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SPEED: Scalable, Precise, and Efficient Concept
Erasure for Diffusion Models

Anonymous Author(s)

Affiliation
Address
email
100-Celebrities -Smoopy-  <Smeepy-  Hello Kitty ~ SpongeBob Computation Time (<) for460-Geneepts
¥ { %0 W L
. Ours MACE

S

i
' » \
3 4 4

o Y
= =/ ¥
' F*

(a) Scalable (b) Precise (c) Efficient
Figure 1: Three characteristics of our proposed concept erasure method for diffusion models,
SPEED. (a) Scalable: SPEED seamlessly scales from single-concept to large-scale multi-concept
erasure (e.g., 100 celebrities) without additional design. (b) Precise: SPEED precisely removes the
target concept (e.g., Sroopy) while preserving the semantics for non-target concepts (e.g., Hello Kitty
and SpongeBob). (c¢) Efficient: SPEED immediately erases 100 concepts within 5 seconds, achieving
new state-of-the-art (SOTA) performance with a 350 speedup over competitive methods.
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Erasing concepts from large-scale text-to-image (T2I) diffusion models has become
increasingly crucial due to the growing concerns over copyright infringement,
offensive content, and privacy violations. In scalable applications, fine-tuning-
based methods are time-consuming to precisely erase multiple target concepts,
while real-time editing-based methods often degrade the generation quality of
non-target concepts due to conflicting optimization objectives. To address this
dilemma, we introduce SPEED, an efficient concept erasure approach that directly
edits model parameters. SPEED searches for a null space, a model editing space
where parameter updates do not affect non-target concepts, to achieve scalable
and precise erasure. To facilitate accurate null space optimization, we incorporate
three complementary strategies: Influence-based Prior Filtering (IPF) to selectively
retain the most affected non-target concepts, Directed Prior Augmentation (DPA)
to enrich the filtered retain set with semantically consistent variations, and Invariant
Equality Constraints (IEC) to preserve key invariants during the T2I generation
process. Extensive evaluations across multiple concept erasure tasks demonstrate
that SPEED consistently outperforms existing methods in non-target preservation
while achieving efficient and high-fidelity concept erasure, successfully erasing
100 concepts within just 5 seconds.

1 Introduction

Large-scale text-to-image (T2I) diffusion models [23, 54, 55, 37, 47, 24] have facilitated significant
breakthroughs in generating highly realistic and contextually consistent images simply from textual
descriptions [11, 44, 16, 7, 48, 42, 12]. Alongside these advancements, concerns have also been
raised regarding copyright violations [10, 52], offensive content [49, 64, 66], and privacy concerns
[8, 63]. To mitigate ethical and legal risks in generation, it is often necessary to prevent the model
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from generating certain concepts, a process termed concept erasure [29, 17, 65]. However, removing
target concepts without carefully preserving the semantics of non-target concepts can introduce
unintended artifacts, distortions, and degraded image quality [17, 40, 49, 65], compromising the
model’s reliability and usability. Therefore, beyond ensuring the effective removal of target concepts
(i.e., erasure efficacy), concept erasure should also maintain the original semantics of non-target
concepts (i.e., prior preservation [01]).

In this context, recent methods strive to seek a balance between erasure efficacy and prior preservation,
broadly categorized into two paradigms: training-based [29, 35, 33] and editing-based [18, 19]. The
training-based paradigm fine-tunes T2I diffusion models to achieve concept erasure, incorporating
an additional regularization term into the training objective for prior preservation. In contrast, the
editing-based paradigm avoids additional fine-tuning by directly modifying model parameters (e.g.,
projection weights in cross-attention layers [47]), with such modifications derived from a closed-
form objective that jointly accounts for erasure and preservation. This efficiency also facilitates
editing-based methods to extend to multi-concept erasure without additional designs seamlessly.

However, as the number of target concepts increases, current editing-based methods [18, 19] struggle
to balance between erasure efficacy and prior preservation. This can be attributed to the growing
conflicts between erasure and preservation objectives, making such trade-offs increasingly difficult.
Moreover, these methods rely on weighted least squares optimization, inherently imposing a non-zero
lower bound on preservation error (see Appx. B.2). In multi-concept settings, this accumulation of
preservation errors gradually distorts non-target knowledge, thereby degrading prior preservation.
To address the above limitations, we propose Scalable, Precise, and Efficient Concept Erasure for
Diffusion Models (SPEED) (see Fig. 1), an editing-based method incorporating null-space constraints.
Specifically, we search for the null space of prior knowledge, a model editing space where parameter
updates do not affect the feature representations of non-target concepts. By projecting the model
parameter updates for concept erasure onto such null space, SPEED can minimize the preservation
error to zero without compromising erasure efficacy, thereby enabling scalable and precise concept
erasure without affecting non-target concepts.

The key contribution of SPEED lies in construct- Original
ing an effective null space from a set of non- | &8 |
target concepts (i.e., retain set). We observe [ESFY
that the existing baseline with null-space con-
straints [14] confronts a fundamental dilemma
during concept erasure: While a small retain Set  promsn . o
limits the coverage of prior knowledge, enlarg- : :
ing the retain set makes it increasingly difficult Retain Set 50 70000 20000

to identify an accurate null space. This difficulty Figure 2: Semantic degradation with increasing
arises because a large retain set causes the cor- non-target concepts in the retain set. Baseline
responding feature matrix to approach full rank, null-space constrained method [14] can maintain
necessitating the estimation of its null space to  the non-target semantics given a small retain set
ensure sufficient degrees of freedom for opti- (@). However, as the retain set grows, the rank of
mization (i.e., for concept erasure). However, corresponding matrix increases, making null space
this estimation inevitably introduces semantic estimation increasingly inaccurate (see Eq. 4) with
degradation within the retain set and deteriorat- inevitable approximation errors, thereby degrading
ing prior preservation (see Fig. 2 and Eq. 4). Monet’s semantics in the retain set (@ and @).

Baseline

Ours

In this light, we introduce Prior Knowledge Refinement, a suite of techniques that strategically
and selectively refine the retain set to mitigate the semantic degradation in searching for the null
space. Particularly, we propose Influence-based Prior Filtering (IPF), which first quantifies the
influence of concept erasure on each non-target concept. It then prunes the retain set by removing
minimally affected concepts, preventing the correlation matrix from approaching full rank and thus
maintaining an accurate null space. Subsequently, to further enhance prior preservation over the
resulting retain set, we propose Directed Prior Augmentation (DPA), which expands the retain set
with directed, semantically consistent perturbations to improve retain coverage. In addition, we
incorporate Invariant Equality Constraints (IEC) to preserve specific representations, such as the
[SOT] token, that should remain unchanged during editing. IEC enforces equality constraints on
such invariants to regularize the retaining of essential generation properties. We evaluate SPEED
on three representative concept erasure tasks, i.e., few-concept, multi-concept, and implicit concept
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erasure, where it consistently exhibits superior prior preservation across all erasure tasks. Overall,
our contributions can be summarized as follows:

* We propose SPEED, a scalable, precise, and efficient concept erasure method with null-space
constrained model editing, capable of erasing 100 concepts in 5 seconds.

* We introduce Prior Knowledge Refinement to construct an accurate null space over the retain set
for effective editing. Leveraging three complementary techniques, IPF, DPA, and IEC, our method
balances semantic degradation and retain coverage, enabling precise and scalable concept erasure.

* Our extensive experiments show that SPEED consistently outperforms existing methods in prior
preservation across various erasure tasks with minimal computational costs.

2 Related Works

Concept erasure. Current T2I diffusion models inevitably involve unauthorized and NSFW (Not
Safe For Work) generations due to the noisy training data from web [51, 50]. Apart from applying
additional filters or safety checkers [45, 39, 46], prevailing methods modify diffusion model param-
eters to erase specific target concepts, mainly categorized into two paradigms. The training-based
paradigm fine-tunes model parameters with specific erasure objectives [29, 17, 65] and additional
regularization terms [29, 35, 33]. In contrast, the editing-based paradigm edits model parameters
using a closed-form solution to facilitate efficiency in concept erasure. For example, UCE [18]
modifies model weights by balancing both erasure and preservation error through a weighted least
squares objective and RECE [19] iteratively derives new target concept embeddings. These methods
can erase numerous concepts within seconds, demonstrating superior efficiency in practice.

Null-space constraints. The null space of a matrix, a fundamental concept in linear algebra, refers to
the set of all vectors that the matrix maps to the zero vector. The null-space constraints are first applied
to continual learning (CL) by projecting gradients onto the null space of uncentered covariances
from previous tasks [58]. Subsequent studies [34, 59, 62, 28, 30] further explore and extend the
application of null space in CL. In model editing, AlphaEdit [14] restricts model weight updates
onto the null space of preserved knowledge, effectively mitigating trade-offs between editing and
preservation. Null-space constraints also apply to various tasks, e.g., machine unlearning [9], MRI
reconstruction [15], and image restoration [60], offering promise for editing-based concept erasure.

