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Figure 1: Three characteristics of our proposed concept erasure method for diffusion models,
SPEED. (a) Scalable: SPEED seamlessly scales from single-concept to large-scale multi-concept
erasure (e.g., 100 celebrities) without additional design. (b) Precise: SPEED precisely removes the
target concept (e.g., Snoopy) while preserving the semantics for non-target concepts (e.g., Hello Kitty
and SpongeBob). (c) Efficient: SPEED immediately erases 100 concepts within 5 seconds, achieving
new state-of-the-art (SOTA) performance with a 350× speedup over competitive methods.

Abstract

Erasing concepts from large-scale text-to-image (T2I) diffusion models has become1

increasingly crucial due to the growing concerns over copyright infringement,2

offensive content, and privacy violations. In scalable applications, fine-tuning-3

based methods are time-consuming to precisely erase multiple target concepts,4

while real-time editing-based methods often degrade the generation quality of5

non-target concepts due to conflicting optimization objectives. To address this6

dilemma, we introduce SPEED, an efficient concept erasure approach that directly7

edits model parameters. SPEED searches for a null space, a model editing space8

where parameter updates do not affect non-target concepts, to achieve scalable9

and precise erasure. To facilitate accurate null space optimization, we incorporate10

three complementary strategies: Influence-based Prior Filtering (IPF) to selectively11

retain the most affected non-target concepts, Directed Prior Augmentation (DPA)12

to enrich the filtered retain set with semantically consistent variations, and Invariant13

Equality Constraints (IEC) to preserve key invariants during the T2I generation14

process. Extensive evaluations across multiple concept erasure tasks demonstrate15

that SPEED consistently outperforms existing methods in non-target preservation16

while achieving efficient and high-fidelity concept erasure, successfully erasing17

100 concepts within just 5 seconds.18

1 Introduction19

Large-scale text-to-image (T2I) diffusion models [23, 54, 55, 37, 47, 24] have facilitated significant20

breakthroughs in generating highly realistic and contextually consistent images simply from textual21

descriptions [11, 44, 16, 7, 48, 42, 12]. Alongside these advancements, concerns have also been22

raised regarding copyright violations [10, 52], offensive content [49, 64, 66], and privacy concerns23

[8, 63]. To mitigate ethical and legal risks in generation, it is often necessary to prevent the model24
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from generating certain concepts, a process termed concept erasure [29, 17, 65]. However, removing25

target concepts without carefully preserving the semantics of non-target concepts can introduce26

unintended artifacts, distortions, and degraded image quality [17, 40, 49, 65], compromising the27

model’s reliability and usability. Therefore, beyond ensuring the effective removal of target concepts28

(i.e., erasure efficacy), concept erasure should also maintain the original semantics of non-target29

concepts (i.e., prior preservation [61]).30

In this context, recent methods strive to seek a balance between erasure efficacy and prior preservation,31

broadly categorized into two paradigms: training-based [29, 35, 33] and editing-based [18, 19]. The32

training-based paradigm fine-tunes T2I diffusion models to achieve concept erasure, incorporating33

an additional regularization term into the training objective for prior preservation. In contrast, the34

editing-based paradigm avoids additional fine-tuning by directly modifying model parameters (e.g.,35

projection weights in cross-attention layers [47]), with such modifications derived from a closed-36

form objective that jointly accounts for erasure and preservation. This efficiency also facilitates37

editing-based methods to extend to multi-concept erasure without additional designs seamlessly.38

However, as the number of target concepts increases, current editing-based methods [18, 19] struggle39

to balance between erasure efficacy and prior preservation. This can be attributed to the growing40

conflicts between erasure and preservation objectives, making such trade-offs increasingly difficult.41

Moreover, these methods rely on weighted least squares optimization, inherently imposing a non-zero42

lower bound on preservation error (see Appx. B.2). In multi-concept settings, this accumulation of43

preservation errors gradually distorts non-target knowledge, thereby degrading prior preservation.44

To address the above limitations, we propose Scalable, Precise, and Efficient Concept Erasure for45

Diffusion Models (SPEED) (see Fig. 1), an editing-based method incorporating null-space constraints.46

Specifically, we search for the null space of prior knowledge, a model editing space where parameter47

updates do not affect the feature representations of non-target concepts. By projecting the model48

parameter updates for concept erasure onto such null space, SPEED can minimize the preservation49

error to zero without compromising erasure efficacy, thereby enabling scalable and precise concept50

erasure without affecting non-target concepts.51
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Figure 2: Semantic degradation with increasing
non-target concepts in the retain set. Baseline
null-space constrained method [14] can maintain
the non-target semantics given a small retain set
( ). However, as the retain set grows, the rank of
corresponding matrix increases, making null space
estimation increasingly inaccurate (see Eq. 4) with
inevitable approximation errors, thereby degrading
Monet’s semantics in the retain set ( and ).

The key contribution of SPEED lies in construct-52

ing an effective null space from a set of non-53

target concepts (i.e., retain set). We observe54

that the existing baseline with null-space con-55

straints [14] confronts a fundamental dilemma56

during concept erasure: While a small retain set57

limits the coverage of prior knowledge, enlarg-58

ing the retain set makes it increasingly difficult59

to identify an accurate null space. This difficulty60

arises because a large retain set causes the cor-61

responding feature matrix to approach full rank,62

necessitating the estimation of its null space to63

ensure sufficient degrees of freedom for opti-64

mization (i.e., for concept erasure). However,65

this estimation inevitably introduces semantic66

degradation within the retain set and deteriorat-67

ing prior preservation (see Fig. 2 and Eq. 4).68

In this light, we introduce Prior Knowledge Refinement, a suite of techniques that strategically69

and selectively refine the retain set to mitigate the semantic degradation in searching for the null70

space. Particularly, we propose Influence-based Prior Filtering (IPF), which first quantifies the71

influence of concept erasure on each non-target concept. It then prunes the retain set by removing72

minimally affected concepts, preventing the correlation matrix from approaching full rank and thus73

maintaining an accurate null space. Subsequently, to further enhance prior preservation over the74

resulting retain set, we propose Directed Prior Augmentation (DPA), which expands the retain set75

with directed, semantically consistent perturbations to improve retain coverage. In addition, we76

incorporate Invariant Equality Constraints (IEC) to preserve specific representations, such as the77

[SOT] token, that should remain unchanged during editing. IEC enforces equality constraints on78

such invariants to regularize the retaining of essential generation properties. We evaluate SPEED79

on three representative concept erasure tasks, i.e., few-concept, multi-concept, and implicit concept80

2



erasure, where it consistently exhibits superior prior preservation across all erasure tasks. Overall,81

our contributions can be summarized as follows:82

• We propose SPEED, a scalable, precise, and efficient concept erasure method with null-space83

constrained model editing, capable of erasing 100 concepts in 5 seconds.84

• We introduce Prior Knowledge Refinement to construct an accurate null space over the retain set85

for effective editing. Leveraging three complementary techniques, IPF, DPA, and IEC, our method86

balances semantic degradation and retain coverage, enabling precise and scalable concept erasure.87

• Our extensive experiments show that SPEED consistently outperforms existing methods in prior88

preservation across various erasure tasks with minimal computational costs.89

2 Related Works90

Concept erasure. Current T2I diffusion models inevitably involve unauthorized and NSFW (Not91

Safe For Work) generations due to the noisy training data from web [51, 50]. Apart from applying92

additional filters or safety checkers [45, 39, 46], prevailing methods modify diffusion model param-93

eters to erase specific target concepts, mainly categorized into two paradigms. The training-based94

paradigm fine-tunes model parameters with specific erasure objectives [29, 17, 65] and additional95

regularization terms [29, 35, 33]. In contrast, the editing-based paradigm edits model parameters96

using a closed-form solution to facilitate efficiency in concept erasure. For example, UCE [18]97

modifies model weights by balancing both erasure and preservation error through a weighted least98

squares objective and RECE [19] iteratively derives new target concept embeddings. These methods99

can erase numerous concepts within seconds, demonstrating superior efficiency in practice.100

Null-space constraints. The null space of a matrix, a fundamental concept in linear algebra, refers to101

the set of all vectors that the matrix maps to the zero vector. The null-space constraints are first applied102

to continual learning (CL) by projecting gradients onto the null space of uncentered covariances103

from previous tasks [58]. Subsequent studies [34, 59, 62, 28, 30] further explore and extend the104

application of null space in CL. In model editing, AlphaEdit [14] restricts model weight updates105

onto the null space of preserved knowledge, effectively mitigating trade-offs between editing and106

preservation. Null-space constraints also apply to various tasks, e.g., machine unlearning [9], MRI107

reconstruction [15], and image restoration [60], offering promise for editing-based concept erasure.108

3 Problem Formulation109

In T2I diffusion models, each concept is encoded by a set of text tokens via CLIP [43], which are110

then aggregated into a single concept embedding c ∈ Rd0 . For concept erasure, there are two sets of111

concepts: the erasure set E and the retain set R. The erasure set consists of NE target concepts to be112

removed, denoted as E = {c(i)1 }NE
i=1. The retain set includes NR non-target concepts that should be113

preserved during editing, denoted as R = {c(j)0 }NR
j=1. To enable efficient erasure efficacy for E and114

prior preservation for R, we first formulate a closed-form editing objective in Sec. 3.1, and enhance115

it with null-space constrained optimization in Sec. 3.2.116

3.1 Concept Erasure in Closed-Form Solution117

To effectively erase each target concept c(i)1 ∈ E (e.g., Snoopy), it is specified to be mapped onto an118

anchor concept c(i)∗ that shares general semantics (e.g., Dog), termed as an anchor set A = {c(i)∗ }NE
i=1.119

For editing-based methods [40, 18, 19], concept embeddings from the erasure set E, anchor set A, and120

retain set R are first organized into three structured matrices: C1,C∗ ∈ Rd0×NE and C0 ∈ Rd0×NR ,121

representing the stacked embeddings of target, anchor, and non-target concepts, respectively. To122

derive a closed-form solution for concept erasure, existing methods typically optimize a perturbation123

∆ to model parameters W, balancing between erasure efficacy and prior preservation. For example,124

UCE [18] formulates concept erasure as a weighted least squares problem:125

∆UCE = arg min
∆

∥(W +∆)C1 −WC∗∥2︸ ︷︷ ︸
e1

+ ∥∆C0∥2︸ ︷︷ ︸
e0

, (1)
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where the erasure error e1 ensures that each target concept is mapped onto its corresponding anchor126

concept and the preservation error e0 minimizes the impact on non-target concepts. This formulation127

provides a closed-form solution ∆UCE (see Appx. B.1) for parameter updates, achieving computa-128

tionally efficient optimization. However, as the number of target concepts increases, the accumulated129

preservation errors e0, which prove to share a non-zero bound from Appx. B.2, across multiple target130

concepts would amplify the distortion on non-target knowledge and degrade prior preservation.131

3.2 Apply Null-Space Constraints132

To mitigate the limitation of weighted optimization in prior preservation, SPEED integrates null-space133

constraints [58, 14] to achieve prior-preserved model editing by forcing e0 = 0. Specifically, the null134

space of C0 is the set of all vectors v such that vC0 = 0. Restricting the parameter update ∆ to this135

space ensures that such updates do not interfere with non-target concepts.136

To project ∆ onto null space, we perform singular value decomposition (SVD) on C0C
⊤
0 ∈ Rd0×d01137

and have
{
U,Λ,U⊤} = SVD

(
C0C

⊤
0

)
, where U ∈ Rd0×d0 contains the singular vectors of C0C

⊤
0 ,138

and Λ is a diagonal matrix of its singular values. The singular vectors in U w.r.t. zero singular values139

form an orthonormal basis for the null space of C0, which we denote as Û. Using this basis, we140

construct the null-space projection matrix P = ÛÛ⊤. The process can be formulated as:141 {
U,Λ,U⊤} = SVD

(
C0C

⊤
0

)
, U ∈ Rd0×d0

zero singular−−−−−−→
values

Û =⇒ P = ÛÛ⊤. (2)

The final update applied to model parameters is ∆P, which projects ∆ onto the null space of C0.142

