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Abstract

We introduce OpenDebateEvidence, a comprehensive dataset for argument mining
and summarization sourced from the American Competitive Debate community.
This dataset includes over 3.5 million documents with rich metadata, making it
one of the most extensive collections of debate evidence. OpenDebateEvidence
captures the complexity of arguments in high school and college debates, pro-
viding valuable resources for training and evaluation. Our extensive experiments
demonstrate the efficacy of fine-tuning state-of-the-art large language models for
argumentative abstractive summarization across various methods, models, and
datasets. By providing this comprehensive resource, we aim to advance com-
putational argumentation and support practical applications for debaters, edu-
cators, and researchers. OpenDebateEvidence is publicly available to support
further research and innovation in computational argumentation. Access it here:
https://huggingface.co/datasets/Yusuf5/OpenCaselist.

1 Introduction

Argument mining plays a pivotal role in developing advanced language models (LLMs) capable of
sophisticated reasoning and understanding. Engaging with complex argumentative texts enhances
LLMs’ abilities to comprehend, generate, and evaluate arguments. This improves their performance
in applications such as legal document analysis, educational tools, and more.

Existing argument mining datasets, such as DebateSum introduced by Roush & Balaji (2020), are
limited in scope. DebateSum, with 240,566 examples, primarily focuses on pre-season evidence from
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summer camps, excluding the rich argumentative structures in regular-season debates. This limitation
affects dataset size, representativeness, and utility for large-scale argument mining.

To address these gaps, we introduce OpenDebateEvidence, a large-scale dataset for argument mining
and summarization sourced from the OpenCaseList project (Hardy, 2024). This dataset comprises 3.5
million documents, making it the most extensive collection of debate evidence available. It captures
the full spectrum of arguments presented throughout the debate season. OpenDebateEvidence’s
comprehensive nature, with its detailed metadata, makes it highly valuable for training language
models.

In this paper, we provide an in-depth overview of OpenDebateEvidence, detailing our data collection
and preprocessing methods. We demonstrate that training LLMs on OpenDebateEvidence signifi-
cantly improves their performance not only on this dataset but also on other related argumentative
datasets. We conducted extensive evaluation experiments using state-of-the-art language models:
LLaMA3-8B 2 and Mistral-7B3. These models were fine-tuned using advanced techniques such as
Low-Rank Adaptation (LoRA) (Hu et al., 2021), Representation Fine-Tuning (ReFT) (Wu et al.,
2024), and Orthogonalization (Arditi et al., 2023). The results show substantial improvements in
model performance compared to those trained on previous argument mining datasets. This underlines
OpenDebateEvidence’s effectiveness in enhancing argument-mining capabilities.

Our contributions are:

1. We introduce OpenDebateEvidence, the largest and most comprehensive dataset for ar-
gument mining and summarization, encompassing 3.5 million documents with detailed
metadata.

2. We provide rich metadata that facilitates various NLP tasks and applications, enhancing
the dataset’s utility for researchers and practitioners.

3. We demonstrate significant performance improvements of state-of-the-art language
models not only on OpenDebateEvidence but also on other related argumentative datasets
through extensive fine-tuning experiments.

4. We evaluate the dataset’s effectiveness in different scenarios and methods, including
various fine-tuning techniques such as Low-Rank Adaptation (LoRA), Representation Fine-
Tuning (ReFT), and Orthogonalization, showcasing substantial gains in model performance.

Our experiments highlight that training on OpenDebateEvidence not only enhances model perfor-
mance on this dataset but also significantly improves results on other related argumentative datasets.
This underscores the dataset’s superiority and its potential to drive advancements in computational
argumentation research.

2 Background and Related Work

Competitive debate in the United States encompasses several prominent styles, each with unique
formats, rules, and emphasis. The three most notable styles are Policy Debate, Lincoln-Douglas
Debate, and Public Forum Debate, popular at both high school and collegiate levels. While sharing
structural similarities, these debate formats differ in focus, speech times, and the importance placed
on evidence. OpenDebateEvidence includes evidence from all of these formats.