3 Problem Formulation

In T2I diffusion models, each concept is encoded by a set of text tokens via CLIP [43], which are
then aggregated into a single concept embedding ¢ € R%. For concept erasure, there are two sets of
concepts: the erasure set E and the retain set R. The erasure set consists of N target concepts to be
R }fiEl The retain set includes Ny non-target concepts that should be
preserved during editing, denoted as R = {c((]J ) }jvjl To enable efficient erasure efficacy for E and
prior preservation for R, we first formulate a closed-form editing objective in Sec. 3.1, and enhance

it with null-space constrained optimization in Sec. 3.2.

removed, denoted as E = {cg

3.1 Concept Erasure in Closed-Form Solution

To effectively erase each target concept cﬁ” € E (e.g., Sneopy), it is specified to be mapped onto an
anchor concept ch) that shares general semantics (e.g., Dog), termed as an anchor set A = {cgf) } Z]\LEl
For editing-based methods [40, 18, 19], concept embeddings from the erasure set E, anchor set A, and
retain set R are first organized into three structured matrices: C1, C, € R%XNE and C € R0 *Nr,
representing the stacked embeddings of target, anchor, and non-target concepts, respectively. To
derive a closed-form solution for concept erasure, existing methods typically optimize a perturbation
A to model parameters W, balancing between erasure efficacy and prior preservation. For example,
UCE [18] formulates concept erasure as a weighted least squares problem:

Aycg = arg min |[(W + A)C; — WC,||? + [|AC, %, (1)
A N———
el €o
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where the erasure error e; ensures that each target concept is mapped onto its corresponding anchor
concept and the preservation error e minimizes the impact on non-target concepts. This formulation
provides a closed-form solution Aycg (see Appx. B.1) for parameter updates, achieving computa-
tionally efficient optimization. However, as the number of target concepts increases, the accumulated
preservation errors eg, which prove to share a non-zero bound from Appx. B.2, across multiple target
concepts would amplify the distortion on non-target knowledge and degrade prior preservation.

3.2 Apply Null-Space Constraints

To mitigate the limitation of weighted optimization in prior preservation, SPEED integrates null-space
constraints [58, 14] to achieve prior-preserved model editing by forcing eg = 0. Specifically, the null
space of C is the set of all vectors v such that vCy = 0. Restricting the parameter update A to this
space ensures that such updates do not interfere with non-target concepts.

To project A onto null space, we perform singular value decomposition (SVD) on C,C € Rdo*do!
and have {U,A, U™} = SVD (C(Cy ), where U € R%*“ contains the singular vectors of CoC ,
and A is a diagonal matrix of its singular values. The singular vectors in U w.r.t. zero singular values
form an orthonormal basis for the null space of Cy, which we denote as U. Using this basis, we
construct the null-space projection matrix P = UUT. The process can be formulated as:

zero singular
_—

{U,A,UT} =8VD(CyCy), U e R¥xb U=P=UU". @)

values

The final update applied to model parameters is AP, which projects A onto the null space of Cy.
This ensures that updates do not interfere with non-target concepts, satisfying || (AP)Cyl|? = 0. To
solve for the updates, we minimize the following objective:

Ay = arg min (W + AP)C; — WC,||* + | (APW + ||AP|?, A3)
A ~——
el ep=0 regularization

where || AP||? is a regularization term to ensure convergence. The preservation term ||(AP)Cy||? is
omitted, as it is guaranteed to be zero by the null-space constraint. This objective enables us to update
the model parameters such that target concepts are effectively erased while non-target representations
remain unaffected, thereby achieving prior-preserved concept erasure.

4 Prior Knowledge Refinement

However, as more diverse non-target concepts are included in the retain set, the rank of the correlation
matrix CoC, increases’. The null space, defined as the orthogonal complement of this span,
correspondingly shrinks in dimension:

dim(Null(Cy)) = do — rank(C,Cy ). 4)

Here, the null space dimension characterizes the degrees of freedom available for editing without
affecting the retained concepts. However, as this dimension shrinks, to ensure sufficient degrees of
freedom for concept erasure, we are compelled to include singular vectors w.r.t. non-zero singular val-

ues in U following [ 14], which leads to an approximate null space and induces semantic degradation
within the retain set (see Fig. 2). To mitigate this problem, we propose Prior Knowledge Refinement,
a structured strategy for refining the retain set to enable accurate null-space construction. It comprises
three complementary techniques: Influence-Based Prior Filtering (Sec. 4.1) to discard weakly affected
non-target concepts to form a viable null space; Directed Prior Augmentation (Sec. 4.2) to expand
the retain set with targeted and semantically consistent variations; and Invariant Equality Constraints
(Sec. 4.3) to enforce equality constraints to preserve critical invariants during generation.

1COCOT and Cy share the same null space. We operated on CoCOT e R%*d gjnce it has fixed row
dimension while Co € R%>*NE may have high dimensionality depending on concept number Nx.

2We assume that the concepts are not exactly linearly dependent in the representation space, which is
generally satisfied in practice due to the semantic diversity and high dimensionality of the embedding space.
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4.1 Influence-Based Prior Filtering (IPF)

Given a pre-defined retain set, existing editing-based methods [18, 19] treat all non-target concepts
equally when enforcing prior preservation. However, a critical yet overlooked fact is that parameter
updates inherently induce output changes over non-target concepts, and these changes vary signifi-
cantly across different non-target elements. This suggests that not all non-target concepts contribute
equally to preserving the model’s prior knowledge, and weakly influenced concepts would provide
marginal benefit while introducing additional ranks to narrow the null space.

To this end, we propose an explicit and model-consistent metric, i.e., prior shift, to quantify how
much a non-target concept is affected by concept erasure. Specifically, we isolate the effect of erasure
by solving for a closed-form update A, that minimizes only the erasure error e; while discarding
the preservation term ey from Eq. 1:

A = argmin |[(W + A)C; — WC,|*+ |A]? =W (C.C{ —C.C{) (I+CiCy) .
A ——

ey regularization

&)
where ||A||? is introduced for convergence. Then, for each non-target concept embedding ¢, we
define its prior shift as: || Apsec||?. This value offers a faithful reflection of how parameter updates
perturb a non-target concept in the feature space with closed-form computation, and can naturally
generalize to assessing multi-concept erasure effects. Based on this, we filter the original retain set R
to focus only on highly influenced concepts:

R;: R {co € R| | Acusecol® > 1}, 6)

where the mean value 4 = E¢ R [HAeraseCO ||2] serves as a filtering threshold.

4.2 Directed Prior Augmentation (DPA)

o Original Concept e w/Random Noise e w/ Directed Noise (Ours)

To further enhance prior preservation over the

resulting retain set with improved retain cov- S, e N

erage, an intuitive strategy is to augment the e T e e e & = o« °,
retain set by perturbing non-target embedding L, e ‘e .’.' o o o o . . o °
co with random noise [35]. However, this strat- e Tl % °.° e : . .."’.v\. oo
egy would introduce meaningless embeddings A o e ° .
that fail to generate semantically coherent im- S S ° o oo
ages (e.g., noise image), resulting in excessive 2 ° T, e

preservation with increasing ranks. To search for
more semantically consistent concepts, we in-
troduce directed noise by projecting the random
noise € onto the direction in which the model
parameters W exhibit minimal variation. This
operation ensures the perturbed embeddings ex-
press closer semantics to the original concept
after being mapped by W in Fig. 3. Specifically,
we first derive a projection matrix P pn:

{Uw,Aw,Uyw} = SVD(W),

(a) Concept Embedding Space
Figure 3: t-SNE distribution of perturbing the
original concept with random noise and our
directed noise. (a) Similar to random noise, our
method can span a broad concept embedding space.
(b) Our directed noise preserves semantic similar-
ity to the original concept with closer distances in
the space mapped by W.

(b) Key/Value Space

Pmin - UminUr—nrim (7)

where Uy, = Uw/[:, —r :] denotes the singular vectors w.r.t. the smallest r singular vectors®, which
represent the r least-changing directions of W and constrain the rank of the augmented embeddings
to a maximum of r. Then the directed noise € - P, is used to perturb the original embedding via:

co=co+ € Pun, €~N(0I). (8)
Given a retain set R, the augmentation process can be formulated as follows:
R™: R — U {chilk=1,...,Na}, ©)

coER

where N4 denotes the augmentation times and ¢, ,, represents the k-th augmented embedding given
¢o € R using Eq. 8. In implementation, we first filter the original retain set R to obtain Ry using

SEmpirically, the model parameter matrix W is usually full rank, thus its all singular values are non-zero.
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Prompt: Original: '--\ -
“A Hello Kitty in a video game”

Prompt: Original: a | Prompt: Original:

“A painting of a Snoopy” “A cartoon Mickey” ‘g@"
b
PR S

Target

Concepts UCE RECE MACE Ours UCE RECE MACE Ours

UCE RECE MACE Ours

Figure 4: Qualitative comparison of the few-concept erasure in erasing instances. The erased and
preserved generations are highlighted with red and green boxes, respectively. Our method exhibits
consistent prior preservation with less semantic degradation for non-target concepts. For example,
the middle column better retains details such as Mickey’s hat and button count, and the right column
demonstrates more consistent Hello Kitty generations along with three concepts erased.

IPF. Subsequently, further augmentation and filtering are applied to Ry using DPA and IPF to obtain
(R f)"}ug, and the two filtered retain sets are then combined together to serve as the final refined retain

set Riefine = Rf U (Rf)e}ug.

4.3 Invariant Equality Constraints (IEC)

In parallel, we identify certain invariants during the T2I generation process, i.e., intermediate variables
that remain unchanged with varying sampling prompts. One such invariant is the CLIP-encoded
[SOT] token. Since the encoding process is masked by causal attention and all prompts are prefixed
with the fixed [SOT] token during tokenization, its embedding consistently remains unchanged during
T2I process. Another invariant is the null-text embedding, as it corresponds to the unconditional
generation under the classifier-free guidance [24], which also remains unchanged despite prompt
variations. Given the invariance of these embeddings, we consider additional protection measures to
ensure their outputs remain unchanged during concept erasure. Specifically, we introduce explicit
equality constraints over invariants based on Eq. 3:

min |(W + AP)C; — WC,|*+ ||AP|>, st (AP)Cy =0, (10)
A —— ————’
e regularization equality constraints

where C, denotes the stacked invariant embedding matrix of [SOT] and null-text*. Derive the
projection matrix P from Ryefine, We can compute the closed-form solution of Eq. 10 using Lagrange
Multipliers from Appx. B.3:

(AP),,. = W (C.C{ — C,C]) PQM, (11

Ours
where ) )

M= (C;C{P+I) ,Q=1I-MC,(C;PMC;) C,P. (12)
This closed-form solution enforces the equality constraints by projecting the parameter update onto
the subspace orthogonal to the invariant embeddings. Since image generation inevitably depends on
these invariant embeddings, such constraints inherently preserve prior knowledge.

