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Abstract
Continual learning (CL) is widely regarded as crucial challenge for lifelong AI.
However, existing CL benchmarks, e.g. Permuted-MNIST and Split-CIFAR, make
use of artificial temporal variation and do not align with or generalize to the real-
world. In this paper, we introduce CLEAR, the first continual image classification
benchmark dataset with a natural temporal evolution of visual concepts in the
real world that spans a decade (2004-2014). We build CLEAR from existing
large-scale image collections (YFCC100M) through a novel and scalable low-cost
approach to visio-linguistic dataset curation. Our pipeline makes use of pretrained
vision-language models (e.g. CLIP) to interactively build labeled datasets, which
are further validated with crowd-sourcing to remove errors and even inappropriate
images (hidden in original YFCC100M). The major strength of CLEAR over
prior CL benchmarks is the smooth temporal evolution of visual concepts with
real-world imagery, including both high-quality labeled data along with abundant
unlabeled samples per time period for continual semi-supervised learning. We
find that a simple unsupervised pre-training step can already boost state-of-the-art
CL algorithms that only utilize fully-supervised data. Our analysis also reveals
that mainstream CL evaluation protocols that train and test on iid data artificially
inflate performance of CL system. To address this, we propose novel "streaming"
protocols for CL that always test on the (near) future. Interestingly, streaming
protocols (a) can simplify dataset curation since today’s testset can be repurposed
for tomorrow’s trainset and (b) can produce more generalizable models with more
accurate estimates of performance since all labeled data from each time-period is
used for both training and testing (unlike classic iid train-test splits).

1 Introduction
Web-scale image recognition datasets such as ImageNet [50] and MS-COCO [35] revolutionized the
field of machine learning and computer vision by becoming touchstones for the modern algorithms [13,
21, 24]. These benchmarks are designed to solve a stationary task where the distribution of underlying
visual concepts is assumed to be same during train and test. However, in reality, most ML models have
to cope with a dynamic environment as the world is changing over time. Figure 1 shows web-scale
visual concepts that have naturally evolved over time in the last couple of decades. Although such
dynamic behaviors are readily prevalent in web image collections [27], recent learning benchmarks
as well as algorithms fail to recognize the temporally dynamic nature of real-world data.

That said, there exists a tremendous body of work on continual/lifelong learning, with the aim of
developing ML models that can adapt to dynamic environments, e.g., non-iid data streams. Many
algorithms [18, 28, 30, 34, 41, 44, 58] have been purposed to combat the well-known failure mode of
catastrophic forgetting [17, 42, 54]. More recently, new algorithms and metrics [12, 38] have been
introduced to explore other aspects of CL beyond learning-without-forgetting, such as, the ability to
transfer knowledge across tasks [12, 38] as well as to minimize model size and sample storage [12].
However, all of the above works were evaluated on datasets and benchmarks with synthetic temporal
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Figure 1: Temporal evolution of visual concepts in Internet images. We show the evolution of three concepts
(computer, camera, and cosplay) from the Flickr YFCC100M with timestamps spanning 2004 to 2014. The
industry advanced rapidly over this decade from Canon EOS 30D (2006) to Canon EOS 6D (2013), and from
Apple Powerbook G4 (2004) to Macbook Pro (2011) with substantial design changes. The definition of visual
concepts also expanded, e.g., the common usage of the term camera evolved from standalone ones to ones in
smartphones (iphone 5 in last image of second row). We see evolution in other visual concepts such as cosplay
as well: Cosplayers often dress as topical characters of the day. From 2004-2007, popular characters reflect
anime such as Rayman Rabbit (2006), Rebuild of Evangelion (2007), etc. while 2011-2014 includes
characters such as Assassin’s Creed II (2010), Steins;Gate (2011) and so on.

variation because it is easier to artificially introduce new tasks at arbitrary timestamps. Such continual
datasets tend to contain abrupt changes:

• Pixel permutation (e.g., Permuted MNIST [18]) fully randomizes the positions of pixels at discrete
intervals to form new tasks.

• Incremental scenarios on static datasets (e.g., Split-MNIST [58] and Split-CIFAR [29, 47]) split
existing datasets designed for "static" evaluation to multiple tasks, each with a random subset of
classes.

• New Instances (NI) learning (e.g., CORe50 [36]) adds brand new training patterns to existing
classes. Yet these new patterns are all artificially designed, e.g., whoever collect the images
manually change the illumination and background of the captured objects.

• Two-task transfer (e.g., Li and Hoiem [34]) trains a single model on a pair of datasets consecutively,
such as ImageNet [50] followed by Pascal VOC [15], with the aim of preserving the performance
on the first dataset while training on the second one.

Why are abrupt changes undesirable? Simulated continual data with abrupt changes is not only
unnatural, but may make the problem harder than need be. The real world tends to exhibit smooth
evolution, which may enable out-of-distribution generalization in biological entities. Indeed, synthetic
benchmarks have been criticized [5, 16, 36] for their artificial abruptness because (a) knowledge
accumulated on past tasks cannot generalize to future tasks and (b) degenerate solutions such as
GDumb [44] that train "from scratch" on new tasks still perform quite well. Aware of these criticisms,
we propose this new CL benchmark to promote natural and smooth distribution shifts, and experiments
in this paper confirm that GDumb [44] falls short compared with other baselines.

The CLEAR Benchmark. In this work, we propose the CLEAR Benchmark for studying Continual
LEArning on Real-World Imagery. To our knowledge, CLEAR is the first continual image recognition
benchmark based on the natural temporal evolution of visual concepts of Internet images. We curate
CLEAR from the largest available public image collection (YFCC100M [52]) and use the timestamps
of images to sort them into a temporal stream spanning from 2004 to 2014. We split an iid subset of
the stream (around 7.8M images) into 11 equal-sized "buckets" with 700K images each. The labeled
portion of CLEAR is designed to be similar in scale to popular ML benchmarks such as CIFAR [29].
For each of the bucket 1st to 10th, we curate a small labeled subset consisting of 11 temporally
dynamic classes (10 illustrative classes such as computer, cosplay, etc. plus an 11th background
class) with 300 labeled images per class. Besides high-quality labeled data, the rest of the images
per bucket in CLEAR can be viewed as large-scale unlabeled data, which we hope will spur future
research on continual semi-supervised learning [20, 45, 51, 57].

