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ABSTRACT

Generative models have enabled the creation of contents that are indistinguish-
able from those taken from the Nature. Open-source development of such models
raised concerns about the risks in their misuse for malicious purposes. One po-
tential risk mitigation strategy is to attribute generative models via watermarking.
Current watermarking methods exhibit significant tradeoff between robust attribu-
tion accuracy and generation quality, and also lack principles for designing water-
marks to improve this tradeoff. This paper investigates the use of latent semantic
dimensions as watermarks, from where we can analyze the effects of design vari-
ables, including the choice of watermarking dimensions, watermarking strength,
and the capacity of watermarks, on the accuracy-quality tradeoff. Compared with
previous SOTA, our method requires minimum compute and is more applicable to
large-scale models. We use StyleGAN2 and the latent diffusion model to demon-
strate the efficacy of our method.

1 INTRODUCTION

Generative models can now create synthetic contents such as images and audios that are indistin-
guishable from those taken from the Nature (Karras et al., 2020; Rombach et al., 2022; Ramesh
et al., 2022; Hawthorne et al., 2022). This pose serious threat when used as malicious attempt,
such as disinformation (Breland, 2019) and malicious impersonation (Satter, 2019). Such potential
threats delays the industrialization process of the generative model, as conservative model inven-
tors hesitate to release their source code (Yu et al., 2020). For example in 2020, OpenAI refused
to release the source code of their GPT-2 (Radford et al., 2019) model due to concerns over poten-
tial malicious attempts Brockman et al. (2020), additionally, the source codes of DALL-E (Ramesh
et al., 2021) and DALL-E 2 (Ramesh et al., 2022) are also not released for the same reason Mishkin
& Ahmad (2022).

One of the potential means of solution is model attribution (Yu et al., 2018; Kim et al., 2020; Yu
et al., 2020), where a model distributor tweaks each user-end model so that they generate contents
with model-specific watermarks. In practice, we consider the scenario where the model distributor
or regulator maintain a database of user specific keys which corresponds to each users’ downloaded
model. When malicious attempts has been made, the regulator will be able to identify the user
that’s responsible for such attempts by attribution. Additionally, we assume the distributed model
is white-box, which potentially makes a separate watermarking module appended on top of the
generator trivial, as malicious user can simply remove such module from the network. Instead, we
propose deep watermarking method that is free from this limitation by embedding the watermarking
module directly into the generative model itself.

Formally, let a set of n generative models be G := {gi(·)}ni=1 where gi(·) : Rdz → Rdx is a mapping
from an easy-to-sample distribution pz to a watermarked data distribution px,i in the content space,
and is parameterized by a binary-coded key ϕi ∈ Φ := {0, 1}dϕ . Let f(·) : Rdx → Φ be a
mapping that attributes contents to their source models. We consider four performance metrics of a
watermarking mechanism: The attribution accuracy of gi is defined as

A(gi) = Ez∼pz
[1 (f(gi(z)) == ϕi)] . (1)

The generation quality of gi measures the difference between px,i and the data distribution used
for learning G, e.g., the Fréchet Inception Distance (FID) score (Heusel et al., 2017) for images.
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Figure 1: (a) Visual comparison between deep watermarking (our method) and shallow watermark-
ing (Kim et al., 2020). Our method uses subtle semantic changes, rather than strong noises, to
maintain attribution accuracy against image postprocesses. (b) Schematic of deep watermarking:
The same generator g and watermark estimator f are used for all watermarked models. Our method
thus requires minimal compute and is scalable to large latent diffusion models.

Inception score (IS) Salimans et al. (2016) is also measured for px,i as additional generation quality
metrics. Watermark secrecy is measured by the mean peak signal-to-noise ratio (PSNR) of individual
images drawn from px,i. Compared with generation quality, this metric focuses on how obvious
watermarks are rather than how well two content distributions match. Lastly, the watermark capacity
is n = 2dϕ .

Existing watermarking methods exhibit significant tradeoff between attribution accuracy and gener-
ation quality (and watermark secrecy), particularly when countermeasures against dewatermarking
attempts, e.g., image postprocesses, are taken into consideration. For example, Kim et al. (2020)
use shallow watermarks for image generators in the form of gi(z) = g0(z) + ϕi where g0(·) is an
unwatermarked model, and show that ϕis have to significantly alter the original contents to achieve
good attribution accuracy against image blurring, causing unfavorable drop in generation quality
and watermark secrecy (Fig. 1(a)).

To improve this tradeoff, we investigate in this paper deep watermarks in the form of gi(ψ(z) +
ϕi) − g0(ψ(z)), where w := ψ(z) ∈ Rdw contains disentangled semantic dimensions that allow a
smoother mapping to the content space (Fig. 1). Such ψ has been incorporated in popular models
such as StyleGAN (SG) (Karras et al., 2019; 2020), where w is the style vector, and latent diffusion
models(LDM) (Rombach et al., 2022), where w comes from a diffusion process. Existing stud-
ies on semantic editing showed that Rdw consists of linear semantic dimensions (Härkönen et al.,
2020; Zhu et al., 2021). Inspired by this, we hypothesize that using subtle yet semantic changes
as watermarks will improve the robustness of attribution accuracy against image postprocesses, and
thus investigate the performance of deep watermarks that are generated by perturbations along latent
dimensions of Rdw . Specifically, we consider latent dimensions as eigenvectors of the covariance
matrix of the latent distribution pw, denoted by Σw.

Contributions. (1) We propose a novel intrinsic watermarking strategy that directly embed the wa-
termarking module into the generative model, as a mean to achieve responsible white-box model
distribution (2) We prove and empirically verify that there exists an intrinsic tradeoff between attri-
bution accuracy and generation quality. This tradeoff is affected by watermark variables including
the choice of the watermarking space, the watermark strength, and its capacity. Parametric stud-
ies on these variables for StyleGAN2 (SG2) and a Latent Diffusion Model(LDM) lead to improved
accuracy-quality tradeoff from previous SOTA. In addition, our method requires negligible compute
compared with previous SOTA, rendering it more applicable to popular large-scale models, includ-
ing latent diffusion ones. (3) We show that using a postprocess-specific LPIPS metric for model
attribution leads to further improved attribution accuracy against image postprocesses.