This ensures that updates do not interfere with non-target concepts, satisfying ∥(∆P)C0∥2 = 0. To143

solve for the updates, we minimize the following objective:144

∆Null = arg min
∆

∥(W +∆P)C1 −WC∗∥2︸ ︷︷ ︸
e1

+

��
����∥ (∆P)C0∥2︸ ︷︷ ︸
e0=0

+ ∥∆P∥2︸ ︷︷ ︸
regularization

, (3)

where ∥∆P∥2 is a regularization term to ensure convergence. The preservation term ∥(∆P)C0∥2 is145

omitted, as it is guaranteed to be zero by the null-space constraint. This objective enables us to update146

the model parameters such that target concepts are effectively erased while non-target representations147

remain unaffected, thereby achieving prior-preserved concept erasure.148

4 Prior Knowledge Refinement149

However, as more diverse non-target concepts are included in the retain set, the rank of the correlation150

matrix C0C
⊤
0 increases2. The null space, defined as the orthogonal complement of this span,151

correspondingly shrinks in dimension:152

dim(Null(C0)) = d0 − rank(C0C
⊤
0 ). (4)

Here, the null space dimension characterizes the degrees of freedom available for editing without153

affecting the retained concepts. However, as this dimension shrinks, to ensure sufficient degrees of154

freedom for concept erasure, we are compelled to include singular vectors w.r.t. non-zero singular val-155

ues in Û following [14], which leads to an approximate null space and induces semantic degradation156

within the retain set (see Fig. 2). To mitigate this problem, we propose Prior Knowledge Refinement,157

a structured strategy for refining the retain set to enable accurate null-space construction. It comprises158

three complementary techniques: Influence-Based Prior Filtering (Sec. 4.1) to discard weakly affected159

non-target concepts to form a viable null space; Directed Prior Augmentation (Sec. 4.2) to expand160

the retain set with targeted and semantically consistent variations; and Invariant Equality Constraints161

(Sec. 4.3) to enforce equality constraints to preserve critical invariants during generation.162

1C0C
⊤
0 and C0 share the same null space. We operated on C0C

⊤
0 ∈ Rd0×d0 since it has fixed row

dimension while C0 ∈ Rd0×NR may have high dimensionality depending on concept number NR.
2We assume that the concepts are not exactly linearly dependent in the representation space, which is

generally satisfied in practice due to the semantic diversity and high dimensionality of the embedding space.
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4.1 Influence-Based Prior Filtering (IPF)163

Given a pre-defined retain set, existing editing-based methods [18, 19] treat all non-target concepts164

equally when enforcing prior preservation. However, a critical yet overlooked fact is that parameter165

updates inherently induce output changes over non-target concepts, and these changes vary signifi-166

cantly across different non-target elements. This suggests that not all non-target concepts contribute167

equally to preserving the model’s prior knowledge, and weakly influenced concepts would provide168

marginal benefit while introducing additional ranks to narrow the null space.169

To this end, we propose an explicit and model-consistent metric, i.e., prior shift, to quantify how170

much a non-target concept is affected by concept erasure. Specifically, we isolate the effect of erasure171

by solving for a closed-form update ∆erase that minimizes only the erasure error e1 while discarding172

the preservation term e0 from Eq. 1:173

∆erase = arg min
∆

∥(W +∆)C1 −WC∗∥2︸ ︷︷ ︸
e1

+ ∥∆∥2︸ ︷︷ ︸
regularization

= W
(
C∗C

⊤
1 −C1C

⊤
1

)
(I+C1C1)

−1
.

(5)
where ∥∆∥2 is introduced for convergence. Then, for each non-target concept embedding c, we174

define its prior shift as: ∥∆erasec∥2. This value offers a faithful reflection of how parameter updates175

perturb a non-target concept in the feature space with closed-form computation, and can naturally176

generalize to assessing multi-concept erasure effects. Based on this, we filter the original retain set R177

to focus only on highly influenced concepts:178

Rf : R 7→ {c0 ∈ R | ∥∆erasec0∥2 > µ}, (6)

where the mean value µ = Ec0∼R

[
∥∆erasec0∥2

]
serves as a filtering threshold.179

4.2 Directed Prior Augmentation (DPA)180

(a) Concept Embedding Space (b) Key/Value Space

Original Concept w/ Random Noise w/ Directed Noise (Ours)

Figure 3: t-SNE distribution of perturbing the
original concept with random noise and our
directed noise. (a) Similar to random noise, our
method can span a broad concept embedding space.
(b) Our directed noise preserves semantic similar-
ity to the original concept with closer distances in
the space mapped by W.

To further enhance prior preservation over the181

resulting retain set with improved retain cov-182

erage, an intuitive strategy is to augment the183

retain set by perturbing non-target embedding184

c0 with random noise [35]. However, this strat-185

egy would introduce meaningless embeddings186

that fail to generate semantically coherent im-187

ages (e.g., noise image), resulting in excessive188

preservation with increasing ranks. To search for189

more semantically consistent concepts, we in-190

troduce directed noise by projecting the random191

noise ϵ onto the direction in which the model192

parameters W exhibit minimal variation. This193

operation ensures the perturbed embeddings ex-194

press closer semantics to the original concept195

after being mapped by W in Fig. 3. Specifically,196

we first derive a projection matrix Pmin:197 {
UW,ΛW,U⊤

W

}
= SVD (W) , Pmin = UminU

⊤
min, (7)

where Umin = UW[:,−r :] denotes the singular vectors w.r.t. the smallest r singular vectors3, which198

represent the r least-changing directions of W and constrain the rank of the augmented embeddings199

to a maximum of r. Then the directed noise ϵ ·Pmin is used to perturb the original embedding via:200

c′0 = c0 + ϵ ·Pmin, ϵ ∼ N (0, I). (8)

Given a retain set R, the augmentation process can be formulated as follows:201

Raug : R 7→
⋃

c0∈R

{
c′0,k | k = 1, . . . , NA

}
, (9)

where NA denotes the augmentation times and c′0,k represents the k-th augmented embedding given202

c0 ∈ R using Eq. 8. In implementation, we first filter the original retain set R to obtain Rf using203

3Empirically, the model parameter matrix W is usually full rank, thus its all singular values are non-zero.
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Figure 4: Qualitative comparison of the few-concept erasure in erasing instances. The erased and
preserved generations are highlighted with red and green boxes, respectively. Our method exhibits
consistent prior preservation with less semantic degradation for non-target concepts. For example,
the middle column better retains details such as Mickey’s hat and button count, and the right column
demonstrates more consistent Hello Kitty generations along with three concepts erased.

IPF. Subsequently, further augmentation and filtering are applied to Rf using DPA and IPF to obtain204

(Rf )
aug
f , and the two filtered retain sets are then combined together to serve as the final refined retain205

set Rrefine = Rf ∪ (Rf )
aug
f .206

4.3 Invariant Equality Constraints (IEC)207

In parallel, we identify certain invariants during the T2I generation process, i.e., intermediate variables208

that remain unchanged with varying sampling prompts. One such invariant is the CLIP-encoded209

[SOT] token. Since the encoding process is masked by causal attention and all prompts are prefixed210

with the fixed [SOT] token during tokenization, its embedding consistently remains unchanged during211

T2I process. Another invariant is the null-text embedding, as it corresponds to the unconditional212

generation under the classifier-free guidance [24], which also remains unchanged despite prompt213

variations. Given the invariance of these embeddings, we consider additional protection measures to214

ensure their outputs remain unchanged during concept erasure. Specifically, we introduce explicit215

equality constraints over invariants based on Eq. 3:216

min
∆

∥(W +∆P)C1 −WC∗∥2︸ ︷︷ ︸
e1

+ ∥∆P∥2︸ ︷︷ ︸
regularization

, s.t. (∆P)C2 = 0︸ ︷︷ ︸
equality constraints

, (10)

where C2 denotes the stacked invariant embedding matrix of [SOT] and null-text4. Derive the217

projection matrix P from Rrefine, we can compute the closed-form solution of Eq. 10 using Lagrange218

Multipliers from Appx. B.3:219

(∆P)Ours = W
(
C∗C

⊤
1 −C1C

⊤
1

)
PQM, (11)

where220

M =
(
C1C

⊤
1 P+ I

)−1
,Q = I−MC2

(
C⊤

2 PMC2

)−1
C⊤

2 P. (12)
This closed-form solution enforces the equality constraints by projecting the parameter update onto221

the subspace orthogonal to the invariant embeddings. Since image generation inevitably depends on222

these invariant embeddings, such constraints inherently preserve prior knowledge.223

5 Experiments224

In this section, we conduct extensive experiments on three representative erasure tasks, including225

few-concept erasure, multi-concept erasure, and implicit concept erasure (Appx. D.3), validating our226

superior prior preservation. The compared baselines include ConAbl [29], MACE [33], RECE [19],227

and UCE [18], which have achieved SOTA performance across various concept erasure tasks. In im-228

plementation, we conduct all experiments on SDv1.4 [1] and generate each image using DPM-solver229

sampler [32] over 20 sampling steps with classifier-free guidance [24] of 7.5. More implementation230

details and compared baselines (e.g., SPM [35]) can be found in Appx. C and Appx. D.4.231

4Since the null-text embeddings are only composed of [EOT] tokens (excluding [SOT]), we use the k-means
algorithm [36] to select k centroids to reduce redundancy.
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Table 1: Quantitative comparison of the few-concept erasure in erasing instances (left) and
artistic styles (right) following [35]. Arrows on the headers indicate the preferred direction for
each metric, and the best results are highlighted in bold. Our method consistently improves prior
preservation for non-target and general concepts from MS-COCO (shaded in pink ) while achieving
effective concept erasure. While our CS is not the lowest for target concpet, Appx. D.1 and Fig. 7
show our method is sufficient for erasure, and lower CS may further compromise prior preservation.

Concept Snoopy Mickey Spongebob Pikachu Hello Kitty MS-COCO

CS CS CS CS CS CS FID

SD v1.4 28.51 26.62 27.30 27.44 27.77 26.53 -

Erase Snoopy

CS ↓ FID ↓ FID ↓ FID ↓ FID ↓ CS ↑ FID ↓

ConAbl 25.44 37.08 38.92 26.14 36.52 26.40 21.20
MACE 20.90 105.97 102.77 65.71 75.42 26.09 42.62
RECE 18.38 26.63 34.42 21.99 32.35 26.39 25.61
UCE 23.19 24.87 29.86 19.06 27.86 26.46 22.18

Ours 23.50 23.41 24.64 16.81 21.74 26.48 19.95

Erase Snoopy and Mickey

CS ↓ CS ↓ FID ↓ FID ↓ FID ↓ CS ↑ FID ↓

ConAbl 25.26 26.58 45.08 35.57 41.48 26.42 24.34
MACE 20.53 20.63 112.01 91.72 106.88 25.50 55.15
RECE 18.57 19.14 35.85 26.05 40.77 26.31 30.30
UCE 23.60 24.79 30.58 23.51 31.76 26.38 26.06

Ours 23.58 23.62 29.67 22.51 28.23 26.47 23.66

Erase Snoopy and Mickey and Spongebob

CS ↓ CS ↓ CS ↓ FID ↓ FID ↓ CS ↑ FID ↓

ConAbl 24.92 26.46 25.12 46.47 48.24 26.37 26.71
MACE 19.86 19.35 20.12 110.12 128.56 23.39 66.39
RECE 18.17 18.87 16.23 40.52 52.06 26.32 32.51
UCE 23.29 24.63 19.08 29.20 38.15 26.30 28.71

Ours 23.69 23.93 21.39 21.40 26.22 26.51 24.99

Concept Van Gogh Picasso Monet P. Gauguin Caravaggio MS-COCO

CS CS CS CS CS CS FID

SD v1.4 28.75 27.98 28.91 29.80 26.27 26.53 -

Erase Van Gogh

CS ↓ FID ↓ FID ↓ FID ↓ FID ↓ CS ↑ FID ↓

ConAbl 28.16 77.01 63.80 63.20 79.25 26.46 18.36
MACE 26.66 69.92 60.88 56.18 69.04 26.50 23.15
RECE 26.39 60.57 61.09 47.07 72.85 26.52 23.54
UCE 28.10 43.02 40.49 32.62 61.72 26.54 19.63