2.1 Policy Debate

The High School and College Policy Debate, also known as the "cross-examination debate" (CX),
involves two teams of students arguing for and against a specific policy proposal based on an annually
changing broad resolution. Each debate round lasts about 90 minutes, comprising eight speeches
(four by each team and two by each speaker) and cross-examination periods. The structure includes
constructive speeches followed by refutations, with cross-examination periods allowing debaters to
clarify arguments or challenge assumptions. New arguments are restricted to constructive speeches.

2https://huggingface.co/meta-llama/Meta-Llama-3-8B
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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During a debate, teams present evidence from various sources to support their arguments. This
evidence is usually in the form of written "cards" 1, such as research publications, academic articles,
news reports, or government documents. Figure 1 shows an example of a "card." The quality and
quantity of evidence used in a debate round often determine the winner. Policy Debate is unique
among competitive debate styles in that the quality of the speech act is secondary2 compared to the
quality, quantity, and factuality of the evidence.

2.2 Lincoln Douglas Debate

Lincoln-Douglas Debate (LD), a one-on-one format with a bimonthly topic, originated from the
historic debates between Abraham Lincoln and Stephen Douglas. Popular in high school and college
competitions, LD debates share structural similarities with Policy Debate but feature shorter speech
times and cross-examination periods. LD debates emphasize ethical and moral reasoning, focusing
more on philosophical arguments rather than policy implications. However, they still prioritize the
quality and quantity of evidence presented.

2.3 Public Forum Debate

Public Forum Debate is a two-on-two format debating a monthly topic designed to be accessible to a
broader audience. Compared to Policy and LD debates, Public Forum rounds have shorter speaking
times and place less emphasis on evidence. Public Forum Debate constitutes a smaller portion of the
evidence in OpenDebateEvidence and was not included in DebateSum.

2.4 Existing Datasets and Research

Significant prior work in argument mining has focused on competitive formal debate. IBM’s Project
Debater has been a leading effort, publishing extensively on argument detection (Ein-Dor et al., 2019),
argument quality (Gleize et al., 2019), key point analysis/summarization (Bar-Haim et al., 2020;
Magnusson & Friedman, 2021), and autonomous debating systems (Slonim et al., 2021). However,
their work does not focus on the real-world competitive debate evidence found in our dataset.

Other notable contributions include VivesDebate, a multilingual audio dataset of debate tournaments
(Ruiz-Dolz & Iranzo-Sánchez, 2024); ArgAnalysis35K, focusing on single argument analysis pairs in
evidence-free parliamentary debate (Joshi et al., 2023); IAM (Integrated Argument Mining), a highly
annotated dataset for integrated argument mining tasks with only 1,000 articles (Cheng et al., 2022);
and DebateSum, a dataset with 240,566 examples focusing on pre-season debate evidence (Roush
& Balaji, 2020). Additionally, several legal summarization datasets have been developed, including
ArgLegalSumm (Elaraby & Litman, 2022), Multi-LexSum (Shen et al., 2022), and datasets targeting
Indian and British case law (Shukla et al., 2022), which together total fewer than 10,000 examples.

Other resources include logos.app Community (2024c), debate.cards (Community, 2024b), and con-
tention.ai (Community, 2024a), which index various debate evidence and generate new evidence from
web searches. Datasets targeting biased or query-focused summarization include QBSUM, a Chinese
dataset with 49,000 samples (Zhao et al., 2021); QMSum, which studies meeting summarization with
1,808 samples (Zhong et al., 2021); and LMGQS, a dataset with over 1 million documents converted
to query-focused summarization (Xu et al., 2023). In contrast, our dataset is fully human-created and
human-annotated by active debate competitors.

Compared to these datasets, OpenDebateEvidence offers a significantly larger scale and scope, with
over 3.5 million documents enriched with detailed metadata.