S Experiments

In this section, we conduct extensive experiments on three representative erasure tasks, including
few-concept erasure, multi-concept erasure, and implicit concept erasure (Appx. D.3), validating our
superior prior preservation. The compared baselines include ConAbl [29], MACE [33], RECE [19],
and UCE [18], which have achieved SOTA performance across various concept erasure tasks. In im-
plementation, we conduct all experiments on SDv1.4 [1] and generate each image using DPM-solver
sampler [32] over 20 sampling steps with classifier-free guidance [24] of 7.5. More implementation
details and compared baselines (e.g., SPM [35]) can be found in Appx. C and Appx. D.4.

“Since the null-text embeddings are only composed of [EOT] tokens (excluding [SOT]), we use the k-means
algorithm [36] to select k centroids to reduce redundancy.
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Table 1: Quantitative comparison of the few-concept erasure in erasing instances (left) and
artistic styles (right) following [35]. Arrows on the headers indicate the preferred direction for
each metric, and the best results are highlighted in bold. Our method consistently improves prior
preservation for non-target and general concepts from MS-COCO (shaded in pink ) while achieving
effective concept erasure. While our CS is not the lowest for target concpet, Appx. D.1 and Fig. 7
show our method is sufficient for erasure, and lower CS may further compromise prior preservation.

Concept | Snoopy Mickey Spongebob Pikachu Hello Kitty | MS-COCO Concept | Van Gogh Picasso  Monet P. Gauguin  Caravaggio | MS-COCO
| cs cs cs cs cs | ¢S FID | s (e (e cs cs | €S FID
SDvl4 | 2851 2662 27.30 27.44 2777|2653 - SDvl4 | 2875 2798 2891 29.80 2627 | 2653
Erase Snoopy Erase Van Gogh
| cs|  FD| FID | FID | FID| | CS? FID| | CsI FD| FID| FID| FID| | CS? FID|
ConAbl | 2544  37.08 38.92 26.14 3652 | 2640 2120 ConAbl | 2816 7701 6380 6320 79.25 | 2646 18.36
MACE | 2090 10597  102.77 65.71 7542|2609 4262 MACE | 2666 6992 6088 5618 69.04 | 2650 23.15
RECE | 1838  26.63 34.42 21.99 3235|2639 2561 RECE 2639 6057 6109 47.07 7285 | 2652 23.54
UCE | 2319 2487 29.86 19.06 27.86 | 2646 2218 UCE 28.10 4302 4049 3262 6172 [ 2654 19.63
Ours | 2350 2341 24.64 16.81 2174 | 2648 19.95 Ours | 2629 3586 1685 24.94 3975 | 2655 2036
Erase Snoopy and Mickey Erase Picasso
| csL cs| FID | FID | FID| | CSt FID| | FID| CS| FID| FID | FID| | CSt FID|
ConAbl | 2526  26.58 45.08 35.57 4148 | 2642 2434 ConAbl | 6044 2697 3623 6523 79.12 | 2643 20.02
MACE | 2053 2063 112,01 91.72 10688 | 2550 55.15 MACE | 59.58 2648 3702 4635 66.20 | 2647 22.86
RECE | 1857  19.14 35.85 26.05 4077 | 2631 3030 RECE 5109 2666 2539 4608 7561 | 2648 23.03
UCE | 2360 2479 30.58 23.51 3176 | 2638 2606 UCE 3758 2699 1672 3248 5927 | 2650 2033
Ours | 2358  23.62 29.67 2251 2823 | 2647 23.66 Ours | 19.18 2622 19.87 2473 43.63 | 2651 19.98
Erase Snoopy and Mickey and Spongebob Erase Monet

cs| eS| cS | FID | FID| | CSt FID| FID| FID| CS| FID | FID| | CStT FID|
ConAbl | 2492 2646 25.12 46.47 4824|2637 2671 ConAbl | 6877 6425 2705 5733 7188 | 2645 21.03
MACE | 1986 1935 20.12 11012 12856 | 2339 6639 MACE | 6150 4841 2598  49.66 6587 | 2647 2276
RECE | 1817  18.87 16.23 40.52 5206|2632 3251 RECE 5626 4597 2587 4638 64.19 | 2649 24.94
UCE | 2329 2463 19.08 29.20 3815 | 2630 2871 UCE 4225 3873 2702 3300 5649 | 2651 21.58
Ours | 2369 2393 21.39 21.40 2622 | 2651 24.99 Ours 2878 4121 2506 2785 5520 | 2648 20.87

5.1 On Few-Concept Erasure

Evaluation setup. To compare the few-concept erasure performance with baseline methods, we
conduct experiments on instance erasure and artistic style erasure following [35], where all methods
are evaluated based on 80 instance templates and 30 artistic style templates, generating 10 images
per template per concept. We use two metrics for evaluation: CLIP Score (CS) [43] measuring the
text-image similarity and Fréchet Inception Distance (FID) [22] assessing the distributional distance
before and after erasure. Following [35], we select non-target concepts with similar semantics to the
target concept for comparison and report CS for targets and FID for non-targets in the main paper.
Full comparisons are presented in Appx. D.2. We further compare the generations on MS-COCO
captions [31], where we generate images with the first 1,000 captions, and report CS and FID to
measure general knowledge preservation.

Analysis and discussion. Table 1 compares the results of erasing various instance concepts and
artistic styles. Our method consistently achieves the lowest FIDs across all non-target concepts,
demonstrating superior prior preservation with minimal alteration to the original content. Moreover,
we emphasize that our erasure is sufficiently effective, even without achieving the lowest CS, as
shown in Fig. 4 and Appx. D.1. In contrast, lower CS values typically indicate over-erasure, which
results in excessive degradation of prior knowledge. Notably, with the number of target concepts
increasing from 1 to 3, our FID in Pikachu rises from 16.81 to 21.40 (4.59 1), while UCE increases
from 19.06 to 29.20 (10.14 1). A similar pattern is observed in Hello Kitty (Our 4.48 T v.s. UCE’s
10.29 1), showing our robustness in erasing increasing target concepts.

5.2  On Multi-Concept Erasure

Evaluation setup. Another more realistic erasure scenario is multi-concept erasure, where massive
concepts are required to be erased at once. Herein, we follow the experiment setup in [33] for erasing
multiple celebrities, where we experiment with erasing 10, 50, and 100 celebrities and collect another
100 celebrities as non-target concepts. We prepare 5 prompt templates for each celebrity concept. For
non-target concepts, we generate 1 image per template for each of the 100 concepts, totaling 500
images. For target concepts, we adjust the per-concept quantity to maintain a total of 500 images (e.g.,
erasing 10 celebrities involves generating 10 images with 5 templates per concept). In evaluation,
we adopt GIPHY Celebrity Detector (GCD) [20] and measure the top-1 GCD accuracy, indicated by
Acc, for erased target concepts and Acc, for retained non-target concepts. Meanwhile, the harmonic
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Table 2: Quantitative comparison of the multi-concept erasure in erasing 10, 50, and 100
celebrities. The best results are highlighted in bold. Our method is capable of erasing up to 100
celebrities at once with low Acc, (%) and preserving other non-target celebrities with less appearance
alteration with high Acc, (%), resulting in the best overall erasure performance H, (shaded in pink).

Erase 10 Celebrities MS-COCO ‘ Erase 50 Celebrities MS-COCO ‘ Erase 100 Celebrities MS-COCO

Acce | Accrt H,T CST FID] \ Acce ! Acc,t H,1T CST FID| \ Acce | Acc,T H,T CST FID|
SDvl4  91.99 89.66 14.70 26.53 - ‘ 93.08 89.66 12.85 26.53 ‘ 90.18 89.66 17.70 26.53

ConAbl 60.76 77.89 52,19 25.60 42.12 64.00 7544 4874 1430 25536 42.86 58.82 5797 1493 23527
UCE 0.20 71.19  83.10 24.07 83.81 0.00 3194 4841 1345 209.93 0.00 2092 3460 1349 18546
RECE 0.34 67.43 80.44 16.75 170.65 1.03 19.77 3295 1349 213.39 243 23.71 38.16 12.09 177.57
MACE 1.62 8773 9275 2636 37.25 3.41 8431 90.03 2545 4531 4.80 80.20 87.06 24.80 50.41
Ours 1.81 89.09 9342 2647  30.02 ‘ 3.46 8848  92.34 2646 39.23 ‘ 5.87 85.54  89.63 2622 4497

Table 3: Duration comparison (s) in erasing Table 4: Ablation study on proposed compo-
multiple celebrities on one A100 GPU, where nents in erasing Van Gogh, with the non-target
n is the number of target concepts. During data FID averaged over the other four artistic styles
preparation, ConAbl requires pre-sampling 1,000 from Table 1. Ablation 1 corresponds to the orig-
images (t1) while MACE needs 8 pre-sampled inal objective from [14] in Eq. 3. The ablated
images along with 8 segmentation masks (f2) us- components include: IEC (Invariant Equality Con-
ing SAM [27]. H, is also included to compare straints), IPF (Influence-based Prior Filtering),
multi-concept erasure performance. RPA (Random Prior Augmentation), and DPA
(Directed Prior Augmentation).