Ours 26.29 35.86 16.85 24.94 39.75 26.55 20.36

Erase Picasso

FID ↓ CS ↓ FID ↓ FID ↓ FID ↓ CS ↑ FID ↓

ConAbl 60.44 26.97 36.23 65.23 79.12 26.43 20.02
MACE 59.58 26.48 37.02 46.35 66.20 26.47 22.86
RECE 51.09 26.66 25.39 46.08 75.61 26.48 23.03
UCE 37.58 26.99 16.72 32.48 59.27 26.50 20.33

Ours 19.18 26.22 19.87 24.73 43.63 26.51 19.98

Erase Monet

FID ↓ FID ↓ CS ↓ FID ↓ FID ↓ CS ↑ FID ↓

ConAbl 68.77 64.25 27.05 57.33 71.88 26.45 21.03
MACE 61.50 48.41 25.98 49.66 65.87 26.47 22.76
RECE 56.26 45.97 25.87 46.38 64.19 26.49 24.94
UCE 42.25 38.73 27.12 33.00 56.49 26.51 21.58

Ours 28.78 41.21 25.06 27.85 55.20 26.48 20.87

5.1 On Few-Concept Erasure232

Evaluation setup. To compare the few-concept erasure performance with baseline methods, we233

conduct experiments on instance erasure and artistic style erasure following [35], where all methods234

are evaluated based on 80 instance templates and 30 artistic style templates, generating 10 images235

per template per concept. We use two metrics for evaluation: CLIP Score (CS) [43] measuring the236

text-image similarity and Fréchet Inception Distance (FID) [22] assessing the distributional distance237

before and after erasure. Following [35], we select non-target concepts with similar semantics to the238

target concept for comparison and report CS for targets and FID for non-targets in the main paper.239

Full comparisons are presented in Appx. D.2. We further compare the generations on MS-COCO240

captions [31], where we generate images with the first 1,000 captions, and report CS and FID to241

measure general knowledge preservation.242

Analysis and discussion. Table 1 compares the results of erasing various instance concepts and243

artistic styles. Our method consistently achieves the lowest FIDs across all non-target concepts,244

demonstrating superior prior preservation with minimal alteration to the original content. Moreover,245

we emphasize that our erasure is sufficiently effective, even without achieving the lowest CS, as246

shown in Fig. 4 and Appx. D.1. In contrast, lower CS values typically indicate over-erasure, which247

results in excessive degradation of prior knowledge. Notably, with the number of target concepts248

increasing from 1 to 3, our FID in Pikachu rises from 16.81 to 21.40 (4.59 ↑), while UCE increases249

from 19.06 to 29.20 (10.14 ↑). A similar pattern is observed in Hello Kitty (Our 4.48 ↑ v.s. UCE’s250

10.29 ↑), showing our robustness in erasing increasing target concepts.251

5.2 On Multi-Concept Erasure252

Evaluation setup. Another more realistic erasure scenario is multi-concept erasure, where massive253

concepts are required to be erased at once. Herein, we follow the experiment setup in [33] for erasing254

multiple celebrities, where we experiment with erasing 10, 50, and 100 celebrities and collect another255

100 celebrities as non-target concepts. We prepare 5 prompt templates for each celebrity concept. For256

non-target concepts, we generate 1 image per template for each of the 100 concepts, totaling 500257

images. For target concepts, we adjust the per-concept quantity to maintain a total of 500 images (e.g.,258

erasing 10 celebrities involves generating 10 images with 5 templates per concept). In evaluation,259

we adopt GIPHY Celebrity Detector (GCD) [20] and measure the top-1 GCD accuracy, indicated by260

Acce for erased target concepts and Accr for retained non-target concepts. Meanwhile, the harmonic261
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Table 2: Quantitative comparison of the multi-concept erasure in erasing 10, 50, and 100
celebrities. The best results are highlighted in bold. Our method is capable of erasing up to 100
celebrities at once with low Acce (%) and preserving other non-target celebrities with less appearance
alteration with high Accr (%), resulting in the best overall erasure performance Ho (shaded in pink).

Erase 10 Celebrities MS-COCO Erase 50 Celebrities MS-COCO Erase 100 Celebrities MS-COCO

Acce ↓ Accr ↑ Ho ↑ CS ↑ FID ↓ Acce ↓ Accr ↑ Ho ↑ CS ↑ FID ↓ Acce ↓ Accr ↑ Ho ↑ CS ↑ FID ↓

SD v1.4 91.99 89.66 14.70 26.53 - 93.08 89.66 12.85 26.53 - 90.18 89.66 17.70 26.53 -

ConAbl 60.76 77.89 52.19 25.60 42.12 64.00 75.44 48.74 14.30 255.36 42.86 58.82 57.97 14.93 235.27
UCE 0.20 71.19 83.10 24.07 83.81 0.00 31.94 48.41 13.45 209.93 0.00 20.92 34.60 13.49 185.46

RECE 0.34 67.43 80.44 16.75 170.65 1.03 19.77 32.95 13.49 213.39 2.43 23.71 38.16 12.09 177.57
MACE 1.62 87.73 92.75 26.36 37.25 3.41 84.31 90.03 25.45 45.31 4.80 80.20 87.06 24.80 50.41

Ours 1.81 89.09 93.42 26.47 30.02 3.46 88.48 92.34 26.46 39.23 5.87 85.54 89.63 26.22 44.97

Table 3: Duration comparison (s) in erasing
multiple celebrities on one A100 GPU, where
n is the number of target concepts. During data
preparation, ConAbl requires pre-sampling 1,000
images (t1) while MACE needs 8 pre-sampled
images along with 8 segmentation masks (t2) us-
ing SAM [27]. Ho is also included to compare
multi-concept erasure performance.

Training-based Editing-based

ConAbl MACE UCE RECE Ours

Data Preparation n× 1000 n× (8 + 8) 0 0 0

1 concept 1× 90 55.1 1.2 1.5 3.6
Ho ↑ 52.2 92.7 83.1 80.4 93.4

10 concepts 10× 90 207.0 1.5 2.5 3.8
Ho ↑ 48.7 90.0 48.4 33.0 92.3

100 concepts 100× 90 1735.9 2.1 11.0 5.0
Ho ↑ 58.0 87.1 34.6 38.2 89.6

Table 4: Ablation study on proposed compo-
nents in erasing Van Gogh, with the non-target
FID averaged over the other four artistic styles
from Table 1. Ablation 1 corresponds to the orig-
inal objective from [14] in Eq. 3. The ablated
components include: IEC (Invariant Equality Con-
straints), IPF (Influence-based Prior Filtering),
RPA (Random Prior Augmentation), and DPA
(Directed Prior Augmentation).

Ablation Components Target Non-Target MS-COCO

IEC IPF RPA DPA CS ↓ FID ↓ CS ↑ FID ↓

1 × × × × 27.20 50.43 26.42 26.33
2 ✓ × × × 27.20 48.17 26.44 24.95
3 ✓ ✓ × × 26.68 38.02 26.54 20.57
4 ✓ ✓ ✓ × 26.30 32.62 26.52 20.99

Ours ✓ ✓ × ✓ 26.29 29.35 26.55 20.36

SD v1.4 - - - - 28.75 - 26.53 -

mean Ho = 2
(1−Acce)−1+(Accr)−1 is adopted to assess the overall erasure performance. Additionally,262

we report the results on MS-COCO to demonstrate the prior preservation of general concepts.263

10 
celeb

UCE RECE MACE Ours

Original:Prompt:
a) “A portrait of Andrew Garfield”
b) “A portrait of Judy Garland”

50 
celeb

100 
celeb

Figure 5: Quantitative comparison of multi-
concept erasure in erasing celebrities (celeb). The
erased and preserved generations are marked with
red and green boxes. Our method precisely erases
100 celebrities while preserving generations of
other non-target concepts.

Analysis and discussion. Table 2 showcases a264

notable improvement of our method on multi-265

concept erasure, particularly in prior preserva-266

tion with the highest Accr. In comparison with267

the SOTA method, MACE [33], our method268

achieves superior prior preservation with bet-269

ter Accr, while maintaining comparable erasure270

efficacy, as reflected in similar Acce, resulting271

in the best overall erasure performance indicated272

by the highest Ho. Meanwhile, our method273

attains the lowest FID across all methods on274

MS-COCO. The other methods, UCE [18] and275

RECE [19], although achieving considerable276

balance in few-concept erasure, fail to maintain277

this balance as the number of target concepts278

increases as shown in Fig. 5, with catastrophic279

prior damage evidenced by MS-COCO as well. Notably, our method can erase up to 100 celebrities280

in 5 seconds, whereas MACE requires around 30 minutes (×350 time). In real-world scenarios, this281

efficiency underscores our potential for the instant erasure of massive concepts.282

5.3 Further Analysis283

Duration comparison. Table 3 presents the duration comparison in erasing 1, 10, and 100 concepts284

across different methods. It is obvious that training-based methods necessitate significantly higher285

computational costs than editing-based ones. In contrast, our method achieves precise multi-concept286
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Snoopy & Van GoghVan GoghOriginal Snoopy

Wonder Woman Woman BatmanSuperman

Original Snoopy

(a) Composite Concept Erasure on Community Versions

(b) Knowledge Editing (e.g., “Wonder Woman → Woman” and “Superman → Batman”) on SDXL

(c) Instance Erasure (1st row) and Prior Preservation (2nd row) on SDv3

Figure 6: More applications across various T2I diffusion models. (a) We conduct composite
concept erasure for “Snoopy + Van Gogh” on DreamShaper [3] (1st row) and RealisticVision [4] (2nd
row). (b) Our method also enables model knowledge editing by specifying the anchor concept on
SDXL [42]. (c) Our method can seamlessly transfer to novel DiT-based T2I models, e.g., SDv3 [12].

erasure in a remarkably short time, demonstrating superior efficiency while maintaining erasure287

performance, as evidenced in Table 2.288

Component ablation. In Table 4, we compare the individual impact of our components on prior289

preservation and draw the following conclusions: (1) Impact of IEC (Ablation 1 v.s. 2): IEC reduces290

the non-target FID and the MS-COCO FID, demonstrating its effectiveness by preserving invariant291

embeddings with equality constraints. (2) Impact of IPF (Ablation 2 v.s. 3): Incorporating IPF results292

in a significant improvement in both FIDs, underscoring its critical role in filtering out less-influenced293

concepts in the retain set to mitigate semantic degradation. (3) Impact of DPA (Ablation 4 v.s. Ours):294

DPA improves RPA with directed noise and leads to a substantial improvement in non-target and295

MS-COCO FIDs, highlighting its advantage by introducing semantically similar concepts into the296

refined retain set. To conclude, the proposed three components (i.e., IEC, IPF, and DPA) improve297

the prior preservation from different perspectives and contribute to our method with the best prior298

preservation under null space constraints. More ablations are presented in Appx. D.5.299

More applications on other T2I models. To validate the transferability of our method across versatile300

applications, we conduct further experiments on various T2I models with different weights and301

architectures, including: (1) Composite concept erasure on DreamShaper [3] and RealisticVision [4]302

from Fig 6 (a): Our method can precisely erase the target concept(s) while preserving other non-target303

elements within the prompt, such as the Van Gogh-style background (2nd column) and the Snoopy304

character (3rd column). (2) Knowledge editing on SDXL [42] from Fig 6 (b): The arbitrary nature of305

anchor concepts allows us to edit the pre-trained model knowledge. Herein, our method effectively306

edits the model knowledge while maintaining the overall layout and semantics of the generated307

images. (3) Instance erasure on SDv3 [12] from Fig 6 (c): To accommodate the diffusion transformer308

(DiT) [41] architecture in T2I models, we adapt our method to a DiT-based model, demonstrating a309

well-balanced trade-off between erasure (1st row) and preservation (2nd row) as well.310

6 Conclusion311

This paper introduced SPEED, a scalable, precise, and efficient concept erasure method for T2I312

diffusion models. It formulates concept erasure as a null-space constrained optimization problem,313

facilitating effective prior preservation along with precise erasure efficacy. Critically, SPEED314

overcomes the inefficacy of editing-based methods in multi-concept erasure while circumventing the315

prohibitive computational costs associated with training-based approaches. With our proposed Prior316

Knowledge Refinement involving three complementary techniques, SPEED not only ensures superior317

prior preservation but also achieves a 350× acceleration in multi-concept erasure, establishing itself318

as a scalable and practical solution for real-world applications.319
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A Preliminaries502

