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Abstract

To train networks, lookahead algorithm [1] updates its fast weights k times via
an inner-loop optimizer before updating its slow weights once by using the latest
fast weights. Any optimizer, e.g. SGD, can serve as the inner-loop optimizer, and
the derived lookahead generally enjoys remarkable test performance improvement
over the vanilla optimizer. But theoretical understandings on the test performance
improvement of lookahead remain absent yet. To solve this issue, we theoretically
justify the advantages of lookahead in terms of the excess risk error which mea-
sures the test performance. Specifically, we prove that lookahead using SGD as its
inner-loop optimizer can better balance the optimization error and generalization
error to achieve smaller excess risk error than vanilla SGD on (strongly) convex
problems and nonconvex problems with Polyak-Łojasiewicz condition which has
been observed/proved in neural networks. Moreover, we show the stagewise op-
timization strategy [2] which decays learning rate several times during training
can also benefit lookahead in improving its optimization and generalization errors
on strongly convex problems. Finally, we propose a stagewise locally-regularized
lookahead (SLRLA) algorithm which sums up the vanilla objective and a local
regularizer to minimize at each stage and provably enjoys optimization and gener-
alization improvement over the conventional (stagewise) lookahead. Experimental
results on CIFAR10/100 and ImageNet testify its advantages. Codes is available at
https://github.com/sail-sg/SLRLA-optimizer.

1 Introduction

Deep neural networks (DNNs) have been successfully applied to various applications, such as image
classification [3–8], speech recognition [9–11], and classic games [12, 13]. Typically, their training
models can be formally formulated as a finite-sum optimization problem:

minθ FS(θ) ,
1

n

∑n

i=1
`(f(xi;θ),yi), (1)

where (x,y) is a sample pair from an unknown distribution D, the loss `(f(x;θ),y) measures the
discrepancy between the prediction f(x;θ) parameterized by θ and the target y, and n is the training
sample number. Besides DNNs, the formulation (1) also encapsulates a large body of other problems,
e.g., least square regression and logistic regression. Though many algorithms, e.g., variance-reduced
algorithms [14–17] and adaptive gradient algorithms [18, 19], can solve problem (1), SGD [20, 21]
is one of the most preferable algorithms because of its efficiency and good generalization [22].

In this work, we are particularly interested in the lookahead algorithm [1] for solving (1). Its core
idea is to maintain two kinds of network parameters, i.e. “fast weights" v and “slow weights" θ,
and update them in turn. Specifically, in the inner loop, it takes the slow weights θ as warm-start
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initialization and updates the fast weights k times to obtain vk using any vanilla optimizer; for the
outer loop, it updates the slow weights as θ+ = (1− α)θ + αvk, where α ∈ (0, 1]. Any standard
optimizer, e.g. SGD, Adam [18] and RAdam [23], can serve as the inner-loop optimizer, and the
derived lookahead algorithm generally enjoys remarkable test performance improvement than the
standard optimizer [1]. Because of its simplicity and strong compatibility, lookahead has been widely
used [24–29]. However, the theoretical reasons for the superiority in test performance of lookahead
are rarely investigated, though heavily desired. Moreover, in practice, to train faster and generalize
better, one often uses the stagewise optimization strategy [2], namely running a large learning rate
at the beginning and geometrically decaying it several times during the following training. But for
lookahead, the theoretical benefits of the stagewise optimization strategy still remain unclear.

Our Contributions. In this work, we provide a theoretical viewpoint to understand the test perfor-
mance improvement of lookahead, and also show the benefits of stagewise optimization strategy
in lookahead. Moreover, we further propose a new stagewise locally-regularized lookahead algo-
rithm which provably enjoys faster convergence speed, smaller generalization error, and better test
performance than conventional (stagewise) lookahead. Our contributions are highlighted below.

Firstly, we prove that on convex problems, lookahead using SGD as its inner-loop optimizer has
optimization error O

(
1

αηkT + η
)
, where T and k respectively denote the outer- and inner-loop

iteration numbers, and η is the learning rate for the inner-loop optimizer, i.e. SGD. Then we prove
that lookahead has generalization error boundO

(
αηkT
n

)
on convex problems with n training samples.

Since the excess risk error can well measure the test performance of an algorithm and is upper
bounded by the sum of optimization and generalization errors, we can bound the excess risk error of
lookahead with O

(
1

αηkT + η + αηkT
n

)
. When α = 1, lookahead degenerates to vanilla SGD and has

excess risk error O
(

1
ηkT + η + ηkT

n

)
. Since the optimum of α in lookahead to optimally balance the

optimization and generalization errors is often not one, lookahead can enjoy a smaller excess risk
error than vanilla SGD. Similarly, on strongly convex problems and a class of nonconvex problems
that obey Polyak-Łojasiewicz (PŁ) condition, our results also show that lookahead can better trade-off
optimization and generalization errors and achieve smaller excess risk error than vanilla SGD. For
PŁ condition, it is observed /proved for deep learning models in [30–34] and our empirical results.
These results well explain the better test performance of lookahead than SGD.

Secondly, we propose a Stagewise Locally-Regularized LookAhead (SLRLA) algorithm, and prove
its advantages over lookahead and stagewise lookahead in terms of excess risk error. SLRLA first
divides the optimization into several stages. Then at each stage, it minimizes a locally-regularized
function that contains the vanilla loss FS(θ) in (1) and a local regularizer β2 ‖θ−θq‖

2 with the output
θq of the previous stage. A similar stagewise strategy is commonly used in practice, but does not
has the local regularizer. Our results show two advantages of SLRLA over lookahead and stagewise
lookahead. (i) On strongly convex problems and weakly quasi convex problems (a class of nonconvex
problems including convex problems as a special case), SLRLA achieves faster convergence rates
(i.e. smaller optimization error), and enjoys smaller generalization error than lookahead and its
stagewise variant. (ii) On nonconvex problems under PŁ condition, when the problems are not
heavily nonconvex (the smallest eigenvalue of∇2FS(θ) is not very small), SLRLA achieves linear
convergence rate, and greatly improves optimization and generalization errors in lookahead, while
stagewise lookahead cannot enjoy the linear convergence rate and the improvement.