Training-based Editing-based

ConAbl MACE UCE RECE Ours Ablation Components Target Non-Target MS-COCO
Data Preparation 7 x 1000 n x (8+38) 0 0 0 IEC IPF RPA DPA CS| FID § Cst FIDJ
1 X X X X 27.20 5043 2642 2633
Lconeept 1% 90 55.1 12 15 36
H ;;2 927 83.1 804 93.4 2 v X X X 27.20 48.17 2644 2495
ol = = = = . 3 v v X X 26.68 38.02 26.54  20.57
10concepts 10 x 90 207.0 15 25 38 4 v v v x 2630 3262 2652 2099
H, 1 48.7 90.0 484 330 923 Ours v v X v 2629 29.35 26.55  20.36
100-coneepts  100x90 17359 21 110 50 SDvl4 2875 26,53
H, T 58.0 87.1 346 382 896
mean H, = 2 — is adopted to assess the overall erasure performance. Additionally,

T (1—Acce) 1 (Acc,)
we report the results on MS-COCO to demonstrate the prior preservation of general concepts.

Original: ﬂ &
b) “A portrait of Judy Garland” N, |

RECE MACE Ours

~HEeneRere
-EHOHERCEE

Analysis and discussion. Table 2 showcases a
notable improvement of our method on multi-
concept erasure, particularly in prior preserva-
tion with the highest Acc,.. In comparison with
the SOTA method, MACE [33], our method
achieves superior prior preservation with bet-
ter Acc,, while maintaining comparable erasure
efficacy, as reflected in similar Acc,, resulting
in the best overall erasure performance indicated

Prompt:
a) “A portrait of Andrew Garfield”

by the highest H,. Meanwhile, our method
attains the lowest FID across all methods on
MS-COCO. The other methods, UCE [18] and
RECE [19], although achieving considerable
balance in few-concept erasure, fail to maintain
this balance as the number of target concepts
increases as shown in Fig. 5, with catastrophic

=PI HRRE e

Figure 5: Quantitative comparison of multi-
concept erasure in erasing celebrities (celeb). The
erased and preserved generations are marked with
red and green boxes. Our method precisely erases
100 celebrities while preserving generations of
other non-target concepts.

prior damage evidenced by MS-COCO as well. Notably, our method can erase up to 100 celebrities
in 5 seconds, whereas MACE requires around 30 minutes (<350 time). In real-world scenarios, this
efficiency underscores our potential for the instant erasure of massive concepts.

5.3 Further Analysis

Duration comparison. Table 3 presents the duration comparison in erasing 1, 10, and 100 concepts
across different methods. It is obvious that training-based methods necessitate significantly higher
computational costs than editing-based ones. In contrast, our method achieves precise multi-concept
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(a) Composite Concept Erasure on Community Versions (c) Instance Erasure (1st row) and Prior Preservation (2nd row) on SDv3

Batman

(b) Knowledge Editing (e.g., “Wonder Woman — Woman” and “Superman — Batman’) on SDXL

Figure 6: More applications across various T2I diffusion models. (a) We conduct composite
concept erasure for “Snoopy + Van Gogh” on DreamShaper [3] (1st row) and RealisticVision [4] (2nd
row). (b) Our method also enables model knowledge editing by specifying the anchor concept on
SDXL [42]. (c¢) Our method can seamlessly transfer to novel DiT-based T2I models, e.g., SDv3 [12].

erasure in a remarkably short time, demonstrating superior efficiency while maintaining erasure
performance, as evidenced in Table 2.

Component ablation. In Table 4, we compare the individual impact of our components on prior
preservation and draw the following conclusions: (1) Impact of IEC (Ablation 1 v.s. 2): IEC reduces
the non-target FID and the MS-COCO FID, demonstrating its effectiveness by preserving invariant
embeddings with equality constraints. (2) Impact of IPF (Ablation 2 v.s. 3): Incorporating IPF results
in a significant improvement in both FIDs, underscoring its critical role in filtering out less-influenced
concepts in the retain set to mitigate semantic degradation. (3) Impact of DPA (Ablation 4 v.s. Ours):
DPA improves RPA with directed noise and leads to a substantial improvement in non-target and
MS-COCO FIDs, highlighting its advantage by introducing semantically similar concepts into the
refined retain set. To conclude, the proposed three components (i.e., IEC, IPF, and DPA) improve
the prior preservation from different perspectives and contribute to our method with the best prior
preservation under null space constraints. More ablations are presented in Appx. D.5.

More applications on other T2I models. To validate the transferability of our method across versatile
applications, we conduct further experiments on various T2I models with different weights and
architectures, including: (1) Composite concept erasure on DreamShaper [3] and RealisticVision [4]
from Fig 6 (a): Our method can precisely erase the target concept(s) while preserving other non-target
elements within the prompt, such as the Van Gogh-style background (2nd column) and the Snoopy
character (3rd column). (2) Knowledge editing on SDXL [42] from Fig 6 (b): The arbitrary nature of
anchor concepts allows us to edit the pre-trained model knowledge. Herein, our method effectively
edits the model knowledge while maintaining the overall layout and semantics of the generated
images. (3) Instance erasure on SDv3 [12] from Fig 6 (c¢): To accommodate the diffusion transformer
(DiT) [41] architecture in T2I models, we adapt our method to a DiT-based model, demonstrating a
well-balanced trade-off between erasure (1st row) and preservation (2nd row) as well.

6 Conclusion

This paper introduced SPEED, a scalable, precise, and efficient concept erasure method for T2I
diffusion models. It formulates concept erasure as a null-space constrained optimization problem,
facilitating effective prior preservation along with precise erasure efficacy. Critically, SPEED
overcomes the inefficacy of editing-based methods in multi-concept erasure while circumventing the
prohibitive computational costs associated with training-based approaches. With our proposed Prior
Knowledge Refinement involving three complementary techniques, SPEED not only ensures superior
prior preservation but also achieves a 350 x acceleration in multi-concept erasure, establishing itself
as a scalable and practical solution for real-world applications.
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A Preliminaries

T2I diffusion models. T2I generation has seen significant advancements with diffusion models,
particularly Latent Diffusion Models (LDMs) [47]. Unlike pixel-space diffusion, LDMs operate
in the latent space of a pretrained autoencoder, reducing computational costs while maintaining
high-quality synthesis. LDMs consist of a vector-quantized autoencoder [57, 13] and a diffusion
model [11, 23, 53, 26, 55]. The autoencoder encodes an image x into a latent representation z = &£ ()
and reconstructs it via & &~ D(z). The diffusion model learns to generate latent codes through a
denoising process. The training objective is given by [23, 47]:

Lipm = Exog(@),c.emn(0,1),t ||€ — €0(21, 1, c)llﬂ ) (13)

where z; is the noisy latent at timestep ¢, € is Gaussian noise, €g is the denoising network, and c is
conditioning information from text, class labels, or segmentation masks [47]. During inference, a
latent zp is sampled from a Gaussian prior and progressively denoised to obtain zy, which is then
decoded into an image via ¢g = D(zg).

Cross-attention mechanisms. Current T2I diffusion models usually leverage a generative framework
to synthesize images conditioned on textual descriptions in the latent space [47]. The conditioning
mechanism is implemented through cross-attention (CA) layers. Specifically, textual descriptions are
first tokenized into n tokens and embedded into a sequence of vectors e € R%*" via a pre-trained
CLIP model [43]. These text embeddings serve as the key K € R™*% and value V € R"*% inputs
using parametric projection matrices W € R%>*490 and Wy, € R4 *do_while the intermediate
image representations act as the query Q € R % The cross-attention mechanism is defined as:

Attention(Q, K, V) = softma (QKT> A% (14)
1 b b = X °
Vdy

This alignment enables the model to capture semantic correlations between the textual input and the
visual features, ensuring that the generated images are semantically consistent with the provided text
prompts.

B Proof and Derivation

B.1 Deriving the Closed-Form Solution for UCE

From Eq. 1, we are tasked with minimizing the following editing objective, where the hyperparameters
« and g correspond to the weights of the erasure error e; and the preservation error e, respectively:

min [ (W + A)C1 — WC,||* + | ACo|] . (15)

To derive the closed-form solution, we begin by computing the gradient of the objective function with
respect to A. The gradient is given by:

a(WC; — WC, + AC,)C/ + BACC| = 0. (16)
Solving the resulting equation yields the closed-form solution for Aycg:

Auce = oW (C,C[ — C,C]) (aC,C] + BCyCJ) . (17)

In practice, an additional identity matrix I with hyperparameter \ is added to («C1C{ + BCoCy ) !
to ensure its invertibility. This modification results in the following closed-form solution for UCE:

Auce = oW (C.C] — C,C]) (aC,C] + BCoCJ + M) (18)

B.2 Proof of the Lower Bound of ¢, for UCE
Herein, we aim to establish the existence of a strictly positive constant ¢ > 0 such that

eo = [|AuceCol|? = |aW (C.C{ — C1C]) (aC1C{ + BCyCq + AI) ' Col|> > ¢ > 0. (19)
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Assumption B.1. We assume that o, 3, \ # 0, that W is a full-rank matrix, and that CoC is
rank-deficient. Furthermore, we assume that

C.C/ —c.c] #o0.

Proof. Define the matrix M as
M = aC;C{ + BCyCy + AL (20)

Since A > 0 and I is positive definite, it follows that M is strictly positive definite and therefore
invertible.