2 RELATED WORK

Model attribution through watermark encoding and decoding. Yu et al. (2020) propose to en-
code binary-coded keys into images through gi(z) = g0([z, ϕi]) and to decode them via another
learnable function. This requires joint training of the encoder and decoder over Rdz × Φ to em-
pirically balance attribution accuracy and generation quality. Since watermark capacity is usually
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high (i.e., 2dϕ), training is made tractable by sampling only a small subset of watermarks. Thus this
method is computationally expensive and lacks a principled understanding of how the watermarking
mechanism affects the accuracy-quality tradeoff. In contrast, our method does not require any addi-
tional training and mainly relies on simple principle component analysis of the latent distribution.

Certifiable model attribution through shallow watermarks. Kim et al. (2020) propose shallow
watermarks gi(z) = g0(z) + ϕi and linear classifiers for attribution. These simplifications allow the
derivation of sufficient conditions of Φ to achieve certifiable attribution of G. Since the watermarks
are added as noises rather than semantic changes coherent with the generated contents, high water-
mark strength becomes necessary to maintain attribution accuracy under postprocesses. While this
paper does not provide attribution certification for deep watermarks, we discuss technical feasibility
and challenges in achieving this goal.

StyleGAN and low-rank subspace. Our study focuses on popular image generation models which
share an architecture rooted from SG: A uniform distribution is first transformed into a latent distri-
bution (pw), samples from which are then decoded into images. Härkönen et al. (2020) apply prin-
cipal component analysis on pw distribution and found semantically meaningful editing directions.
Zhu et al. (2021) use local Jacobian (∇wg) to derive perturbations that enable local semantic editing
of generated images, and show that such semantic dimensions are shared across the latent space.
In this study, we show that the mean of the Gram matrix for local editing (Ew∼pw [∇wg

T∇wg])
and the covariance of w (Σw) are qualitatively similar in that both reveal major to minor semantic
dimensions through their eigenvectors.

GAN inversion. The model attribution problem can be formulated as GAN inversion problem. A
learning based inversion (Perarnau et al., 2016; Bau et al., 2019) optimizes parameters of encoder
network which map a image to latent code z. On the other hand, optimization based inversion (Abdal
et al., 2019; Huh et al., 2020) solve for latent code z that minimizes distance metric between a given
image and generated image g(z). The learning based method is computationally more efficient in
the inference stage comparing to optimization based method. However, optimization based GAN
inversion achieves superior quality of latent interpretation, which can be referred to as the quality-
time trade-off (Xia et al., 2022). In our method, we utilized the optimization based inversion, as
faithful latent interpretation is critical in our application. To further enforce faithful latent interpre-
tation, we incorporate existing techniques, e.g., parallel search, to solve this non-convex problem,
but uniquely exploit the fact that watermarks are small latent perturbations to enable analysis on the
accuracy-quality tradeoff.

3 METHODS

3.1 NOTATIONS AND PRELIMINARIES

Notations. For x ∈ Rn and A ∈ Rn×m, denote by projAx the projection of x to span(A), and by
A† the pseudo inverse of A. For parameter a, we denote by â its estimate and ϵa = â− a the error.
∇xf is the gradient of f with respect to x, Ex∼px [·] is an expectation over px, and tr(B) (resp.
det(B)) is the trace (resp. determinant) of B ∈ Rn×n. diag(λ) ∈ Rn×n diagonalizes λ ∈ Rn.

Deep watermarks. All contemporary generative models, e.g., SG2 and LDM, consist of a disen-
tanglement mapping ψ : Rdz → Rdw from an easy-to-sample distribution pz to a latent distribution
pw, followed by a generator g : Rdw → Rdx that maps w to the content space. In particular, ψ
is a multilayer perception network in SG, and a diffusion process in a diffusion model. Existing
studies showed that linear perturbations along principal components of ∇wg enables semantic edit-
ing, and such perturbation directions are often applicable over w ∼ pw (Härkönen et al., 2020; Zhu
et al., 2021). Indeed, instead of local analysis on the Jacobian, Härkönen et al. (2020) showed that
principal component analysis directly on pw also reveals semantic dimensions. This paper follows
these existing findings and uses a subset of semantic dimensions as watermarks. Specifically, let
U ∈ Rdw×(dw−dϕ) and V ∈ Rdw×dϕ be orthonormal and complementary. Given random seed
z ∈ Rdz , user-specific key ϕ ∈ Rdϕ , and strength σ ∈ R, let α = U†projUψ(z) ∈ Rdw−dϕ , the
watermarked latent variable is

wϕ(α) = Uα+ σV ϕ, (2)
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where α ∼ pα and pα is induced by pw. Then, user can generate watermarked images, g(wϕ(α)).
The choice of (U, V ) and σ affects the attribution accuracy and generalization performance, which
we analyze in Sec. 3.2.

Attribution. To decode user-specific key from the image g(wϕ(α)), we formulate an optimization
problem:

min
α̂,ϕ̂

l
(
g(wϕ̂(α̂)), g(wϕ(α))

)
s.t. α̂i ∈ [αl,i, αu,i], ∀i = 1, ..., dw − dϕ.

Through experiments, we discovered that attribution accuracy can be improved by constraining α.
Here the upper and lower bounds of α are chosen based on the empirical limits observed from pα.
While l2 norm is used for analysis in Sec.3.2, here we minimize LPIPS (Zhang et al., 2018) which
measures the perceptual difference between two images. In practice, we introduce a penalty on α̂
with large enough Lagrange multipliers and solve the resulting unconstrained problem. To avoid
convergence to unfavorable local solutions, we also employ parallel search with n initial guesses of
α̂ drawn through Latin hypercube sampling (LHS).

3.2 ACCURACY-QUALITY TRADEOFF

Attribution accuracy. Define Jw = ∇g(w), Hw = JT
wJw. Let H̄w = Ew∼pw

[Hw] be the mean
Gram matrix, and H̄ϕ = Eα∼pα

[Hwϕ(α)] be its watermarked version. Let l : Rdx × Rdx → R
be a distance metric between two images, (α̂, ϕ̂) the estimates. To analyze how (V,U) affects
the attribution accuracy, we use the following simplifications and assumptions: (A1) l(·, ·) is the
l2 norm. (A2) Both ||ϵα|| and σ are small. In practice we achieve small ||ϵα|| through parallel
search (see Appendix B). (A3) Since our focus is on ϵϕ, we further assume that the estimation of α,
denoted by α̂(α), is independent from ϕ, and ϵα is constant. This allows us to ignore the subroutine
for computing α̂(α) and turns the estimation problem to an optimization with respect to only ϵϕ.
Formally, we have the following proposition (see Appendix A.1 for proof):
Proposition 1. ∃ c > 0 such that if σ ≤ c and ||ϵα||2 ≤ c, the watermark estimation problem

min
ϕ̂

Eα∼pα

[
∥g(wϕ̂(α̂(α)))− g(wϕ(α))∥22

]
has an error ϵϕ = −(σ2V T H̄ϕV )−1V T H̄ϕUϵα.

