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ABSTRACT

Adpversarial distillation (AD), transferring knowledge of a robust teacher model to
a student model, has emerged as an advanced approach to improving robustness
against adversarial attacks. However, AD in general suffers from the high com-
putational complexity of pre-training the robust teacher as well as the inherent
trade-off between robustness and natural accuracy (i.e., accuracy on clean data).
To address these issues, we propose retrospective online adversarial distillation
(ROAD). ROAD exploits the student itself of the last epoch and a natural model
(i.e., a model trained with clean data) as teachers, instead of a pre-trained robust
teacher in the conventional AD. We revealed both theoretically and empirically
that knowledge distillation from the student of the last epoch allows to penal-
ize overly confident predictions on adversarial examples, leading to improved ro-
bustness and generalization. Also, the student and the natural model are trained
together in a collaborative manner, which enables to improve natural accuracy
of the student more effectively. We demonstrate by extensive experiments that
ROAD achieved outstanding performance in both robustness and natural accuracy
with substantially reduced training time and computation cost.

1 INTRODUCTION

Deep neural networks (DNN5s) have achieved great success in various applications such as computer
vision (He et al., 2016; Goodfellow et al., 2014), natural language processing (Sutskever et al., 2014;
Vaswani et al., 2017), and reinforcement learning (Mnih et al., 2013; Chen et al., 2021). However,
Szegedy et al. (2013) showed that DNNs are vulnerable to adversarial attacks (Goodfellow et al.,
2015; Dong et al., 2018; Carlini & Wagner, 2017; Madry et al., 2018), which are small perturba-
tions added to natural inputs to deceive the models and cause incorrect predictions consequently.
These attacks are significant threats especially in high-stakes contexts including autonomous driv-
ing (Sitawarin et al., 2018) and financial systems (Fursov et al., 2021).

Adversarial training (AT) has served as an effective solution to defend against the adversarial at-
tacks (Madry et al., 2018; Gowal et al., 2020; Pang et al., 2021). It improves robustness of DNNs
by training them with adversarial examples crafted from themselves. To further enhance their ro-
bustness, even for compact models, adversarial distillation (AD) has attracted increasing attention
recently (Goldblum et al., 2020; Zhu et al., 2021; Zi et al., 2021; Maroto et al., 2022; Huang et al.,
2023). Analogous to knowledge distillation (KD) (Hinton et al., 2015), AD adopts the teacher-
student framework, in which the teacher model is pre-trained via AT and provides additional super-
vision to the student model for improving its robustness. Surprisingly, even when the teacher and
student have the same capacity, AD enhances the robustness beyond the student trained alone. This
suggests that AD not only compresses a high capacity model into a compact one but also enables to
achieve extra robustness.

However, AD has a fatal drawback: it requires a lot of training time and computing resources. Most
AD methods follow the two-stage training strategy, i.e., pre-training a robust teacher through AT,
and then transferring knowledge of the teacher to a student. Hence, AD typically demands at least
twice as much training time as AT. This drawback make AD impractical for applications with limited
computing resources or tight deployment schedules. Also, although AD enhances the robustness of
the student through insights from the teacher, it is still limited in resolving the inherent trade-off
between robustness and natural accuracy (i.e., accuracy on clean data).
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Figure 1: An overview of ROAD. The student makes Fjgure 2: Robustness versus natural accu-
predictions on both adversarial and natural examples. racy of ResNet-18 on CIFAR-100. The
Then, for training, it is guided by two teachers: the stu- rohust accuracy is measured by AutoAt-
dent itself of the last epoch and a natural model trained ¢ack (Croce & Hein, 2020). ROAD outper-
collaboratively with the student. ROAD thus demands formed widely used AT and AD methods

no pre-trained robust teacher. in both robustness and natural accuracy.

To address these limitations, we propose a new AD method coined retrospective online adversarial
distillation (ROAD). Unlike the conventional AD using a pre-trained robust teacher, ROAD trains a
robust model using knowledge distilled from two teachers: the model itself of the last epoch and an
additional natural model, i.e., a standard model trained with clean data, as illustrated in Figure 1. To
be specific, the robust model is trained using soft labels generated by linear interpolation between its
predictions in the past epoch and true one-hot labels. Through theoretical and empirical analysis, we
find that this simple method penalizes overly confident predictions on adversarial examples, thereby
enhancing its generalization ability and robustness. Moreover, we employ a collaborative learning
strategy to train the robust model and the natural model simultaneously. This enables the natural
model to be aware of the robust model and consequently provide more friendly knowledge to the
robust model. Note that these two teachers are substantially cheaper than the teacher pre-trained
via AT in the conventional AD. Thanks to the use of the two teachers, ROAD achieved outstanding
performance in both robustness and natural accuracy (Figure 2) with substantially reduced training
time and computation cost (Figure 5(c) and 5(d)). Our major contribution is three-fold:

* We propose ROAD, a new single-stage AD method based on retrospective self-distillation and
collaborative learning, to address the chronic issues of the conventional AD approach.

* ROAD demonstrated superior performance in both robustness and natural accuracy with diverse
network architectures on two datasets and three different adversarial attacks.

* ROAD allows to substantially reduce overall training time and computation cost of AD. To be
specific, it requires about half the training time and memory of the previous best AD method.