Finally, when β = 0, SLRLA degenerates to conventional stagewise lookahead, and our results
show the advantages of stagewise lookahead over lookahead in terms of excess risk error on strongly
convex problems, explaining the benefits of the stagewise strategy in lookahead.

2 Related Work

Optimization Algorithms. When problem (1) involves deep networks, SGD and adaptive gradient
algorithms, e.g. Adam [18] and AdaGrad [19], are more preferable than other algorithms, such as
variance-reduced SGD [14, 15, 35, 36], because of their high efficiency and good generalization.
Moreover, SGD generally enjoys better generalization performance than adaptive gradient algorithms,
since SGD tends to converge to flat minima while adaptive gradient algorithms approach sharp
minima [22, 37–41]. To further boost the generalization performance of SGD and adaptive gradient
algorithms, Zhang et al. [1] proposed lookahead which can employ any standard optimizer as its
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inner-loop optimizer and brings remarkable generalization improvement. Recently, a few works
analyze lookahed but focus on its optimization performance, e.g. small gradient noise variance on
least square problems [1] and sublinear convergence rate on nonconvex problems [42]. In contrast, we
analyze the intrinsic theoretical reasons for the superiority of lookahead in terms of test performance.

Generalization Analysis of Algorithms. Uniform stability [43] is a classical tool to analyze
generalization error of an algorithm. For instance, Hardt et al. [44] and Zhang et al. [45] analyzed
the generalization of SGD via uniform stability. We also utilize stability to analyze generalization but
target at analyzing the test performance, including optimization error and generalization error, of an
algorithm and its lookahead variant, which is of more practical interest especially in deep learning.
Yuan et al. [46] analyzed the test performance of SGD and stagewise SGD and showed advantages of
the statewised strategy. Differently, we show that lookahead can well balance the optimization and
generalization errors, and thus enjoys better test performance than its vanilla inner-loop optimizer.

3 Notations and Preliminaries

Convexity, Lipschitz Continuity, and Smoothness. For analysis, we first introduce necessary
definitions, i.e. convexity, Lipschitz continuity and smoothness. These definitions are commonly used
in the convergence and generalization analysis of optimization algorithms, e.g. [47–51].
Definition 1 (Convexity, Lipschitz Continuity and Smoothness). We say a function f(θ) is λ-strongly
convex if ∀θ1,θ2, f(θ1)≥ f(θ2)+〈∇f(θ2),θ1 − θ2〉+ λ

2 ‖θ1 − θ2‖2. If λ = 0, then we say f(θ)
is convex. Moreover, we say f(θ) is G-Lipschitz continuous if ‖f(θ1)− f(θ2)‖2 ≤ G‖θ1 − θ2‖2.
f(θ) is said to be L-smooth if its gradient obeys ‖∇f(θ1)−∇f(θ2)‖2 ≤ L‖θ1 − θ2‖2 (∀θ1,θ2).

Polyak-Łojasiewicz (PŁ) Condition and Weakly Quasi-Convexity. For nonconvex problems, such
two conditions establish the relation between the gradient norm and the loss distance at two points.
Definition 2 (PŁ Condition & Weakly Quasi-Convexity). Let θ∗∈argminθ f(θ). We say a function
f(θ) satisfies µ-PŁ condition if it satisfies 2µ(f(θ) − f(θ∗))≤ ‖∇f(θ)‖2 (∀θ) with a universal
constant µ. f(θ) is said to be ρ-weakly-quasi-convex if it obeys 〈∇f(θ),θ− θ∗〉≥ρ(f(θ)− f(θ∗)).

Excess Risk Error Decomposition. Given a dataset S = {(xi,yi)}ni=1 where (xi,yi) is drawn from
an unknown distribution D, one often minimizes the empirical risk FS(θ) , 1

n

∑n
i=1 `(f(xi;θ),yi)

in (1) via a randomized algorithmA, e.g. SGD, to find an estimated optimum θA,S ≈ argminθ FS(θ).
However, this empirical solution θA,S differs from the desired optimum θ∗D of the population risk

θ∗D ∈ argminθ F (θ) , E(x,y)∼D[`(f(x;θ),y)].

This raises a particularly important question: what performance of the estimated optimum θA,S
can achieve on the test data (x,y) ∼ D? To answer this question, we analyze the test error
EA,S [F (θA,S)] of θA,S via investigating the well-known excess risk error εexc defined as
εexc = EA,S [F (θA,S)]−EA,S [FS(θ∗S)]= EA,S [F (θA,S)−FS(θA,S)]+EA,S [FS(θA,S)−FS(θ∗S)],

(2)
where θ∗S ∈ argminθ FS(θ) is the optimum of empirical risk FS . Generally, one can expect very
small EA,S [FS(θ∗S)], since by selecting a powerful model, e.g., a deep network, one can well
fit the data. So to bound the test loss EA,S [F (θA,S)], one only needs to upper bound the right
side of Eqn. (2). The optimization error εopt ,EA,S [FS(θA,S) − FS(θ∗S)] denotes the difference
between the exact optimum θ∗S and the estimated solution θA,S ; the generalization error εgen ,
EA,S [F (θA,S)− FS(θA,S)] measures the effects of minimizing empirical risk instead of population
risk. So one often analyzes εopt and εgen to compare test performance of different algorithms.