Remarks: (1) Similar to classic design of experiment, one can reduce ||ϵϕ|| by maximizing
det(V T H̄ϕV ), which sets columns of V as the eigenvectors associated with the largest dϕ eigen-
values of H̄ϕ. However, H̄ϕ is neither computable because ϕ is unknown during the estimation, nor
is it tractable because Jwϕ(α) is large in practice. To this end, we propose to use the covariance of
pw, denoted by Σw, to replace H̄ϕ in experiments. In Appendix C, we support this approximation
empirically by showing that Σw and H̄w (the non-watermarked mean Gram matrix) are qualitatively
similar in that the principal components of both matrices offer disentangled semantic dimensions.
(2) Let the kth largest eigenvalue of H̄w be γk. By setting columns of V as the eigenvectors of
H̄w associated with the largest dϕ eigenvalues, and by noting that ϕ̂ is accurate only when all of its
elements match with ϕ (equation 1), the worst-case estimation error is governed by γ−1

dϕ
. This means

that higher key capacity, i.e., larger dϕ, leads to worse attribution accuracy. (3) From the proposi-
tion, ϵϕ = 0 if V and U are complementary sets of eigenvectors of H̄ϕ. In practice this decoupling
between ϵϕ and ϵα cannot be achieved due to the assumptions and approximations we made.

Generation quality. For analysis purpose, we approximate the original latent distribution pw by
w = µ + Uα + V β where α ∼ N (0, diag(λU )), β ∼ N (0, diag(λV )), and µ = Ew∼pw

[w].
λU ∈ Rdw−dϕ and λV ∈ Rdϕ are calibrated to match pw. Denote λV,max = maxi{λV,i}. A latent
distribution watermarked by ϕ is similarly approximated as wϕ = µ+Uα+σV ϕ. With mild abuse
of notation, let g be the mapping from the latent space to a feature space (usually defined by an
Inception network in FID) and is continuously differentiable. Let the mean and covariance matrix
of wi be µi and Σi, respectively. Denote by H̄U = Eα[J

T
µ+UαJµ+Uα] the mean Gram matrix in the

subspace of U , and let γU,max be the largest eigenvalue of H̄U . We have the following proposition
to upper bound ||µ0 − µ1||22 and |tr(Σ0) − tr(Σ1)|, both of which are related to the FID score for
measuring the generation quality (see Appendix A.2 for proof):
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Figure 2: Visualization of watermarks along minor and major principal components of the covari-
ance of the latent distribution. (Top) StyleGAN2. (Bottom) Latent Diffusion Model (LDM).

Proposition 2. For any τ > 0 and η ∈ (0, 1), ∃ c(τ, η) > 0 and ν > 0, such that if σ ≤ c(τ, η)
and λV,i ≤ c(τ, η) for all i = 1, ..., dϕ, then ∥µ0 − µ1∥22 ≤ σ2γU,maxdϕ + τ and |tr(Σ0 − Σ1)| ≤
λV,maxγU,maxdϕ + 2νσ

√
dϕ + τ with probability at least 1− η.

Remarks: Recall that for improving attribution accuracy, a practical approach is to choose V as
eigenvectors associated with the largest eigenvalues of Σw. Notices that with the approximated
distribution with α ∼ N (0, diag(λU )) and β ∼ N (0, diag(λV )), Σw = diag([λTU , λ

T
V ]

T ). On the
other hand, from Proposition 2, generation quality improves if we minimize λV,max by choosing
V according to the smallest eigenvalues of Σw. In addition, smaller key capacity (dϕ) and lower
strength (σ) also improve the generation quality. Propositions 1 and 2 together reveal the intrinsic
accuracy-quality tradeoff.

Watermark secrecy. Lastly, the analysis on watermark secrecy is straight forward using the same
proof techniques: We note that PSNR is a monotonically decreasing function of the MSE ∥g(µ +
Uα)−g(µ+Uα+σV ϕ)∥22 and therefore we can use the following proposition to analyze the effect
of watermark variables on secrecy (proof in Appendix A.3):
Proposition 3. For any τ > 0, ∃ c(τ) > 0 such that if σ ≤ c(τ),

Eα∼pα

[
∥g(µ+ Uα)− g(µ+ Uα+ σV ϕ)∥22

]
≤ σ2γU,maxdϕ + τ.

4 EXPERIMENTS

In this section, we present empirical evidence of the accuracy-quality tradeoff and show improved
tradeoff from previous SOTA by using deep watermarks. Experiments are conducted for both with
and without a combination of postprocesses including (image noising, blurring, and JPEG compres-
sion transformation, and their combination).

4.1 EXPERIMENT SETTINGS

Models, data, and metrics. We conduct experiments on SG2 (Karras et al., 2020) and LDM (Rom-
bach et al., 2022) models trained on various datasets including FFHQ (Karras et al., 2019), AFHQ-
Cat, and AFHQ-Dog (Choi et al., 2020). Generation quality is measured by the Frechet Inception
distance (FID) (Heusel et al., 2017) and inception score (IS) (Salimans et al., 2016), attribution
accuracy by equation 1, and watermark secrecy by PSNR.

Deep watermark dimensions. The dimensions of the semantic latent spaces of SG2 and LDM are
512 and 12,288, respectively. For both models we approximate Σw using 10K samples drawn from
pw. We define watermark dimensions V as a subset eigenvectors of Σw associated with consecutive
eigenvalues: V := PC[i : j], where PC is the full set of principal components of Σw sorted by
their variances in the descending order, and i and j represent the starting and ending indices of the
subset.

Attribution. To compute the empirical accuracy, we use 1K samples drawn from pz for each wa-
termark ϕ, and use 1K watermarks where each bit is drawn independently from a Bernoulli distri-
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bution with p = 0.5. In Table 1, we show that both constraints on α̂ and parallel search with 20
initial guesses improve the empirical attribution accuracy across models and datasets. Notably, con-
strained estimation is essential for successful attribution of LDMs. In these experiments, V is chosen
as the eigenvectors associated with the 64 smallest eigenvalues of Σw as a worst-case scenario for
attribution accuracy.