2 RELATED WORK

Adversarial Training. Adversarial training has proven to be an effective defense against adversarial
attacks. One fundamental approach is PGD adversarial training (Madry et al., 2018), using the
Projected Gradient Descent algorithm. Subsequent advancements have introduced regularization
terms to enhance performance. For instance, Zhang et al. (2019) achieved a principled trade-off
between robustness and accuracy, while Wang et al. (2020) focused on improving robustness by
revisiting misclassified examples. Kannan et al. (2018) improved robustness by a technique called
adversarial logit pairing. Other approaches involve additional unlabeled data utilization (Carmon
et al., 2019; Uesato et al., 2019; Gowal et al., 2021; Wang et al., 2023) or perturbing the weight of
the model (Wu et al., 2020) or utilize extra models (Chen et al., 2020; Cui et al., 2021; Arani et al.,
2020; Rade & Moosavi-Dezfooli, 2022; Dong et al., 2022; Wang & Wang, 2022). However, AT
methods cannot ensure high robustness for small-sized models. Regarding this, ROAD demonstrates
distinctiveness by showing high robustness not only in large models but also in small models.
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Adversarial Distillation. The goal of adversarial distillation is to train a small-sized student model
to mimic both the natural and robust predictions of a larger-sized robust teacher model. The initial
works is Goldblum et al. (2020) which propose Adversarially Robust Distillation (ARD) to achieve
robustness by comparing the model’s robust prediction with teacher’s natural prediction. Zi et al.
(2021) compared conventional AT methods from a distillation perspective, emphasizing the advan-
tages of using soft labels to achieve higher robustness. Based on this observation, they proposed
Robust Soft Label Adversarial Distillation (RSLAD), which involves training the student model us-
ing soft labels generated from the teacher’s predictions. In addition, Zhu et al. (2021) pointed out that
a robust teacher might provide unreliable predictions for adversarial examples crafted by the student
model and proposed Introspective Adversarial Distillation (IAD), in which the teacher’s predictions
are partially trusted. Liu et al. (2022) proposed Mutual Adversarial Training (MAT), which trains
multiple robust models collaboratively to share the knowledge achieved from each adversarial ex-
amples. Lastly, Huang et al. (2023) proposed Adaptive Adversarial Distillation (AdaAD), which
adaptively searches for inner maximization results by comparing the differences in predictions of
student and teacher models. AD methods can be an attractive alternatives to enhance the robustness
of end devices. However, the inherent two-stage process and associated computational inefficiency
still conveys an inappropriate impression.

3 RETROSPECTIVE ONLINE ADVERSARIAL DISTILLATION

ROAD consists of two components: retrospective self-adversarial distillation using the robust model
itself of the last epoch to improve robustness, and collaborative learning with a natural model to
recover natural accuracy. We first elaborate on each of the two components in Section 3.1 and
Section 3.2, respectively, and then describe the overall training objective for ROAD in Section 3.3.

3.1 SELF-ADVERSARIAL DISTILLATION FROM LAST EPOCH

AD has been acknowledged as an effective way to achieving extra robustness by improving gener-
alization ability. However, pre-training the robust teacher model through AT demands an extremely
large amount of training time. For instance, pre-training a 10-step PGD model requires roughly 11
times more forward-backward passes compared with the natural training. Additionally, loading both
the teacher and student during the distillation process significantly increases GPU memory usage.

To address these challenges, we introduce a simple yet efficient approach to improving robustness,
self-adversarial distillation from the last epoch. Our distillation scheme does not require a teacher
model as the student becomes its own teacher. Instead, it leverages the predictions on adversarial
examples made by the robust model (i.e., the student) itself in the past. This approach eliminates
the necessity of training an additional robust model. Specifically, it mixes the past predictions for
adversarial examples with their one-hot labels by interpolation ratio A. Ideally A should increase
gradually as the predictions from previous epochs becomes more accurate. Considering that, we
adopt a monotonically increasing schedule based on the sine function for A. Then, the soft labels for
robust model at the ¢-th epoch are given by

g = (1= M)y + Mpi®y (2 _4), (1)
rob

where pi°°; (x}_;) is the output of the robust model for the adversarial example z;_; at (¢t — 1)-th
epoch. The model trains with these soft labels instead of conventional one-hot labels.

3.1.1 THEORETICAL ANALYSIS

We carefully analyze the role of the adversarial predictions at the last epoch as supervision. To
this end, we first discuss the relationship between over-confidence and robustness in AT. Although
robust models are less over-confident than natural models in prediction (Grabinski et al., 2022),
their predictions still tend to be overly confident as they are trained with one-hot labels. Stutz et al.
(2020) pointed out that AT overfits to experienced norm bounded adversarial examples (e.g., £
norm bounded adversarial examples) and performs poorly on other ¢, norm bounded adversarial
examples or those crafted with a larger perturbation bound. Chen et al. (2020) claimed that the
cause of robust overfitting, as discussed by Rice et al. (2020), is the model’s tendency to overfit to
adversarial examples during the early stages of the training process, resulting in lack of generaliz-
ability. Therefore, it can be inferred that the over-confidence acts as a factor that diminishes the
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generalization capability of robust models and thus hampers the gain of robustness. We claim that
our method resolves this problem by penalizing updating the model when its prediction confidence
is boosted drastically for input adversarial examples during training. This phenomenon can be ex-
plained by gradient rescaling factor, following propositions presented by Tang et al. (2020) and Kim
et al. (2021). The gradient rescaling factor is defined as the ratio of the /1 norm of the loss gradient
with respect to the logit during AD to that during training with one-hot labels.