Uniform Stability and Generalization. One popular approach to analyze generalization error εgen
of a randomized algorithm A is uniform stability [44, 45]. This is because as shown in following
lemma, for an algorithm A, if it is ε-uniformly stable, its generalization error is upper bounded by ε.
In the following, we also analyze the uniform stability of lookahead to bound its generalization error.
Lemma 1 (Uniform Stability and Generalization Error). [44] We say a randomized algorithm A is
ε-uniformly stable if for all datasets S∼D and S ′∼D where S and S ′ differ in at most one sample,

sup(x,y)∼D EA [`(f(x;θA,S);y)− `(f(x;θA,S′);y)] ≤ ε.
Moreover, if A is ε-uniformly stable, then its generalization error εgen which is defined as εgen =
|EA,S [F (θA,S)− FS(θA,S)]| satisfies εgen ≤ ε.
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Algorithm 1: Lookahead Optimization Procedure (FS(θ), η, T, α, k,θ0,A,S)

Input :Objective FS(θ), dataset S, inner-loop optimizer A, inner-loop step number k and
learning rate {{η(t)

τ }k−1
τ=0}Tt=1, outer-loop learning rate α ∈ (0, 1), initialization θ0.

for t = 1, 2, ..., T do
v

(t)
0 = θt−1;

for τ = 1, 2, ..., k do
v

(t)
τ = A(FS(θ),v

(t)
τ−1, η

(t)
τ−1,S);

end
θt = (1− α)θt−1 + αv

(t)
k .

end
Output :θA,S = θT for strongly convex problem; θA,S = 1

Tk

∑T
t=1

∑k−1
τ=0 v

(t)
τ for convex and

nonconvex problems.

4 Excess Risk Analysis of Lookahead Algorithm

The lookahead algorithm [1] to solve problem (1) is described in Algorithm 1. It maintains (i) slow
weights θ updated in the outer loop, and (ii) fast weights v updated in the inner loop. For the inner
loop, one can run any standard optimizer A, e.g. SGD or Adam used in deep learning, k steps
via an operator A(FS(θ),v

(t)
τ−1, η

(t)
τ−1,S) to update the fast weights v, where k is often small, e.g.

k = 5 in [1]. Here the operator A(FS(θ),v
(t)
τ−1, η

(t)
τ−1,S) denotes a minibatch gradient descent step

in SGD or Adam, given the loss FS(θ), current solution v(t)
τ−1, learning rate η(t)

τ−1, and dataset S.
Next, lookahead uses the fast weights v to update the slow weights θ as θ = θ + α(v − θ) with an
outer-loop learning rate α ∈ [0, 1].

Because of its effectiveness and compatibility, lookahead has been widely used to boost the perfor-
mance of SGD [1], Adam [1, 52], RAdam [23, 24] and natural gradient algorithm [25], and sets new
state-of-the-arts in image classification and generation, and machine translation [1, 26–29]. However,
there is no theoretical analysis that explicitly justifies the performance improvement of lookahead
over the vanilla inner optimizer A, hindering the development of new and more advanced optimizers
in a principle way. The following sections aim to solve this problem by comparing the optimization
and generalization errors of lookahead with its vanilla inner optimizer A. For analysis, we choose
SGD as A, as SGD is widely used in deep learning. In this way, the inner-loop updating becomes

v(t)
τ = A(FS(θ),v

(t)
τ−1, η

(t)
τ−1,S) = v

(t)
τ−1 − η

(t)
τ−1g

(t)
τ−1,

where g(t)
τ−1 = 1

|B|
∑

(x,y)∈B∇`(f(x;v
(t)
τ−1);y). Here B is the sampled minibatch at the (t, τ)-th

iteration. In the following, we investigate the optimization and generalization errors of lookahead, and
combine these two errors to upper bound its excess risk error which measures the test performance.

4.1 Results on Strongly Convex Problems

To begin with, we first investigate the convergence performance of lookahead when its inner optimizer
A is SGD. Our main results are summarized in Theorem 1. See its proof in Appendix D.1.
Theorem 1. Suppose that FS(θ) is λ-strongly convex, and each individual loss `(f(x;θ),y) is
G-Lipschitz and L-smooth w.r.t. θ. Let θ∗S = argminθ FS(θ). By setting the inner learning rate
η

(t)
τ = λ+L

λL((t−1)k+τ+2) , the optimization error of the output θA,S of lookahead satisfies

εopt =EA,S [FS(θA,S)−FS(θ∗S)]≤


3L(k+2)2α

2((T+1)k+2)2αE[‖θ0−θ∗S‖2] + 16LG2

λ2((T+1)k+2)2α(1−2α) , 0<α< 1
2 ,

3L(k+2)
2(T+1)k+2E[‖θ0−θ∗S‖2] + 16LG2 log(Tk+2)

λ2((T+1)k+2) , α = 1
2 ,

4L(k+2)2α

((T+1)k+2)2αE[‖θ0−θ∗S‖2] + 90LG2

λ2(2α−1)(Tk+2) ,
1
2 <α≤1.