A low-cost and scalable dataset curation pipeline. However, constructing such a benchmark a
natural continuity is non-trivial at a web-scale, e.g., downloading all images of YFCC100M [52]
already takes weeks. To efficiently annotate CLEAR, we propose a novel visio-linguisitic dataset
curation method. The key is to make use of recent vision-language models (CLIP [46]) with text-
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prompt engineering followed by crowdsourced quality assurance (i.e. MTurk). Our semi-automatic
pipeline makes it possible for researchers to efficiently curate future datasets out of massive image
collections such as YFCC100M. With this pipeline, we curate CLEAR with merely one day of
engineering effort, and believe it can be easily scaled up to orders-of-magnitude more data. We will
host CLEAR as well as its future and larger versions on https://clear-benchmark.github.io.

A realistic "streaming" evaluation protocol for CL. Realistic temporal evolution encourages
smooth transitions while suggestive of a more natural streaming evaluation protocol for CL, inspired
by evaluation protocols for online learning [4, 14]. In essence, one deploys a model trained with
present data at some point in the future. Interestingly, traditional CL evaluation protocols train and
test on iid data buckets, failing to model this domain gap. We conduct extensive baseline experiments
on CLEAR by simply fixing the label space to be the same 11 classes across time (i.e., the incremental
domain learning setup [22]). Preliminary results confirm that mainstream (train-test) "iid" evaluation
protocols artificially inflate performance of CL algorithms. Our streaming protocols can (a) simplify
dataset curation since today’s testset can be repurposed for tomorrow’s trainset and (b) produce more
generalizable models with more accurate estimates of performance since all labeled data from each
time period is used for both training and testing.

Large-scale unlabeled data boosts CL performances. Moreover, we find that unsupervised pre-
training (MoCo V2) on only the first bucket 0th (700K unlabeled images) of CLEAR already boosts
the performance of all state-of-the-art CL techniques that make use of only labeled data. In particular,
training a linear layer to classify these MoCo extracted features surpasses all popular CL methods
by a large margin. This suggests that future works on real-world CL should embrace large-scale
unlabeled data to maximize performances.

2 Background and Related Work

2.1 Existing CL Datasets and Benchmarks

Most established works on CL focus on overcoming catastrophic forgetting [7, 18, 28, 30, 31,
33, 41, 44, 55, 58] through replay-based, regularization-based, distillation-based, and architecture-
based methods. We refer readers to [10, 43, 44] for more surveys and overviews. However, these
algorithms are all evaluated on CL benchmarks with synthetic temporal evolution like Permuted-
MNIST [18], CoRE50 [36], and other incremental learning scenarios [10, 29, 40, 58]. The growing
field of continual and lifelong learning is in dire need of more practical benchmarks. One notable
exception to contrived incremental scenarios is the recent work of Hu et. al [23], who assemble a CL
dataset of Tweet messages that naturally evolve over time. Cai et. [4] concurrently introduce a CL
dataset also derived from YFCC100M [52], but formulate the task as geolocalization (making use of
readily-available geostamps). We focus on the task of image classification, which is arguably more
mainstream but requires presumably costly dataset curation.

2.2 Continual Learning Settings

Existing works in CL have proposed a variety of CL settings. In this section we explain some of
the major CL settings that CLEAR adopts and refer readers to [1, 22, 44, 53, 59] for more thorough
discussion of different variants of CL setups.

Task-based sequential learning: In most CL works, a sequence of distinct tasks with clear task
boundaries is given, and the tasks are iterated in a sequential fashion. This predominant CL paradigm
is called task-based sequential learning [44] (or "boundary-aware" CL [33]). This setting is easy
to set up and benchmark (e.g., Split-MNIST) and has spurred many classic CL algorithms such as
EWC [28] and SI [58] that heavily rely on task boundaries in order to know when to perform core
model updates (usually at the end of each task), such as knowledge consolidation. In this paper, we
also adopt task-based sequential learning with a sequence of (same) 11-way classification tasks by
splitting the temporal stream into 11 buckets, each consisting of a labeled subset for training and
evaluation. However, it could be argued that in real-world, the model will not be informed about
the task boundary (also called boundary-agnostic [33], task-free[1], or task-agnostic CL [59]). Such
boundary-agnostic settings have been explored in recent works [1, 4, 23, 59], in which a non-iid data
stream continuously spits out new samples without a notion of task switch. In this paper, we still
assume a task-based sequential learning setting to ease benchmark design, but future works could
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adapt CLEAR to boundary-agnostic or task-free CL by processing data in an online streaming fashion
using timestamps of CLEAR images. Moreover, it should be noted that in task-based sequential
learning, only the current task data is available at each timestamp (excluding past data), though
replay-based methods [6, 44] can still use an external replay buffer to store past data for rehearsal.

Locally-iid assumption: Almost all prior CL works on task-based sequential learning setup adopt a
naive "locally-iid" assumption, under which each task’s data is from an iid distribution [38]. In fact,
mainstream CL evaluation protocols that sample train and test data from the same iid distribution
make sense only when this iid assumption holds. In this work, we propose novel "streaming"
evaluation protocols that test the current model on the data of next task, which does not implicitly
assume that each task has its own iid distribution. Note that in order to align with past works, we
report comprehensive results under both "iid" and "streaming" protocols in this paper.

Incremental task/domain/class learning: [22, 53] categorize existing CL setups for task-based
sequential learning into three incremental learning scenarios. In incremental task learning, the task
identity of each test sample is known; such a-prior knowledge could be exploited to ease algorithmic
design, such as training separate classification heads for each task and using task identities of each
test sample to determine which head to use. Incremental domain and class learning setups are
more challenging since the task identity is unknown during test time. We adopt incremental domain
learning in this work by fixing the label space for all tasks (same 11-way classification) while the
input distribution is changing over time. CLEAR can be adapted for incremental class learning in
future by assigning different classes to different tasks, making the label space grow over time.