Proposition 1. Given a K-class classification problem, let p; ; be the output of the robust model for
an adversarial example of class 7 (: = 1,2,..., K) at the ¢-th epoch, and G'T" be the ground truth
class. The gradient rescaling factor is then derived as

2 — 1o 1—pi_1r
> 104 1- pi,GT

where 0; and 81-A Dt represent the gradients of a logit of class 7 when trained with standard one-hot
labels and the proposed soft labels at epoch ¢, respectively. Also, v indicates the inverse confidence
of the prediction for the ground truth class. The detailed derivation is in Appendix B.1. Note that
Vﬁy L becomes larger as the prediction confidence on the adversarial example has increased signif-
icantly compared to the last epoch. This refers that our method assigns relatively smaller weights
to examples that exhibit substantial improvement. Consequently, our method acts as a countermea-
sure, preventing the model’s predictions from becoming overly confident and thus possess superior
calibration performance, which has been known as an attribute of robust models (Grabinski et al.,
2022; Wu et al., 2023).
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Figure 3: Reliability diagrams for PGD-AT, LS, AKD, and our method on CIFAR-100. We note the
ECE (lower is better) on the right bottom side of the diagram.

To empirically verify the results of our theoretical analysis, we prepare four ResNet-18 models
trained with PGD-AT (Baseline), PGD-AT with label smoothing (LS), adversarial knowledge dis-
tillation (AKD), and self-adversarial distillation from the last epoch (Ours). LS (Szegedy et al.,
2016) is known to mitigate the over-confidence problem by imposing uncertainty on one-hot labels.
AKD (Maroto et al., 2022) is an AD method that trains a model using as supervision combinations
of adversarial predictions from a pre-trained robust model and one-hot labels. We compare our
technique with these prior arts in terms of calibration performance since these arts aim to suppress
over-confidence by adopting soft labels which is similar with ours. An ideally well calibrated model
would provide high confidence in correct classifications, and low confidence in wrong classifica-
tions. To evaluate the calibration performance, we use the expected calibration error (ECE) (Naeini
et al., 2015) as our metrics. Let M and n denote the number of confidence interval bins and that of
the individual samples, respectlvely, where each bin contains samples whose confidences fall within

the corresponding interval [, M] Then, ECE is defined as

ECE = Z | ml|A

m=1

— Conf(By,)|.

Predictions on adversarial examples are collected along with their respective confidence levels. Fur-
ther experiment details are in the Appendix B.2. The reliability diagrams (Guo et al., 2017) of the
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four methods and their ECE scores are presented in Figure 3; the smaller the gap in the reliability
diagram, the better the calibration of the model. As shown in the figure, our method demonstrates
significantly low over-confidence in its predictions on adversarial examples compared to other meth-
ods. Furthermore, we observe that our method achieved a notably lower ECE score in comparison,
indicating superior calibration performance.

3.2 COLLABORATIVE LEARNING WITH NATURAL MODEL

The trade-off between robustness and natural accuracy has been a longstanding issue of AT (Tsipras
et al., 2019; Zhang et al., 2019; Yang et al., 2020). This issue persists in AD as it adopts the robust
teacher model trained using AT. It is hard to expect that a teacher with high robustness can also
be a proper supervisor that helps improve natural accuracy. Thus, to achieve both robustness and
natural accuracy through AD, it is reasonable to consider for a student to benefit from the guidance
of two teachers: one trained naturally and the other trained through AT. A few prior studies (Chen
et al., 2020; Zhao et al., 2022) share this concept to mitigate the trade-off using a pre-trained natural
model as the frozen natural model. However, experimental results presented in the literature (Zi
etal., 2021; Maroto et al., 2022) demonstrate that distilling knowledge from the static natural model
can reduce robustness, indicating that it is not the proper approach.

In this paper, we take a different view towards the robust and natural models, and adopt the frame-
work of online distillation (Zhang et al., 2018; Guo et al., 2020; Cui et al., 2021). Instead of using
the pre-trained and frozen natural model as a teacher, we treat the natural model as a peer so that both
models exchange their knowledge during the training process. We focus on the fact that a model
trained by AT and that trained differ in training schemes and data, leading to distinct knowledge
representations. By employing mutual learning between these models, we expect that the robust
model can acquire knowledge from the natural model without compromising its robustness.

Meanwhile, exchanged knowledge takes on differing roles from each model’s perspective. The nat-
ural model views the robust model’s insights as a form of regularization. On the other hand, the
robust model views the knowledge from the natural model as an alternative to one-hot labels. This
asymmetry necessitates a careful balance in the quantity of knowledge exchanged during the col-
laborative training. Also, since a robust model is in general substantially poor in natural accuracy
at early stages of training, knowledge transfer from the robust model to the natural counterpart may
hinder their collaborative learning. We thus control the impact of the collaborative learning dynam-
ically through a weight parameter A following the monotonically increasing schedule based on the
sine function as in Section 3.1, where the weight is used to create soft labels based on predictions
of the robust model. These soft labels are then utilized for training the natural model. This strat-
egy mitigates the cold start issue and ensures effective knowledge transfer between the two models
throughout the collaborative learning process. The soft labels for the natural model are given by

9 = (1= M)y + Mpi® (), 2)

where pi°®(x;) is the output of the robust model for the natural example at the ¢-th epoch. We train
the natural model using these soft labels {j;, instead of one-hot labels, through the cross-entropy loss.
While the natural model is trained using the soft labels, the robust model receives supervision from
the natural model through a standard KL-divergence loss.

3.3 THE OVERALL OBJECTIVE

Incorporating the techniques that we suggested in the previous sections, the final objective function
for ROAD is given by

Hglin CE(f9mb (33/), Z}) +8- KL(f@mb (37/), f@mb (l‘)) +7 - KL(f9mb (l‘), fena[(x))7 3)

rob

Self-Guidance Robustness Enhancement Natural Model Guidance

where fy,, is the robust model, fy, is the natural model, hyper-parameter 3 controls the trade-off
between robustness and natural accuracy, and hyper-parameter « controls the amount of guidance.
The training objective of ROAD contains three components: The first component is derived from
Section 3.1, forcing the model to be less over-confident on adversarial examples and improving its
generalization consequently. The second term is adopted to further improve robustness by mini-
mizing the output distribution difference between adversarial examples and natural examples; for
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Algorithm 1 Retrospective Online Adversarial Distillation (ROAD)

Require: Robust model fy,,, Natural model fy , training dataset D, learning rate 7, number of
epochs 7', batch size m, number of batches M, maximum perturbation bound e, attack iterations
K, step size 7, robust factor 3, guidance factor .