Table 1: Attribution accuracy and generation quality of the proposed method. FID-BL is the baseline
FID score. ↑ (↓) indicates higher (lower) is desired. Standard deviation is in parenthesis.

Model Dataset Attribution Accuracy Image Quality

Ours w/o α-reg w/o LHS FID-BL FID↓ IS ↑ PSNR ↑
SG2 FFHQ 0.983 0.877 0.711 7.24 8.59 4.96 32.5 (1.65)
SG2 AFHQ Cat 0.993 0.991 0.972 6.35 7.87 12.39 38.14 (1.79)
SG2 AFHQ Dog 0.999 0.998 0.981 3.80 5.36 12.39 37.7 (1.91)
LDM FFHQ 0.996 0.364 0.872 12.34 13.63 4.35 31.22 (1.90)

4.2 ATTRIBUTION PERFORMANCE WITHOUT POSTPROCESSING

We present generation quality results in Table 1. Since the least variant principal components are
used as watermarks, generation quality (FID) and watermark secrecy (PSNR) are preserved. We
note that a PSNR value ≥ 30 db is conventionally considered as acceptable for watermarks (Mahto
& Singh, 2021). The results suggest that when image postprocesses are not considered as a potential
threat model, the attribution accuracy, generation quality, capacity (264), and watermark secrecy are
all acceptable using the proposed method. Fig. 2 visualizes and compares deep watermarks gener-
ated from small vs. large eigenvalues of Σw. Watermarks corresponding to small eigenvalues are
non-semantic, while those to large eigenvalues create semantic changes. We will later show that
semantic yet subtle (perceptually insignificant) watermarks are necessary to counter image postpro-
cesses.

Accuracy-quality tradeoff. Table 2 summarizes the tradeoff when we vary the choice of V and
the strength σ, while fixing the watermark length dϕ to 64. Then in Table 3 we sweep dϕ while
keeping V as PCs associated with smallest eigenvalues of Σw and σ = 1. The experiments are
conducted on SG2 and LDM on the FFHQ dataset. The empirical results in Table 2 are consistent
with our analysis: Accuracy decreases while generation quality improves when V is moved from
major to minor principal components. For watermark strength, however, we observe that the positive
effect of strength on the accuracy, as predicted by Proposition 1, is only limited to small σ. This is
because larger σ causes pixel values to go out of bound, causing loss of information. In Table 3, we
summarize the attribution accuracy, FID, and PSNR score under 32- to 128-bit keys. Accuracy and
generation quality, in particular the latter, are both affected by dϕ as predicted.

4.3 WATERMARK PERFORMANCE WITH POSTPROCESSING

We now consider more realistic scenarios where generated images are postprocessed, either mali-
ciously as an attempt to remove the watermarks or unintentionally, before they are attributed. Under
this setting, our method achieves better accuracy-quality tradeoff than shallow watermarking under
two realistic settings: (1) when noising an JPEG compression are used as unknown postprocesses,
and (2) when the set of postprocesses, rather than the ones that are actually chosen, is known.

Postprocesses. To keep our solution realistic, we solve the attribution problem by assuming that the
potential postprocesses are unknown:

min
α̂,ϕ̂

l
(
g(wϕ̂(α̂)), T (g(wϕ(α)))

)
s.t. α̂i ∈ [αl,i, αu,i], ∀i = 1, ..., dw − dϕ.

where T : Rdx → Rdx is a postprocess function, and T (g(wϕ(α))) is a given image from which
the watermark is to be estimated. We assume that T does not change the image in a semantically
meaningful way, because otherwise the value of the image for either an attacker or a benign user will
be lost. Since our method adds semantically meaningful perturbations to the images, we expect such
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Table 2: Tradeoff between attribution accuracy (Att.) and generation quality (FID, IS) under differ-
ent watermarking directions (PC) and strength (σ).

StyleGAN2 σ = 0.6 σ = 1.0 σ = 6.0

Att. ↑ FID ↓ IS ↑ Att. ↑ FID ↓ IS ↑ Att. ↑ FID ↓ IS ↑
PC[0:64] 0.99 129.0 1.23 0.99 110.8 1.59 0.99 101.3 4.31
PC[128:192] 0.98 8.5 4.93 0.99 8.7 4.92 0.99 39.2 3.94
PC[256:320] 0.98 8.6 4.96 0.99 9.1 4.87 0.96 31.1 3.90
PC[448:512] 0.97 8.1 4.99 0.98 8.5 4.96 0.90 26.3 4.75

LDM σ = 1.0 σ = 2.0 σ = 3.0

Att. ↑ FID ↓ IS ↑ Att. ↑ FID ↓ IS ↑ Att. ↑ FID ↓ IS ↑
PC[0:64] 0.99 33.62 3.84 0.99 33.17 3.70 0.99 34.07 3.82
PC[1000:1064] 0.77 13.32 4.37 0.99 13.75 4.40 0.99 16.03 4.35
PC[2000:2064] 0.32 13.17 4.45 0.99 13.63 4.35 0.99 15.74 4.34
PC[3000:3064] 0.12 12.98 4.43 0.97 13.61 4.45 0.99 15.44 4.48
PC[4000:4064] 0.00 12.77 4.35 0.96 13.61 4.42 0.99 15.41 4.41

Table 3: Attribution accuracy and generation quality for different watermark lengths. FID-BL is
baseline FID score. Standard deviation is in parenthesis. ↑ (↓) indicates higher (lower) is desired.
Standard deviation is in parenthesis.

Key Length Accuracy ↑ FID-BL FID ↓ PSNR ↑ IS ↑
32 0.982 7.24 8.49 36.3 (1.94) 4.90
64 0.983 7.24 8.59 32.5 (1.65) 4.96
96 0.981 7.24 9.50 29.2 (1.95) 4.93
128 0.973 7.24 9.61 27.07 (1.80) 4.91

deep watermarks to be more robust to postprocesses than shallow ones added directly to images,
and will lead to improved attribution accuracy. To test this hypothesis, we consider four types
of postprocesses: Noising, Blurring, JPEG and Combo. Noising adds a Gaussian white
noise of standard deviation randomly sample from U [0, 0.1]. Blurring uses a randomly selected
Gaussian kernel size from [3, 7, 9, 16, 25] and standard deviation of [0.5, 1.0, 1.5, 2.0]. We randomly
sample the JPEG quality from [80, 70, 60, 50]. These parameters are chosen to be mild so that
images do not lose their semantic contents. And Combo randomly chooses a subset of the three
through a binomial distribution with p = 0.5 and uses the same postprocess parameters.