Online v.s. offline continual learning: To encourage quick model adaption in CL, some prior works
on task-based sequential learning require each sample to be used just once for model update. This
setting is called online CL [40, 44] since it mimics an online stream of data, in which samples are
spitted out one by one and cannot be revisited except when it is stored in a memory buffer (usually
of limited size). On the other hand, offline CL assumes all samples in current task (plus the ones
in buffer) can be revisited without constraint. However, online CL does not imply quick model
adaption unless one carefully measures the total resource consumption as argued in [44]. For example,
GEM [38], a well-known online CL method, uses each sample only once but solves an expensive
quadratic program per model update. Therefore, we adopt offline CL in this work, but we allocate
roughly the same resources (e.g., buffer size and training time) for each baseline algorithm for fair
comparison. Interestingly, [4] adopts a learning setup similar to our "streaming protocol" but name it
as online continual learning, which clashes with previous definitions of online CL [40, 44]. In this
paper, we use the term "streaming" to avoid a notational clash.

2.3 Building Blocks for CLEAR

YFCC100M: We build CLEAR from YFCC100M [52], consisting of media artifacts uploaded to
www.flickr.com from 2004 to 2014. YFCC100M’s massive scale (around 100 million images
and videos) and the wealth of metadata (timestamps for capture and upload date, GPS, user tag,
image description, camera specs, etc.) makes it one of the largest and richest publicly-available
image datasets. However, YFCC100M is cumbersome to work with as downloading the data can
already take months and user-uploaded hashtags and descriptions can be extremely noisy and even
irrelevant [3, 25, 31, 39], arguably limiting its impact compared to relatively smaller, yet high-quality
curated data like ImageNet [50] and MS-COCO [35]. Nonetheless, YFCC100M consists of real-
world and more complex imagery unlike other popular datasets favoring only centered objects or
visual elements, e.g., MNIST [11], CIFAR [29], and ImageNet [50]. We believe it is more practical
to develop algorithms and models on real-world data such as YFCC100M.

CLIP: CLIP [46] is a vision-language model that learns to associate texts and images by training on
a massive dataset of over 400M image-text pairs. We use CLIP to automatically retrieve subsets of
YFCC100M most relevant to particular visual concepts (Figure 2).

3 CLEAR: Dataset Design and Curation

We describe how we curate CLEAR from YFCC100M [52] and CLIP [46]. Because YFCC100M is
too large (the metadata files already exceed 40 GBs) to gather and annotate, we believe our dataset
curation procedure can ease future benchmark creation, as this pipeline can be managed without
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Figure 2: Visio-Linguistic Dataset Curation. We download a random subset of 7.8M images and their
associated metadata from YFCC100M. We use upload timestamps to reconstruct a temporal stream, splitting it
into 11 time-indexed buckets of roughly 700K images each. Given a list of text queries (found by text-prompt
engineering in order to effectively retrieve the visual concepts of interest), we use CLIP [46] to extract their
respective L2-normalized query features, ranking each image by the cosine similarity of its image feature to each
query. We assign the top-ranked (0.7K out of 700K) images of each bucket to the query, removing ambiguous
images that rank high across multiple queries. We also include a background class with images that rank low
across the queries (details in Sec 1. of supplement). We then use human crowd-sourcing (MTurk) to remove
misclassified and inappropriate images from the CLIP-retrieved images. As a result, CLEAR contains 3.3K
high-quality labeled images for 10 buckets (excluding bucket 0th for unsupervised pre-training only). Our
dataset curation pipeline reduces the annotation cost by 99%.

massive infrastructure or engineering efforts from big organizations. We summarize the entire pipeline
in Fig. 2.

Concept selection: We select temporally dynamic visual concepts from following super-categories:

• Trends and Fashion: People’s aesthetics and interests shift over time. A fashionable dress in
2004 may be deemed outdated in 2014. Similarly, the clothing style for popular music performers
were also changing, e.g. punk style in 1970s and Kpop idols in 2010s.

• Consumer products: Industry is constantly producing new commercial products to meet shifting
consumer needs, e.g., models of vehicles, cameras, laptops, and cellphones change routinely.

• Social Events: Social/multimedia events are often dated and evolving, e.g., the FIFA world cup
features different themes every 4 years. Cosplayers tend to dress as topical characters of-the-day.

We choose 10 dynamic visual concepts that span the above super-categories: computer, camera, bus,
sweater, dress, racing, hockey, cosplay, baseball, and soccer. Please refer to supplement
for a detailed discussion of these visual concepts and see examples in Fig. 1.

Stream recreation: To recover the temporal evolution of visual concepts from YFCC100M, we sort
images of YFCC100M by their uploaded dates to recreate the temporal stream of Flickr images from
2004 to 2014. In the interest of time, we only downloaded the first 7.8M images offered by their
metadata files which are a random subset of YFCC100 images. We then chunk the uploading stream
to 11 buckets of 700K images each, indexed from 0th to 10th. We gather a small class-balanced
set of 3.3K labeled data for buckets 1st to 10th with the 10 dynamic visual concepts plus a 11st

background class. The 0th bucket does not have a labeled set because we only use it to pretrain an
unsupervised MoCo V2 model [9] for feature extraction in subsequent buckets (Sec. 5).

Visio-linguistic curation: We work on each of the 10 buckets of the temporal image stream inde-
pendently to gather 10 labeled subsets consisting of the above dynamic visual concepts. Since it
would be too costly to manually label all 700K images per bucket, we use CLIP [46] to facilitate the
annotation process. Given a pair of (image, text query), CLIP first encodes both image and query to
two normalized features of same dimension (1024), and then performs a dot product between the
two features to calculate a cosine similarity score. It has been shown [46] that the higher the score is,
the more aligned the image content is to the query content. We then retrieve images with top 0.1%
cosine similarity scores with respect to each given query in order to filter out most irrelevant images.
As suggested in [46], one can refine textual queries to better capture a visual concept. In particular,
we found it useful to enumerate subcategory queries (e.g., use laptop queries to retrieve computer
images). Please refer to supplement (Sec. 1) for more details. Finally, to assemble background
images, we construct a set of images that are low-scoring across all queries. Details about how
background class is constructed are in Sec. 1 of supplement.