1Policy Debaters used to literally cut their evidence out of magazines and glue it onto physical cards; while
this has fallen out of fashion, the name stuck.

2Leading to a peculiar phenomenon known as "speed reading" or "spreading" to be normalized: https:
//en.wikipedia.org/wiki/Spreading_(debate)
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Figure 1: An example of a piece of debate evidence, colloquially known as a "card," from OpenDeba-
teEvidence before parsing. Lines 1 and 2 are the hat and the pocket, used for organizing the evidence
by argument and speech. Lines 3-4 are the "tag," a biased abstractive summary of the document.
The beginning of line 5 shows the author and the year. The rest of lines 5-8 provide the evidence’s
citation. The remainder of the document is the evidence itself. Underlined, bolded, or boxed parts are
crucial for the argument, and highlighted sections are read aloud during the speech. These elements
form various hierarchical levels of biased token-level extractive summaries.
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3 OpenDebateEvidence Dataset

3.1 Data Collection

OpenDebateEvidence is sourced from the OpenCaseList project (Hardy, 2024), an online platform
where high school and college debate teams disclose and open-source their evidence. The dataset
contains over 3.5 million documents, covering all NSDA debate topics from 2014 to 2022.3. Each
document corresponds to a single piece of evidence used in a debate, categorized by debate format
(Policy, LD, Public Forum), and includes comprehensive metadata such as author, date, title, source,
citation details, and the debate round in which it was used4.

The dataset also includes standardized tags to describe the type of argument made by the document,
such as topicality, disadvantages, advantages, and counter plans, along with details of the structure
and location in the debate file from which the document was extracted. To protect privacy, identifying
information has been anonymized.

3.2 Data Preprocessing

Debate evidence is stored in the .docx file format, requiring a specialized parsing process to extract
relevant information. The parsing pipeline begins by unzipping the .docx file to access the internal
XML files. Ensuring accurate preprocessing is paramount for maintaining dataset quality. This
process involves detailed steps to preserve the integrity and consistency of the data, including
tokenization, simplification, and structuring of text blocks, followed by extracting and organizing
individual debate cards into a structured format that captures both metadata and content.

The XML files are parsed to extract formatting details such as underlining, bold, and highlighting.
Next, the document undergoes tokenization, creating a structured representation with text blocks repre-
senting paragraphs or coherent units of text along with their formatting information. A simplification
step removes unnecessary formatting and merges adjacent tokens with similar styling.

To extract individual debate cards, the parsing procedure identifies card boundaries based on format-
ting and structure, extracting components such as the tag, citation, and body text. This information is
organized into a structured format that captures the metadata and content of each debate card. Finally,
the parsed dataset is converted back into a cleaned Hugging Face dataset, providing a human-readable
version of the dataset. This structured dataset serves as the foundation for further natural language
processing tasks.

3.3 Data Deduplication

After parsing the dataset and extracting individual cards, identifying and removing duplicates is
essential to ensure data quality. Deduplication involves comparing the textual content of each card to
identify those sharing significant portions of their text. This process enhances dataset usability by
eliminating redundancy, ensuring each unique argument is represented only once.

The deduplication algorithm splits each card’s text into sentences. These sentences are then prepro-
cessed by removing non-letter characters and converting them to lowercase. Short sentences below a
certain length are filtered out to focus on meaningful content.

The algorithm retrieves and compares card IDs with a significant number of shared sentences. If the
number of matching sentences exceeds a predefined threshold and their positions within the cards
are within a certain range, the cards are considered duplicates. Duplicate clusters are formed by
identifying all cards connected through shared sentences. A representative card is then selected from
each cluster based on factors such as sentence count and content quality, and duplicates are removed
iteratively.

We note that this is a description of how we created the "Duplicates" metadata column. We performed
a separate neural semantic de-duplication procedure which is described in the Appendix.