Modified LPIPS metric. In addition to testing the worst-case scenario where postprocesses are
completely unknown, we also consider cases where they are known. While this is unrealistic for
individual postprocesses, it is worth investigating when we assume that the set of postprocesses,
rather than the ones that are actually chosen, is known. Within this scenario, we show that modi-
fying LPIPS according to the postprocess improves the attribution accuracy. To explain, LPIPS is
originally trained on a so-called “two alternative forced choice” (2AFC) dataset. Each data point of
2AFC contains three images: a reference, p0, and p1, where p0 and p1 are distorted in different ways
based on the reference. A human evaluator then ranks p0 and p1 by their similarity to the reference.
Here we propose the following modification to the dataset for training a postprocess-specific met-
rics: Similar to 2AFC, for each data point, we draw a reference image x from the default generative
model to be watermarked, and define p0 as the watermarked version of x. p1 is then a postprocessed
version of x given a specific T (or random combinations for Combo). To match with the setting of
2AFC, we sample 64 × 64 patches from x, p0, and p1 as training samples. We then rank patches
from p1 as being more similar to those of x than p0. With this setting, the resulting LPIPS metric
becomes more sensitive to watermarks than mild postprocesses. The detailed training of the modi-
fied LPIPS follows the vgg-lin configuration in Zhang et al. (2018). It should be noted that unlike
previous SOTA where watermarks Kim et al. (2020) or encoder-decoder models Yu et al. (2020) are
retrained based on the known attacks, our watermarking mechanism, and therefore generalization
performance, are agnostic to postprocesses.
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Figure 3: Comparison on generation quality between our method and the baseline with sim-
ilar attribution accuracy The first row shows original images generated without watermarking.
Each images in the second row represents robustly watermarked images against corresponding post-
processes. The next row illustrates post-processed images. The last row depicts the differences
between original (the first row) and watermarked images (the second row) using heatmap. Even if
our method shows large pixel value changes, the watermarks are not perceptible comparing with
baseline method (see second row).

Accuracy-quality tradeoff. We summarize watermark performance metrics on SG2 and FFHQ
in Table 4. The attribution accuracy reported here are estimated using the strongest parameters
of each attack. For Combo, we use sequentially apply Blurring+Noising+JPEG as a deter-
ministic worst-case attack. To estimate attribution accuracy, we solved the estimation problem in
equation 4.3 where postprocesses are applied. The proposed method: We choose V as a subset
of 32 consecutive eigenvectors of Σw starting from the 1th, 17th, and 33th eigenvectors, denoted
respectively by PC[0:32], PC[16:48], and PC[32:64] in the table. Watermarking strength σ is set
to 3. Attribution results from both a standard and a postprocess-specific LPIPS metric are reported
in the UK (unknown) and KN (known) columns, respectively. Accuracies for our method are com-
puted based on 100 random watermark samples from 232, each with 100 random generations. The
baseline: We compare with a shallow watermarking method from Kim et al. (2020) (denoted by
BL). When the postprocesses are known, BL performs postprocess-specific computation to derive
shallow watermarks that are optimally robust against the known postprocess. Results in UK and KN
columns for BL are respectively without and with the postprocess-specific watermark computation.
BL accuracies are computed based on 10 watermarks, each with 100 random generations.

It is worth noting that the shallow watermarking method is not as scalable as ours, and increasing the
key capacity decreases the overall attribution accuracy (see (Kim et al., 2020)). Also recall that the
key length affects attribution accuracy (Proposition 1). Therefore, we conduct a fairer comparison
to highlight the advantage of our method. Here we choose a subset of watermarks PC[32 : 40]
(256 watermarks) and report performance in Table 5, where accuracies are computed using the same
settings as before. Visual comparisons between our method (PC[32 : 40]) and the baseline can be
found in Fig. 3: To maintain attribution accuracy, high strength shallow watermarks, in the form
of color patches, are needed around eyes and noses, and significantly lower the generation quality.
In comparison, our method uses semantic changes that are robust to postprocesses. The choice of
the semantic dimensions, however, need to be carefully chosen for the watermark to be perceptually
subtle.

Watermark secrecy. In all experiments, our method has worse watermark secrecy than the baseline
according to PSNR. This is because PSNR measures pixel-wise differences, and thus does not favor
semantic changes as in our method. Nonetheless, we argue that our method have better secrecy
when compared with the baseline, because subtle semantic changes across images are harder to be
recognized (and thus removed) than common artifacts brought by shallow watermarking (see Fig. 3).
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Table 4: Comparison on accuracy-quality tradeoff between proposed and baseline methods under
image postprocesses. StyleGAN2 and FFHQ. Watermarking strength σ = 3. The FID score of
baseline method is 96.24. KN (UK) stands for when attributability is measured with (without) the
knowledge of attack. Standard deviation is in parenthesis.

Metric Model Blurring Noising JPEG Combo
- - UK KN UK KN UK KN UK KN

Att. ↑
BL 0.85 0.88 0.85 0.87 0.87 0.89 0.83 0.88
PC[0:32] 0.79 0.99 0.99 0.99 0.98 0.99 0.82 0.99
PC[16:48] 0.56 0.92 0.95 0.99 0.98 0.99 0.42 0.88
PC[32:64] 0.32 0.83 0.93 0.98 0.98 0.99 0.26 0.79

PSNR ↑
BL 21.36 (1.51) 21.57 (1.88) 21.44 (1.64) 22.49 (1.57)
PC[0:32] 10.70 (0.56) 10.70 (0.56) 10.70 (0.56) 10.70 (0.56)
PC[16:48] 13.56 (1.81) 13.56 (1.81) 13.56 (1.81) 13.56 (1.81)
PC[32:64] 14.52 (1.31) 14.52 (1.31) 14.52 (1.31) 14.52 (1.31)

IS ↑
BL 2.86 3.02 2.91 2.90
PC[0:32] 2.93 2.93 2.93 2.93
PC[16:48] 4.35 4.35 4.35 4.35
PC[32:64] 4.50 4.50 4.50 4.50

FID ↓
BL 99.05 93.04 97.70 100.15
PC[0:32] 102.26 102.26 102.26 102.26
PC[16:48] 31.25 31.25 31.25 31.25
PC[32:64] 27.50 27.50 27.50 27.50

Table 5: Accuracy-quality tradeoff under Combo attack. V defined as the 8, 16, and 32 eigenvectors
of Σw starting from the 33th eigenvectors. σ = 3. KN (UK) stands for When attributability is
measured with (without) knowledge of attack. Standard deviation is in parenthesis.