T2I diffusion models. T2I generation has seen significant advancements with diffusion models,503

particularly Latent Diffusion Models (LDMs) [47]. Unlike pixel-space diffusion, LDMs operate504

in the latent space of a pretrained autoencoder, reducing computational costs while maintaining505

high-quality synthesis. LDMs consist of a vector-quantized autoencoder [57, 13] and a diffusion506

model [11, 23, 53, 26, 55]. The autoencoder encodes an image x into a latent representation z = E(x)507

and reconstructs it via x ≈ D(z). The diffusion model learns to generate latent codes through a508

denoising process. The training objective is given by [23, 47]:509

LLDM = Ez∼E(x),c,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, c)∥22

]
, (13)

where zt is the noisy latent at timestep t, ϵ is Gaussian noise, ϵθ is the denoising network, and c is510

conditioning information from text, class labels, or segmentation masks [47]. During inference, a511

latent zT is sampled from a Gaussian prior and progressively denoised to obtain z0, which is then512

decoded into an image via x0 ≈ D(z0).513

Cross-attention mechanisms. Current T2I diffusion models usually leverage a generative framework514

to synthesize images conditioned on textual descriptions in the latent space [47]. The conditioning515

mechanism is implemented through cross-attention (CA) layers. Specifically, textual descriptions are516

first tokenized into n tokens and embedded into a sequence of vectors e ∈ Rd0×n via a pre-trained517

CLIP model [43]. These text embeddings serve as the key K ∈ Rn×dk and value V ∈ Rn×dv inputs518

using parametric projection matrices WK ∈ Rdk×d0 and WV ∈ Rdv×d0 , while the intermediate519

image representations act as the query Q ∈ Rm×dk . The cross-attention mechanism is defined as:520

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V. (14)

This alignment enables the model to capture semantic correlations between the textual input and the521

visual features, ensuring that the generated images are semantically consistent with the provided text522

prompts.523

B Proof and Derivation524

B.1 Deriving the Closed-Form Solution for UCE525

From Eq. 1, we are tasked with minimizing the following editing objective, where the hyperparameters526

α and β correspond to the weights of the erasure error e1 and the preservation error e0, respectively:527

min
∆

[
α∥(W +∆)C1 −WC∗∥2 + β∥∆C0∥2

]
. (15)

To derive the closed-form solution, we begin by computing the gradient of the objective function with528

respect to ∆. The gradient is given by:529

α (WC1 −WC∗ +∆C1)C
⊤
1 + β∆C0C

⊤
0 = 0. (16)

Solving the resulting equation yields the closed-form solution for ∆UCE:530

∆UCE = αW
(
C∗C

⊤
1 −C1C

⊤
1

) (
αC1C

⊤
1 + βC0C

⊤
0

)−1
. (17)

In practice, an additional identity matrix I with hyperparameter λ is added to
(
αC1C

⊤
1 + βC0C

⊤
0

)−1
531

to ensure its invertibility. This modification results in the following closed-form solution for UCE:532

∆UCE = αW
(
C∗C

⊤
1 −C1C

⊤
1

) (
αC1C

⊤
1 + βC0C

⊤
0 + λI

)−1
. (18)

B.2 Proof of the Lower Bound of e0 for UCE533

Herein, we aim to establish the existence of a strictly positive constant c > 0 such that534

e0 = ∥∆UCEC0∥2 = ∥αW
(
C∗C

⊤
1 −C1C

⊤
1

)
(αC1C

⊤
1 + βC0C

⊤
0 + λI)−1C0∥2 ≥ c > 0. (19)
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Assumption B.1. We assume that α, β, λ ̸= 0, that W is a full-rank matrix, and that C0C
⊤
0 is535

rank-deficient. Furthermore, we assume that536

C∗C
⊤
1 −C1C

⊤
1 ̸= 0.

Proof. Define the matrix M as537

M = αC1C
⊤
1 + βC0C

⊤
0 + λI. (20)

Since λ > 0 and I is positive definite, it follows that M is strictly positive definite and therefore538

invertible.539

Rewriting e0 by defining B = M−1C0, we obtain540

e0 = ∥αW(C∗C
⊤
1 −C1C

⊤
1 )B∥2. (21)

Applying the singular value bound for matrix products, we have541

∥XY∥ ≥ σmin(X)∥Y∥, (22)

where σmin(X) is the smallest singular value of X. Applying this inequality, we obtain542

∥W(C∗C
⊤
1 −C1C

⊤
1 )B∥ ≥ σmin(W)∥(C∗C

⊤
1 −C1C

⊤
1 )B∥. (23)

We start with the singular value decomposition (SVD) of the matrix C∗C
⊤
1 −C1C

⊤
1 , given by543

C∗C
⊤
1 −C1C

⊤
1 = UΣV⊤. (24)

Here, U and V are orthogonal matrices, and544

Σ = diag(σ1, σ2, . . . , σr, 0, . . . , 0) (25)

is a diagonal matrix containing the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, followed by zeros.545

Multiplying both sides by B, we obtain546

(C∗C
⊤
1 −C1C

⊤
1 )B = UΣV⊤B. (26)

Define the projection of B onto the subspace spanned by the right singular vectors as547

Bproj = V⊤B. (27)

Then, we can rewrite the expression as548

(C∗C
⊤
1 −C1C

⊤
1 )B = UΣBproj. (28)

Taking norms on both sides and using the fact that orthogonal transformations preserve norms, we get549

∥(C∗C
⊤
1 −C1C

⊤
1 )B∥ = ∥ΣBproj∥. (29)

Since Σ is a diagonal matrix, its smallest nonzero singular value σr provides a lower bound:550

∥ΣBproj∥ ≥ σr∥Bproj∥. (30)

Next, we establish a lower bound for ∥Bproj∥. Given that V is composed of right singular vectors,551

there exists a smallest non-zero singular value c1 such that:552

∥Bproj∥ ≥ c1∥B∥. (31)

Combining these inequalities, we obtain553

∥(C∗C
⊤
1 −C1C

⊤
1 )B∥ ≥ σr∥Bproj∥ ≥ σrc1∥B∥. (32)

Since M is positive definite, we use the standard norm inequality for an invertible matrix M, which554

states that for any matrix X,555

∥MX∥ ≤ ∥M∥∥X∥. (33)
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Setting X = M−1C0, we obtain556

∥MM−1C0∥ ≤ ∥M∥∥M−1C0∥. (34)
Since MM−1 = I, the left-hand side simplifies to ∥C0∥, yielding557

∥C0∥ ≤ ∥M∥∥M−1C0∥. (35)
Dividing both sides by ∥M∥, we obtain558

∥M−1C0∥ ≥ 1

∥M∥
∥C0∥. (36)

Thus, it follows that559

∥B∥ = ∥M−1C0∥ ≥ 1

∥M∥
∥C0∥. (37)

Combining the above results, we obtain560

∥W(C∗C
⊤
1 −C1C

⊤
1 )B∥ ≥ σmin(W)σrc1

1

∥M∥
∥C0∥. (38)

Squaring both sides, we conclude that561

e0 = ∥αW(C∗C
⊤
1 −C1C

⊤
1 )B∥2 ≥ α2σ2

min(W)σ2
rc

2
1

1

∥M∥2
∥C0∥2. (39)

Since all terms on the right-hand side are strictly positive by assumption, we establish the existence562

of a positive lower bound c > 0 such that563

e0 ≥ c > 0. (40)
This completes the proof.564

B.3 Deriving the Closed-Form Solution for SPEED565

From Eq. 10, we are tasked with minimizing the following editing objective:566

min
∆

∥(W +∆P)C1 −WC∗∥2 + ∥∆P∥2, s.t. (∆P)C2 = 0. (41)

This is a weighted least squares problem subject to an equality constraint. To solve it, we first567

formulate the Lagrangian function, where Λ is the Lagrange multiplier:568

L(∆,Λ) = ∥(W +∆P)C1 −WC∗∥2 + ∥∆P∥2 +Λ⊤ ((∆P)C2) . (42)
We compute the gradient of the Lagrangian function in Eq. 42 with respect to ∆ and set it to zero,569

yielding the following equation for ∆:570

∂L(∆,Λ)

∂∆
= 2 ((W +∆P)C1 −WC∗)C

⊤
1 P

⊤ + 2∆PP⊤ +ΛC⊤
2 P

⊤ = 0. (43)

Given that the projection matrix P is derived from Rrefine using Eq. 2, P is a symmetric matrix (i.e.,571

P = P⊤) and an idempotent matrix (i.e., P2 = P), the above formulation can be simplified to:572

∂L(∆,Λ)

∂∆
= 2 ((W +∆P)C1 −WC∗)C

⊤
1 P+ 2∆P+ΛC⊤

2 P = 0. (44)

Therefore, we can obtain the closed-form solution for ∆P from this equation:573

∆P = (WC∗C
⊤
1 P−WC1C

⊤
1 P− 1

2
ΛC⊤

2 P)(C1C
⊤
1 P+ I)−1. (45)

Next, we differentiate the Lagrangian function in Eq. 42 with respect to Λ and set it to zero:574

∂L(∆,Λ)

∂Λ
= (∆P)C2 = 0. (46)

For simplicity, we define M = (C1C
⊤
1 P+ I)−1. Then, we substitute the result of Eq.45 into Eq.46575

and obtain:576

(WC∗C
⊤
1 P−WC1C

⊤
1 P− 1

2
ΛC⊤

2 P)MC2 = 0. (47)

Solving this equation leads to:577

1

2
Λ = W(C∗C

⊤
1 −C1C

⊤
1 )PMC2(C

⊤
2 PMC2)

−1. (48)

Substituting Eq.48 back into Eq.45, we have the closed-form solution of our objective:578

(∆P)SPEED = W(C∗C
⊤
1 −C1C

⊤
1 )PQM, (49)

where Q = I−MC2(C
⊤
2 PMC2)

−1C⊤
2 P and M = (C1C

⊤
1 P+ I)−1.579
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Table 5: The evaluation setup for multi-concept erasure. This celebrity dataset contains an erasure
set with 100 celebrities and a retain set with another 100 celebrities. We experiment with erasing 10,
50, and 100 celebrities with the pre-defined target concepts and the entire retain set is utilized in all
cases.

Group Number Anchor
Concept Celebrity

Erasure
Set

10 ‘person’ ‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’

50 ‘person’

‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’, ‘Arnold Schwarzenegger’,
‘Barack Obama’, ‘Beth Behrs’, ‘Bill Clinton’, ‘Bob Dylan’, ‘Bob Marley’, ‘Bradley Cooper’, ‘Bruce
Willis’, ‘Bryan Cranston’, ‘Cameron Diaz’, ‘Channing Tatum’, ‘Charlie Sheen’, ‘Charlize Theron’,
‘Chris Evans’, ‘Chris Hemsworth’, ‘Chris Pine’, ‘Chuck Norris’, ‘Courteney Cox’, ‘Demi Lovato’,
‘Drake’, ‘Drew Barrymore’, ‘Dwayne Johnson’, ‘Ed Sheeran’, ‘Elon Musk’, ‘Elvis Presley’, ‘Emma
Stone’, ‘Frida Kahlo’, ‘George Clooney’, ‘Glenn Close’, ‘Gwyneth Paltrow’, ‘Harrison Ford’, ‘Hillary
Clinton’, ‘Hugh Jackman’, ‘Idris Elba’, ‘Jake Gyllenhaal’, ‘James Franco’, ‘Jared Leto’, ‘Jason
Momoa’, ‘Jennifer Aniston’, ‘Jennifer Lawrence’

100 ‘person’