1: forepoch=1,...,T do

2 for mini-batch =1,..., M do

3 Sample a mini-batch {(z;,y;)}, from D

4 fori=1,...,mdo

5: x, < x; +¢€, €~ Uniform(—e,e)

6 fork=1,2,...,Kdo

7 ;< Up, (2 (2] + 1 - sign (Var CE(fo,, (27),5:)))

8: end for

9: end for
10: Obtain robust soft labels y using Eq. (1).
11: Obtain natural soft labels ¢ using Eq. (2).
12: Orob < Orob — TV g, (CE(meb (I/)a g) +5- KL(fgmb (‘T ) Brob (‘T))

7 - KL{fony (). fas () detach())

13: Onat <= Onat — TV@nm(CE(anm( ),9)
14: Save predictions of fy, on 2’
15: end for

16: end for

this purpose, we utilized the KL divergence loss, following prior studies (Zhang et al., 2019; Wang
et al., 2020). This regularization term causes loss in natural accuracy as a trade-off for improved
robustness. Nevertheless, this loss of accuracy can be recovered by the subsequent term. Finally, the
last component enhances natural accuracy by matching the output distributions of the robust model
and its peer natural model. To this end, we adopt KL-divergence to effectively distill the knowledge
from the natural model. The complete algorithm is described in Algorithm 1.

4 EXPERIMENTAL RESULTS

4.1 SETUP

We mainly use ResNet-18 (He et al., 2016) and MobileNetV2 (Sandler et al., 2018) architectures
and train the models with the SGD optimizer with momentum of 0.9. The batch size is set to 128.

ROAD is compared with five AT methods, PGD-AT (Madry et al., 2018), TRADES (Zhang et al.,
2019), MART (Wang et al., 2020), LBGAT (Cui et al., 2021), and SEAT (Wang & Wang, 2022),
and five AD methods, ARD (Goldblum et al., 2020), KD+SWA (Chen et al., 2020), IAD (Zhu et al.,
2021), RSLAD (Zi et al., 2021), and AdalAD (Huang et al., 2023), as well as the combination of
AdaAD and IAD (Zhu et al., 2021).

We conduct our evaluations on CIFAR-100 and CIFAR-10 (Krizhevsky et al., 2009). For PGD-AT,
TRADES, MART, and ROAD, we set the number of epochs to 120 with weight decay 3.5e-3 and
the learning rate starts from 0.01 and is divided by 10 at the 75, 90, and 100 epochs. We clarify that
the PGD-AT model is trained with different settings with the one mentioned in Section 3.1, focusing
on evaluating robustness in this section while assessing generalization ability in Section 3.1. The
robust factor S is set to 6.0 for TRADES and MART. For LBGAT and SEAT, we directly comply
with the official implementation. For ROAD, we fix 5 to 6.0 and set «y to 3.0 and 5.0 for CIFAR-100
and CIFAR-10, respectively. \; follows sine increasing schedule starting from 0 to 0.8. Meanwhile,
for the AD methods, we set the number of epochs to 200 with weight decay Se-4. The learning rate
starts from 0.1 and is divided by 10 at the 100, 150, and 175 epochs except KD+SWA. We directly
use the PGD-AT model as the teacher model. For KD+SWA, we additionally use the NAT model as
the natural teacher model. As recommended in Goldblum et al. (2020), we set the hyper-parameter
a of ARD and AdalAD to 1.0 and distillation temperature 7 to 5.0 and 30.0 for CIFAR-100 and
CIFAR-10, respectively. In other training details, we strictly follow the settings from the original
papers. For natural model, we train with natural images and the learning rate starts from 0.1 and is
divided by 10 at the 75, 90, and 100 epochs.
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4.2 PERFORMANCE WITH COMPACT ARCHITECTURES

We first evaluate the robustness of our method in compact size architectures, ResNet-18 and Mo-
bileNetV2. We report the results on CIFAR-100 and CIFAR-10 in Table 1 and Table 2, respectively.
Regardless of the architectures or datasets, our ROAD demonstrates the best performance in most
cases. Performance results in AA indicate that ROAD is robust under not only in white-box attacks
but also in black-box attacks. The AD methods show improvement in terms of robustness compared
to the PGD-AT teacher, but they exhibit a decrease in natural accuracy. In contrast, ROAD improves
the natural accuracy by 1.56% and 0.51% on ResNet-18 and MobileNetV2 respectively, compared
to other AT or AD methods. This demonstrates the significant role of collaborative learning with the
natural model in mitigating the trade-off between robustness and natural accuracy.

Table 1: Validation results of ResNet-18 and MobileNetV2 models on CIFAR-100 trained with dif-
ferent methods. The best and second performances are marked in bold and underlined respectively.