Model Key length UK KN FID↓ PSNR ↑ IS ↑
BL N/A 0.83 0.88 100.15 22.49 (1.57) 2.90

PC[32:40] 8 0.65 0.89 12.35 21.11 (2.07) 4.75
PC[32:48] 16 0.45 0.85 13.25 18.56 (1.91) 4.86
PC[32:64] 32 0.26 0.79 27.50 10.70 (0.56) 4.50

5 CONCLUSION

This paper investigated deep watermark as a solution to enable the attribution of generative mod-
els. Our solution achieved better tradeoff between attribution accuracy and generation quality than
the previous SOTA that uses shallow watermarks, and also has extremely low computational cost
compared to SOTA methods that require encoder-decoder training with high data complexity, ren-
dering our method more scalable to attributing large models with high-dimensional latent spaces.
Limitations and future directions: (1) There is currently a lack of certification on the attribu-
tion accuracy due to the nonlinear nature of both the watermarking and the watermark estimation
processes. Formally, by considering both the generation and estimation processes as discrete-time
dynamics, such certification would require forward reachability analysis of watermarked contents
and backward reachability analysis of the watermark, e.g., convex approximation of the support of
px,i and ϕ̂. It is worth investigating whether existing neural net certification methods can be applied.
(2) Our method extracts watermarks from the training data. Even with feature decomposition, the
amount of features that can be used as watermarks is limited. Thus the accuracy-quality tradeoff
is governed by the data. It would be interesting to see if auxiliary datasets can help to learn novel
and perceptually insignificant watermarks that are robust against postprocesses, e.g., background
patterns.
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A PROOF OF PROPOSITIONS

A.1 PROPOSITION 1

Define Jw = ∇g(w), Hw = JT
wJw, and H̄ϕ = Eα∼pα

[HUα+σV ϕ], where pα is induced by pw. Let
xϕ(α) be a content parameterized by (α, ϕ). Denote by ϵa = â − a the estimation error from the
ground truth parameter a. Assume that the estimate α̂(α) is computed independent from ϕ, and ϵα
is constant. Proposition 1 states:

Proposition 1. ∃c > 0 such that if σ ≤ c and ||ϵα||2 ≤ c, the watermark estimation problem

min
ϕ̂

Eα∼pα

[
∥g(Uα̂(α) + σV ϕ̂)− xϕ(α)∥22

]
(3)

has an estimation error
ϵϕ = −(σ2V T H̄ϕV )−1V T H̄ϕUϵα.

Proof. Let x̂ := g(Uα̂ϕ(α) + σV ϕ̂), we have

x̂ = g(Uα̂+ σV ϕ̂) = g(U(α+ ϵα) + σV (ϕ+ ϵϕ)).

With Taylor’s expansion, we have
x̂ = g(Uα+ σV ϕ) + Jw(Uϵα + σV ϵϕ) + o(Uϵα + σV ϵϕ)

= xϕ(α) + Jw(Uϵα + σV ϵϕ) + o(Uϵα + σV ϵϕ).

Ignoring higher-order terms and , we then have
∥xϕ(α)− x̂∥22 = ∥Jw(Uϵα + σV ϵϕ) + o(Uϵα + σV ϵϕ)∥22

= ∥Jw(Uϵα + σV ϵϕ)∥22 + o(Uϵα + σV ϵϕ)
TJw(Uϵα + σV ϵϕ).

For any τ > 0, there exists c, such that if σ ≤ c and ||ϵα||2 ≤ c,
∥xϕ(α)− x̂∥22 ≤ ∥Jw(Uϵα + σV ϵϕ)∥22 + τ

= σ2ϵTϕV
THwV ϵϕ + 2ϵTϕV

THwUϵα + ϵTαU
THwUϵα + τ.

Removing terms independent from ϵϕ to reformulate equation 3 as

min
ϵϕ

σ2ϵTϕV
T H̄ϕV ϵϕ + 2ϵTϕV

T H̄ϕUϵα,

the solution of which is
ϵϕ = −(σ2V T H̄ϕV )−1V T H̄ϕUϵα.

A.2 PROPOSITION 2

Consider two distributions: The first is w0 = µ+Uα+ V β where µ ∈ Rdw , α ∼ N (0, diag(λU )),
and β ∼ N (0, diag(λV )). diag(λ) is a diagonal matrix where diagonal elements follow λ. The
second distribution is w1 = µ+ Uα+ σV ϕ where σ > 0 and ϕ ∈ {0, 1}dϕ . Let g : Rdw → Rdx ∈
C1. Let the mean and covariance matrix of wi be µi and Σi. Denote by H̄U = Eα[J

T
µ+UαJµ+Uα]

the mean Gram matrix, and let γU,max be the largest eigenvalue of H̄U . Proposition 2 states:

Proposition 2. For any τ > 0 and η ∈ (0, 1), there exists c(τ, η) > 0 and ν > 0, such that
if σ ≤ c(τ, η) and λV,i ≤ c(τ, η) for all i = 1, ..., dϕ, ∥µ0 − µ1∥22 ≤ σ2γU,maxdϕ + τ and
|tr(Σ0 − Σ1)| ≤ λV,maxγU,maxdϕ + 2νσ

√
dϕ + τ with probability at least 1− η.

Proof. We start with ∥µ0 − µ1∥22. From Taylor’s expansion and using the independence between α
and β, we have

µ0 :=Eα,β [g(µ+ Uα+ V β)]

=Eα [g(µ+ Uα)] + Eα,β [Jµ+UαV β + o(Jµ+UαV β)] +

=Eα [g(µ+ Uα)] + Eα,β [o(Jµ+UαV β)] ,

µ1 :=Eα [g(µ+ Uα+ σV ϕ)]

=Eα [g(µ+ Uα) + o(σJµ+UαV ϕ)] + σEα [Jµ+UαV ϕ]

=µ0 + σEα [Jµ+UαV ϕ] + Eα,β [o(Jµ+UαV (σϕ− β))] .