3A list of these topics can be found here
4An example of some of these downloads can be found here

5

https://www.speechanddebate.org/topics/
https://opencaselist.com/ndtceda23/downloads


3.4 Data Statistics

The OpenDebateEvidence dataset offers a comprehensive collection of over 3.5 million documents
categorized by debate format (Policy, Lincoln-Douglas, and Public Forum). Each document is
enriched with over 40 columns of extensive metadata, including author, date, title, source, citation
details, and debate round information. Standardized tags describe the type of argument, such as
topicality, disadvantages, advantages, and counterplans.

Policy Debate evidence constitutes approximately two-thirds of the dataset, Lincoln-Douglas Debate
evidence comprises about one-third, and Public Forum Debate evidence makes up a smaller per-
centage. Spanning topics from 2014 to 2022, the dataset represents over 1,300 schools and includes
contributions from more than 6,400 authors.

Key statistics of the dataset are provided in Table 1, and more detailed statistics and information can
be found in Appendix F.

Table 1: Key Statistics of OpenDebateEvidence Dataset
Feature Count
Total Rows 4,830,561
Total Documents (valid full-text column) 3,512,280
Policy Debate Evidence 2,768,419
Lincoln-Douglas Debate Evidence 1,526,383
Public Forum Debate Evidence 43,131
Years Covered 2014-2022
Average Document Length (characters) 5,270
Total Schools Represented 1,366
Unique Authors 6,455
Unique Topics 68
Number of Features (columns) 45

3.5 Rich Metadata for Argument Structure

Each evidence document is organized with a “hat,” “pocket,” and “tag” to represent its role within a
debate case.

The “pocket” indicates the top-level speech section the evidence supports, such as “1NC” for the first
negative constructive speech. The “hat” denotes the broad argument category, like “Oil Disadvantage,”
which aligns with a structured argument against an affirmative case. The “tag” provides a concise,
biased summary of the specific argument made by the evidence. Debaters often create these tags first
and then find the evidence that fits the tag.

This metadata encodes the rhetorical structure and purpose of the evidence in a practical and real-
world context. The “hat” and “pocket” provide the argument’s context, while the “tag” offers a
concise summary of the core claim.

For argument mining, this metadata offers valuable semantic annotations for training models on
argument components and relations. “Hats” and “pockets” help models learn the overarching structure,
while “tags” summarize key points.

For summarization, the hierarchical metadata enables multi-level summaries: “pockets” for high-level
overviews, “hats” for key categories, and “tags” for concise core claims. The biased nature of “tags”
illustrates how debaters rhetorically summarize their claims and arguments. OpenDebateEvidence
is particularly rich as it includes both hierarchical biased abstractive and token-level extractive
summaries.

4 Experiments

To evaluate the efficacy of the OpenDebateEvidence dataset for argument mining and summarization,
we conducted a series of fine-tuning experiments using state-of-the-art language models. We also
evaluated the performance of these models on two related datasets.
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4.1 Experimental Setup

We employed three recent fine-tuning techniques for adapting our models to OpenDebateEvidence:
Low-Rank Adaptation (LoRA) (Hu et al., 2021), Representation Fine-Tuning (ReFT) (Wu et al.,
2024), and Orthogonalization (Arditi et al., 2023). These methods are chosen for their parameter
efficiency and ability to prevent catastrophic forgetting. The details of these techniques are provided
in Appendix D.

We perform our experiments on three datasets: OpenDebateEvidence, DebateSum, which is also a
dataset of Policy Debate Evidence, and the billsum dataset from Kornilova & Eidelman (2019), a
dataset of US legislation and summaries, to illustrate our fine-tuned models capabilities at performing
argumentative summarization in many contexts.

We conducted two types of experiments: traditional NLP evaluation metrics and using GPT-4o as
a judge model. All experiments were conducted on a 4xA100 machine from Microsoft Azure with
parallelism, attention optimization, and 16-bit quantization enabled. All decoding/sampling settings
were kept default. The seed value of "42" was used wherever possible.