‘Adam Driver’, ‘Adriana Lima’, ‘Amber Heard’, ‘Amy Adams’, ‘Andrew Garfield’, ‘Angelina Jolie’,
‘Anjelica Huston’, ‘Anna Faris’, ‘Anna Kendrick’, ‘Anne Hathaway’, ‘Arnold Schwarzenegger’,
‘Barack Obama’, ‘Beth Behrs’, ‘Bill Clinton’, ‘Bob Dylan’, ‘Bob Marley’, ‘Bradley Cooper’, ‘Bruce
Willis’, ‘Bryan Cranston’, ‘Cameron Diaz’, ‘Channing Tatum’, ‘Charlie Sheen’, ‘Charlize Theron’,
‘Chris Evans’, ‘Chris Hemsworth’, ‘Chris Pine’, ‘Chuck Norris’, ‘Courteney Cox’, ‘Demi Lovato’,
‘Drake’, ‘Drew Barrymore’, ‘Dwayne Johnson’, ‘Ed Sheeran’, ‘Elon Musk’, ‘Elvis Presley’, ‘Emma
Stone’, ‘Frida Kahlo’, ‘George Clooney’, ‘Glenn Close’, ‘Gwyneth Paltrow’, ‘Harrison Ford’,
‘Hillary Clinton’, ‘Hugh Jackman’, ‘Idris Elba’, ‘Jake Gyllenhaal’, ‘James Franco’, ‘Jared Leto’,
‘Jason Momoa’, ‘Jennifer Aniston’, ‘Jennifer Lawrence’, ‘Jennifer Lopez’, ‘Jeremy Renner’, ‘Jessica
Biel’, ‘Jessica Chastain’, ‘John Oliver’, ‘John Wayne’, ‘Johnny Depp’, ‘Julianne Hough’, ‘Justin
Timberlake’, ‘Kate Bosworth’, ‘Kate Winslet’, ‘Leonardo Dicaprio’, ‘Margot Robbie’, ‘Mariah
Carey’, ‘Melania Trump’, ‘Meryl Streep’, ‘Mick Jagger’, ‘Mila Kunis’, ‘Milla Jovovich’, ‘Morgan
Freeman’, ‘Nick Jonas’, ‘Nicolas Cage’, ‘Nicole Kidman’, ‘Octavia Spencer’, ‘Olivia Wilde’, ‘Oprah
Winfrey’, ‘Paul Mccartney’, ‘Paul Walker’, ‘Peter Dinklage’, ‘Philip Seymour Hoffman’, ‘Reese
Witherspoon’, ‘Richard Gere’, ‘Ricky Gervais’, ‘Rihanna’, ‘Robin Williams’, ‘Ronald Reagan’, ‘Ryan
Gosling’, ‘Ryan Reynolds’, ‘Shia Labeouf’, ‘Shirley Temple’, ‘Spike Lee’, ‘Stan Lee’, ‘Theresa May’,
‘Tom Cruise’, ‘Tom Hanks’, ‘Tom Hardy’, ‘Tom Hiddleston’, ‘Whoopi Goldberg’, ‘Zac Efron’, ‘Zayn
Malik’

Retain
Set 10, 50, and 100 -

‘Aaron Paul’, ‘Alec Baldwin’, ‘Amanda Seyfried’, ‘Amy Poehler’, ‘Amy Schumer’, ‘Amy Winehouse’,
‘Andy Samberg’, ‘Aretha Franklin’, ‘Avril Lavigne’, ‘Aziz Ansari’, ‘Barry Manilow’, ‘Ben Affleck’,
‘Ben Stiller’, ‘Benicio Del Toro’, ‘Bette Midler’, ‘Betty White’, ‘Bill Murray’, ‘Bill Nye’, ‘Britney
Spears’, ‘Brittany Snow’, ‘Bruce Lee’, ‘Burt Reynolds’, ‘Charles Manson’, ‘Christie Brinkley’,
‘Christina Hendricks’, ‘Clint Eastwood’, ‘Countess Vaughn’, ‘Dakota Johnson’, ‘Dane Dehaan’,
‘David Bowie’, ‘David Tennant’, ‘Denise Richards’, ‘Doris Day’, ‘Dr Dre’, ‘Elizabeth Taylor’, ‘Emma
Roberts’, ‘Fred Rogers’, ‘Gal Gadot’, ‘George Bush’, ‘George Takei’, ‘Gillian Anderson’, ‘Gordon
Ramsey’, ‘Halle Berry’, ‘Harry Dean Stanton’, ‘Harry Styles’, ‘Hayley Atwell’, ‘Heath Ledger’,
‘Henry Cavill’, ‘Jackie Chan’, ‘Jada Pinkett Smith’, ‘James Garner’, ‘Jason Statham’, ‘Jeff Bridges’,
‘Jennifer Connelly’, ‘Jensen Ackles’, ‘Jim Morrison’, ‘Jimmy Carter’, ‘Joan Rivers’, ‘John Lennon’,
‘Johnny Cash’, ‘Jon Hamm’, ‘Judy Garland’, ‘Julianne Moore’, ‘Justin Bieber’, ‘Kaley Cuoco’,
‘Kate Upton’, ‘Keanu Reeves’, ‘Kim Jong Un’, ‘Kirsten Dunst’, ‘Kristen Stewart’, ‘Krysten Ritter’,
‘Lana Del Rey’, ‘Leslie Jones’, ‘Lily Collins’, ‘Lindsay Lohan’, ‘Liv Tyler’, ‘Lizzy Caplan’, ‘Maggie
Gyllenhaal’, ‘Matt Damon’, ‘Matt Smith’, ‘Matthew Mcconaughey’, ‘Maya Angelou’, ‘Megan Fox’,
‘Mel Gibson’, ‘Melanie Griffith’, ‘Michael Cera’, ‘Michael Ealy’, ‘Natalie Portman’, ‘Neil Degrasse
Tyson’, ‘Niall Horan’, ‘Patrick Stewart’, ‘Paul Rudd’, ‘Paul Wesley’, ‘Pierce Brosnan’, ‘Prince’,
‘Queen Elizabeth’, ‘Rachel Dratch’, ‘Rachel Mcadams’, ‘Reba Mcentire’, ‘Robert De Niro’

C Implementation Details580

C.1 Experimental Setup Details581

Few-concept erasure. We first compare methods on few-concept erasure, a fundamental concept582

erasure task, including both instance erasure and artistic style erasure following [35]. For instance583

erasure, we prepare 80 instance templates proposed in CLIP [43], such as “a photo of the {Instance}”,584

“a drawing of the {Instance}”, and “a painting of the {Instance}”. For artistic style erasure, we use585

ChatGPT [38, 5] to generate 30 artistic style templates, including “{Artistic} style painting of the586

night sky with bold strokes”, “{Artistic} style landscape of rolling hills with dramatic brushwork”,587

and “Sunrise scene in {Artistic} style, capturing the beauty of dawn”. Following [35], we handpick588

the representative target and anchor concepts as the erasure set (i.e., Snoopy, Mickey, SpongeBob → ‘589

’ in instance erasure and Van Gogh, Picasso, Monet → ‘art’ in artistic style erasure) and non-target590

concepts for evaluation (i.e., Pikachu and Hello Kitty in instance erasure and Paul Gauguin and591

Caravaggio in artistic style erasure). In terms of the retain set, for instance erasure, we use a scraping592

script to crawl Wikipedia category pages to extract fictional character names and their page view593

counts with a threshold of 500,000 views from 2020.01.01 to 2023.12.31, resulting in 1,352 instances.594

For artistic style erasure, we use the 1,734 artistic styles collected from UCE [18]. In evaluation,595

we generate 10 images per template per concept, resulting in 800 and 300 images for each concept596

in instance erasure and artistic style erasure, respectively. Moreover, we introduce the MS-COCO597

17



Table 6: Full quantitative comparison of the few-concept erasure in erasing instances from
Table 1 (left). The best results are highlighted in bold, and grey columns are indirect indicators for
measuring erasure efficacy on target concepts or prior preservation on non-target concepts.

Snoopy Mickey Spongebob Pikachu Hello Kitty MS-COCO

CS FID CS FID CS FID CS FID CS FID CS FID

SD v1.4 28.51 - 26.62 - 27.30 - 27.44 - 27.77 - 26.53 -

Erase Snoopy

CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

ConAbl 25.44 98.38 26.63 37.08 26.95 38.92 27.47 26.14 27.65 36.52 26.40 21.20
MACE 20.90 165.74 23.46 105.97 23.35 102.77 26.05 65.71 26.05 75.42 26.09 42.62
RECE 18.38 151.46 26.62 26.63 27.23 34.42 27.47 21.99 27.78 32.35 26.39 25.61
UCE 23.19 102.86 26.64 24.87 27.29 29.86 27.47 19.06 27.75 27.86 26.46 22.18

Ours 23.50 108.51 26.67 23.41 27.31 24.64 27.48 16.81 27.82 21.74 26.48 19.95

Erase Snoopy and Mickey

CS ↓ FID ↑ CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

ConAbl 25.26 106.78 26.58 57.05 26.81 45.08 27.34 35.57 27.74 41.48 26.42 24.34
MACE 20.53 170.01 20.63 142.98 22.03 112.01 24.98 91.72 23.64 106.88 25.50 55.15
RECE 18.57 150.84 19.14 145.59 27.29 35.85 27.37 26.05 27.71 40.77 26.31 30.30
UCE 23.60 99.30 24.79 86.32 27.32 30.58 27.38 23.51 27.74 31.76 26.38 26.06

Ours 23.58 103.62 23.62 83.70 27.34 29.67 27.39 22.51 27.78 28.23 26.47 23.66

Erase Snoopy and Mickey and Spongebob

CS ↓ FID ↑ CS ↓ FID ↑ CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

ConAbl 24.92 112.66 26.46 63.95 25.12 102.68 27.36 46.47 27.72 48.24 26.37 26.71
MACE 19.86 175.43 19.35 140.13 20.12 143.17 19.76 110.12 21.03 128.56 23.39 66.39
RECE 18.17 155.26 18.87 149.77 16.23 178.55 27.34 40.52 27.71 52.06 26.32 32.51
UCE 23.29 101.40 24.63 88.11 19.08 140.40 27.45 29.20 27.82 38.15 26.30 28.71

Ours 23.69 103.33 23.93 86.55 21.39 109.28 27.47 21.40 27.76 26.22 26.51 24.99

Table 7: Full quantitative comparison of the few-concept erasure in erasing artistic styles from
Table 1 (right). The best results are highlighted in bold, and the grey columns are indirect indicators
for measuring erasure efficacy on target concepts or prior preservation on non-target concepts.

Van Gogh Picasso Monet Paul Gauguin Caravaggio MS-COCO

CS FID CS FID CS FID CS FID CS FID CS FID

SD v1.4 28.75 - 27.98 - 28.91 - 29.80 - 26.27 - 26.53 -

Erase Van Gogh

CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

ConAbl 28.16 129.57 27.07 77.01 28.44 63.80 29.49 63.20 26.15 79.25 26.46 18.36
MACE 26.66 169.60 27.39 69.92 28.84 60.88 29.39 56.18 26.19 69.04 26.50 23.15
RECE 26.39 171.70 27.58 60.57 28.83 61.09 29.58 47.07 26.21 72.85 26.52 23.54
UCE 28.10 133.87 27.70 43.02 28.92 40.49 29.62 32.62 26.23 61.72 26.54 19.63

Ours 26.29 131.02 27.96 35.86 28.94 16.85 29.71 24.94 26.24 39.75 26.55 20.36

Erase Picasso

CS ↑ FID ↓ CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

ConAbl 28.66 60.44 26.97 131.45 28.72 36.23 29.68 65.23 26.20 79.12 26.43 20.02
MACE 28.68 59.58 26.48 137.09 28.73 37.02 29.71 46.35 26.23 66.20 26.47 22.86
RECE 28.71 51.09 26.66 126.40 28.87 25.39 29.69 46.08 26.22 75.61 26.48 23.03
UCE 28.72 37.58 26.99 102.21 28.92 16.72 29.71 32.48 26.22 59.27 26.50 20.33

Ours 28.76 19.18 26.22 117.71 28.88 19.87 29.75 24.73 26.24 43.63 26.51 19.98

Erase Monet

CS ↑ FID ↓ CS ↑ FID ↓ CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

ConAbl 28.58 68.77 27.43 64.25 27.05 96.67 29.09 57.33 26.09 71.88 26.45 21.03
MACE 28.56 61.50 27.74 48.41 25.98 116.34 29.39 49.66 25.98 65.87 26.47 22.76
RECE 28.63 56.26 27.88 45.97 25.87 121.28 29.43 46.38 26.20 64.19 26.49 24.94
UCE 28.65 42.25 27.91 38.73 27.12 98.37 29.58 33.00 26.16 56.49 26.51 21.58

Ours 28.76 28.78 27.93 41.21 25.06 134.11 29.66 27.85 26.22 55.20 26.48 20.87

captions [31] to serve as general prior knowledge. In implementation, we use the first 1,000 captions598

to generate a total of 1000 images to compare CS and FID before and after erasure.599

Multi-concept erasure. We then compare methods on multi-concept erasure, a more challenging600

and realistic concept erasure task. Following the experiment setup from [33], we introduce a dataset601

consisting of 200 celebrities, where their portraits generated by SDv1.4 [1] can be recognizable with602

exceptional accuracy by the GIPHY Celebrity Detector (GCD) [20]. This dataset is divided into two603

groups: an erasure set with 10, 50, and 100 celebrities and a retain set with 100 other celebrities. The604

full list for both sets is presented in Table 5. We experiment with erasing 10, 50, and 100 celebrities605

with the pre-defined target concepts and the entire retain set is utilized in all cases. In evaluation, we606

18



Table 8: Evaluation of implicit concept erasure on I2P benchmark. We report the number of
nude body parts (F: Female, M: Male) detected by the NudeNet with threshold = 0.6. The best
and second-best results are marked in bold and underlined. (Left) Our method effectively removes
nude content, even though nudity is not explicitly mentioned in prompts from I2P, achieving the
second-best total count. (Right) Our method also consistently achieves superior prior preservation for
non-target concepts to other methods on MS-COCO.