Model | Method | NAT | PGD-20 | PGD-100 | MIM-10 | AA
NAT 77.10 0.0 0.0 0.01 0.0
PGD-AT | 57.05 | 3027 30.22 3116 | 2535
TRADES | 60.53 | 29.96 29.87 3065 | 25.01
MART 5343 | 3186 31.74 3231 | 2570
LBGAT | 57.76 | 33.11 33.03 3351 | 2668

RN-18 | SEAT 5588 | 3133 3133 3182 | 2636
ARD 5545 | 3101 30.92 3182 | 2621
KD+SWA | 5894 | 3042 30.36 3117 | 2676
IAD 5459 | 3145 3147 32.17 | 2651
RSLAD | 5539 | 31.63 3152 3228 | 2674
AdalAD | 5639 | 3085 30.80 3163 | 26.03
ROAD 6209 | 3373 33.81 3443 | 27.60
NAT 75.96 0.0 0.0 0.09 0.0
PGD-AT | 5626 | 29.18 29.08 3027 | 24.40
TRADES | 59.06 | 29.44 2932 3005 | 24.29
MART 4850 | 30.66 30.61 3083 | 23.94
LBGAT | 5340 | 2934 29.27 2968 | 2332

MN-V2 | SEAT 5460 | 3061 30.61 312 | 2543
ARD sL14 | 2777 27.65 2852 | 23.16
KD+SWA | 5473 | 2878 28.72 2050 | 24.62
IAD 49.58 | 27.68 27.59 2830 | 22.66
RSLAD | 53.07 | 3084 30.75 3168 | 25.84
AdaIAD | 55.12 | 2986 29.65 3056 | 24.76
ROAD 5957 | 3244 3227 33.02 | 2598

Table 2: Validation results of ResNet-18 and MobileNetV2 models on CIFAR-10 trained with dif-
ferent methods. The best and second performances are marked in bold and underlined respectively.

Model | Method | NAT | PGD-20 | PGD-100 | MIM-10 | AA
NAT 94.73 0.0 0.0 0.01 0.0
PGD-AT | 83.63 | 5192 5172 53.60 | 48.76
TRADES | 8277 | 53.83 53.61 5527 | 4977
MART 80.42 | 54.89 54.62 56.15 | 48.72
LBGAT | 78.11 | 5426 54.08 5537 | 49.92
RN-18 | SEAT 83.49 | 5440 54.44 5592 | 5078
ARD 8276 | 5158 5130 5333 | 48381
KD+SWA | 84.14 | 5277 5247 5466 | 49.91
IAD 8205 | 53.82 53.68 5512 | 49.77
RSLAD | 83.13 | 53.64 53.26 55.58 | 50.61
AdaIAD | 83.11 | 5234 51.94 53.92 | 49.15
ROAD 84.42 | 5493 54.56 5643 | 5091
NAT 93.06 0.0 0.0 0.0 0.0
PGD-AT | 8257 | 5045 50.17 5220 | 4734
TRADES | 8117 | 5205 51.95 5336 | 48.64
MART 7748 | 5334 53.28 54.34 | 46.87
LBGAT | 7263 | 4978 49.74 5049 | 46.11
MN-V2 | SEAT 8170 | 5273 52.54 5419 | 49.16
ARD 79.46 | 4823 47.94 49.95 | 4533
KD+SWA | 8144 | 5152 5133 5326 | 4851
IAD 79.02 | 49.96 49.82 5129 | 46.10
RSLAD | 8193 | 5181 51.62 5353 | 48381
AdalAD | 81.87 | 51.06 50.90 5260 | 47.91
ROAD 8277 | 5372 53.45 5491 | 4927
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4.3 PERFORMANCE WITH HIGHER CAPACITY ARCHITECTURE

In this section, we extend our evaluation on higher capacity architecture, WRN-28-10 (Zagoruyko
& Komodakis, 2016). For PGD-AT, TRADES, MART, and ROAD, we adjust the weight decay to
5e-4 and the learning rate starts from 0.1. Other training details remain the same as described in
Section 4. We report the results on CIFAR-100 in Table 3. A similar trend is shown as in the previ-
ous experiments. ROAD shows superiority on natural accuracy ranging from a minimum of 2.27 %
to a maximum of 8.53% compared to other models. Furthermore, it exhibits the best robustness
even in white-box attacks and ranks second in AA. This result confirms that our method consistently
demonstrates superior performance in both robustness and natural accuracy across different archi-
tectures. In Appendix D, additional experimental results demonstrate the superior performance of
our method.

Table 3: Validation results of WRN-28-10 models on CIFAR-100 trained with different methods.
The best and second performances are marked in bold and underlined respectively.

Method | NAT | PGD-20 | PGD-100 | MIM-10 | AA

PGD-AT | 61.36 | 3137 31.22 32.55 27.63
TRADES | 60.10 | 3223 32.17 32.89 27.60
MART 55.16 | 33.65 33.55 33.98 28.19
LBGAT | 5996 | 34.84 34.84 3527 | 28.87
SEAT 5972 | 3446 3441 34.97 29.52
ARD 60.01 32.60 3243 33.75 28.88
RSLAD | 59.78 | 33.90 33.74 34.93 29.91
AdalAD | 6142 | 3243 32.31 33.50 28.58
ROAD 63.69 | 35.10 35.06 35.97 29.66

4.4 ABLATION STUDIES

In this section, we study the importance of each component in ROAD through several experiments.

Effect of different scheduling strategies. We study the effect of epoch-wise interpolation ratio A
scheduling. In addition to the sine increasing strategy used in our method, we prepare two simple
strategies. One is fixing A\ at the final value, and the other is linearly increasing it. As shown
in Figure 4(a), the sine increasing strategy shows the best robustness. Since the sine increasing
strategy reaches the final value more quickly than the linear increasing strategy, therefore, it greatly
benefits from the effects of self-distillation starting from the midpoint of the training process. In
contrast, the fixed strategy exhibits the lowest performance in both natural accuracy and robustness,
indicating that the cold start issue could actually hinder learning.