Crowd-sourced validation (Mturk): We find that CLIP still produces a roughly 20% misclassifica-
tion rate (though this varies by class). We use Amazon Mturk for crowd-sourced validation to filter
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Figure 3: Example images from CLEAR. For each bucket (per column), we show a random sample from 5 of
the classes (computer, bus, camera, hockey, cosplay) in CLEAR.

out misclassified images. Each image in our dataset is verified by at least 3 workers. Additionally, we
also use MTurk workers to mark any images with inappropriate content. Our pipeline successfully
surfaced pornographic images contained in YCFF100M (that we have removed from CLEAR and
subsequently reported to the original benchmark curators). Sec. 1 of supplement also shows how we
design the MTurk user interface and compose the worker results. Examples of verified images in our
final dataset can be found in Fig. 3 and Sec. 1 of supplement.

4 Evaluation Protocols for Continual Learning

When presenting results on CLEAR, we make use of standard CL evaluation protocols to align with
past works relying heavily on "locally-iid" assumption; many of them focus on an "iid" evaluation
on test samples drawn from the same iid distribution of training samples. Instead, we advocate on a
"streaming" perspective that evaluates on test data from future, motivated by real-world deployments
that notoriously struggle with domain shifts between future test data and past train data. Moreover,
such a streaming perspective simplifies dataset curation since today’s testset can be repurposed for
tomorrow’s trainset. We will show that this translates to both improved models and more robust
estimates of performance, since instead of making a classic 70/30% train-test split, we can use all
labeled data of a bucket for both training and testing. Before we formalize the streaming evaluation
protocol, we first review mainstream "iid" evaluation protocols for CL.

Figure 4: IID vs Streaming Protocols for CL. Traditional CL protocols (left) split incoming data buckets
into a train/test split, typically 70/30%. However, this may overestimate performance since the train and test
data are drawn from the same iid distribution, ignoring the train-test domain gap. We advocate a streaming
protocol (right) where one must always evaluate on near-future data. This allows us to repurpose today’s testset
as tomorrow’s trainset, increasing the total amount of recent data available for both training and testing. Note
that the streaming protocol naturally allows for asynchronous training and testing; by the end of year 2006, one
can train a model on data up to 2006, but needs additional data from 2007 to test it.

4.1 Review of IID Protocols

Following the "locally-iid" assumption, we have N timestamps with a sequence of unknown distribu-
tions D = {D1, D2, · · · , DN} with Di = Xi ×Y, where Xi ⊂ X is the input space at timestamp i
and Y is the label space. For CLEAR, Xi is the image distribution from which bucket i is sampled
and Y contains the 11 dynamic classes. The standard CL evaluation protocols then make a train-test
iid assumption: Each task consists of a training set Tri and a test set Tei sampled from the same
distribution Di at each timestamp. A learner then proceeds by sequentially fitting N predictor
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functions {h1, h2, · · · , hN} on the N training sets. Each predictor function hi : X → Y will be
evaluated on all N test sets to generate an accuracy matrixR ∈ [0, 1]N×N : Ri,j is defined to be the
test accuracy of hi on Tej . The above formulation can be extended to a label space that grows over
time to accommodate new classes (i.e., incremental class learning). However, for simplicity, we focus
on "incremental domain learning" (all tasks share a fixed output space while only the input domain
is changing), leaving "incremental class learning" (output space is changing as well) on CLEAR as
future work. Note that these taxonomies are summarized in [22].

Standard iid evaluation protocols of CL algorithms mostly adopt the following 3 metrics, which can
be readily calculated from accuracy matrixR:

1. In-domain Accuracy (termed Average Accuracy in [12, 38]) measures the test accuracy on the
current task immediately after training on it (averaged over all timestamps). This can calculated
as the average of the diagonal entries ofR.

2. Backward Transfer measures the performance of previous tasks (i.e., learning without forgetting)
by averaging lower triangular entries ofR.

3. Forward Transfer measures performance of future tasks (i.e., generalizing to future) by averaging
upper triangular entries ofR.

We refer readers to Sec. 3 of supplement for equations we use to calculate these metrics.

4.2 Our Streaming Protocol

In real-world deployment scenarios, one must train on today’s data and test on tomorrow’s, introducing
an undeniable domain shift, as demonstrated in Fig. 4.

A more realistic CL scenario is therefore to evaluate on the immediate next time period. Formally,
we define a "streaming" evaluation protocol for CL. Given N timestamps, we have a stream of
data S = {S1, S2, · · · , SN}; Si could be a single sample or a bucket of samples, drawn from a
non-stationary distribution Di = Xi ×Y. In CLEAR, the stream S is the 10 buckets of labeled data
(bucket 1st to 10th). A learner sequentially fits N predictor functions {h1, h2, · · · , hN} on S1 to SN .
We call this protocol "streaming" because after training on Si, we evaluate hi on Si+1, which are
samples of the next timestamp. Once evaluation is done, Si+1 can be repurposed as the new trainset
for fitting the next predictor hi+1. This is similar to online learning protocols [4, 14], because the
current predictor hi will first make prediction on Si+1, and the environment then reveals ground-truth
labels of Si+1 for evaluation and model update.

Under streaming protocol, accuracy matrixR can be defined: Ri,j is the accuracy of hi on Sj . We
then define "next-domain" accuracy to be the average accuracy of current predictor evaluated on the
data of next timestamp (i.e., accuracy of hi on Si+1). This translates to the average of superdiagonal
ofR:

Next-domain Accuracy =

∑N−1
i=1 Ri,i+1

N − 1
(1)

Our streaming protocol makes use of much more data for both testing and training: instead of slicing
up data into a 70-30% train-test split, we can use 100% of data from a time period for testing (when
first encountered) and 100% of that data for training (after time moves forward). This may result in
better models and more accurate (e.g., lower variance) estimates of performance [54]. The price we
pay is we can no longer evaluate on historical tasks for "learning-without-forgetting" since there is no
longer any held-out test data. But from a truly streaming perspective, evaluating an "outdated" task
may not be as relevant as more accurate models and robust performance estimates of the task-at-hand.