Theorem 1 shows that lookahead using SGD as its inner optimizer can converge on the strongly
convex problems. The optimization error εopt has two terms: the first bias term characterizes the
effect of initialization θ0; the second term reveals the impact of the stochastic gradient noise. For
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the outer-loop learning rate α, it can be observed that with the increase of α, εopt becomes smaller.
So when α=1, lookahead degenerates to vanilla SGD and achieves the smallest optimization error
O
(

1
T 2 + 1

λ2Tk

)
. This rate matches the one O

(
1

λ2Tk

)
of SGD in [53] under the same assumptions,

as k is often much smaller than iteration number T , e.g. k = 5 in [1]. So lookahead indeed does
not benefit the convergence of SGD. It can be intuitively understood: for every k steps, lookahead
updates θ as θt = θt−1 + α(v

(t)
k − θt−1) = θt−1 −α

∑k−1
τ=0 η

(t)
τ g

(t)
τ and goes forward slowly due

to α < 1, while SGD updates θ as θt = θt−1 −
∑k−1
τ=0 η

(t)
τ g

(t)
τ and runs faster, where g(t)

τ denotes
the stochastic gradient.

Next, to bound the excess risk error, we investigate the generalization error of lookahead by analyzing
its stability, since as shown in Lemma 1, the uniform stability can upper bound generalization error.
Theorem 2. Suppose the assumptions and parameter setting in Theorem 1 hold. The general-
ization error of the output θA,S of lookahead satisfies εgen = EA,S [F (θA,S) − FS(θA,S)] ≤
16G2

nλ
(Tk+1)α−1

((T+1)k+2)α .

See its proof in Appendix D.2. Theorem 2 shows that when α 6= 0, the generalization error εgen

of lookahead using SGD as its inner optimizer can be upper bounded by O
(
G2

nλ

)
. Particularly, for

α=0, εgen becomes zero. This is because α=0 means no updating, namely θt = θ0 (∀t), and thus
EA,S [F (θA,S)−FS(θA,S)]=ES [F (θ0)−FS(θ0)]=0. For the effects of α on εgen, one can find that
when α increases, εgen also becomes larger. This can be intuitively understood: larger α means quick
updating of θt. Accordingly, the empirical risk FS(θt) quickly decreases, while the population risk
F (θt) may not due to possible overfiting. Interestingly, when α=1 indicating lookahead becomes
vanilla SGD, our generalization error bound matches the previous bound O

(
G2

λn

)
of vanilla SGD

in [44], even though Hardt et al. [44] used constant learning rate while we use decaying learning rate.

Based on Theorems 1 and 2, we can derive the excess risk error bound in Corollary 1.
Corollary 1. With the same assumptions and parameter setting in Theorem 1, the excess risk error
εexc in (2) of the output θA,S of lookahead obeys εexc ≤ εopt + εgen, where εopt and εgen are given in
Theorems 1 and 2, respectively.

See its proof in Appendix D.3. Corollary 1 shows that the excess risk error εexc of lookahead using
SGD as its inner optimizer satisfies εexc ≤ εopt +εgen, guaranteeing good test performance of the
estimated solution θA,S by lookahead. In this work, we are particularly interested in the effects of α
on εexc. When α∈(0, 1

2 ), εexc is of the order O
(
L
T 2α + LG2

λ2T 2αk2α +G2

nλ (1− 1
Tαkα )

)
. As in most cases,

the factor LG
2

λ2 is much larger than G2

nλ , especially for ill-conditioned problems where the strongly
convex parameter λ is very small, increasing α or the total training iteration number Tk will decrease
εexc. When α∈( 1

2 , 1), εexc is of the order O
(
e(α)

)
where e(α)= L

T 2α + LG2

λ2(2α−1)Tk+G2

nλ (1− 1
Tαkα ).

Then we have e′(α)=− 2L lnT
T 2α − 2LG2

λ2(2α−1)2Tk +G2

nλ
ln(Tk)
Tαkα . There are two common cases that lead

to e′(α)< 0: (i) the problem is large-scale but not ill-conditioned, and thus the iteration number
T is not large since the problem is easy, leading to 2L lnT

T 2α > G2

nλ
ln(Tk)
Tαkα ; (ii) the problem is heavily

ill-conditioned, but iteration number T is moderate due to the moderate precision requirement, giving
2LG2

λ2(2α−1)2Tk >
G2

nλ
ln(Tk)
Tαkα . For both cases, increasing α can decrease εexc. For other cases, in theory,

by choosing a proper α∈ (0, 1), one can expect better balance between the optimization error and
generalization error, and could achieve a smaller excess risk error than vanilla SGD which corresponds
to α= 1. As Sec. 3 shows that the excess risk error can well measure the test performance of an
algorithm, our results explain the better test performance of lookahead than SGD. Moreover, though
in practice, it is hard to precisely decide whether e′(α) is positive or not, from the above discussion,
at least we know that α should be selected from the range [ 1

2 , 1], providing some guidance to set α.
Finally, our result is the first one that uses the same learning rate strategy to analyze both optimization
and generalization errors, and matches the lower bounds of optimization error [53] and generalization
error [45] of SGD.

4.2 Results on Convex Problems

Now we analyze lookahead using SGD as its inner optimizer A on the convex problems. Our main
results are summarized in Theorem 3 with proof in Appendix D.4.
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Theorem 3. Suppose that FS(θ) is convex, and each loss `(f(x;θ),y) is G-Lipschitz w.r.t. θ. By
setting the inner learning rate η(t)

τ = η, we have following properties.
(1) The optimization error εopt of the output θA,S of lookahead satisfies εopt = EA,S [FS(θA,S) −
FS(θ∗S)] ≤ ∆

2αηkT + ηG2

2 , where θ∗S ∈ argminθ FS(θ) and ∆ = E
[
‖θ0 − θ∗S‖2

]
.

(2) The generalization error εgen of the output θA,S obeys εgen = EA,S [F (θA,S)−FS(θA,S)] ≤
αηG2kT

n .
(3) The excess risk error εexc of the output θA,S of lookahead satisfies εexc ≤ εopt + εgen.