Effect of transferring asymmetric knowledge. Next, we also study the effect of asymmetric
knowledge transfer between the natural and robust model in ROAD. To verify its effectiveness,
we prepare the symmetric version of ROAD: the natural model achieves knowledge via not soft la-
bels but KL-divergence, typically seen in conventional online distillation. We reuse ~y for simplicity
and symmetric knowledge transfer. As shown in Figure 4(b), ROAD significantly outperforms the
symmetric version of ROAD in natural accuracy regardless of the value of ~.

Impact of soft labels. We prepare three variants of ROAD: (1) where we removed the first soft
labels ¢ to exclude self-distillation from predictions of the last epoch, (2) where we removed the
second soft labels g to prevent natural model achieve knowledge from robust model through collab-
orative learning and (3) where we removed both ¢ and ¢, replacing them with one-hot labels. As
demonstrated in Figure 4(c), both variants show lower robustness than ROAD. This suggests that
self-distillation enables the model to enhance robustness. Furthermore, it can be inferred that when
the natural model unilaterally conveys knowledge to the robust model, although it may be helpful
for natural accuracy, it causes a detrimental effect on robustness.

Impact of hyper-parameter . Here, we conduct an experiment to analyze the impact of hyper-
parameter . While fixing 5 to 6.0, we vary v from 1.0 to 6.0. The results are demonstrated in
Figure 5(a) and Figure 5(b). It is noteworthy that natural accuracy consistently increases as the
value of +y increases. Furthermore, ROAD achieves the best robust accuracy with v = {3.0,5.0} on
CIFAR-100 and CIFAR-10, respectively.
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Figure 4: Comprehensive ablation study of each components of ROAD on CIFAR-100 with ResNet-
18. We verify our methods
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Figure 5: Comprehensive experiment results of ROAD. (a) and (b) are experiment results of impact
of hyper-parameter v in ROAD on CIFAR-100 and CIFAR-10 with ResNet-18, respectively. (c) and
(d) are the gpu memory usage and training time cost of ARD, AdalAD, LBGAT, and ROAD with
ResNet-18 on CIFAR-100.

4.5 EVALUATION ON COMPUTATIONAL COMPLEXITY

In this section, we compare the computational costs of ROAD with two adversarial distillation meth-
ods, ARD and AdalAD, and one online distillation method, LBGAT. We conduct experiments on
a single NVIDIA 3090 GPU and maintain consistent implementation details as described in Sec-
tion 4.1, excluding the evaluation process. For ARD and AdalAD, we include the cost of pre-training
the teacher model. The results are presented in Figure 5(c) and Figure 5(d). From the results, we ob-
serve that the computational cost of ROAD is relatively lower than that of ARD and AdalAD. This
is because ROAD does not require a pre-training process although it trains low cost natural model
simultaneously. Furthermore, even when excluding the pre-training process, AdalAD still consumes
more time and memory as it requires multiple forward-backward passes of teacher model to craft
adversarial examples. Meanwhile LBGAT exhibits a slightly lower computational cost and time
consumption, the difference is negligible considering the superior performance of ROAD. There-
fore, we can conclude that ROAD is more suitable to resource-constrained environments.

5 CONCLUSION

In this paper, we address the drawbacks of most existing adversarial distillation methods. We point
out that conventional adversarial distillation methods require enormous computational cost to pre-
train a robust teacher model. Furthermore, student models trained with these methods also suffer
from the inherent trade-off between robustness and natural accuracy. Based on this discussion, we
propose Retrospective Online Adversarial Distillation (ROAD), a novel self-adversarial distillation
method to train a robust model which has high performance on natural accuracy. ROAD attempts to
get guidance from the predictions on adversarial examples of last epoch and collaboratively trained
natural model to improve robustness and natural accuracy, respectively. Extensive experiments re-
veal that ROAD exhibits outstanding performance on both natural accuracy and robustness compared
with both AT and AD methods regardless of the dataset or size of the architecture.
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A RELATED WORK (CONTINUED)

Self-Knowledge Distillation. In general, KD has traditionally relied on a large and high-performing
teacher model. To overcome this limitation, several papers proposed self-knowledge distillation,
where models achieves dark knowledge from themselves. Yuan et al. (2020) argued that KD is a
variant of label smoothing regularization and introduces Teacher-free Knowledge Distillation. Kim
et al. (2021) suggested that past epoch predictions could be used as soft labels instead and proposed
Progressive Self-Knowledge Distillation. Shen et al. (2022) shared a similar concept with previous
works, leveraging the predictions of the last mini-batch as soft labels to obtain more up-to-date
information during the training process.

B MORE DETAILS OF USING PREDICTIONS OF THE LAST EPOCH

B.1 PROOF OF PROPOSITION 1.

Proposition 1. (Restated) Given a K -class classification problem, let p} ; be the output of the robust
model for an adversarial example of class 7 (: = 1,2,..., K) at the t-th epoch, and GT be the
ground truth class. The gradient rescaling factor is then derlved as

AD,t
Zi 8:’ ‘ 1- pLLGT Yt—1
T = [ ) =1, :
Zi ‘8i| 1- Py ar Yt
where 0; and 8;4 Dt represent the gradients of a logit of class ¢ when trained with standard one-hot

labels and the proposed soft labels at epoch ¢, respectively. Also, vy indicates the inverse confidence
of the prediction for the ground truth class.