NudeNet Detection Results on I2P MS-COCO

Armpits Belly Buttocks Feet Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Total ↓ CS ↑ FID ↓

SD v1.4 123 134 19 14 258 9 16 3 576 26.53 -

ConAbl 24 43 5 6 68 1 6 4 157 26.14 39.26
MACE 28 19 1 20 37 3 6 5 119 24.06 52.78
RECE 17 29 3 7 14 1 8 1 80 25.98 40.37
UCE 29 42 2 11 36 3 9 7 139 26.24 38.60

Ours 20 42 7 3 29 2 5 5 113 26.29 37.82

prepare five celebrity templates, (i.e., “a portrait of {Celebrity}”, “a sketch of {Celebrity}”, “an oil607

painting of {Celebrity}”, “{Celebrity} in an official photo”, and “an image capturing {Celebrity} at608

a public event”) and generate 500 images for both sets. For non-target concepts, we generate 1 image609

per template for each of the 100 concepts, totaling 500 images. For target concepts, we adjust the610

per-concept quantity to maintain a total of 500 images (e.g., erasing 10 celebrities involves generating611

10 images with 5 templates).612

Implicit concept erasure. We adopt the same setting in [19] to erase nudity → ‘ ’ as the erasure set613

and ‘ ’ as the retain set. In evaluation, we generate images using all 4,703 prompts in I2P and use614

NudeNet [6] to identify nude content with the threshold of 0.6.615

C.2 Erasure Configurations616

Implementation of previous works. In our series of three concept erasure tasks, we mainly compare617

against four methods: ConAbl5 [29], MACE6 [33], RECE7 [19], and UCE8 [18], as they achieve618

SOTA performance across different concept erasure tasks. All the compared methods are implemented619

using their default configurations from the corresponding official repositories. One exception is620

that for MACE when erasing 50 celebrities, since it doesn’t provide an official configuration and621

the preserve weight varies with the number of target celebrities, we set it to 1.2 × 105 to ensure a622

consistent balance between erasure and preservation.623

Implementation of SPEED. In line with previous methods [29, 33, 19, 18], we edit the cross-624

attention (CA) layers within the diffusion model due to their role in text-image alignment [21]. In625

contrast, we only edit the value matrices in the CA layers, as suggested by [61]. This choice is626

grounded in the observation that the keys in CA layers typically govern the layout and compositional627

structure of the attention map, while the values control the content and visual appearance of the628

images [56]. In the context of concept erasure, our goal is to effectively remove the semantics of629

the target concept, and we find that only editing the value matrices is sufficient as shown in Fig. 4630

and 5 (further ablation comparison is provided in Appx. D.5). The augmentation times NA in Eq. 9631

is set to 10 and the augmentation ranks r in Eq. 7 is set to 1 as ablated in Appx. D.5. Meanwhile,632

given that eigenvalues are rarely strictly zero in practical applications when determining the null633

space, we select the singular vectors corresponding to the singular values below 10−1 on few-concept634

and implicit concept erasure and 10−4 on multi-concept erasure following [14]. Moreover, since635

the retain set only includes ‘ ’ in implicit concept erasure, we add an identity matrix I with weight636

λ = 0.5 to the term (C⊤
2 PMC2)

−1 in Eq. 12 to ensure invertibility following [18].637

5https://github.com/nupurkmr9/concept-ablation
6https://github.com/Shilin-LU/MACE
7https://github.com/CharlesGong12/RECE
8https://github.com/rohitgandikota/unified-concept-editing
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Figure 7: Qualitative demonstration of our erasure performance across (a) instance erasure, (b)
artistic style erasure, (c) celebrity erasure, and (d) implicit concept erasure. Our method achieves
precise erasure efficacy across various scenarios while exhibiting superior prior preservation. The
corresponding CS is highlighted in blue, indicating that successful erasure can be achieved without
pushing CS much lower, as our results demonstrate sufficient erasure at a moderate level.
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Table 9: Quantitative comparison with SPM and SPM w/o FT (Facilitated Transport). The best
results are highlighted in bold, and the grey columns are indirect indicators for measuring erasure
efficacy on target concepts or prior preservation on non-target concepts. Our method, which does not
achieve the lowest CS but has been proven sufficient in Fig. 9.

Concept Snoopy Mickey Spongebob Pikachu Hello Kitty

CS FID CS FID CS FID CS FID CS FID
SD v1.4 28.51 - 26.62 - 27.30 - 27.44 - 27.77 -

Erase Snoopy

CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓

SPM 23.72 116.26 26.62 31.21 27.21 31.96 27.41 19.82 27.80 30.95
SPM w/o FT 23.72 116.26 26.55 43.03 26.84 42.96 27.38 25.95 27.71 42.53

Ours 23.50 108.51 26.67 23.41 27.31 24.64 27.42 16.81 27.82 21.74

Erase Snoopy and Mickey

CS ↓ FID ↑ CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓ CS ↑ FID ↓
SPM 23.18 122.17 22.71 117.30 26.92 38.35 27.35 27.13 27.76 39.61

SPM w/o FT 22.45 127.95 21.77 127.57 25.96 61.52 27.39 42.63 27.14 68.75

Ours 23.58 103.62 23.62 83.70 27.24 29.67 27.39 22.51 27.78 28.23

Erase Snoopy and Mickey and Spongebob

CS ↓ FID ↑ CS ↓ FID ↑ CS ↓ FID ↑ CS ↑ FID ↓ CS ↑ FID ↓
SPM 22.86 125.66 22.08 123.20 20.92 153.36 27.50 37.51 27.63 46.63

SPM w/o FT 21.80 137.98 20.86 139.48 20.19 163.21 26.68 66.15 26.24 85.35

Ours 23.69 103.33 23.93 86.55 21.39 109.28 27.47 21.40 27.76 26.22

Table 10: Quantitative comparison with SPM and SPM w/o FT in multi-concept erasure. The
best results are highlighted in bold. Our method is capable of erasing up to 100 celebrities at once
with low Acce (%) and preserving other non-target celebrities with less appearance alteration with
high Accr (%), resulting in the best overall erasure performance Ho (shaded in pink). FAIL indicates
that the model collapses with noisy generations (Acce = Accr = 0.00%).

Erase 10 Celebrities MS-COCO Erase 50 Celebrities MS-COCO Erase 100 Celebrities MS-COCO

Acce ↓ Accr ↑ Ho ↑ CS ↑ FID ↓ Acce ↓ Accr ↑ Ho ↑ CS ↑ FID ↓ Acce ↓ Accr ↑ Ho ↑ CS ↑ FID ↓

SD v1.4 91.99 89.66 14.70 26.53 - 93.08 89.66 12.85 26.53 - 90.18 89.66 17.70 26.53 -

SPM 0.00 51.79 68.24 26.42 48.44 0.00 0.00 FAIL 26.32 52.61 0.00 0.00 FAIL 25.15 63.20
SPM w/o FT 0.00 5.08 9.68 26.38 52.23 0.00 0.00 FAIL 16.22 170.68 0.00 0.00 FAIL 14.34 245.92

Ours 1.81 89.09 93.42 26.47 30.02 3.46 88.48 92.34 26.46 39.23 5.87 85.54 89.63 26.22 44.97

D Additional Experiments638

D.1 More Demonstrations639

We further provide qualitative visualizations of the erasure results in Fig.7, illustrating the effec-640

tiveness of our method in performing precise and targeted concept erasure across diverse scenarios.641

Specifically, we showcase: (a) instance erasure from Table 1 (left); (b) artistic style erasure from642

Table 1 (right); (c) celebrity erasure from Table 2; and (d) implicit concept erasure (e.g., nudity)643

from Table 8. In all cases, our method successfully removes the intended concept while preserving644

unrelated content, demonstrating its universal erasure applications.645

We also evaluate the CLIP score (CS) before and after concept erasure to assess the erasure efficacy.646

As shown in Figure 8, our method achieves successful erasure of specific concepts such as Snoopy647

and Mickey while maintaining moderate CS values (24.18 and 23.44, respectively). This indicates648

that effective erasure does not require minimizing CS to an extreme. In contrast, RECE obtains649

the lowest CS (19.79 and 18.75), but this is achieved at the cost of overly aggressive erasure. For650

example, transforming Snoopy into an unrecognizable image and replacing Mickey with a generic651

human figure. While such strategies may enhance erasure efficacy, they also risk compromising prior652

knowledge unrelated to the target concept. This trade-off is reflected in higher FIDs, as shown in653

Tables 1 and 2.654
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Figure 8: Comparison of CLIP scores (CS) across different erasure methods. We compare the
results in erasing Snoopy and Mickey, and highlight the corresponding CS in blue. Our method
achieves successful concept erasure with moderate CS values. In contrast, RECE achieves the lowest
CS by enabling more aggressive erasure. For example, removing Snoopy to the extent of producing a
semantically void image, and changing Mickey into a generic person. We argue that such over-erasure
unnecessarily compromises prior preservation as evidenced by Tables 1 and 2.

Snoopy

Snoopy
+

Mickey

Target 
Concepts

Snoopy
+

Mickey
+

SpongeBob

SPM w/o FTSPM Ours

Original:Prompt: 
“A doodle of 
a SpongeBob”

SPM w/o FTSPM Ours

Original:Prompt: 
“A painting of 
a Snoopy”

SPM w/o FTSPM Ours

Original:Prompt: 
“A cartoon Mickey”

SPM w/o FTSPM Ours

Original:Prompt: 
“A origami 
Pikachu”

Figure 9: Qualitative comparison with SPM and SPM w/o FT in erasing single and multiple
instances. The erased and preserved generations are highlighted with red and green boxes, respec-
tively. Our method demonstrates superior prior preservation compared to both SPM and SPM w/o FT.
Meanwhile, without the Facilitated Transport module, SPM w/o FT shows poorer prior preservation
in multi-concept erasure (e.g., marked by ) with significant semantic changes compared to original
generations.

D.2 Full Comparison on Few-Concept Erasure655

We present full quantitative comparisons of few-concept erasure, including both CS and FID, in656

Table 6 and Table 7. Our results demonstrate that our method consistently achieves superior prior657

preservation, as indicated by higher CS and lower FID across the majority of non-target concepts.658

D.3 On Implicit Concept Erasure659

Evaluation setup. We further evaluate the erasure efficacy on implicit concepts, where the target660

concept does not explicitly appear in the text prompt. We conduct experiments on the Inappropriate661

Image Prompt (I2P) benchmark [49], which consists of various implicit inappropriate prompts662

involving violence, sexual content, and nudity. We follow the same setting in [19] to erase nudity663

→ ‘ ’. Specifically, we generate images using all 4,703 text prompts in I2P and use NudeNet [6] to664

identify if the nude content is successfully erased with the threshold of 0.6. Additionally, we report665

the results on MS-COCO to demonstrate the prior preservation of general concepts.666

Analysis and discussion. As shown in Table 8, our method can effectively erase the implicit concept,667

i.e., nudity, with the second-best number of detected nude body parts. The SOTA method, RECE [19],668

achieves the best total number by extending the erasure set with more target concepts, but this comes669

at the cost of sacrificing prior preservation on MS-COCO. In contrast, our method achieves the670

best prior preservation, demonstrating effective erasure while maintaining strong prior preservation,671

striking a favorable balance between erasure and preservation.672
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Table 11: Ablation study on the edited parameters. Our scheme on only editing the value matrices
achieves a superior balance between erasure efficacy (e.g., target CS of 26.29) and prior preservation
(e.g., the lowest FIDs across all non-target concepts).