We stress that CLEAR can be evaluated under both iid and streaming protocols (of which we are
aware). We perform exhaustive experiments on both protocols, but highlight the latter because it
has been historically underexplored. Especially, the domain shift between future test data and past
training data is usually the bottleneck in real-world continual deployments.

5 Approaches

Fully-supervised baselines: We evaluate state-of-the-art CL algorithms on CLEAR using implemen-
tation from an open-sourced CL library Avalanche [37]. In specific, we test replay-based methods
such as ER [49], AGEM [6], and GDumb [44], while allowing them to maintain a sufficiently large
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Figure 5: Streaming Protocols for Continual Supervised vs. Un-/Semi-supervised Learning. We compare
streaming protocols for continual supervised (left) and un-/semi-supervised learning (right). In real world,
most incoming data will not be labeled due to the annotation cost; it is more natural to assume a small labeled
subset along with large-scale unlabeled samples per time period. In this work, we achieve great performance
boosts by only utilizing unlabeled samples in the first time period (bucket 0th) for a self-supervised pre-training
step. Therefore, we encourage future works to embrace unlabeled samples in later buckets for continual
semi-supervised learning.

Network Unsup Repr. Sampling Strategy Method IID Protocol Streaming Protocol

In-domain Acc Next-domain Acc Acc BwT FwT Next-domain Acc FwT

ResNet18 - N/A EWC [28] 76.6%± .2% 74.3%± .6% 76.7%± .3% 76.5%± .4% 71.1%± .6% 77.1%± .6% 74.4%± .6%
ResNet18 - N/A SI [58] 76.0%± .2% 73.6%± .2% 76.0%± .5% 76.0%± .6% 71.0%± .4% 76.9%± .2% 74.3%± .2%
ResNet18 - N/A LwF [31] 77.8%± .3% 75.7%± .3% 79.2%± .3% 79.6%± .3% 72.5%± .3% 78.8%± .2% 76.1%± .3%
ResNet18 - N/A CWR [36] 69.5%± .2% 67.8%± .3% 68.9%± .3% 68.8%± .3% 66.6%± .3% 71.1%± .4% 69.9%± .3%
ResNet18 - GDumb [44] GDumb [44] 66.0%± .4% 64.3%± .5% 68.4%± .4% 68.9%± .4% 61.4%± .5% 67.4%± .1% 64.9%± .1%
ResNet18 - ER [49] ER [49] 77.3%± .1% 75.6%± .3% 79.0%± .1% 79.3%± .1% 72.4%± .2% 78.1%± .2% 75.8%± .2%
ResNet18 - Reservoir AGEM [6] 76.2%± .3% 73.6%± .2% 75.9%± .2% 75.9%± .3% 70.7%± .2% 77.4%± .2% 74.5%± .2%
ResNet18 - Reservoir Finetuning 69.5%± .3% 67.7%± .2% 70.0%± .2% 70.0%± .1% 66.5%± .2% 71.6%± .2% 70.6%± .2%
ResNet18 - Biased Reservoir Finetuning 75.5%± .2% 72.7%± .3% 75.7%± .2% 75.8%± .2% 70.2%± .2% 77.2%± .3% 74.4%± .2%
Linear YFCC-B0 N/A EWC [28] 91.6%± .1% 90.6%± .0% 91.7%± .0% 91.7%± .1% 88.6%± .0% 91.1%± .0% 89.3%± .0%
Linear YFCC-B0 N/A SI [58] 91.7%± .0% 90.5%± .1% 91.7%± .0% 91.7%± .0% 88.5%± .1% 91.1%± .0% 89.2%± .0%
Linear YFCC-B0 N/A LwF [31] 91.6%± .0% 90.7%± .0% 92.2%± .0% 92.3%± .0% 88.7%± .1% 91.2%± .0% 89.3%± .0%
Linear YFCC-B0 N/A CWR [36] 90.5%± .0% 89.8%± .0% 91.3%± .0% 91.4%± .1% 88.1%± .1% 90.4%± .0% 88.9%± .0%
Linear YFCC-B0 GDumb [44] GDumb [44] 85.5%± .3% 85.0%± .3% 85.5%± .2% 85.5%± .3% 84.3%± .3% 85.8%± .1% 85.2%± .1%
Linear YFCC-B0 ER [49] ER [49] 91.7%± .0% 90.9%± .0% 92.2%± .0% 92.3%± .0% 88.9%± .2% 91.4%± .1% 89.6%± .1%
Linear YFCC-B0 Reservoir AGEM [6] 91.9%± .0% 90.7%± .1% 92.1%± .1% 92.1%± .1% 88.6%± .1% 91.4%± .0% 89.4%± .0%
Linear YFCC-B0 Reservoir Finetuning 89.3%± .0% 88.7%± .0% 90.3%± .0% 90.6%± .0% 87.2%± .0% 89.4%± .0% 88.0%± .1%
Linear YFCC-B0 Biased Reservoir Finetuning 91.6%± .0% 90.5%± .0% 91.7%± .0% 91.7%± .0% 88.5%± .0% 91.1%± .0% 89.2%± .0%

Table 1: Results of baseline CL algorithms on CLEAR. We evaluated a variety of SOTA algorithms under
both IID and Streaming Protocols. Under the classic IID Protocol, In-domain Acc (avg of diagonal entries
ofR) is consistently larger than Next-domain Acc (avg of superdiagonal entries ofR), indicating that classic
(70%-30%) iid train-test construction overestimates performance of real-world CL systems, which must be
deployed on future data. Crucially, this drop can be addressed by our Streaming Protocol, which trains on
all data of the previous bucket (by repurposing yesterday’s testset as today’s trainset). Moreover, while most
prior CL algorithms make use of supervised learning, we find that unsupervised pre-trained representations
(YFCC-B0) can boost performances of all baseline algorithms; especially, linear models are far more effective
than ResNet18 trained from scratch, even when using naive Finetuning strategy with buffer populated with
simple reservoir sampling. Note that for replay-based methods, we keep the same buffer size of one bucket of
images (2310 for IID and 3300 for streaming protocol).

buffer of one bucket of training images (2310 for iid protocol, 3300 for streaming protocol). We also
test CWR [36] (architecture-based), LwF [31] (distillation-based), and SI [41, 58] and EWC [28]
(both are regularization-based). We include a naive replay-based Finetuning strategy, which is to
finetune the model solely on the replay buffer (inspired by GDumb [44]), while exploring variants of
reservoir sampling strategy to populate the buffer. For all these baseline methods, we use SGD with
momentum to train ResNet18 [21] initialized from scratch and report all hyperparameters in Sec. 6
of supplement. Note that some of these approaches such as AGEM can be used for online CL [40] by
visiting each sample just once, but in this work we assume the most relaxed offline CL setup so that
all samples in the current bucket can be revisited without constraint.