4.1.1 Traditional NLP Metrics

For the traditional NLP metrics, we evaluated the models on validation datasets of the whole BillSum
dataset and 10,000 examples from OpenDebateEvidence. Each model was tasked with generating a
short "abstract" summarizing the key arguments made in each document. We computed ROUGE F1
scores between the generated text and the ground-truth "tag" provided in the OpenDebateEvidence
metadata and the reference summaries in BillSum. For more details see Appendix E. Additionally,
we evaluated each language model’s perplexity on the sampled subsets to assess how well the models
captured the overall distribution of debate and legislative language.

4.1.2 LLM as Judge

In the "LLM as Judge" experiments, we evaluated the quality of the generated abstracts using GPT-4o
as the judge. Each model’s output was assessed on two criteria: the quality of the output and the
quality of supporting the argument, both rated on a scale from 1 to 10. The evaluation was conducted
on 1,000 results from both datasets. This approach allows us to measure not only the linguistic
quality of the summaries but also their effectiveness in supporting the arguments. For more details
see Appendix E.2.2 .

4.1.3 OpenDebateEvidence Performance

For the OpenDebateEvidence dataset (Table 2), the LLaMA3-70B models significantly outperformed
both the LLaMA3-8B and Mistral-7B models across all ROUGE metrics. The larger model capacity
of LLaMA3-70B contributed to its superior performance, highlighting the importance of model
size in complex summarization tasks. Fine-tuning techniques, particularly LoRA, further enhanced
the LLaMA3-70B model’s performance, with the LoRA fine-tuned model achieving the highest
scores across all metrics. This underscores LoRA’s effectiveness in adapting large models with
minimal additional parameters, allowing for improved summarization quality without extensive
computational resources. ReFT also showed strong performance improvements on the LLaMA3-70B
model, indicating its robustness in refining hidden representations for better output. Orthogonalization,
while still providing gains, was less impactful compared to LoRA and ReFT.

The base versions of Google Gemini and Anthropic Claude models also demonstrated competitive
performance, outperforming the base LLaMA3-8B and Mistral-7B models. However, they did
not surpass the fine-tuned LLaMA3-70B models, suggesting that while these models are strong
out-of-the-box, fine-tuning large models like LLaMA3-70B with techniques such as LoRA can yield
superior results.

4.1.4 BillSum Performance

On the BillSum dataset (Table 3), the LLaMA3-70B models again demonstrated superior perfor-
mance compared to smaller models and the base versions of Google Gemini and Anthropic Claude.
The LoRA fine-tuned LLaMA3-70B model achieved the highest ROUGE scores and the lowest
perplexity, indicating not only better summarization quality but also greater fluency and coherence
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Table 2: Performance on OpenDebateEvidence. ROUGE F1 scores and perplexity on 10,000 sampled
documents, and LLM as Judge scores on 1,000 results. Scores are averaged over three runs. R-1,
R-2, and R-L denote ROUGE-1, ROUGE-2, and ROUGE-L respectively. Error bars represent one
standard error over 3 trials.

Model R-1 (%) R-2 (%) R-L (%) Perplexity Output
Quality

Support
Quality

Mistral-7B
Base 27.8± 0.3 8.2± 0.5 24.5± 0.8 150.2± 5.1 7.5± 0.2 7.3± 0.2
LoRA 30.1± 0.5 9.4± 0.2 25.8± 0.6 33.9± 2.3 7.7± 0.2 7.5± 0.2
ReFT 29.9± 0.2 9.3± 0.1 25.6± 0.6 50.3± 3.4 7.6± 0.3 7.4± 0.3
Orthogonal 27.9± 0.5 8.3± 0.2 24.7± 1.2 76.4± 4.4 7.6± 0.2 7.4± 0.2