Ablation Parameters Van Gogh Picasso Monet Paul Gauguin Caravaggio MS-COCO

Key Value CS ↓ FID ↓ FID ↓ FID ↓ FID ↓ CS ↑ FID ↓

1 ✓ × 27.67 42.11 26.09 28.08 52.44 26.55 18.72
2 ✓ ✓ 26.24 48.41 28.65 33.79 57.23 26.53 23.20

Ours × ✓ 26.29 35.86 16.85 24.94 39.75 26.55 20.36

D.4 More Baselines673

In this section, we compare against more methods because of the page limit in our main paper. Since674

our method focuses on improving prior preservation and multi-concept erasure performance, we675

mainly compare it with similar methods, other methods like ESD [17], FMN [65], and SLD [49] are676

omitted, as they fail to achieve satisfactory prior preservation proved by previous comaprisons [35, 33,677

61]. The remaining comparable method is SPM9 [35], which is proposed to improve prior preservation678

and can scale to multi-concept erasure tasks. Notably, SPM not only fine-tunes the model weights679

using LoRA [25] but also intervenes in the image generation process through Facilitated Transport.680

Specifically, this module dynamically adjusts the LoRA scale based on the similarity between the681

sampling prompt and the target concept. In other words, if the prompt contains the target concept or682

is highly relevant, this scale is set to a large value, whereas if there is little to no relevance, it is set683

close to 0, functioning similarly to a text filter. We argue that such a comparison with SPM is not684

fair since we only focus on modifying the model parameters, and therefore, we compare both the685

original SPM and SPM without Facilitated Transport (SPM w/o FT) for a fair comparison. In the686

latter version, the LoRA scale is set to 1 by default.687

The quantitative comparative results are shown in Table 9. It can be seen that our method consistently688

achieves the best prior preservation compared to both SPM and SPM w/o FT. Even equipped with689

Facilitated Transport, our method achieves the lowest non-target FID (e.g., on Pikachu and Hello690

Kitty). This superiority amplifies as the number of target concepts increases as shown in Table 10.691

For example, with the number of target concepts increasing from 1 to 3, our FID in Pikachu rises692

from 16.81 to 21.40 (4.59 ↑), while SPM increases from 19.82 to 37.51 (17.69 ↑), where a similar693

pattern is observed in Hello Kitty (Our 4.48 ↑ v.s. SPM’s 15.68 ↑).694

Once removing the Facilitated Transport module, SPM w/o FT shows poorer prior preservation with695

rapidly increasing FIDs (highlighted by red in Table 9). This indicates that the success of SPM in696

multi-concept erasure relies on the Facilitated Transport module, which dynamically allocates the697

LoRA scales by calculating the similarity between the sampling prompt and each target concept.698

For example, when erasing Snoopy + Mickey + SpongeBob, if the sampling prompt is “a photo of699

Snoopy”, SPM will allocate a larger scale to Snoopy’s LoRA according to the text similarity. On700

the contrary, if the sampling prompt is “a photo of Pikachu” with the non-target concept, all three701

LoRA scales will be assigned lower values, thereby preserving the prior knowledge. We argue that702

this strategy of dynamically tuning the LoRA scales based on the sampling prompt similarity703

is vulnerable to attacks and easily bypassed, especially in white-box attack scenarios, where an704

attacker can reconstruct the erased concepts by simply modifying the code with extremely low attack705

costs, e.g., open-source T2I models like Stable Diffusion [1, 2].706

D.5 Ablation Studies707

Augmentation times. We ablate the augmentation times NA proposed in the Directed Prior Aug-708

mentation (DPA) module in Sec. 4.2, which controls the balance between semantic degradation and709

retain coverage along with the Influence-based Prior Filtering (IPF) module. It can be observed from710

Fig. 10 (a) that: (1) As NA increases, the non-target FID exhibits a trend of first decreasing and711

then increasing. This suggests that when NA is small (i.e., 1 → 10), augmenting existing non-target712

concepts with semantically similar concepts facilitates a more comprehensive retain coverage, thereby713

improving prior preservation. However, when NA exceeds a certain threshold (i.e., 10 → 20), further714

augmentation of non-target concepts leads to narrowing the null-space derivation with semantic715

9https://github.com/Con6924/SPM
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Figure 10: Ablation study on two parameters, i.e., augmentation times NA and augmentation
ranks r of the DPA module. We report the target CS of erasing Van Gogh and the non-target FID
averaged over other four styles (i.e., Picasso, Monet, Paul Gauguin, Caravaggio).

Table 12: Ablation study on the importance metrics used in IPF.

Metric Van Gogh Picasso Monet Paul Gauguin Caravaggio MS-COCO

CS ↓ FID ↓ FID ↓ FID ↓ FID ↓ CS ↑ FID ↓

w/ Text Similarity 26.35 36.87 19.69 25.18 41.44 26.52 20.78
w/ Prior Shift (Ours) 26.29 35.86 16.85 24.94 39.75 26.55 20.36

degradation, ultimately degrading prior preservation. (2) Target CS generally shows a declining716

trend, indicating that the proposed Prior Knowledge Refinement strategy not only improves prior717

preservation but also exerts a positive impact on erasure efficacy.718

Augmentation ranks. Another hyperparameter to be ablated is the augmentation ranks r. From719

Eq. 7, we introduce the number of the smallest singular values, i.e., augmentation ranks r in deriving720

Pmin = UminU
⊤
min with Umin = UW[:,−r :]. Mathematically, r represents the directions in which721

the DPA module can augment in the concept embedding space and constrains the rank of the722

augmented embeddings to a maximum of r. As shown in Fig. 10 (b), as r increases, the non-target723

FID exhibits an overall upward trend, indicating that introducing more ranks does not benefit prior724

preservation, as it narrows the null space. At the same time, as shown in Table 4, such augmentation725

by DPA also remains necessary, as it enables more comprehensive coverage of non-target knowledge726

with semantically similar concepts, leading to improved prior preservation.727

Edited parameters. We compare the impact on editing different CA parameters in Table 11 and728

draw the following conclusions: (1) Only editing the key matrices cannot achieve effective erasure,729

with the target CS being 27.67 (v.s. the original CS of 28.75). This is because they mainly arrange the730

layout information of the generation and cannot effectively erase the semantics of the target concept.731

(2) Simultaneously editing both the key and value matrices can achieve effective erasure, but it will732

also excessively damage prior knowledge. (3) Only editing the value matrices achieves a superior733

balance between erasure efficacy and prior preservation. Compared to Ablation 2, the editing of key734

matrices leads to excessive erasure, which is unnecessary in concept erasure.735

Importance metrics in IPF. In Sec. 4.1, we propose Importance-based Prior Filtering (IPF) in Eq. 6736

and evaluate this importance with the metric prior shift = ∥∆erasec∥2. Another intuitive and plausible737

metric is based on text similarity, e.g., the cosine similarity between each non-target embedding c0738

and each target concept embedding c1, i.e., cos(c0, c1). Herein, we conduct an additional ablation739

study in terms of the metric selection in Table 12. It can be seen that text similarity can also serve as an740

effective metric for evaluating importance with improved non-target FID while the prior shift provides741

better prior preservation. This may be because text similarity is implicitly related to importance,742

while prior shift explicitly reflects the impact of erasure on different concepts from the model updates743

∆. Moreover, our method can be directly scaled up to multi-concept erasure scenarios, whereas744

text similarity calculates n similarities for n target concepts, requiring additional fusion or selection745

strategies, introducing accumulated errors during fusion or selection.746

E Limitation747

While SPEED demonstrates superior prior preservation, its erasure efficacy may not be as strong as748

some adversarial training/editing-based methods (e.g., RECE [19]), which explicitly optimize for749
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robust concept removal. This trade-off arises from SPEED’s emphasis on maintaining non-target750

knowledge, potentially leading to residual traces of erased concepts in extreme cases. However, due751

to its efficiency and scalability in multi-concept erasure, an interesting direction for future work is to752

explore the simultaneous erasure of adversarial examples. Given that null-space constraints inherently753

minimize the impact on prior knowledge, even with the addition of extra target concepts, SPEED is754

expected to achieve better prior preservation compared to existing methods while effectively handling755

adversarial concept erasure.756

F Ethical Statement757

This work introduces a method for concept erasure in text-to-image diffusion models to address758

ethical concerns such as copyright infringement, privacy violations, and the generation of offensive759

content. By precisely removing specific target concepts while preserving the quality and semantics760

of non-target outputs, the proposed approach enhances the safety, reliability, and controllability of761

generative models. The method operates through parameter-space editing without requiring access to762

private data or involving human subjects, ensuring ethical integrity throughout the research process763

and promoting responsible deployment of generative AI technologies.764
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NeurIPS Paper Checklist765

1. Claims766

Question: Do the main claims made in the abstract and introduction accurately reflect the767

paper’s contributions and scope?768

Answer: [Yes]769

Justification: The abstract and introduction clearly state the claims made, including the770

contributions made in the paper and important assumptions and limitations.771

Guidelines:772

• The answer NA means that the abstract and introduction do not include the claims773

made in the paper.774

• The abstract and/or introduction should clearly state the claims made, including the775

contributions made in the paper and important assumptions and limitations. A No or776

NA answer to this question will not be perceived well by the reviewers.777

• The claims made should match theoretical and experimental results, and reflect how778

much the results can be expected to generalize to other settings.779

• It is fine to include aspirational goals as motivation as long as it is clear that these goals780

are not attained by the paper.781

2. Limitations782

Question: Does the paper discuss the limitations of the work performed by the authors?783

Answer: [Yes]784

Justification: In Appx. E.785

Guidelines:786

• The answer NA means that the paper has no limitation while the answer No means that787

the paper has limitations, but those are not discussed in the paper.788

• The authors are encouraged to create a separate "Limitations" section in their paper.789

• The paper should point out any strong assumptions and how robust the results are to790

violations of these assumptions (e.g., independence assumptions, noiseless settings,791

model well-specification, asymptotic approximations only holding locally). The authors792

should reflect on how these assumptions might be violated in practice and what the793

implications would be.794

• The authors should reflect on the scope of the claims made, e.g., if the approach was795

only tested on a few datasets or with a few runs. In general, empirical results often796

depend on implicit assumptions, which should be articulated.797

• The authors should reflect on the factors that influence the performance of the approach.798

For example, a facial recognition algorithm may perform poorly when image resolution799

is low or images are taken in low lighting. Or a speech-to-text system might not be800

used reliably to provide closed captions for online lectures because it fails to handle801

technical jargon.802

• The authors should discuss the computational efficiency of the proposed algorithms803

and how they scale with dataset size.804

• If applicable, the authors should discuss possible limitations of their approach to805

address problems of privacy and fairness.806

• While the authors might fear that complete honesty about limitations might be used by807

reviewers as grounds for rejection, a worse outcome might be that reviewers discover808

limitations that aren’t acknowledged in the paper. The authors should use their best809

judgment and recognize that individual actions in favor of transparency play an impor-810

tant role in developing norms that preserve the integrity of the community. Reviewers811

will be specifically instructed to not penalize honesty concerning limitations.812

3. Theory assumptions and proofs813

Question: For each theoretical result, does the paper provide the full set of assumptions and814

a complete (and correct) proof?815

Answer: [Yes]816
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Justification: In Appx. B.817

Guidelines:818

• The answer NA means that the paper does not include theoretical results.819

• All the theorems, formulas, and proofs in the paper should be numbered and cross-820

referenced.821

• All assumptions should be clearly stated or referenced in the statement of any theorems.822