Unsupervised pre-training: Since CLEAR comes with abundant unlabeled samples (700K images
per bucket), one may also explore continual semi-supervised or unsupervised learning, as suggested
in Fig. 5. As a preliminary experiment, we perform a simple unsupervised pre-training step by
self-supervised learning on YFCC100M data collected prior to bucket 1st. Specifically, we learn an
unsupervised representation model (Moco V2 [9]) with ResNet50 backbone on bucket 0th of 700K
images. We release both our pre-trained MoCo V2 model and self-supervised features (termed as
YFCC-B0) associated with each image. After pre-training the MoCo model, we follow the popular
linear evaluation protocol in self-supervised learning literature [9, 19] to classify the extracted YFCC-
B0 features via a linear layer. Surprisingly, we observe significant performance boosts across all
methods, even with naive Finetuning with simple reservoir sampling strategy. Additionally, in Sec.
5 of supplement, we present linear and nonlinear (2 layer MLP) classification results using a variety
of other pre-trained feature representations (including ImageNet, CLIP, and other self-supervised
methods).
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α for Biased Reservoir IID Protocol Streaming Protocol

In-domain Acc Next-domain Acc Acc BwT FwT Next-domain Acc FwT

α = 0.5 88.6%± .0% 88.1%± .0% 89.8%± .0% 90.0%± .0% 86.8%± .0% 88.8%± .1% 87.6%± .1%
α = 1.0 89.5%± .0% 88.8%± .0% 90.4%± .0% 90.6%± .0% 87.4%± .0% 89.5%± .0% 88.1%± .1%
α = 2.0 90.7%± .0% 89.8%± .0% 91.2%± .0% 91.4%± .0% 89.1%± .2% 90.3%± .1% 88.8%± .1%
α = 5.0 91.5%± .0% 90.4%± .0% 91.7%± .0% 91.7%± .0% 88.5%± .0% 90.9%± .0% 89.2%± .0%

α = 0.25 * i/k 89.7%± .0% 88.8%± .0% 90.5%± .0% 90.7%± .0% 87.1%± .0% 89.7%± .0% 88.0%± .1%
α = 0.50 * i/k 90.7%± .0% 89.7%± .0% 91.2%± .0% 91.3%± .0% 87.9%± .0% 90.4%± .1% 88.6%± .1%
α = 0.75 * i/k 91.3%± .0% 90.1%± .0% 91.6%± .0% 91.6%± .0% 88.2%± .1% 90.8%± .1% 88.9%± .0%
α = 1.00 * i/k 91.6%± .0% 90.5%± .0% 91.7%± .0% 91.7%± .0% 88.5%± .0% 91.1%± .0% 89.2%± .0%

Table 2: Analysis of biased reservoir sampling. We consider the case where we pretrain MoCo on 0th bucket
via unsupervised learning and finetune the last linear layer. Table shows different alpha values for biased reservoir
sampling algorithms with replay buffer size of one bucket. Note that the higher the alpha values are, more recent
samples will be added to the replay buffer (when α = 1.0, it is equivalent to naive reservoir sampling). The key
takeaway is that when there is a limited memory buffer, we should bias towards storing more recent samples,
e.g., when α = 5.0 or α = 0.75 ∗ i/k, all metrics enjoy a 1% boost compared with naive reservoir sampling.

Reservoir Sampling: For naive Finetuning, we adopt reservoir sampling [32, 56] that uniformly
samples from all data encountered in the stream to populate the replay buffer. Specifically, given a
buffer of size k, it repeats the following at each timestamp i:

1. If the buffer has not reached its maximal capacity, keep adding new sample.
2. If the buffer is full, when a new sample comes, replace a random sample in the buffer with this

new sample with probability k
i .

Following this procedure, we can ensure a uniform probability that a visited sample is included in
the buffer, i.e., at time i, any sample in stream has probability k

i to be stored in buffer. Note that
this sampling procedure is performed once per incoming bucket in our implementation by simply
assuming that all samples in one bucket share the same timestamp i.

This uniform sampling procedure has shown to work well in prior works [8, 48] as well as some
variants that tackle class-imbalanced data streams [2, 26]. However, in CLEAR, we will show that it
is beneficial to simply bias the probability by an alpha value α larger than 1.0, i.e., α ∗ k

i such that
the sampling procedure favors more recent samples.

Biased Reservoir Sampling: In particular, we experiment with two types of alpha:

• Fixed α. We can select alpha as a constant value, e.g., α ∈ {0.5, 1.0, 2.0, 5.0}. Note that α = 1.0
is equivalent to unbiased reservoir sampling. Higher α biases the memory towards storing more
recent samples (and vice-versa).

• Dynamic α. The alpha value could also change according to the timestamp i. For example, we
can have α ∈ { 0.25ik , 0.5ik , 0.75ik , i

k}. In this scenario, the probability of replacing an old sample in
buffer with a new sample is always a constant, e.g. when α = i

k , we always store the new sample
with probability 1 = α ∗ k

i . The latter is equivalent to a first-in first-out (FIFO) priority queue
that ensures the k most recent examples remain in memory. Interestingly, many recent works on
online CL also adopt FIFO queues [4, 23].

In Sec. 4 of supplement, we provide pseudocode of biased reservoir sampling algorithm.

6 Results and Discussion

In this section, we include a summary of the salient conclusions. We run 5 random seeds for each
experiment and report mean and std over 5 runs. For the IID Protocol, we use 5 random 70-30 train-
test splits, reporting both In-domain Acc and Next-domain Acc, plus three other metrics inspired by
prior work [12] including Accuracy (Acc), Backward Transfer (BwT), and Forward Transfer (FwT).
For the Streaming Protocol (that repurposes previous testsets as trainsets), we report Next-domain
Acc (Eq.1) and Forward Transfer (FwT). Table 1 presents all baseline results.