Rewriting eg by defining B = M~1Cy, we obtain

eo = [[aW(C,.C] — C.C])B|>. 21)
Applying the singular value bound for matrix products, we have
where oyin(X) is the smallest singular value of X. Applying this inequality, we obtain

[W(C.C{ — CiC{)B| > 0in(W)[[(C.C{ — C1C{)B]. (23)

We start with the singular value decomposition (SVD) of the matrix C,C,; — C;C, given by
C.C/ —c,c] =uxv’. (24)
Here, U and V are orthogonal matrices, and
¥ = diag(o1,09,...,0.,0,...,0) (25)
is a diagonal matrix containing the singular values o1 > 09 > --- > o, > 0, followed by zeros.
Multiplying both sides by B, we obtain
(C.C] —C.;C]/)B=UXV'B. (26)

Define the projection of B onto the subspace spanned by the right singular vectors as
Bpoj = V' B. 27)
Then, we can rewrite the expression as

(C.C] — C,C{)B = UZB,,;. (28)

Taking norms on both sides and using the fact that orthogonal transformations preserve norms, we get
T T
[(C.Cy = C1C)B|| = [|ZBpr]|- (29)
Since X is a diagonal matrix, its smallest nonzero singular value ¢, provides a lower bound:

||EBPFOJ’H 2 ‘77'HBpr0j||- (30)

Next, we establish a lower bound for ||Byy;||. Given that V' is composed of right singular vectors,
there exists a smallest non-zero singular value c; such that:

[Boproj| = c1[| B 31

Combining these inequalities, we obtain
I(C.C] — CLC])B] = 0, [ Bl > 01| B- (32)
Since M is positive definite, we use the standard norm inequality for an invertible matrix M, which

states that for any matrix X,
[MX]| < [|M[[[X]]- (33)
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Setting X = M~ Cj, we obtain

MM~ Co|| < [|M]|[|M ™ Col. (34)
Since MM ~! = 1, the left-hand side simplifies to ||Cy ||, yielding
[Col| < MM~ Cy]|. (35)
, we obtain
IM™'Cy| > 1Coll- (36)
IIMII
Thus, it follows that
Bl = [M™'Col| > 1Col- 37)
IIMII
Combining the above results, we obtain
[W(C.C{ — CiC])B| > gmin(W)o,¢1 1o HMH [Coll- (38)
Squaring both sides, we conclude that
eo = |aW(C,C] — C,C])BJ?> > a?02, (W)o2c? —— ||M||2 1Coll2. (39)

Since all terms on the right-hand side are strictly positive by assumption, we establish the existence
of a positive lower bound ¢ > 0 such that

eg > c>0. 40)
This completes the proof. O

B.3 Deriving the Closed-Form Solution for SPEED

From Eq. 10, we are tasked with minimizing the following editing objective:
min [|(W + AP)C, — WC.|?+ |AP|?, s.t(AP)Cy = 0. (41)

This is a weighted least squares problem subject to an equality constraint. To solve it, we first
formulate the Lagrangian function, where A is the Lagrange multiplier:
L(AA) = ||(W+ AP)C; — WC,|? + |AP|? + AT ((AP)C.). (42)
We compute the gradient of the Lagrangian function in Eq. 42 with respect to A and set it to zero,
yielding the following equation for A:
OL(A,A)
0A N
Given that the projection matrix P is derived from R using Eq. 2, P is a symmetric matrix (i.e.,
P= PT) and an idempotent matrix (i.e., P2 = P), the above formulation can be simplified to:

2((W + AP)C, — WC,)C/P" +2APP" + AC;P" =0.  (43)

OL(A, A
% =2((W + AP)C, —WC*)CIP+2AP+ACQTP =0. (44)
Therefore, we can obtain the closed-form solution for AP from this equation:
1
AP = (WC,C/P - WC,C/P — 5Ac;VP)(cchP +1)L (45)
Next, we differentiate the Lagrangian function in Eq. 42 with respect to A and set it to zero:
OL(A,A)
——~ =(AP)Cy; =0. 46
oA (AP)C, (46)

For simplicity, we define M = (C;C{ P + I)~!. Then, we substitute the result of Eq.45 into Eq.46
and obtain:

1
(WC,C/P - WC,C/P — 5ACJP)MC2 =0. (47)
Solving this equation leads to:
1
JA= W(C,.C] — C,C])PMC,(C]PMC,) L. (48)
Substituting Eq.48 back into Eq.45, we have the closed-form solution of our objective:
(AP)speep = W(C.C{ — C;C{)PQM, (49)

where Q = I — MC,(Cj PMC;) 'CjPand M = (C;C{P + 1)~}
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Table 5: The evaluation setup for multi-concept erasure. This celebrity dataset contains an erasure
set with 100 celebrities and a retain set with another 100 celebrities. We experiment with erasing 10,
50, and 100 celebrities with the pre-defined target concepts and the entire retain set is utilized in all
cases.

Group Number ‘ é ?;f;;t ‘ Celebrity
10 “person’ ‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,

‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’

‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’, ‘Arnold Schwarzenegger’,
‘Barack Obama’, ‘Beth Behrs’, ‘Bill Clinton’, ‘Bob Dylan’, ‘Bob Marley’, ‘Bradley Cooper’, ‘Bruce
Willis’, ‘Bryan Cranston’, ‘Cameron Diaz’, ‘Channing Tatum’, ‘Charlie Sheen’, ‘Charlize Theron’,
50 ‘person’ ‘Chris Evans’, ‘Chris Hemsworth’, ‘Chris Pine’, ‘Chuck Norris’, ‘Courteney Cox’, ‘Demi Lovato’,
‘Drake’, ‘Drew Barrymore’, ‘Dwayne Johnson’, ‘Ed Sheeran’, ‘Elon Musk’, ‘Elvis Presley’, ‘Emma
Stone’, ‘Frida Kahlo’, ‘George Clooney’, ‘Glenn Close’, ‘Gwyneth Paltrow’, ‘Harrison Ford’, ‘Hillary
Clinton’, ‘Hugh Jackman’, ‘Idris Elba’, ‘Jake Gyllenhaal’, ‘James Franco’, ‘Jared Leto’, ‘Jason
Momoa’, ‘Jennifer Aniston’, ‘Jennifer Lawrence’

‘Adam Driver’, “Adriana Lima’, ‘Amber Heard’, "Amy Adams’, "Andrew Garfield’, “Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’, ‘Arnold Schwarzenegger’,
‘Barack Obama’, ‘Beth Behrs’, ‘Bill Clinton’, ‘Bob Dylan’, ‘Bob Marley’, ‘Bradley Cooper’, ‘Bruce
Willis’, ‘Bryan Cranston’, ‘Cameron Diaz’, ‘Channing Tatum’, ‘Charlie Sheen’, ‘Charlize Theron’,
‘Chris Evans’, ‘Chris Hemsworth’, ‘Chris Pine’, ‘Chuck Norris’, ‘Courteney Cox’, ‘Demi Lovato’,
‘Drake’, ‘Drew Barrymore’, ‘Dwayne Johnson’, ‘Ed Sheeran’, ‘Elon Musk’, ‘Elvis Presley’, ‘Emma
Stone’, ‘Frida Kahlo’, ‘George Clooney’, ‘Glenn Close’, ‘Gwyneth Paltrow’, ‘Harrison Ford’,
‘Hillary Clinton’, ‘Hugh Jackman’, ‘ldris Elba’, ‘Jake Gyllenhaal’, ‘James Franco’, ‘Jared Leto’,
‘Jason Momoa’, ‘Jennifer Aniston’, ‘Jennifer Lawrence’, ‘Jennifer Lopez’, ‘Jeremy Renner’, ‘Jessica
Biel’, ‘Jessica Chastain’, ‘John Oliver’, ‘John Wayne’, ‘Johnny Depp’, ‘Julianne Hough’, ‘Justin
Timberlake’, ‘Kate Bosworth’, ‘Kate Winslet’, ‘Leonardo Dicaprio’, ‘Margot Robbie’, ‘Mariah
Carey’, ‘Melania Trump’, ‘Meryl Streep’, ‘Mick Jagger’, ‘Mila Kunis’, ‘Milla Jovovich’, ‘Morgan
Freeman’, ‘Nick Jonas’, ‘Nicolas Cage’, ‘Nicole Kidman’, ‘Octavia Spencer’, ‘Olivia Wilde’, ‘Oprah
Winfrey’, ‘Paul Mccartney’, ‘Paul Walker’, ‘Peter Dinklage’, ‘Philip Seymour Hoffman’, ‘Reese
Witherspoon’, ‘Richard Gere’, ‘Ricky Gervais’, ‘Rihanna’, ‘Robin Williams’, ‘Ronald Reagan’, ‘Ryan
Gosling’, ‘Ryan Reynolds’, ‘Shia Labeouf’, ‘Shirley Temple’, ‘Spike Lee’, ‘Stan Lee’, ‘Theresa May’,
“Tom Cruise’, ‘Tom Hanks’, ‘Tom Hardy’, ‘“Tom Hiddleston’, ‘Whoopi Goldberg’, ‘Zac Efron’, ‘Zayn
Malik’