• The proofs can either appear in the main paper or the supplemental material, but if823

they appear in the supplemental material, the authors are encouraged to provide a short824

proof sketch to provide intuition.825

• Inversely, any informal proof provided in the core of the paper should be complemented826

by formal proofs provided in appendix or supplemental material.827

• Theorems and Lemmas that the proof relies upon should be properly referenced.828

4. Experimental result reproducibility829

Question: Does the paper fully disclose all the information needed to reproduce the main ex-830

perimental results of the paper to the extent that it affects the main claims and/or conclusions831

of the paper (regardless of whether the code and data are provided or not)?832

Answer: [Yes]833

Justification: Details of experiments are presented in Appx. C, and we have uploaded the834

source code in the Supplementary Material for reproducibility.835

Guidelines:836

• The answer NA means that the paper does not include experiments.837

• If the paper includes experiments, a No answer to this question will not be perceived838

well by the reviewers: Making the paper reproducible is important, regardless of839

whether the code and data are provided or not.840

• If the contribution is a dataset and/or model, the authors should describe the steps taken841

to make their results reproducible or verifiable.842

• Depending on the contribution, reproducibility can be accomplished in various ways.843

For example, if the contribution is a novel architecture, describing the architecture fully844

might suffice, or if the contribution is a specific model and empirical evaluation, it may845

be necessary to either make it possible for others to replicate the model with the same846

dataset, or provide access to the model. In general. releasing code and data is often847

one good way to accomplish this, but reproducibility can also be provided via detailed848

instructions for how to replicate the results, access to a hosted model (e.g., in the case849

of a large language model), releasing of a model checkpoint, or other means that are850

appropriate to the research performed.851

• While NeurIPS does not require releasing code, the conference does require all submis-852

sions to provide some reasonable avenue for reproducibility, which may depend on the853

nature of the contribution. For example854

(a) If the contribution is primarily a new algorithm, the paper should make it clear how855

to reproduce that algorithm.856

(b) If the contribution is primarily a new model architecture, the paper should describe857

the architecture clearly and fully.858

(c) If the contribution is a new model (e.g., a large language model), then there should859

either be a way to access this model for reproducing the results or a way to reproduce860

the model (e.g., with an open-source dataset or instructions for how to construct861

the dataset).862

(d) We recognize that reproducibility may be tricky in some cases, in which case863

authors are welcome to describe the particular way they provide for reproducibility.864

In the case of closed-source models, it may be that access to the model is limited in865

some way (e.g., to registered users), but it should be possible for other researchers866

to have some path to reproducing or verifying the results.867

5. Open access to data and code868

Question: Does the paper provide open access to the data and code, with sufficient instruc-869

tions to faithfully reproduce the main experimental results, as described in supplemental870

material?871
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Answer: [Yes]872

Justification: We have uploaded the source code in the Supplementary Material and all data873

and pretrained models applied in our experiments are all publicly available.874

Guidelines:875

• The answer NA means that paper does not include experiments requiring code.876

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/877

public/guides/CodeSubmissionPolicy) for more details.878

• While we encourage the release of code and data, we understand that this might not be879

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not880

including code, unless this is central to the contribution (e.g., for a new open-source881

benchmark).882

• The instructions should contain the exact command and environment needed to run to883

reproduce the results. See the NeurIPS code and data submission guidelines (https:884

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.885

• The authors should provide instructions on data access and preparation, including how886

to access the raw data, preprocessed data, intermediate data, and generated data, etc.887

• The authors should provide scripts to reproduce all experimental results for the new888

proposed method and baselines. If only a subset of experiments are reproducible, they889

should state which ones are omitted from the script and why.890

• At submission time, to preserve anonymity, the authors should release anonymized891

versions (if applicable).892

• Providing as much information as possible in supplemental material (appended to the893

paper) is recommended, but including URLs to data and code is permitted.894

6. Experimental setting/details895

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-896

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the897

results?898

Answer: [Yes]899

Justification: In Appx. C.900

Guidelines:901

• The answer NA means that the paper does not include experiments.902

• The experimental setting should be presented in the core of the paper to a level of detail903

that is necessary to appreciate the results and make sense of them.904

• The full details can be provided either with the code, in appendix, or as supplemental905

material.906

7. Experiment statistical significance907

Question: Does the paper report error bars suitably and correctly defined or other appropriate908

information about the statistical significance of the experiments?909

Answer: [No]910

Justification: We follow the widely-used evaluation benchmark, and these metrics do not911

require reporting error bars.912

Guidelines:913

• The answer NA means that the paper does not include experiments.914

• The authors should answer "Yes" if the results are accompanied by error bars, confi-915

dence intervals, or statistical significance tests, at least for the experiments that support916

the main claims of the paper.917

• The factors of variability that the error bars are capturing should be clearly stated (for918

example, train/test split, initialization, random drawing of some parameter, or overall919

run with given experimental conditions).920

• The method for calculating the error bars should be explained (closed form formula,921

call to a library function, bootstrap, etc.)922

• The assumptions made should be given (e.g., Normally distributed errors).923
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• It should be clear whether the error bar is the standard deviation or the standard error924

of the mean.925

• It is OK to report 1-sigma error bars, but one should state it. The authors should926

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis927

of Normality of errors is not verified.928

• For asymmetric distributions, the authors should be careful not to show in tables or929

figures symmetric error bars that would yield results that are out of range (e.g. negative930

error rates).931

• If error bars are reported in tables or plots, The authors should explain in the text how932

they were calculated and reference the corresponding figures or tables in the text.933

8. Experiments compute resources934

Question: For each experiment, does the paper provide sufficient information on the com-935

puter resources (type of compute workers, memory, time of execution) needed to reproduce936

the experiments?937

Answer: [Yes]938

Justification: In Table. 3, all experiments are conducted on single A100 GPU.939

Guidelines:940

• The answer NA means that the paper does not include experiments.941

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,942

or cloud provider, including relevant memory and storage.943

• The paper should provide the amount of compute required for each of the individual944

experimental runs as well as estimate the total compute.945

• The paper should disclose whether the full research project required more compute946

than the experiments reported in the paper (e.g., preliminary or failed experiments that947

didn’t make it into the paper).948

9. Code of ethics949

Question: Does the research conducted in the paper conform, in every respect, with the950

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?951

Answer: [Yes]952

Justification: We have reviewed and followed the NeurIPS Code of Ethics.953

Guidelines:954

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.955

• If the authors answer No, they should explain the special circumstances that require a956

deviation from the Code of Ethics.957

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-958

eration due to laws or regulations in their jurisdiction).959

10. Broader impacts960

Question: Does the paper discuss both potential positive societal impacts and negative961

societal impacts of the work performed?962

Answer: [Yes]963

Justification: In Appx. F.964

Guidelines:965

• The answer NA means that there is no societal impact of the work performed.966

• If the authors answer NA or No, they should explain why their work has no societal967

impact or why the paper does not address societal impact.968

• Examples of negative societal impacts include potential malicious or unintended uses969

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations970

(e.g., deployment of technologies that could make decisions that unfairly impact specific971

groups), privacy considerations, and security considerations.972
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• The conference expects that many papers will be foundational research and not tied973

to particular applications, let alone deployments. However, if there is a direct path to974

any negative applications, the authors should point it out. For example, it is legitimate975

to point out that an improvement in the quality of generative models could be used to976

generate deepfakes for disinformation. On the other hand, it is not needed to point out977

that a generic algorithm for optimizing neural networks could enable people to train978

models that generate Deepfakes faster.979

• The authors should consider possible harms that could arise when the technology is980

being used as intended and functioning correctly, harms that could arise when the981

technology is being used as intended but gives incorrect results, and harms following982

from (intentional or unintentional) misuse of the technology.983

• If there are negative societal impacts, the authors could also discuss possible mitigation984

strategies (e.g., gated release of models, providing defenses in addition to attacks,985

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from986

feedback over time, improving the efficiency and accessibility of ML).987

11. Safeguards988

Question: Does the paper describe safeguards that have been put in place for responsible989

release of data or models that have a high risk for misuse (e.g., pretrained language models,990

image generators, or scraped datasets)?991

Answer: [NA]992

Justification: This paper poses no such risks.993

Guidelines:994

• The answer NA means that the paper poses no such risks.995

• Released models that have a high risk for misuse or dual-use should be released with996

necessary safeguards to allow for controlled use of the model, for example by requiring997

that users adhere to usage guidelines or restrictions to access the model or implementing998

safety filters.999

• Datasets that have been scraped from the Internet could pose safety risks. The authors1000

should describe how they avoided releasing unsafe images.1001

• We recognize that providing effective safeguards is challenging, and many papers do1002

not require this, but we encourage authors to take this into account and make a best1003

faith effort.1004

12. Licenses for existing assets1005

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1006

the paper, properly credited and are the license and terms of use explicitly mentioned and1007

properly respected?1008

Answer: [Yes]1009

Justification: We have carefully cited and stated the assets used in the paper.1010

Guidelines:1011

• The answer NA means that the paper does not use existing assets.1012

• The authors should cite the original paper that produced the code package or dataset.1013

• The authors should state which version of the asset is used and, if possible, include a1014

URL.1015

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1016

• For scraped data from a particular source (e.g., website), the copyright and terms of1017

service of that source should be provided.1018

• If assets are released, the license, copyright information, and terms of use in the1019

package should be provided. For popular datasets, paperswithcode.com/datasets1020

has curated licenses for some datasets. Their licensing guide can help determine the1021

license of a dataset.1022

• For existing datasets that are re-packaged, both the original license and the license of1023

the derived asset (if it has changed) should be provided.1024
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• If this information is not available online, the authors are encouraged to reach out to1025

the asset’s creators.1026

13. New assets1027

Question: Are new assets introduced in the paper well documented and is the documentation1028

provided alongside the assets?1029

Answer: [Yes]1030

Justification: We have uploaded our source code.1031

Guidelines:1032

• The answer NA means that the paper does not release new assets.1033

• Researchers should communicate the details of the dataset/code/model as part of their1034

submissions via structured templates. This includes details about training, license,1035

limitations, etc.1036

• The paper should discuss whether and how consent was obtained from people whose1037

asset is used.1038

• At submission time, remember to anonymize your assets (if applicable). You can either1039

create an anonymized URL or include an anonymized zip file.1040

14. Crowdsourcing and research with human subjects1041

Question: For crowdsourcing experiments and research with human subjects, does the paper1042

include the full text of instructions given to participants and screenshots, if applicable, as1043

well as details about compensation (if any)?1044

Answer: [NA]1045

Justification: The paper does not involve crowdsourcing nor research with human subjects.1046

Guidelines:1047

• The answer NA means that the paper does not involve crowdsourcing nor research with1048

human subjects.1049

• Including this information in the supplemental material is fine, but if the main contribu-1050

tion of the paper involves human subjects, then as much detail as possible should be1051

included in the main paper.1052

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1053

or other labor should be paid at least the minimum wage in the country of the data1054

collector.1055

15. Institutional review board (IRB) approvals or equivalent for research with human1056

subjects1057

Question: Does the paper describe potential risks incurred by study participants, whether1058

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1059

approvals (or an equivalent approval/review based on the requirements of your country or1060

institution) were obtained?1061

Answer: [NA]1062

Justification: The paper does not involve crowdsourcing nor research with human subjects.1063

Guidelines:1064

• The answer NA means that the paper does not involve crowdsourcing nor research with1065

human subjects.1066

• Depending on the country in which research is conducted, IRB approval (or equivalent)1067

may be required for any human subjects research. If you obtained IRB approval, you1068

should clearly state this in the paper.1069

• We recognize that the procedures for this may vary significantly between institutions1070

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1071

guidelines for their institution.1072

• For initial submissions, do not include any information that would break anonymity (if1073

applicable), such as the institution conducting the review.1074

16. Declaration of LLM usage1075
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1076

non-standard component of the core methods in this research? Note that if the LLM is used1077

only for writing, editing, or formatting purposes and does not impact the core methodology,1078

scientific rigorousness, or originality of the research, declaration is not required.1079

Answer: [No]1080

Justification: LLM is used only for writing, editing, or formatting purposes and does not1081

impact the core methodology, scientific rigorousness, or originality of the research.1082

Guidelines:1083

• The answer NA means that the core method development in this research does not1084

involve LLMs as any important, original, or non-standard components.1085

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1086

for what should or should not be described.1087
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