Proof. First we note that for the logit z; ; 1s the prediction on adversarial example corresponding to
a specific class ¢ at t-th epoch. When tralnmg with typical one-hot label, the gradient of the logit is

oc
azgz _pt,i Yi, (4)

where L is the cross-entropy loss, pi,i is the predicted probability for class 7, and y; is the true label.
If we mix the last epoch prediction on adversarial example with one-hot label, the gradient for the
AD loss for class ¢ at t-th epoch is given by

8Z£,i

(1 - )\t)(pt i yT) + At(p:f,i 7p:f—1,i)7 (5)

where ) is a factor which is less than 1. The gradient for the target class GT is given by
32?(% =(1- /\t)<p:5,GT - 1)+ )‘t(p;,GT - péfl,GT) = (p:S,GT -1) - )‘t(p;,GT —1). (6)

In addition, the gradient for non-target classes is given by

5?113 =(1- At)(pg,i —0)+ At(P:e,z' - p;—l,i) = p1/‘1 - Atp;—l,i' (7
If we set \; such that Equation 7 is non-negative, then \; can be expressed as
/ . / _ 1
A< min | ) < PRET T ®)
¢ Py 1, Piorer — 1

The sum of £; norm of the AD gradient for the entire class can be expressed as

Z’aAD’ =2( 1_pt ar) = 2M(1 = p_ 1GT) 9)
i

Regarding that sum of ¢; norm of the gradients trained with one-hot labels are >, |0;| = 2(1 —
pi’ or)» We can compute the gradient rescaling factor and can be expressed as

|gAD 1—p]
Zostl S Poier _1&(%*>. (10)
>, 1ol L =pier L
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B.2 IMPLEMENTATION DETAILS OF SECTION 3.1

We run ResNet-18 models for 120 epochs and train with SGD with momentum of 0.9. The batch
size is set to 128 and weight decay is set to Se-4. We conduct the experiments on both CIFAR-100
and CIFAR-10. The learning rate is set to 0.1 and is divided by 10 at the 75, 90, 100 epochs. We
use a relatively low weight decay to ensure a fair comparison of the generalization abilities of each
method. Adversarial examples are generated by using PGD-20. For label smoothing (LS), we use a
smoothing factor of 0.1. For AKD, we select label mixing factor of 0.8 which is stated on Maroto
et al. (2022). We use the PGD-AT model as the teacher model.

B.3 PERFORMANCE EVALUATION ON CALIBRATION ON CIFAR-10

To broadly evaluate the calibration performance of our method, we also conduct additional experi-
ments on CIFAR-10. The reliability diagram and ECE are shown in Figure 6. While all models ex-
hibit a lower generalization gap and ECE compared to CIFAR-100, we still observe over-confidence
in AT and AKD. On the other hand, our method demonstrates outstanding calibration performance
and the gap is hard to be visualized.
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Figure 6: Reliability diagrams for PGD-AT, LS, AKD, and our method on CIFAR-10. We note the
ECE (lower is better) on the right bottom side of the diagram.

C EVALUATION METRICS

We select three adversarial attack methods to evaluate the robustness of the models, including
PGD (Madry et al., 2018), MIM (Dong et al., 2018), and AutoAttack (AA) (Croce & Hein, 2020).
The maximum perturbation bound ¢ is set to 8/255 for all the evaluation methods under the ¢, norm.
The attack codes are implemented based on the Torchattacks library (Kim, 2020). During training
process, we evaluate the model with PGD-20 and select the model with the highest robustness.

D FURTHER PERFORMANCE EVALUATION

D.1 PERFORMANCE EVALUATION ON HIGHER CAPACITY ARCHITECTURE ON CIFAR-10

We extended our experiment using a higher-capacity architecture on CIFAR-10, as discussed in
Sec 4.3. All other training specifications are consistent with those detailed in Section 4.3. The
outcomes for CIFAR-10 are presented in Table 4. ROAD displays a superior performance in natural
accuracy, with a minimum of 0.22% and a maximum of 7.34% compared to other methods. ROAD
demonstrates comparable or superior defense performance on adversarial attacks compared to its
counterparts.

D.2 COMPARING ADVERSARIAL DISTILLATION METHODS WITH A LARGE SI1ZE TEACHER

In this section, we evaluate our method under unfair conditions. Since AD was initially designed
as a framework to distill robust knowledge from a teacher model with high capacity, we use the
PGD-AT model from Section 4.3 as the teacher model. The other values remain identical to those
in the previous section. We present our results in Table 5. As seen in the results, AD methods
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Table 4: Validation results of WRN-28-10 models on CIFAR-10 trained with different methods. The
best and second performances are marked in bold and underlined respectively.

Method | NAT | PGD-20 | PGD-100 | MIM-10 | AA
PGD-AT | 86.14 | 5431 53.98 5639 | 517
TRADES | 8491 | 55.66 55.33 5713 | 5238
MART | 7972 | 5673 56.64 5781 | 5111
LBGAT | 8031 | 5571 55.53 57.06 | 5244
SEAT 86.84 | 57.26 56.96 5929 | 54.16
ROAD | 87.06 | 57.44 5718 5895 | 53.98

demonstrate an increasing trend in natural accuracy and robustness as the capacity of the teacher
model grows. Specifically, AdalAD receives the most benefits on utilizing a higher capacity teacher
model. Moreover, our method significantly surpasses the natural accuracy and robustness of models
trained with AD. This reconfirms our method’s superior performance, even when compared against
AD models benefiting from additional knowledge through stronger teacher models.

Table 5: Validation results of AD methods on CIFAR-100 with various teacher models. The best
and second performances are marked in bold and underlined respectively.