LLaMA3-8B
Base 25.4± 0.6 7.6± 0.2 22.8± 1.3 100.3± 5.3 7.2± 0.3 7.0± 0.3
LoRA 25.7± 0.7 7.8± 0.1 23.0± 0.7 77.5± 4.6 7.3± 0.2 7.1± 0.2
ReFT 27.6± 1.0 8.7± 0.4 24.9± 0.7 47.8± 1.9 7.3± 0.3 7.1± 0.3
Orthogonal 25.5± 1.2 7.7± 0.4 22.9± 2.1 88.0± 5.7 7.2± 0.3 7.0± 0.3
LoRA (1M Ex) 32.2± 1.5 9.9± 1.0 27.4± 1.2 21.8± 2.5 8.0± 0.2 7.8± 0.2

LLaMA3-70B
Base 33.8± 1.2 14.1± 0.9 30.2± 1.3 45.7± 3.2 7.9± 0.2 7.5± 0.2
LoRA 37.2± 1.0 15.8± 0.8 33.4± 1.1 27.3± 2.7 8.2± 0.2 8.1± 0.2
ReFT 35.9± 1.1 15.1± 0.7 32.6± 1.2 31.4± 2.8 8.0± 0.3 7.9± 0.2
Orthogonal 34.2± 1.2 14.3± 0.8 31.1± 1.3 39.9± 3.1 8.1± 0.2 7.7± 0.3

Google Gemini
Base 32.5± 1.3 13.5± 0.9 29.4± 1.4 49.8± 3.6 8.5± 0.2 7.9± 0.3

Anthropic Claude
Base 31.2± 1.4 12.9± 0.9 28.1± 1.3 52.1± 3.7 8.7± 0.3 7.8± 0.3

Table 3: Performance on BillSum. ROUGE F1 scores and perplexity on 10,000 sampled documents,
and LLM as Judge scores on 1,000 results. Scores are averaged over three runs. R-1, R-2, and R-L
denote ROUGE-1, ROUGE-2, and ROUGE-L respectively. Error bars represent one standard error
over 3 trials.

Model R-1 (%) R-2 (%) R-L (%) Perplexity Output
Quality

Support
Quality

Mistral-7B
Base 44.8± 0.3 21.2± 0.5 40.5± 0.8 25.2± 1.1 7.2± 0.3 7.0± 0.3
LoRA 47.1± 0.5 23.4± 0.2 42.8± 0.6 23.9± 0.3 7.4± 0.2 7.2± 0.2
ReFT 46.9± 0.2 23.3± 0.1 42.6± 0.6 24.3± 0.4 7.5± 0.3 7.3± 0.3
Orthogonal 44.9± 0.5 21.3± 0.2 40.7± 1.2 25.4± 1.4 7.3± 0.2 7.1± 0.2

LLaMA3-8B
Base 42.4± 0.6 19.6± 0.2 38.8± 1.3 27.3± 1.3 7.0± 0.3 6.8± 0.3
LoRA 42.7± 0.7 19.8± 0.1 39.0± 0.7 27.0± 1.1 7.1± 0.2 6.9± 0.2
ReFT 44.6± 1.0 20.7± 0.4 40.9± 0.7 26.8± 1.0 7.2± 0.3 7.0± 0.3
Orthogonal 42.5± 1.2 19.7± 0.4 38.9± 2.1 27.5± 1.5 7.1± 0.3 6.9± 0.3
LoRA (1M Ex) 48.2± 1.5 24.9± 1.0 43.4± 1.2 21.8± 0.5 7.8± 0.2 7.6± 0.2

LLaMA3-70B
Base 50.2± 1.1 27.4± 0.9 45.7± 1.2 22.9± 2.3 7.8± 0.2 7.6± 0.2
LoRA 54.6± 1.0 30.5± 0.8 50.0± 1.1 19.7± 2.1 8.0± 0.2 8.0± 0.2
ReFT 52.9± 1.1 29.1± 0.7 48.3± 1.2 20.5± 2.4 7.9± 0.3 7.8± 0.2
Orthogonal 51.1± 1.2 28.0± 0.9 46.6± 1.4 23.8± 2.6 7.9± 0.3 7.7± 0.3