To begin with, Theorem 3 guarantees the convergence of lookahead on the convex problems. By
setting η = ∆0.5

α0.5k0.5T 0.5G , lookahead achieves the optimization error O
(

G∆0.5

α0.5k0.5T 0.5

)
. Moreover,

when α increases, the optimization error εopt decreases. This accords with the analysis results on the
strongly convex problems that large α can reduce εopt. When α=1, lookahead degenerates to vanilla

SGD and its optimization error matches the one of vanilla SGD in [54] under the same assumptions.

The second part of Theorem 3 shows that the generalization error εgen of lookahead is bounded by
O
(
αηG2kT

n

)
. When α = 1, this error bound is consistent with the lower bound O

(
kT
n

)
of SGD

with a constant learning rate η in [45]. Moreover, one can find that smaller α can lead to a smaller
generalization error, which also accords with the results on the strongly convex problems.

Finally, by combining the optimization error εopt and generalization error εgen, we can bound the
excess risk error εexc of lookahead by O

(
∆

2αηkT + ηG2

2 + αηG2kT
n

)
. So when fixing the learning rate,

tuning α ∈ (0, 1] can yield smaller excess risk error. It means that a proper α can benefit lookahead
in terms of excess risk error, explaining the better test performance of lookahead than SGD.

4.3 Results on Nonconvex Problems

For general nonconvex problems, one often uses the gradient norm E[‖∇FS(θ)‖2] instead of the
loss distance E[FS(θ)− FS(θ∗S)] to measure whether θ is a stationary point. This is because many
stationary points may exist in a nonconvex problem. But as shown in Sec. 3, to bound the excess risk
error, one needs to bound the loss distance. To solve this issue, we follow [46] and are particularly
interested in nonconvex problems under PŁ condition which allows us to bound the loss distance,
since PŁ condition in Definition 2 establishes the relation between gradient norm and loss distance.
Moreover, as observed/proved in [30–34] and our empirical results in Sec. 6.2, deep learning models
often satisfy PŁ condition. We summarize our main results in Theorem 4 with proof in Appendix D.5.
Theorem 4. Assume each loss `(f(x;θ),y) is G-Lipschitz and L-smooth w.r.t. θ. Suppose that
FS(θ) obeys the µ-PŁ condition. By setting η(t)

τ = 1
tk+τ+1 and α > 1

2 , we have following properties.
(1) The optimization error of the output θA,S produced by lookahead satisfies

εopt = EA,S [FS(θA,S)− FS(θ∗S)] ≤ 4∆′

(Tk + 1)2α
+

2αLG2 (α+ 2(1− α)(k − 1))

µ2(Tk + 1)2α−1
,

where θ∗S ∈ argminθ FS(θ) and ∆′ = E [FS(θ0)− FS(θ∗S)].
(2) The generalization error of the output θA,S produced by lookahead satisfies

εgen = EA,S [F (θA,S)− FS(θA,S)] ≤ ξ

n− 1
α

1
1+γ (Tk)

γ
γ+1 ,

where γ = (1− 1
n )αLµ and ξ = `

γ
1+γ
max

[
2G2

µ

] 1
1+γ

in which `max = maxθ,(x,y) `(f(x;θ),y).
(3) The excess risk error εexc of the output θA,S of lookahead satisfies εexc ≤ εopt + εgen.

For the optimization error εopt of lookahead on nonconvex problems, it is of the order O
(

1
(Tk)2α +

1
µ2(Tk)2α−1

)
. The same as (strongly) convex problems, larger α benefits the convergence of lookahead,

for which we have discussed the reasons in Sec. 4.1. When α=1, lookahead degenerates to SGD and
achieves the smallest optimization error O

(
1

(Tk)2 + 1
µ2Tk

)
which matches the one of SGD in [55].

For the generalization error εgen, it is of the order O
(

1
nα

1
1+γ (Tk)

γ
γ+1
)

which accords with the one of
SGD in [44]. The sublinear dependence on kT and the inverse linear dependence on n also match the
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Algorithm 2: Stagewise Locally-Regularized LookAhead (SLRLA)

Input :Loss FS(θ), constant {βq}Qq=1, inner-loop iteration number {kq}Qq=1 and learning rate
{ηq}Qq=1,outer-loop learning rate {αq}Qq=1, inner optimizer A, dataset S, initialization
θ0.

for q = 1, 2, ..., Q do
Fq(θ) = FS(θ) +

βq
2 ‖θ − θq−1‖2;

θq = Look-ahead(Fq(θ), ηq, Tq, αq, kq,θq−1,A,S).
end
Output :θA,S = θQ.

lower bound in [45]. Similarly, to achieve smaller generalization error, one should use small α. For
the excess risk error εexc, it is bounded by O (εopt + εgen). So similar to (strongly) convex problems,
when α is well chosen, the optimization error εopt and generalization error εgen can be balanced well,
giving smaller excess risk error and better test performance than SGD which corresponds to α = 1.

Regarding the lookahead method with inner optimizers other than SGD, we believe that one could
still expect similar performance trade-off between optimization and generation with respect to
the choice of α. Intuitively, for any inner optimizer, let gtτ denote the “gradient" (or any descent
direction) at the (t, τ)-th iteration. After the k inner-steps, lookahead updates parameter θ as
θt = θt−1 + α(v

(t)
k − θt−1) = θt−1 −α

∑k−1
τ=0 η

(t)
τ g

(t)
τ . Obviously, α ≈ 1 is preferable for

preserving the optimization speed of the inner optimizer. When it comes to the generalization error,
obviously the best possible performance occurs at the initialization point as it is not dependent on
the training data. Along with more training iterations, the network will gradually fit the training
data and thus could give larger and larger prediction discrepancy between training data and test
data. Therefore, it is desirable to have α� 1 as opposed to α ≈ 1 for generalization. Overall, for
generic inner-loop optimizers, lookahead is still expected to be able to balance the optimization and
generalization performances with proper choices of α.