Method | Student | Teacher | NAT | PGD-20 | PGD-100 | MIM-10 | AA
ARD ResNet-18 | ResNet-18 | 5545 | 3101 30.92 3182 | 2621
ResNet-18 | WRN-28-10 | 57.63 | 30.11 29.84 3126 | 2637
RSLAD | ResNet-18 | ResNet-18 | 5539 | 3163 3152 3228 | 2674
ResNet-18 | WRN-28-10 | 59.36 | 30.78 30.59 364 | 2693
AdalAD | ResNet18 | ResNet-18 | 5639 | 30.85 30.80 3163 | 26.03
ResNet-18 | WRN-28-10 | 60.64 | 31.00 30.87 3201 | 27.49
ROAD | ResNet-18 | ResNet-18 | 62.09 | 3373 | 3381 | 3443 | 27.60

D.3 PERFORMANCE EVALUATION OF ROAD ON CALIBRATION ON CIFAR-100

To assess calibration performance of ROAD, we prepare two AD methods: ARD and RSLAD. We
ensure a fair comparison by aligning the training details of ROAD, including learning rate, weight
decay, and number of epochs, with those of ARD and RSLAD. Figure 7 demonstrates that ROAD
achieves superior calibration performance with the lowest ECE. Moreover, ROAD tends to make
under-confident predictions in contrast to the over-confident predictions commonly associated with
the other methods.
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Figure 7: Reliability diagrams for ARD, RSLAD, and ROAD on CIFAR-100. We note the ECE
(lower is better) on the right bottom side of the diagram.
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E ABLATION STUDIES (CONTINUED)

E.1 EFFECTS ON UTILIZING LAST EPOCH PREDICTIONS.

Table 6 demonstrates the effectiveness of utilizing last epoch predictions of adversarial examples.
We report the best performance achieved by the models, which are identical to the ones used in Sec-
tion 3.1. While LS seems to contribute to enhancing robustness, its effect is marginal. In contrast,
our method outperforms other methods significantly on natural accuracy and white-box attacks. Ad-
ditionally, our method achieves comparable or better performance than the self-adversarial distilla-
tion method AKD in AA. This indicates that our method effectively leverages last epoch predictions,
fulfilling the role of the teacher model.

Table 6: Ablation study with ResNet-18 student models on CIFAR-10 and CIFAR-100 with different
methods. The best and second performances are marked in bold and underlined respectively.

Dataset | Method | NAT | PGD-20 | PGD-100 | MIM-10 | AA
PGD-AT | 82.63 | 5154 5125 5313 | 47.98

LS 8244 | 5220 5201 5390 | 4875

CIFAR-10 AKD | 8329 | 52.99 5273 5471 | 49.36
Ours | 8393 | 54.00 53.69 5575 | 49.95

PGD-AT | 5723 | 28.84 2872 2956 | 25.13

LS 5710 | 29.32 29.24 3034 | 25.17

CIFAR-100 | ,gp | 5762 | 3074 30.60 3158 | 26.66
Ours | 5739 | 3145 3142 202 | 2617

E.2 EFFECT OF DIFFERENT SCHEDULING STRATEGIES ON UTILIZING LAST EPOCH
PREDICTIONS.

As shown in Table 7, utilizing last epoch predictions show an overall improvement in robustness
compared to PGD-AT which trained with one-hot labels. This observation substantiates that uti-
lizing last epoch predictions prevents the model to give overly confident predictions to adversarial
examples and thus improve robustness. In addition, we observe that the fixed policy results in over
1% lower natural accuracy compared to other strategies. This observation can be attributed to the
inaccuracy of predictions from initial epochs, which can impede learning. Meanwhile, the linear
scheduling strategy exhibits slightly lower robustness compared to the sine-based strategy, suggest-
ing the importance of the scheduling approach in balancing natural accuracy and robustness.

Table 7: Effect of scheduling interpolation ratio A

Method | NAT | AA

PGD-AT 57.23 25.13
Ours (Fixed) 56.20 | 26.16
Ours (Linear) 57.55 25.88
Ours (Sine) 57.39 26.17

E.3 IMPACT OF HYPER-PARAMETER [3.

Here, we study the impact of the robustness factor 5. We use the same training settings as Sec-
tion4.1. We fix v = 3.0 and vary £ from 1.0 to 6.0. The results can be seen in Figure 8. As expected,
as (3 increases, the model achieves more robustness but also loses natural accuracy. However, even
with low [ values, ROAD demonstrates competitive robustness compared to other methods with
outstanding natural accuracy. For higher S values, it exhibits both high robustness and high natural
accuracy.
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Figure 8: Sensitivity of robust factor 3 on CIFAR-100 dataset.

F STABILITY ACROSS MULTIPLE RUNS

In this section, we check the variance of ROAD. Table 8 provides a detailed comparison of two
machine learning models, ROAD and TRADES, tested on the CIFAR-100 dataset. It showcases the
results from five separate runs for each model, highlighting their performance stability and robust-
ness. Results for ROAD and TRADES are presented side by side in each cell, allowing for direct
comparison. The inclusion of average (Avg.) and standard deviation (Std.) for each method across
the runs offers a summary of overall performance and variability, respectively. The results illustrate
that ROAD not only maintains a steady performance across different methods but also outperforms

TRADES in both natural accuracy and robustness.

Table 8: Validation results of ROAD (left) and TRADES (right) models across multiple runs on

CIFAR-100.
| NAT PGD-20 | PGD-100 MIM-10

1 62.09  60.53 3374 2996 | 33.81 29.87 | 3443  30.65 27.60  25.01

2 | 61.80 60.61 33,53 3032 | 3348 3024 | 3419  31.07 | 2741 25.59

Run | 3 62.01 59.88 | 33.68 3032 | 33.67 3020 | 3447 31.23 27.66  25.69

4 | 61.62 6034 | 33.88 3024 | 33.69 30.01 3445  31.03 27.68 2543

5 62.08 60.10 | 33.36  30.35 3328  30.19 | 34.15 31.02 | 27.14 2546

Avg. 61.92 6029 | 33.63 3024 | 33.58 30.10 | 3433 31.00 | 2749 2544

Std. 0.07 0.23 0.18 0.15 0.18 0.10 0.13 0.20 0.20 0.24
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