‘Aaron Paul’, ‘Alec Baldwin’, ‘Amanda Seyfried’, ‘Amy Poehler’, ‘Amy Schumer’, ‘Amy Winehouse’,
‘Andy Samberg’, ‘Aretha Franklin’, ‘Avril Lavigne’, ‘Aziz Ansari’, ‘Barry Manilow’, ‘Ben Affleck’,
‘Ben Stiller’, ‘Benicio Del Toro’, ‘Bette Midler’, ‘Betty White’, ‘Bill Murray’, ‘Bill Nye’, ‘Britney
Spears’, ‘Brittany Snow’, ‘Bruce Lee’, ‘Burt Reynolds’, ‘Charles Manson’, ‘Christie Brinkley’,
‘Christina Hendricks’, ‘Clint Eastwood’, ‘Countess Vaughn’, ‘Dakota Johnson’, ‘Dane Dehaan’,
‘David Bowie’, ‘David Tennant’, ‘Denise Richards’, ‘Doris Day’, ‘Dr Dre’, ‘Elizabeth Taylor’, ‘Emma
Roberts’, ‘Fred Rogers’, ‘Gal Gadot’, ‘George Bush’, ‘George Takei’, ‘Gillian Anderson’, ‘Gordon
Ramsey’, ‘Halle Berry’, ‘Harry Dean Stanton’, ‘Harry Styles’, ‘Hayley Atwell’, ‘Heath Ledger’,
‘Henry Cavill’, ‘Jackie Chan’, ‘Jada Pinkett Smith’, ‘James Garner’, ‘Jason Statham’, ‘Jeff Bridges’,
“‘Jennifer Connelly’, ‘Jensen Ackles’, ‘Jim Morrison’, ‘Jimmy Carter’, ‘Joan Rivers’, ‘John Lennon’,
‘Johnny Cash’, ‘Jon Hamm’, ‘Judy Garland’, ‘Julianne Moore’, ‘Justin Bieber’, ‘Kaley Cuoco’,
‘Kate Upton’, ‘Keanu Reeves’, ‘Kim Jong Un’, ‘Kirsten Dunst’, ‘Kristen Stewart’, ‘Krysten Ritter’,
‘Lana Del Rey’, ‘Leslie Jones’, ‘Lily Collins’, ‘Lindsay Lohan’, ‘Liv Tyler’, ‘Lizzy Caplan’, ‘Maggie
Gyllenhaal’, ‘Matt Damon’, ‘Matt Smith’, ‘Matthew Mcconaughey’, ‘Maya Angelou’, ‘Megan Fox’,
‘Mel Gibson’, ‘Melanie Griffith’, ‘Michael Cera’, ‘Michael Ealy’, ‘Natalie Portman’, ‘Neil Degrasse
Tyson’, ‘Niall Horan’, ‘Patrick Stewart’, ‘Paul Rudd’, ‘Paul Wesley’, ‘Pierce Brosnan’, ‘Prince’,
‘Queen Elizabeth’, ‘Rachel Dratch’, ‘Rachel Mcadams’, ‘Reba Mcentire’, ‘Robert De Niro’

Erasure
Set

100 ‘person’

Retain

Set 10, 50, and 100 -

C Implementation Details

C.1 Experimental Setup Details

Few-concept erasure. We first compare methods on few-concept erasure, a fundamental concept
erasure task, including both instance erasure and artistic style erasure following [35]. For instance
erasure, we prepare 80 instance templates proposed in CLIP [43], such as “a photo of the {Instance}”,
“a drawing of the {Instance}”, and “a painting of the {Instance}”. For artistic style erasure, we use
ChatGPT [38, 5] to generate 30 artistic style templates, including “fArtistic} style painting of the
night sky with bold strokes”, “{Artistic} style landscape of rolling hills with dramatic brushwork”,
and “Sunrise scene in {Artistic} style, capturing the beauty of dawn”. Following [35], we handpick
the representative target and anchor concepts as the erasure set (i.e., Snoopy, Mickey, SpongeBob — *
” in instance erasure and Van Gogh, Picasso, Monet — ‘art’ in artistic style erasure) and non-target
concepts for evaluation (i.e., Pikachu and Hello Kitty in instance erasure and Paul Gauguin and
Caravaggio in artistic style erasure). In terms of the retain set, for instance erasure, we use a scraping
script to crawl Wikipedia category pages to extract fictional character names and their page view
counts with a threshold of 500,000 views from 2020.01.01 to 2023.12.31, resulting in 1,352 instances.
For artistic style erasure, we use the 1,734 artistic styles collected from UCE [18]. In evaluation,
we generate 10 images per template per concept, resulting in 800 and 300 images for each concept
in instance erasure and artistic style erasure, respectively. Moreover, we introduce the MS-COCO
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Table 6: Full quantitative comparison of the few-concept erasure in erasing instances from
Table 1 (left). The best results are highlighted in bold, and are indirect indicators for
measuring erasure efficacy on target concepts or prior preservation on non-target concepts.

Snoopy Mickey Spongebob Pikachu Hello Kitty MS-COCO
cs FID CS FID Ccs FID (& FID Cs FID Ccs FID
SDvl4 2851 - 26.62 - 27.30 - 27.44 - 27.77 - 26.53

Erase Snoopy

¢cs| FDT CStT FID| CSt FD| CST FID] CStT FID| CST FID]

ConAbl  25.44 37.08 38.92 26.14 36.52 2640 21.20
MACE  20.90 105.97 102.77 65.71 7542 26.09 42.62
RECE  18.38 26.63 34.42 21.99 3235 2639 25.61
UCE 23.19 24.87 29.86 19.06 27.86 2646 22.18
Ours 23.50 2341 24.64 16.81 21.74 2648 19.95

Erase Snoopy and Mickey

¢cs|] FDT €S| FIDtT CST FID| CSt FID| CSt FID] CST FID|

ConAbl  25.26 26.58 45.08 35.57 4148 2642 2434
MACE  20.53 20.63 112.01 91.72 106.88  25.50 55.15
RECE  18.57 19.14 35.85 26.05 40.77 2631 30.30
UCE 23.60 24.79 30.58 23.51 31.76  26.38  26.06
Ours 23.58 23.62 29.67 22.51 28.23 2647 23.66

Erase Snoopy and Mickey and Spongebob

cs| FIDT CS| FIDt CS| FIDT CSt FID| CSt FID| CSt FID|

ConAbl  24.92 26.46 25.12 46.47 4824 2637 2671
MACE  19.86 19.35 20.12 110.12 128.56 2339 66.39
RECE  18.17 18.87 16.23 40.52 5206 2632 3251
UCE 23.29 24.63 19.08 29.20 38.15 2630 28.71
Ours 23.69 23.93 21.39 21.40 2622 2651 24.99

Table 7: Full quantitative comparison of the few-concept erasure in erasing artistic styles from
Table 1 (right). The best results are highlighted in bold, and the are indirect indicators
for measuring erasure efficacy on target concepts or prior preservation on non-target concepts.

Van Gogh Picasso Monet Paul Gauguin Caravaggio MS-COCO

CcSs FID CS FID CS FID Ccs FID CcSs FID Ccs FID

SDvl4 2875 - 27.98 - 2891 - 29.80 - 26.27 - 26.53 -

Erase Van Gogh
cS| FIDt €St FID| €St FD|, €St FID|, CSt FID| CSt FID|

ConAbl  28.16 77.01 63.80 63.20 79.25 2646 18.36
MACE  26.66 69.92 60.88 56.18 69.04 2650 23.15
RECE  26.39 60.57 61.09 47.07 7285 2652 2354
UCE 28.10 43.02 40.49 32.62 61.72  26.54 19.63
Ours 26.29 35.86 16.85 24.94 39.75 2655 20.36

Erase Picasso

¢St FID| CS] FIDt CSt FID| CSt FID| CST FID| CST FID|

ConAbl 60.44 2697 36.23 65.23 79.12 2643 20.02
MACE 59.58 2648 37.02 46.35 66.20 2647 22.86
RECE 51.09  26.66 25.39 46.08 75.61 2648 23.03
UCE 3758 2699 16.72 3248 59.27 2650 20.33
Ours 19.18  26.22 19.87 24.73 43.63 2651 19.98

Erase Monet

¢St FID| CST FID| CS| FIbDT CSt FID|, CST FID| CST FID|

ConAbl 68.77 6425  27.05 57.33 71.88 2645 21.03
MACE 61.50 48.41 2598 49.66 6587 2647 2276
RECE 56.26 4597  25.87 46.38 64.19 2649 2494
UCE 42.25 38.73  27.12 33.00 5649 2651 21.58
Ours 28.78 41.21  25.06 27.85 5§5.20 2648  20.87

captions [31] to serve as general prior knowledge. In implementation, we use the first 1,000 captions
to generate a total of 1000 images to compare CS and FID before and after erasure.

Multi-concept erasure. We then compare methods on multi-concept erasure, a more challenging
and realistic concept erasure task. Following the experiment setup from [33], we introduce a dataset
consisting of 200 celebrities, where their portraits generated by SDv1.4 [1] can be recognizable with
exceptional accuracy by the GIPHY Celebrity Detector (GCD) [20]. This dataset is divided into two
groups: an erasure set with 10, 50, and 100 celebrities and a retain set with 100 other celebrities. The
full list for both sets is presented in Table 5. We experiment with erasing 10, 50, and 100 celebrities
with the pre-defined target concepts and the entire retain set is utilized in all cases. In evaluation, we
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Table 8: Evaluation of implicit concept erasure on I2P benchmark. We report the number of
nude body parts (F: Female, M: Male) detected by the NudeNet with threshold = 0.6. The best
and second-best results are marked in bold and underlined. (Left) Our method effectively removes
nude content, even though nudity is not explicitly mentioned in prompts from I2P, achieving the
second-best total count. (Right) Our method also consistently achieves superior prior preservation for
non-target concepts to other methods on MS-COCO.