5 Stagewise Locally-Regularized Lookahead

We introduce the Stagewise Locally-Regularized LookAhead (SLRLA) algorithm in Algorithm 2.
SLRLA divides the optimization into Q stages. For the q-th stage, it first combines the vanilla loss
FS(θ) and a local regularizer βq2 ‖θ−θq−1‖22 to construct a locally regularized loss Fq(θ)=FS(θ)+
βq
2 ‖θ−θq−1‖22. Here θq−1 is the output of the (q−1)-th stage, and βq is a constant. The intuition

behind this local regularizer is that (i) it improves the convexity of the loss, e.g. converting an ill-
conditioned loss to a well-conditioned one, accelerating convergence; (ii) it may avoid overfitting by
preventing current solution θ having extreme values and far from θq−1. Theoretically, for λ-strongly-
convex problems, as shown in Theorems 1 & 2 that both optimization and generalization errors
depend on O(1/λ). For nonconvex problems under µ-PŁ condition, Theorem 4 also shows that both
optimization and generalization error scale with O(1/µ). So on strongly convex problems, adding
a regularization on the vanilla loss can enhance the convexity and thus reduces both optimization
and generalization errors; on nonconvex problems, regularization can also increase the PŁ condition
parameter µ and thus helps optimization and generalization. We use ‖θ−θq−1‖22 instead of ‖θ− 0‖2
or ‖θ−θ0‖22. This is because compared with 0 and θ0, θq−1 is closer to the optimum θ∗S of FS(θ)
and thus allows to use larger βq , improving the convexity of a loss more and benefiting convergence
and generalization more (see discussion below). Next, SLRLA uses lookahead, i.e. Algorithm 1, to
minimize Fq(θ), where constant inner- and outer-loop learning rates ηq and αq are used. A similar
conventional stagewise optimization strategy which however does not regularize FS(θ) is widely used
in SGD. But it is theoretically unclear whether conventional stagewise strategy benefits lookahead.

In the following sections, we investigate two questions: (i) whether the conventional stagewise
strategy improves lookahead; (ii) what advantages SLRLA has over the conventional (stagewise)
lookahead. For (i), we show the advantages of stagewise lookahead over vanilla lookahead in terms of
the optimization error. For (ii), we prove that SLRLA can improve the optimization and generalization
of conventional (stagewise) lookahead because of the local regularizer in SLRLA.
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5.1 Results on Strongly Convex Problems

We analyze the optimization and generalization errors of SLRLA in Theorem 5 with proof in
Appendix E.1, and then analyze the aforementioned two questions.

Theorem 5. Suppose that FS(θ) is λ-strongly convex, and each loss `(f(x;θ),y) is G-Lipschitz
and L-smooth w.r.t. θ. By setting εq = ∆

2q , βq = β ≤ 1
6λ, αq =α∈ [0, 1], ηq ≤ εq

3G2 , ηqkqTq ≥ 6
λαq

,
∆′=E[FS(θ0)−FS(θ∗S)] and θ∗S ∈ argminθ FS(θ), the following properties hold.
(1) The optimization error εopt of the output θA,S of SLRLA satisfies εopt≤ ∆′

2Q
. Moreover, to achieve

εopt≤ε, Q satisfies Q ≥ log ∆′

ε and the stochastic gradient complexity is
∑Q
q=1Tqkq= 36G2

λαε .

(2) The generalization error εgen of the output θA,S of SLRLA satisfies εgen ≤ γ1
n

(
β
α + λL

λ+L

)−1(
1−

exp
(
− 6QL

λ+L

))
, where γ1 = 2G2/

(
1− exp

(
− 6L

λ+L

))
.

(3) The excess risk error εexc of the output θA,S of lookahead satisfies εexc ≤ εopt + εgen.

By Theorem 5, we here show the advantages of the Stagewise LookAhead (SLA for short) [1] over
lookahead, and also discuss the superiority of SLRLA over SLA. When βq=0 and the learning rate is
geometrically decayed as SLRLA after each stage, SLRLA degenerates to SLA, and Theorem 5 still
holds. Theorem 5 shows the linear convergence of both SLRLA and SLA w.r.t. the stage number Q.
For both SLRLA and SLA, to achieve optimization error ε, i.e. εopt =E[FS(θA,S)−FS(θ∗S)]≤ε, Q
is of the orderO

(
log 1

ε

)
and the stochastic gradient complexity (evaluation number) is

∑Q
q=1 Tqkq=

O
(
G2

λαε

)
. With the optimization error ε, Theorem 1 shows that vanilla lookahead needs stochastic

gradient complexity O
((

L
ε

) 1
2α +

(
LG2

(1−2α)λ2ε

) 1
2α

)
for α ∈ (0, 1

2 ), O
(
LG2 log 1

ε

λ2ε

)
for α = 1

2 , and

O
(

LG2

(2α−1)λ2ε

)
for α∈( 1

2 , 1]. By comparison, both SLA and SLRLA improve the dependences on
two important factors, i.e. λ and α, in vanilla lookahead. Specifically, for factor λ, SLA and SLRLA
rely on O

(
1
λ

)
, while lookahead depends on at least O

(
1
λ2

)
. For factor α, SLA and SLRLA only

linearly depend on O
(

1
α

)
. In contrast, when α ∈ (0, 1

2 ), lookahead exponentially depends on 1
α due

to the term O
((

1
ε

) 1
2α
)
. For α = 1

2 , SLA and SLRLA improve lookahead by removing the logarithm
factor log 1

ε . When α ∈ ( 1
2 , 1], SLA and SLRLA also enjoy smaller dependence on α than lookahead,

as the factor 1
α (≤ 2) in SLA and SLRLA is often smaller than the factor 1

2α−1 in lookahead.