(4)
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Let v = V ϕ. With orthonormal V and binary-coded ϕ, we have

∥v∥22 = ϕTV TV ϕ = ∥ϕ∥22 ≤ dϕ. (5)

For the residual term ∥Eα,β [o(Jµ+UαV (σϕ− β))] ∥22 and any τ > 0 and η ∈ (0, 1), there exists
c(τ, η) > 0, such that if σ ≤ c(τ, η) and λV,i ≤ c(τ, η) for all i = 1, ..., dϕ, we have

Pr
(
∥Eα,β [o(Jµ+UαV (σϕ− β))] ∥22 ≤ τ

)
≥ 1− η. (6)

Lastly, we have
∥Eα[Jµ+Uαv]∥22 ≤ Eα[v

TJT
µ+UαJµ+Uαv]

= vT H̄Uv ≤ γU,max∥v∥22 ≤ γU,maxdϕ.
(7)

Then combining equation 11, equation 5, equation 6, equation 7, we have with probability at least
1− η

∥µ0 − µ1∥22 ≤ σ2γU,maxdϕ + τ. (8)

For covariances, let ΣU = Cov(g(µ+ Uα)). We have

Σ0 :=Eα,β

[
(g(µ+ Uα+ V β)− µ0)(g(µ+ Uα+ V β)− µ0)

T
]

=ΣU + Eα

[
Jµ+UαV diag(λV )V

TJT
µ+Uα

]
+ Eα,β

[
o(Jµ+UαV β)(g(µ+ Uα+ V β)− µ0)

T
]

Σ1 :=Eα

[
(g(µ+ Uα+ σV ϕ)− µ1)(g(µ+ Uα+ σV ϕ)− µ1)

T
]

=ΣU + σ2Cov(Jµ+UαV ϕ
∗) + 2σCov(g(µ+ Uα), Jµ+UαV ϕ+ o(Jµ+UαV ϕ)).

(9)

For tr(Σ0), using the same treatment for the residual, we have for any τ > 0 and η ∈ (0, 1), there
exists c(τ, η) > 0, such that if λV,i ≤ c(τ, η) for all i = 1, ..., dϕ, the following upper bound applies
with at least probability 1− η:

tr(Σ0) ≤ tr(ΣU ) + tr(Eα

[
Jµ+UαV diag(λV )V

TJT
µ+Uα

]
) + τ

≤ tr(ΣU ) + λV,maxtr(Eα

[
Jµ+UαV V

TJT
µ+Uα

]
) + τ

= tr(ΣU ) + λV,maxtr(Eα

[
V TJT

µ+UαJµ+UαV
]
) + τ

≤ tr(ΣU ) + λV,maxγU,maxtr(V
TV ) + τ

≤ tr(ΣU ) + λV,maxγU,maxdϕ + τ.

(10)

For the lower bound, we have tr(Σ0) ≥ tr(ΣU ).

For tr(Σ1), we first denote by JT
i the ith row of Jµ+Uα, ΣJi

its covariance matrix, and σ2
i the

maximum eigenvalue of ΣJi . Then with binary-coded ϕ, we have

V ar(JT
i V ϕ) = ϕTV TCov(Ji)V ϕ ≤ σ2

i dϕ. (11)

Then let gi (resp. vi) be the ith element of g(µ+Uα) (resp. Jµ+UαV ϕ), and σ2
U,i be the ith diagonal

element of ΣU . Using equation 11, we have the following bound on the trace of the covariance
between g(µ+ Uα) and Jµ+UαV ϕ:

|tr(Cov(g(µ+ Uα), Jµ+UαV ϕ))| =

∣∣∣∣∣
dx∑
i=1

Cov(gi, vi)

∣∣∣∣∣ ≤
dx∑
i=1

σU,iσi
√
dϕ. (12)

Lastly, by ignoring σ2 terms and borrowing the same τ , η, and c(τ, η), we have with probability at
least 1− η:

tr(Σ1) ≤ tr(ΣU ) + 2σtr(Cov(g(µ+ Uα), Jµ+UαV ϕ)) + τ

≤ tr(ΣU ) + 2σ

dx∑
i=1

σU,iσi
√
dϕ + τ,

(13)

and

tr(Σ1) ≥ tr(ΣU )− 2σ

dx∑
i=1

σU,iσi
√
dϕ. (14)
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(a) (b)

Figure 4: (a) Average percentage error rate on α (b) Comparison between watermarks guided by Σw

and H̄w. The editing strength for top two rows and bottom two rows are 0.05 and 0.2 respectively.

Therefore, with probability at least 1− η

tr(Σ0)− tr(Σ1) ≤ λV,maxγU,maxdϕ + 2σ

dx∑
i=1

σU,iσi
√
dϕ + τ, (15)

and

tr(Σ0)− tr(Σ1) ≥ −2σ

dx∑
i=1

σU,iσi
√
dϕ − τ. (16)

A.3 PROPOSITION 3

Proposition 3. For any τ > 0, ∃ c(τ) > 0 such that if σ ≤ c(τ),

Eα∼pα

[
∥g(µ+ Uα)− g(µ+ Uα+ σV ϕ)∥22

]
≤ σ2γU,maxdϕ + τ. (17)

Proof. We can reuse the same techniques as in the previous proofs. For some τ > 0, there exists
c(τ) > 0, so that when σ < c(τ), the bound on MSE can be derived as follows:

Eα∼pα

[
∥g(µ+ Uα)− g(µ+ Uα+ σV ϕ)∥22

]
= Eα∼pα

[
∥σJµ+UαV ϕ+ o(σ(µ+ Uα)TJµ+UαV ϕ)∥22

]
≤ Eα∼pα

[
∥σJµ+UαV ϕ∥22

]
+ τ

= σ2Eα∼pα

[
ϕTV TJT

µ+UαJµ+UαV ϕ
]
+ τ

≤ σ2γU,maxdϕ + τ.
(18)

B CONVERGENCE ON α

In the proofs, we assume that ∥ϵα∥2 is small and constant. Here we show empirical estimation results
on SG2 and on FFHQ, AFHQ-DOG, AFHQ-CAT datasets. The results in Fig. 4(a) are averaged over
100 random α and 100 random ϕ, and uses parallel search on α during the estimation.

C QUALITATIVE SIMILARITY BETWEEN H̄w AND Σw

Since computing H̄w for large models is intractable, here we train a SG2 on MNIST to estimate
H̄w. Fig. 4(b) summarizes perturbed images from a randomly chosen reference along principal
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components of H̄w and Σw. Note that both have quickly diminishing eigenvalues. Therefore most
components other than the few major ones lead to imperceptible changes in the image space.