NudeNet Detection Results on I12P ‘ MS-COCO

Armpits Belly Buttocks Feet Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Total | ‘ CS T FID |

SDvl.4 123 134 19 14 258 9 16 3 576 ‘ 26.53

ConAbl 24 43 5 6 68 1 6 4 157 26.14 39.26

MACE 28 19 1 20 37 3 6 5 119 2406 5278
RECE 17 29 3 7 14 1 8 1 80 2598  40.37
UCE 29 42 2 11 36 3 9 7 139 26.24 38.60
Ours 20 42 7 3 29 2 5 5 11 26.29 37.82

prepare five celebrity templates, (i.e., “a portrait of { Celebrity}”, “a sketch of { Celebrity}”, “an oil
painting of {Celebrity}”, “{Celebrity} in an official photo”, and “an image capturing {Celebrity} at
a public event”) and generate 500 images for both sets. For non-target concepts, we generate 1 image
per template for each of the 100 concepts, totaling 500 images. For target concepts, we adjust the
per-concept quantity to maintain a total of 500 images (e.g., erasing 10 celebrities involves generating
10 images with 5 templates).

Implicit concept erasure. We adopt the same setting in [19] to erase nudity — °’ as the erasure set
and °’ as the retain set. In evaluation, we generate images using all 4,703 prompts in I2P and use
NudeNet [60] to identify nude content with the threshold of 0.6.

C.2 Erasure Configurations

Implementation of previous works. In our series of three concept erasure tasks, we mainly compare
against four methods: ConAbl® [29], MACE? [33], RECE’ [19], and UCE? [18], as they achieve
SOTA performance across different concept erasure tasks. All the compared methods are implemented
using their default configurations from the corresponding official repositories. One exception is
that for MACE when erasing 50 celebrities, since it doesn’t provide an official configuration and
the preserve weight varies with the number of target celebrities, we set it to 1.2 x 10° to ensure a
consistent balance between erasure and preservation.

Implementation of SPEED. In line with previous methods [29, 33, 19, 18], we edit the cross-
attention (CA) layers within the diffusion model due to their role in text-image alignment [21]. In
contrast, we only edit the value matrices in the CA layers, as suggested by [61]. This choice is
grounded in the observation that the keys in CA layers typically govern the layout and compositional
structure of the attention map, while the values control the content and visual appearance of the
images [56]. In the context of concept erasure, our goal is to effectively remove the semantics of
the target concept, and we find that only editing the value matrices is sufficient as shown in Fig. 4
and 5 (further ablation comparison is provided in Appx. D.5). The augmentation times N4 in Eq. 9
is set to 10 and the augmentation ranks r in Eq. 7 is set to 1 as ablated in Appx. D.5. Meanwhile,
given that eigenvalues are rarely strictly zero in practical applications when determining the null
space, we select the singular vectors corresponding to the singular values below 10~! on few-concept
and implicit concept erasure and 10~% on multi-concept erasure following [14]. Moreover, since
the retain set only includes ‘ * in implicit concept erasure, we add an identity matrix I with weight
A = 0.5 to the term (C5 PMC;)~ ! in Eq. 12 to ensure invertibility following [18].

https://github.com/nupurkmr9/concept-ablation
https://github.com/Shilin-LU/MACE
https://github.com/CharlesGong12/RECE
https://github.com/rohitgandikota/unified-concept-editing

® 9 o W

19


https://github.com/nupurkmr9/concept-ablation
https://github.com/Shilin-LU/MACE
https://github.com/CharlesGong12/RECE
https://github.com/rohitgandikota/unified-concept-editing

Original

Original
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(a) Instance Erasure
Original

(b) Artistic Style Erasure

Original

(c) Celebrity Erasure
Original “Nudity-

(d) Implicit Concept Erasure

Figure 7: Qualitative demonstration of our erasure performance across (a) instance erasure, (b)
artistic style erasure, (c) celebrity erasure, and (d) implicit concept erasure. Our method achieves
precise erasure efficacy across various scenarios while exhibiting superior prior preservation. The
corresponding CS is highlighted in blue, indicating that successful erasure can be achieved without
pushing CS much lower, as our results demonstrate sufficient erasure at a moderate level.
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Table 9: Quantitative comparison with SPM and SPM w/o FT (Facilitated Transport). The best
results are highlighted in bold, and the are indirect indicators for measuring erasure
efficacy on target concepts or prior preservation on non-target concepts. Our method, which does not
achieve the lowest CS but has been proven sufficient in Fig. 9.

Concept Snoopy Mickey Spongebob Pikachu Hello Kitty
CS FID CS FID CS FID CS FID CS FID
SDvl.4 28.51 - 26.62 - 27.30 - 27.44 - 27.77
Erase Snoopy
cS| FIDT CST FID|, CST FID| CST FID| CST FID|
SPM 23.72 31.21 31.96 19.82 30.95
SPM w/o FT ~ 23.72 43.03 42.96 25.95 42.53
Ours 23.50 23.41 24.64 16.81 21.74

Erase Snoopy and Mickey

cs| FIDT CS| FID{ CST FID| CSt FID| CST FID|

SPM 23.18 22.71 38.35 27.13 39.61
SPM w/o FT 2245 21.77 61.52 42.63 68.75
Ours 23.58 23.62 29.67 22.51 28.23

Erase Snoopy and Mickey and Spongebob
cS| FIDT CS| FID{T CS| FIDT CST FID| CST FID|

SPM 22.86 22.08 20.92 37.51 46.63
SPM w/o FT ~ 21.80 20.86 20.19 66.15 85.35
Ours 23.69 23.93 21.39 21.40 26.22

Table 10: Quantitative comparison with SPM and SPM w/o FT in multi-concept erasure. The
best results are highlighted in bold. Our method is capable of erasing up to 100 celebrities at once
with low Acc, (%) and preserving other non-target celebrities with less appearance alteration with
high Acc,- (%), resulting in the best overall erasure performance H, (shaded in pink). FAIL indicates
that the model collapses with noisy generations (Acc. = Acc, = 0.00%).

Erase 10 Celebrities MS-COCO \ Erase 50 Celebrities MS-COCO \ Erase 100 Celebrities MS-COCO
Acce | Acc,t H,t CST FID| | Accc| Acc,t H,? CST FID| | Acce] Acc,? H,t CST FID|
SDvl.4 91.99 89.66 1470 2653 - \ 93.08 89.66 12.85 26.53 - \ 90.18 89.66 17.70 2653 -
SPM 0.00 51.79 6824 2642 4844 0.00 0.00 FAIL 2632 52.61 0.00 0.00 FAIL  25.15  63.20
SPMw/o FT  0.00 5.08 9.68 2638 5223 0.00 0.00 FAIL 1622 170.68 0.00 0.00 FAIL 1434 24592
Ours 1.81 89.09 9342 2647 30.02 \ 3.46 88.48  92.34 2646  39.23 \ 5.87 8554  89.63 2622 4497

D Additional Experiments

D.1 More Demonstrations

We further provide qualitative visualizations of the erasure results in Fig.7, illustrating the effec-
tiveness of our method in performing precise and targeted concept erasure across diverse scenarios.
Specifically, we showcase: (a) instance erasure from Table 1 (left); (b) artistic style erasure from
Table 1 (right); (c) celebrity erasure from Table 2; and (d) implicit concept erasure (e.g., nudity)
from Table 8. In all cases, our method successfully removes the intended concept while preserving
unrelated content, demonstrating its universal erasure applications.

We also evaluate the CLIP score (CS) before and after concept erasure to assess the erasure efficacy.
As shown in Figure 8, our method achieves successful erasure of specific concepts such as Snoopy
and Mickey while maintaining moderate CS values (24.18 and 23.44, respectively). This indicates
that effective erasure does not require minimizing CS to an extreme. In contrast, RECE obtains
the lowest CS (19.79 and 18.75), but this is achieved at the cost of overly aggressive erasure. For
example, transforming Snoopy into an unrecognizable image and replacing Mickey with a generic
human figure. While such strategies may enhance erasure efficacy, they also risk compromising prior
knowledge unrelated to the target concept. This trade-off is reflected in higher FIDs, as shown in
Tables | and 2.
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Original

Figure 8: Comparison of CLIP scores (CS) across different erasure methods. We compare the
results in erasing Snoopy and Mickey, and highlight the corresponding CS in blue. Our method
achieves successful concept erasure with moderate CS values. In contrast, RECE achieves the lowest
CS by enabling more aggressive erasure. For example, removing Snoopy to the extent of producing a
semantically void image, and changing Mickey into a generic person. We argue that such over-erasure
unnecessarily compromises prior preservation as evidenced by Tables 1 and 2.

Prompt: Original: Prompt: Original: Prompt: Prompt: Original:
“A painting of “ “A cartoon Mickey” “A doodle of “A origami
a Snoopy” A0 a SpongeBob” Pikachu”
Target
Concepts SPM SPMw/o FT Ours SPM SPM w/o FT Ours SPM SPM w/o FT Ours
—Sneopy—

=
~spongeBob- -

Figure 9: Qualitative comparison with SPM and SPM w/o FT in erasing single and multiple
instances. The erased and preserved generations are highlighted with red and green boxes, respec-
tively. Our method demonstrates superior prior preservation compared to both SPM and SPM w/o FT.
Meanwhile, without the Facilitated Transport module, SPM w/o FT shows poorer prior preservation
in multi-concept erasure (e.g., marked by @) with significant semantic changes compared to original
generations.

D.2 Full Comparison on Few-Concept Erasure

We present full quantitative comparisons of few-concept erasure, including both CS and FID, in
Table 6 and Table 7. Our results demonstrate that our method consistently achieves superior prior
preservation, as indicated by higher CS and lower FID across the majority of non-target concepts.

D.3 On Implicit Concept Erasure

Evaluation setup. We further evaluate the erasure efficacy on implicit concepts, where the target
concept does not explicitly appear in the text prompt. We conduct experiments on the Inappropriate
Image Prompt (I2P) benchmark [49], which consists of various implicit inappropriate prompts
involving violence, sexual content, and nudity. We follow the same setting in [19] to erase nudity
— °’. Specifically, we generate images using all 4,703 text prompts in I2P and use NudeNet [6] to
identify if the nude content is successfully erased with the threshold of 0.6. Additionally, we report
the results on MS-COCO to demonstrate the prior preservation of general concepts.

