers the weights onto the determinantal
variety detA = 0, yielding a strictly positive loss floor that cannot be eliminated without widening the hidden layer.
When the target rank matches the network capacity, the same variety collapses to isolated symmetry classes associated with
permutations of identical hidden units; training converges to one such class and can reach 0 loss.
We also observed differences in the geometry of the loss landscape by examining the set of critical points in both the
parameter space and the functional space. Several promising directions for future work remain. It would be particularly
interesting to use tools from algebraic geometry to theoretically predict the number and nature of critical points and compare
these predictions with our empirical computations. It would also be valuable to study the effects of commonly used activation
functions, such as ReLU, as well as the impact of different optimization algorithms on the loss landscape.
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6. Appendix

Figure 5. Scatter of initial distance dinit versus final log10(MSE). Left: Experiment 1. Right: Experiment 2.
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