D ABLATION STUDY

In this section, we estimated attribution accuracy based on various attack parameters with multiple
editing directions (see Tab.6,7,8,9). The image quality evaluation is available in Tab.10 and more
visualizations can be found in Fig.5.

Table 6: Attributability Table of Blurring attack. σ refers standard deviation of Gaussian Blur
filter size 25. When attributability is measured with (without) knowledge of attack, we put results
under KN (UK).

Metric Model σ=0.5 σ=1.0 σ=1.5 σ=2.0
- - UK KN UK KN UK KN UK KN

Att. ↑

BL 0.88 0.89 0.87 0.89 0.87 0.88 0.85 0.88
PC[32:40] 0.99 0.99 0.95 0.99 0.90 0.99 0.53 0.92
PC[32:48] 0.99 0.99 0.97 0.99 0.72 0.92 0.38 0.88
PC[32:64] 0.99 0.99 0.73 0.94 0.51 0.90 0.32 0.83

Table 7: Attributability Table of Noise attack. σ refers standard deviation of Gaussian normal
distribution. When attributability is measured with (without) knowledge of attack, we put results
under KN (UK).

Metric Model σ=0.025 σ=0.05 σ=0.075 σ=0.1
- - UK KN UK KN UK KN UK KN

Att. ↑
BL 0.87 0.88 0.86 0.88 0.86 0.87 0.85 0.87
PC[32:40] 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
PC[32:48] 0.99 0.99 0.97 0.99 0.94 0.99 0.95 0.99
PC[32:64] 0.98 0.99 0.95 0.99 0.92 0.98 0.93 0.98

Table 8: Attributability Table of JPEG attack. Q refers quality metric of JEPG compression. When
attributability is measured with (without) knowledge of attack, we put results under KN (UK).

Metric Model Q=80 Q=70 Q=60 Q=50
- - UK KN UK KN UK KN UK KN

Att. ↑
BL 0.88 0.89 0.87 0.89 0.87 0.89 0.87 0.89
PC[32:40] 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
PC[32:48] 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
PC[32:64] 0.99 0.99 0.99 0.99 0.99 0.99 0.98 0.99

E SIMPLE WATERMARKING STRATEGY OF GENERATIVE MODELS

In the main paper, we studied deep watermarking methodology using SG2 and LDM. Both models
have multi-layer network that maps Gaussian distribution to disentangled latent distribution. This
well-trained latent distribution enables the generative models to create realistic images and embed
watermarks without quality degradation as we discussed. Therefore, introducing disentanglement
mapping network has become the main-stream to design generative models. However, we would also
like to test the effectiveness for generative models without a disentanglement mapping by proposing
a naive deep watermarking strategy. To test this, we employed BigGAN (Brock et al., 2018).
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Original PC[32:40] PC[32:48] PC[32:64]

Figure 5: Qualitative Comparison of Watermarked Samples. The first column shows original images
g0(w). Deep watermarked images are in the second to the last column.
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Table 9: Attributability Table of combination attack. From T1 to T4, the attack parameters are
composed of the weakest to the strongest attack parameters of each attack (e.g., T4 is [σblur = 2.0,
σnoise = 0.2, QJPEG=50]). When attributability is measured with (without) knowledge of attack, we
put results under KN (UK).

Metric Model T1 T2 T3 T4
- - UK KN UK KN UK KN UK KN

Att. ↑
BL 0.86 0.88 0.86 0.87 0.85 0.86 0.83 0.88
PC[32:40] 0.99 0.99 0.94 0.99 0.81 0.95 0.65 0.89
PC[32:48] 0.99 0.99 0.74 0.92 0.52 0.88 0.45 0.85
PC[32:64] 0.99 0.99 0.63 0.90 0.41 0.82 0.26 0.79

Table 10: Quality Comparison Table. Standard deviation are in parentheses. The baseline score is
in the parentheses.

Model FID (7.24)↓ IS (4.95)↑ PSNR ↑
BLBlur 99.05 2.86 (0.35) 21.36 (1.51)
BLNoise 93.04 3.02 (0.27) 21.57 (1.88)
BLJPEG 97.70 2.91 (0.26) 21.44 (1.64)
BlCombo 100.15 2.90 (0.23) 22.49 (1.57)
PC[32:40] 12.35 4.75 (0.05) 21.11 (2.07)
PC[32:48] 13.25 4.86 (0.08) 18.56 (1.81)
PC[32:64] 27.50 4.50 (0.07) 10.70 (0.56)

E.1 METHODS

Different from SG2 and LDM, BigGAN generates images Rdx using vectors z that sampled from
Gaussian distribution Ndz . Instead of simply picking random dimensions and perturbing those ele-
ments of z, we applied the deep watermarking method 3.Since z ∈ N dz does not have disentangled
properties, this method semantically changes generated image. However, this approach also achieves
high performance of attribution accuracy and FID scores.

E.2 EXPERIMENTS

The BigGAN’s input z is in N128 and dϕ = 32 for the following experiments.We tested this ap-
proach on randomly selected Imagenet Deng et al. (2009) classes including cheeseburger, fountain,
golden retriever, husky, Persian cat, and white wolf. For each of the classes, we generated 1,000 im-
ages for experiments. We measured attribution accuracy 1 and generation quality (FID). As shown
in the table 11 and figure 6, this approach also keeps quantitative and qualitative performances of
pretrained BigGAN.

Table 11: Quality changes and accuracy of the proposed method. FID-BL is baseline FID score of
each class. ↑ (↓) indicates higher (lower) is desired.

Imagenet Class FID-BL FID ↓ Accuracy ↑
White Wolf 28.14 26.79 0.99
Persian Cat 67.25 65.78 0.98
Golden Retriever 42.16 40.92 0.94
Husky 55.55 49.78 0.97
Fountain 70.30 65.27 0.99
Cheese Burger 44.07 42.38 0.99
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Original Watermarked Original Watermarked

Figure 6: Watermarking Results of BigGAN: Watermarking semantically changed original images
(Left) to watermarked images (Right).

18


	Introduction
	Related Work
	Methods
	Notations and preliminaries
	Accuracy-quality tradeoff

	Experiments
	Experiment settings
	Attribution performance without postprocessing
	Watermark performance with postprocessing

	Conclusion
	Proof of Propositions
	Proposition 1
	Proposition 2
	Proposition 3

	Convergence on 
	Qualitative similarity between w and w
	Ablation Study 
	Simple Watermarking Strategy of Generative Models
	Methods
	Experiments