Analysis and discussion. As shown in Table 8, our method can effectively erase the implicit concept,
i.e., nudity, with the second-best number of detected nude body parts. The SOTA method, RECE [19],
achieves the best total number by extending the erasure set with more target concepts, but this comes
at the cost of sacrificing prior preservation on MS-COCO. In contrast, our method achieves the
best prior preservation, demonstrating effective erasure while maintaining strong prior preservation,
striking a favorable balance between erasure and preservation.
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Table 11: Ablation study on the edited parameters. Our scheme on only editing the value matrices
achieves a superior balance between erasure efficacy (e.g., target CS of 26.29) and prior preservation
(e.g., the lowest FIDs across all non-target concepts).

Parameters ‘ Van Gogh Picasso Monet Paul Gauguin Caravaggio‘ MS-COCO

Ablation
Key Value | CS| FID| FID| FID | FID| |CSt FID|
1 v X 27.67 4211 26.09 28.08 5244 | 2655 1872
2 v o 2624 4841  28.65 33.79 5723 | 2653 2320
Ours x v | 2629 3586 16385 24.94 3975 | 2655 2036

D.4 More Baselines

In this section, we compare against more methods because of the page limit in our main paper. Since
our method focuses on improving prior preservation and multi-concept erasure performance, we
mainly compare it with similar methods, other methods like ESD [17], FMN [65], and SLD [49] are
omitted, as they fail to achieve satisfactory prior preservation proved by previous comaprisons [35, 33,
61]. The remaining comparable method is SPM” [35], which is proposed to improve prior preservation
and can scale to multi-concept erasure tasks. Notably, SPM not only fine-tunes the model weights
using LoRA [25] but also intervenes in the image generation process through Facilitated Transport.
Specifically, this module dynamically adjusts the LoRA scale based on the similarity between the
sampling prompt and the target concept. In other words, if the prompt contains the target concept or
is highly relevant, this scale is set to a large value, whereas if there is little to no relevance, it is set
close to 0, functioning similarly to a text filter. We argue that such a comparison with SPM is not
fair since we only focus on modifying the model parameters, and therefore, we compare both the
original SPM and SPM without Facilitated Transport (SPM w/o FT) for a fair comparison. In the
latter version, the LoRA scale is set to 1 by default.

The quantitative comparative results are shown in Table 9. It can be seen that our method consistently
achieves the best prior preservation compared to both SPM and SPM w/o FT. Even equipped with
Facilitated Transport, our method achieves the lowest non-target FID (e.g., on Pikachu and Hello
Kirty). This superiority amplifies as the number of target concepts increases as shown in Table 10.
For example, with the number of target concepts increasing from 1 to 3, our FID in Pikachu rises
from 16.81 to 21.40 (4.59 1), while SPM increases from 19.82 to 37.51 (17.69 1), where a similar
pattern is observed in Hello Kitty (Our 4.48 1 v.s. SPM’s 15.68 1).

Once removing the Facilitated Transport module, SPM w/o FT shows poorer prior preservation with
rapidly increasing FIDs (highlighted by red in Table 9). This indicates that the success of SPM in
multi-concept erasure relies on the Facilitated Transport module, which dynamically allocates the
LoRA scales by calculating the similarity between the sampling prompt and each target concept.
For example, when erasing Snoopy + Mickey + SpongeBob, if the sampling prompt is “a photo of
Snoopy”, SPM will allocate a larger scale to Snoopy’s LoRA according to the text similarity. On
the contrary, if the sampling prompt is “a photo of Pikachu” with the non-target concept, all three
LoRA scales will be assigned lower values, thereby preserving the prior knowledge. We argue that
this strategy of dynamically tuning the LoRA scales based on the sampling prompt similarity
is vulnerable to attacks and easily bypassed, especially in white-box attack scenarios, where an
attacker can reconstruct the erased concepts by simply modifying the code with extremely low attack
costs, e.g., open-source T2I models like Stable Diffusion [1, 2].

D.5 Ablation Studies

Augmentation times. We ablate the augmentation times N4 proposed in the Directed Prior Aug-
mentation (DPA) module in Sec. 4.2, which controls the balance between semantic degradation and
retain coverage along with the Influence-based Prior Filtering (IPF) module. It can be observed from
Fig. 10 (a) that: (1) As N4 increases, the non-target FID exhibits a trend of first decreasing and
then increasing. This suggests that when N4 is small (i.e., 1 — 10), augmenting existing non-target
concepts with semantically similar concepts facilitates a more comprehensive retain coverage, thereby
improving prior preservation. However, when IV 4 exceeds a certain threshold (i.e., 10 — 20), further
augmentation of non-target concepts leads to narrowing the null-space derivation with semantic

9https ://github.com/Con6924/SPM
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Figure 10: Ablation study on two parameters, i.e., augmentation times V4 and augmentation
ranks r of the DPA module. We report the target CS of erasing Van Gogh and the non-target FID
averaged over other four styles (i.e., Picasso, Monet, Paul Gauguin, Caravaggio).

Table 12: Ablation study on the importance metrics used in IPF.

Van Gogh  Picasso Monet Paul Gauguin Caravaggio MS-COCO

Metric

CS | FID | FID | FID | FID | CST FID|
w/ Text Similarity 26.35 36.87 19.69 25.18 41.44 26.52  20.78
w/ Prior Shift (Ours) 26.29 35.86 16.85 24.94 39.75 26.55 20.36

degradation, ultimately degrading prior preservation. (2) Target CS generally shows a declining
trend, indicating that the proposed Prior Knowledge Refinement strategy not only improves prior
preservation but also exerts a positive impact on erasure efficacy.

Augmentation ranks. Another hyperparameter to be ablated is the augmentation ranks . From
Eq. 7, we introduce the number of the smallest singular values, i.e., augmentation ranks r in deriving
Puin = Unin U, with Ui = Uw/[:, —7 :]. Mathematically, r represents the directions in which
the DPA module can augment in the concept embedding space and constrains the rank of the
augmented embeddings to a maximum of r. As shown in Fig. 10 (b), as r increases, the non-target
FID exhibits an overall upward trend, indicating that introducing more ranks does not benefit prior
preservation, as it narrows the null space. At the same time, as shown in Table 4, such augmentation
by DPA also remains necessary, as it enables more comprehensive coverage of non-target knowledge
with semantically similar concepts, leading to improved prior preservation.

Edited parameters. We compare the impact on editing different CA parameters in Table 11 and
draw the following conclusions: (1) Only editing the key matrices cannot achieve effective erasure,
with the target CS being 27.67 (v.s. the original CS of 28.75). This is because they mainly arrange the
layout information of the generation and cannot effectively erase the semantics of the target concept.
(2) Simultaneously editing both the key and value matrices can achieve effective erasure, but it will
also excessively damage prior knowledge. (3) Only editing the value matrices achieves a superior
balance between erasure efficacy and prior preservation. Compared to Ablation 2, the editing of key
matrices leads to excessive erasure, which is unnecessary in concept erasure.

Importance metrics in IPF. In Sec. 4.1, we propose Importance-based Prior Filtering (IPF) in Eq. 6
and evaluate this importance with the metric prior shift = || A.psec||?. Another intuitive and plausible
metric is based on text similarity, e.g., the cosine similarity between each non-target embedding ¢,
and each target concept embedding ¢, i.e., cos(cg, ¢1). Herein, we conduct an additional ablation
study in terms of the metric selection in Table 12. It can be seen that text similarity can also serve as an
effective metric for evaluating importance with improved non-target FID while the prior shift provides
better prior preservation. This may be because text similarity is implicitly related to importance,
while prior shift explicitly reflects the impact of erasure on different concepts from the model updates
A. Moreover, our method can be directly scaled up to multi-concept erasure scenarios, whereas
text similarity calculates n similarities for n target concepts, requiring additional fusion or selection
strategies, introducing accumulated errors during fusion or selection.

E Limitation

While SPEED demonstrates superior prior preservation, its erasure efficacy may not be as strong as
some adversarial training/editing-based methods (e.g., RECE [19]), which explicitly optimize for
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robust concept removal. This trade-off arises from SPEED’s emphasis on maintaining non-target
knowledge, potentially leading to residual traces of erased concepts in extreme cases. However, due
to its efficiency and scalability in multi-concept erasure, an interesting direction for future work is to
explore the simultaneous erasure of adversarial examples. Given that null-space constraints inherently
minimize the impact on prior knowledge, even with the addition of extra target concepts, SPEED is
expected to achieve better prior preservation compared to existing methods while effectively handling
adversarial concept erasure.

F Ethical Statement

This work introduces a method for concept erasure in text-to-image diffusion models to address
ethical concerns such as copyright infringement, privacy violations, and the generation of offensive
content. By precisely removing specific target concepts while preserving the quality and semantics
of non-target outputs, the proposed approach enhances the safety, reliability, and controllability of
generative models. The method operates through parameter-space editing without requiring access to
private data or involving human subjects, ensuring ethical integrity throughout the research process
and promoting responsible deployment of generative Al technologies.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Appx. E.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In Appx. B.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Details of experiments are presented in Appx. C, and we have uploaded the
source code in the Supplementary Material for reproducibility.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We have uploaded the source code in the Supplementary Material and all data
and pretrained models applied in our experiments are all publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In Appx. C.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We follow the widely-used evaluation benchmark, and these metrics do not
require reporting error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: In Table. 3, all experiments are conducted on single A100 GPU.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have reviewed and followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: In Appx. F.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have carefully cited and stated the assets used in the paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have uploaded our source code.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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