For generalization error, by comparing Theorems 5 and 2, SLA and lookahead enjoy the same
generalization error boundO

(
G2

nλ

)
, while SLRLA has superior oneO

(
G2

n(β/α+λ)

)
especially for small

α. This is because β can be at the same order of λ in Theorem 5. By combining the optimization
and generalization errors together, SLRLA enjoys smaller excess risk error than SLA which however
outperforms lookahead, when the computational budget (stochastic gradient complexity) is the same.

5.2 Results on Nonconvex Problems

Now we analyze SLRLA on two classes of nonconvex problems. The first one requires the smallest

eigenvalue (−σ) of the Hessian ∇2FS(θ) to satisfy σ ≤ 1
6µ, where µ is the parameter in µ-PŁ

condition in Definition 2. It actually means the function is not heavily nonconvex. The second one
satisfies the weakly-quasi-convex assumption which guarantees that any local minimizer of the loss
is also a global minimizer. Indeed, any convex function is 1-weakly-quasi-convex, but the converse is
generally not true. We use these two classes of nonconvex problems as examples to investigate the
aforementioned two problems. Theorem 6 with proof in Appendix E.2 summarizes the main results.

Theorem 6. Assume each `(f(x;θ),y) is G-Lipschitz and L-smooth w.r.t. θ, and FS(θ) satisfies
µ-PŁ condition. Let ∆′ = E[F (θ0)− F (θ∗S)] and εq = ∆′

2q , where θ∗S ∈ argminθ FS(θ).
(1) When σ ≤ 1

6µ where∇2FS(θ) � −σI(∀θ), by setting σ ≤ βq = β ≤ 1
6µ, ηq ≤

εq

3G2 , ηqkqTq ≥
6
µαq

, the output θA,S of SLRLA satisfies

εopt ≤
∆′

2Q
, εgen ≤

γ2

n

(β − σ
α

+
µL

µ+ L

)−1(
1− exp

(
− 6QL

λ+ L

))
, εexc ≤ εopt + εgen,
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Figure 1: Investigation of lookahead, SLA and SLRLA on a softmax problem with MNIST. (a)
reveals the effects of α on convergence, generalization and test performance of lookahead and SLA.
(b) shows the impact of α on test performance of SLRLA, and further compares the test performance.

where γ2 = 2G2/
(
1 − exp

(
− 6L

µ+L

))
. Moreover, to achieve εopt ≤ ε, the total stage number Q

satisfies Q ≥ log ∆
ε and the total stochastic gradient complexity is

∑Q
q=1 Tqkq = 36G2

µαε .
(2) When Fq(θ) is ρ-weakly-quasi-convex, by setting βq = β ≤ 1

6µ, ηq ≤
ρεq

3G2 , ηqkqTq ≥ 6
µραq

,

α ≤ β
L , the output θA,S of SLRLA satisfies

εopt ≤
∆

2Q
, εgen ≤

γ2

n

(β
α
− L

)−1(
1− exp

(
− 6S(β − αL)

µρα

))
, εexc ≤ εopt + εgen,

where γ2 = 2G2/
(
1− exp

(
− 6(β−αL)

µρα

)))
. Moreover, to achieve εopt ≤ ε, the total stage number Q

satisfies Q ≥ log ∆
ε and the total stochastic gradient complexity is

∑Q
q=1 Tqkq = 36G2

µρ2αε .

Here we discuss the advantages of SLRLA over SLA and lookahead. Theorem 6 shows that for
the nonconvex loss FS(θ) which obeys∇2FS(θ)�− 1

6µI , SLRLA enjoys linear convergence rate
and has stochastic gradient complexity O

(
G2

µαε

)
to achieve εopt ≤ ε. Compared with lookahead

which has complexity O
((
LG2

µ2ε

)1/α)
, SLRLA improves the factor 1

µ2/α in lookahead to 1
µ , and also

reduces its exponential dependence on 1
α to linear dependence. These improvements accord with the

ones on the strongly convex problems. For generalization error εgen, SLRLA has an upper bound
O
(

1
n/
(
β−σ
α +µ

))
that does not reply on the total iteration number Tk. In contrast, Theorem 4 shows

that lookahead has generalization error bound O
(

1
n (Tk)

γ
γ+1
)

sublinearly relying on Tk. So SLRLA
enjoys smaller excess risk error than lookahead. For SLA, Theorem 6 cannot guarantee its linear
convergence and small generalization error, as Theorem 6 requires βq≥σ>0 but SLA needs βs=0.
It is because the regularizer βq2 ‖θ−θq−1‖2 in SLRLA transforms the nonconvex loss FS(θ) into a
strongly convex one and greatly accelerates the convergence. This shows the advantage of SLRLA
over SLA.
On weakly-quasi-convex problems, SLRLA has stochastic gradient complexity O

(
G2

µρ2αε

)
to achieve

εopt ≤ ε, and has generalization error O
(
γ2
n /
(
β
α − L

))
. When viewing ρ as a constant, then same

as the above case, SLRLA makes improvements on vanilla lookahead in terms of both stochastic
complexity and generalization error. Moreover, the results on SLRLA also do not hold for SLA, since
Theorem 6 needs βq ≥ αL > 0 while SLA sets βq = 0. Thus, all these results show the advantages
of SLRLA over SLA and lookahead on achieving smaller excess risk error and thus enjoying better
test performance.
Limitation Discussion. As explained in Sec. 4.3, one cannot bound the loss distance E[FS(θ) −
FS(θ∗S)] for general nonconvex probems (GNP). So our main limitation is that our analysis is not
applicable to GNP. But we analyze lookahead on GNP under PŁ condition which is observed/proved
for deep networks [30–34] and our empirical results. See more discussions in Appendix A.