In-domain Acc inflates performance: We first demonstrate that In-domain Acc can falsely inflate
the performance of CL algorithms that must be deployed on real-world data from the immediate fu-
ture. Figure 6 includes an accuracy matrix with Linear, YFCC-B0, Bias Reservoir Sampling
strategy. Clearly, accuracies on the main diagonal (where train and testsets are drawn from the same
iid distribution) are larger than those on the superdiagonal. The accuracy drops on the superdiagonal
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(train today, test on tomorrow), and continues to drop as we evaluate further into the future (towards
the right of the matrix), suggesting CLEAR contains smooth temporal evolution of data. Crucially,
Table 1 shows that this drop can be partially addressed by our Streaming Protocol that trains on all
100% of prior data (rather than 70%, as dictated by classic iid protocols).

Figure 6: Accuracy matrix under iid proto-
col with Linear, YFCC-B0, Biased Reservoir,
Finetuning strategy. We show the accuracy matrix
under iid protocol which performs training and testing
on the same bucket. The x-axis is the test performance
on Te1 to Te10 (from left to right), and the y-axis is
the training timestamp 1 to 10 (from top to bottom).
The main diagonal (In-domain Acc) tends to have bet-
ter performance than the superdiagonal (Next-domain
Acc) because the former ensures train and test distri-
butions are iid. The further the test bucket is from the
current timestamp, the worse the performance, e.g., if
we use timestamp 1st model to evaluate on Te10, the
accuracy drops from 90% to 82%.

Unsupervised pre-training significantly
boosts performance: Without unsupervised
pre-training, training ResNet18 on raw RGB
images with state-of-the-art fully-supervised CL
techniques achieves at best 77.8% In-domain
acc (under iid protocol) and 78.8% Next-
domain acc (under streaming protocol) using
LwF [31]. However, Finetuning a linear layer
on top of unsupervised feature representations
(YFCC-B0) pre-trained on bucket 0th of
CLEAR improves performance to 91.9%
In-domain acc (under iid protocol) and 91.4%
Next-domain acc (under streaming protocol).
This suggests that CLEAR is still challenging
without unsupervised pre-training even in the
simplest incremental domain learning setup,
and future works should embrace unlabeled
data for continual semi-supervised learning to
maximize performances.

GDumb falls short compared to other base-
lines: GDumb [44] as a degenerate solution is
far less competitive on CLEAR, most likely be-
cause it trains a network from scratch for each
bucket while giving up previously trained mod-
els. This suggests that CLEAR has smooth tem-
poral variation, in which case continuous repre-
sentation learning becomes beneficial. To verify
this hypothesis, in Sec. 5 of supplement, we
show that it is always better to finetune than to
train from scratch per timestamp.

Biased reservoir towards more recent sam-
ples is beneficial: Biased reservoir sampling
that assigns higher sampling probability towards more recent samples combined with naive Finetun-
ing improves upon unbiased reservoir and achieves competitive results on CLEAR under both iid and
streaming evaluation protocols as in Table 1. We show analysis for different alpha values in Table 2.

7 Conclusion
We present CLEAR, the first benchmark for naturally-evolving continual image classification. We
describe a scalable and semi-automatic visio-linguistic approach for (continual) benchmark con-
struction and present a suite of baseline algorithms and analysis. Salient conclusions are as follows
(1) Embrace train-test domain shift! Though a widely-held sentiment, it is surprising to see that
traditional evaluation protocols of CL still rely on locally iid assumptions. (2) Unsupervised pre-
training with simple sampling strategies surpasses state-of-the-art full-supervised CL techniques,
and thus future CL benchmarks or algorithms should take unlabeled data into accounts. We plan
to host CLEAR benchmark on a public platform (link: https://clear-benchmark.github.io)
and maintain leaderboard of different competing approaches to further ensure reproducibility.

Broader Impacts: Continual Learning has been heavily studied algorithmically but the evaluation
has been plagued with datasets with synthetic changes in the distribution over time. We believe
CLEAR is the first step filling the gap between CL benchmarks and real-world deployment. Even
though, our dataset is a subset of already existing YFCC100M, we still performed due diligence to
ensure that the labeled portion of the dataset is free of inappropriate images. We hope that the real
world nature of our benchmark will allow the community to identify biases arising from continual
distributions, an under-explored but relevant problem for real-world ML deployments.

10

https://clear-benchmark.github.io


References

[1] R. Aljundi, K. Kelchtermans, and T. Tuytelaars. Task-free continual learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11254–11263,
2019. 3

[2] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online
continual learning. NeurIPS, 2019. 9

[3] K. Boakye, S. Farfade, H. Izadinia, Y. Kalantidis, and P. Garrigues. Tag prediction at flickr: A
view from the darkroom. In Proceedings of the on Thematic Workshops of ACM Multimedia
2017, pages 376–384, 2017. 4

[4] Z. Cai, O. Sener, and V. Koltun. Online continual learning with natural distribution shifts: An
empirical study with visual data. In ICCV. 3, 4, 7, 9

[5] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian walk for incremental
learning: Understanding forgetting and intransigence. In ECCV. 2

[6] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny. Efficient lifelong learning with
a-gem. NeurIPS, 2018. 4, 7, 8

[7] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-
zato. Continual learning with tiny episodic memories. 2019. 3

[8] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-
zato. On tiny episodic memories in continual learning. NeurIPS, 2019. 9

[9] X. Chen, H. Fan, R. Girshick, and K. He. Improved baselines with momentum contrastive
learning. arXiv preprint arXiv:2003.04297, 2020. 5, 8

[10] M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, and
T. Tuytelaars. A continual learning survey: Defying forgetting in classification tasks. PAMI,
2021. 3

[11] L. Deng. The mnist database of handwritten digit images for machine learning research [best of
the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012. 4

[12] N. Díaz-Rodríguez, V. Lomonaco, D. Filliat, and D. Maltoni. Don’t forget, there is more than
forgetting: new metrics for continual learning. arXiv preprint arXiv:1810.13166, 2018. 1, 7, 9

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. ICLR, 2020. 1

[14] L. eon Bottou. Online learning and stochastic approximations. 3, 7

[15] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. International journal of computer vision, 88(2):303–338, 2010.
2

[16] S. Farquhar and Y. Gal. Towards robust evaluations of continual learning. 2018. 2

[17] R. M. French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128–135, 1999. 1

[18] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. arXiv preprint arXiv:1312.6211,
2013. 1, 2, 3

[19] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. H. Richemond, E. Buchatskaya, C. Doersch,
B. A. Pires, Z. D. Guo, M. G. Azar, et al. Bootstrap your own latent: A new approach to
self-supervised learning. 8

11



[20] J. He and F. Zhu. Unsupervised continual learning via pseudo labels. arXiv preprint
arXiv:2104.07164, 2021. 2

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR.
1, 8

[22] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira. Re-evaluating continual learning scenarios: A
categorization and case for strong baselines. In NeurIPS Continual learning Workshop, 2018.
URL https://arxiv.org/abs/1810.12488. 3, 4, 7

[23] H. Hu, O. Sener, F. Sha, and V. Koltun. Drinking from a firehose: Continual learning with
web-scale natural language. arXiv preprint arXiv:2007.09335, 2020. 3, 9

[24] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In CVPR. 1

[25] A. Joulin, L. Van Der Maaten, A. Jabri, and N. Vasilache. Learning visual features from large
weakly supervised data. In ECCV. 4

[26] C. D. Kim, J. Jeong, and G. Kim. Imbalanced continual learning with partitioning reservoir
sampling. In ECCV, . 9

[27] G. Kim, E. P. Xing, and A. Torralba. Modeling and analysis of dynamic behaviors of web image
collections. In ECCV, . 1

[28] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural
networks. Proceedings of the national academy of sciences, 114(13):3521–3526, 2017. 1, 3, 8

[29] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009. 2,
3, 4

[30] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang. Overcoming catastrophic forgetting by
incremental moment matching. NeurIPS, 2017. 1, 3

[31] A. Li, A. Jabri, A. Joulin, and L. van der Maaten. Learning visual n-grams from web data. In
ICCV. 3, 4, 8, 10

[32] K.-H. Li. Reservoir-sampling algorithms of time complexity o (n (1+ log (n/n))). ACM
Transactions on Mathematical Software (TOMS), 20(4):481–493, 1994. 9

[33] S. Li, Y. Du, G. M. van de Ven, A. Torralba, and I. Mordatch. Energy-based models for continual
learning. arXiv preprint arXiv:2011.12216, 2020. 3

[34] Z. Li and D. Hoiem. Learning without forgetting. PAMI. 1, 2

[35] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In ECCV. 1, 4

[36] V. Lomonaco and D. Maltoni. Core50: a new dataset and benchmark for continuous object
recognition. In Conference on Robot Learning, pages 17–26. PMLR, 2017. 2, 3, 8

[37] V. Lomonaco, L. Pellegrini, A. Cossu, and et al. Avalanche: an end-to-end library for continual
learning. In CVPR Workshop. 7

[38] D. Lopez-Paz and M. Ranzato. Gradient episodic memory for continual learning. NeurIPS,
2017. 1, 4, 7

[39] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and L. Van
Der Maaten. Exploring the limits of weakly supervised pretraining. In ECCV. 4

[40] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner. Online continual learning in image
classification: An empirical survey. arXiv preprint arXiv:2101.10423, 2021. 3, 4, 8

[41] D. Maltoni and V. Lomonaco. Continuous learning in single-incremental-task scenarios. Neural
Networks, 116:56–73, 2019. 1, 3, 8

12

https://arxiv.org/abs/1810.12488


[42] M. McCloskey and N. J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989. 1

[43] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54–71, 2019. 3

[44] A. Prabhu, P. H. Torr, and P. K. Dokania. Gdumb: A simple approach that questions our progress
in continual learning. In ECCV. 1, 2, 3, 4, 7, 8, 10

[45] M. Pratama, A. Ashfahani, and E. Lughofer. Unsupervised continual learning via self-adaptive
deep clustering approach. 1st CSSL Workshop @ IJCAI 2021, 2021. 2

[46] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision.
International Conference on Machine Learning, 2021. 2, 4, 5

[47] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. icarl: Incremental classifier and
representation learning. In CVPR. 2

[48] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro. Learning to learn
without forgetting by maximizing transfer and minimizing interference. ICLR, 2019. 9

[49] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap, and G. Wayne. Experience replay for continual
learning. NeurIPS, 2018. 7, 8

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. IJCV. 1, 2, 4

[51] J. Smith, J. Balloch, Y.-C. Hsu, and Z. Kira. Memory-efficient semi-supervised continual
learning: The world is its own replay buffer. arXiv preprint arXiv:2101.09536, 2021. 2

[52] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li.
Yfcc100m: The new data in multimedia research. Communications of the ACM, 59(2):64–73,
2016. 2, 3, 4

[53] G. M. Van de Ven and A. S. Tolias. Three scenarios for continual learning. arXiv preprint
arXiv:1904.07734, 2019. 3, 4

[54] V. N. Vapnik. An overview of statistical learning theory. IEEE transactions on neural networks,
10(5):988–999, 1999. 1, 7

[55] T. Veniat, L. Denoyer, and M. Ranzato. Efficient continual learning with modular networks and
task-driven priors. In ICLR, 2021. 3

[56] J. S. Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57, 1985. 9

[57] L. Wang, K. Yang, C. Li, L. Hong, Z. Li, and J. Zhu. Ordisco: Effective and efficient usage of
incremental unlabeled data for semi-supervised continual learning. In CVPR. 2

[58] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic intelligence. In
International Conference on Machine Learning, pages 3987–3995. PMLR, 2017. 1, 2, 3, 8

[59] C. Zeno, I. Golan, E. Hoffer, and D. Soudry. Task agnostic continual learning using online
variational bayes. arXiv preprint arXiv:1803.10123, 2018. 3

13