Societal Impact. This work analyzes the intrinsic theoretical reasons for the superiority of lookahead
in terms of test performance, and further proposes a general and more advanced deep learning
optimizer with provable improvement over lookahead which could advance deep network training.
For the negative social impact of this work, it is mainly determined by which applications the
developed optimizer is applied to.

6 Experiments
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Table 1: Classification accuracy (%). �, ∗, †, ‡ are respectively reported in [1], [23], [61], [62].

optimizer CIFAR10 CIFAR100 ImageNet
ResNet18 VGG16 WRN-16-10 ResNet18 VGG16 WRN-16-10 ResNet18

Adam [18] 94.84� 91.08 93.54 76.88� 64.07 74.81 66.54∗
Adabound [63] 92.56 91.35 91.68 71.43 64.74 71.64 68.13†

RAdam [23] 93.85 90.84 94.16 74.30 63.99 75.92 67.62∗
AdamW [64] 94.95 90.75 95.95 77.30 63.40 79.63 67.93†

AdaBelief [62] 95.20‡ 92.25 95.71 77.02‡ 68.63 77.93 70.08‡

Stagewise SGD [20] 95.23±0.19� 92.13±0.02 95.51±0.02 78.24±0.18� 69.97±0.02 78.95±0.03 70.23†
SLA [1] 95.27±0.06� 92.38±0.02 95.73±0.02 78.34±0.05� 70.20±0.04 79.54±0.02 70.30±0.09
SLRLA 95.47±0.20 92.63±0.03 96.08±0.07 78.58±0.15 70.63±0.02 79.85±0.05 70.47±0.12

6.1 Results on Strongly Convex Problems

Here we investigate the effects of α on the performance of lookahead, stagewise lookahead [1] (SLA)
and SLRLA on a regularized softmax problem with MNIST [56]. The regularized softmax problem
is strongly convex, as its regularization constant is set to 5×10−6. Following our theory, we use a
linearly decayed learning rate (LR) for lookahead, and multi-step decayed LRs for SLA/SLRLA.
See more details in Appendix B. Fig. 1 (a) shows that when α increases, for lookahead & SLA, (i)
their training loss reflecting the optimization error εopt decreases faster; (ii) the distance between their
training and test losses reflecting the generalization error εgen becomes larger; (iii) their test loss first
decreases and then increases which indicates the balance of α. Fig. 1 (b) shows the balance impact of
α on test accuracy of SLRLA, and also testifies the superiority of SLRLA over lookahead and SLA.

6.2 Results on Nonconvex Problems
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Figure 2: Investigation of PŁ Assp.

Assumption Investigation. We investigate the key assump-
tion, PŁ assumption on the nonconvex problems, for networks.
We train ResNet18 [4] and wide-ReseNet-16-10 (WRN) [57]
via SLA/SLARA, and report µ , ‖∇FS(θt)‖2/[2(FS(θt)−
FS(θ∗))]. We estimate the optimum θ∗ of FS(θ) as the so-
lution found by SLA/SLARA after 200 epochs which gives a
small objective value (≈10−3) and is almost an optimum. Fig. 2
shows that µ in SLA & SLARA is larger than 5×10−4. So on
networks, PŁ condition holds at least along the optimization tra-
jectory. This accords with the observations/theories in [30–34].

Classification Results. We evaluate SLA and SLRLA on CIFAR10/100 [58] and ImageNet [59]
using different network architectures, i.e. ResNet18 [4], VGG16 [60] and WRN-16-10 [57]. For all
experiments, SLRLA and SLA set k=5, a momentum of 0.9, and a multi-stage learning rate (LR)
decay at the {0.3S, 0.6S, 0.8S}-th epoch with total epoch number S. On CIFAR10/100, we train
200 epochs with α= 0.8, a weight decay of 10−3, and set LR decay rate as 0.2. On Imagenet, we
run 100 epochs using α=0.5, a weight decay of 10−4 and an LR decay rate of 0.1. These settings
follow [1, 61, 62]. For regularization constant βq, SLRLA selects it from {0.02, 0.2, 2.0, 20} via
cross validation, and finally sets it as 0.2 on CIFAR10/100 and 20 on ImageNet.

Table 1 reports the average accuracy and variance of 5 random seeds. SLRLA achieves the highest
accuracy on CIFAR10/100 and ImageNet. This because (i) our theories in Sec. 5 show the advantages
of SLRLA over SGD/SLA to achieve small excess risk error, indicating better test performance; (ii)
as observed/proved in [22, 37–41], compared with adaptive algorithms, e.g. Adam and its variants,
SGD-alike algorithms, e.g. SLA/SLARA, often converge to flatter minima and thus generalize better.
The results in Appendix B show the stable performance of SLARA on ImageNet when tuning the
regularization constant βq in a large range, testifying the robustness of SLARA.

7 Conclusion

In this work, for the first time we theoretically show the advantages of lookahead in terms of the
excess risk error, explaining its better test performance than its vanilla inner optimizer. Moreover, we
prove that the stagewise optimization strategy can benefit lookahead in improving its excess risk error.
Finally, we propose SLRLA which locally regularizes the vanilla objective to further improve the
excess risk error of stagewise lookahead. Experimental results validated the advantages of SLRLA.
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