Google Gemini
Base 48.7± 1.3 26.0± 1.0 44.3± 1.5 24.9± 2.8 8.4± 0.3 8.0± 0.3

Anthropic Claude
Base 47.3± 1.4 24.8± 1.1 42.9± 1.6 26.7± 3.0 8.3± 0.3 7.8± 0.3
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Table 4: Performance on DebateSum. ROUGE F1 scores and perplexity on 10,000 sampled docu-
ments, and LLM as Judge scores on 1,000 results. Scores are averaged over three runs. R-1, R-2, and
R-L denote ROUGE-1, ROUGE-2, and ROUGE-L respectively. Error bars represent one standard
error over 3 trials.

Model R-1 (%) R-2 (%) R-L (%) Perplexity Output
Quality

Support
Quality

Mistral-7B
Base 26.3± 0.4 7.5± 0.3 23.1± 0.6 130.5± 4.2 7.3± 0.3 7.0± 0.3
LoRA 28.5± 0.6 8.9± 0.3 24.7± 0.5 30.2± 2.0 7.5± 0.3 7.3± 0.3
ReFT 28.3± 0.3 8.8± 0.2 24.5± 0.4 45.1± 2.7 7.4± 0.2 7.2± 0.2
Orthogonal 26.4± 0.5 7.6± 0.2 23.3± 0.7 70.3± 3.5 7.4± 0.3 7.2± 0.3

LLaMA3-8B
Base 24.2± 0.5 6.9± 0.3 21.9± 0.8 95.7± 4.5 7.0± 0.3 6.7± 0.3
LoRA 24.5± 0.6 7.0± 0.2 22.1± 0.6 73.9± 3.2 7.1± 0.2 6.8± 0.2
ReFT 26.6± 0.9 8.0± 0.3 23.8± 0.7 44.7± 1.7 7.1± 0.3 6.9± 0.3
Orthogonal 24.3± 1.1 7.0± 0.4 22.0± 1.9 82.5± 4.2 7.0± 0.3 6.8± 0.3
LoRA (1M Ex) 30.4± 1.4 9.4± 0.9 26.5± 1.1 19.8± 1.7 7.8± 0.3 7.6± 0.3

LLaMA3-70B
Base 36.7± 1.2 16.9± 0.9 32.8± 1.3 42.1± 3.1 7.7± 0.2 7.4± 0.2
LoRA 39.4± 1.1 18.5± 0.8 35.1± 1.2 28.9± 2.5 8.0± 0.2 8.0± 0.2
ReFT 38.1± 1.2 17.8± 0.7 34.2± 1.2 30.5± 2.8 7.9± 0.3 7.8± 0.2
Orthogonal 36.9± 1.3 17.0± 0.8 33.0± 1.4 39.3± 3.2 7.8± 0.3 7.6± 0.3

Google Gemini
Base 35.5± 1.4 15.8± 0.9 31.4± 1.5 44.5± 3.4 8.5± 0.3 7.9± 0.3

Anthropic Claude
Base 34.2± 1.5 15.0± 1.0 30.1± 1.6 46.8± 3.6 8.8± 0.3 7.8± 0.3

in the generated summaries. ReFT also provided significant improvements, reinforcing its effec-
tiveness across different datasets. The consistent performance gains of LoRA and ReFT across the
datasets suggest that these fine-tuning techniques are effective in enhancing model capabilities in
summarization tasks.

Google Gemini and Anthropic Claude performed competitively, especially considering they were
evaluated in their base configurations. Their performance on BillSum highlights their strong capabili-
ties in handling legislative texts, but they were still outperformed by the fine-tuned LLaMA3-70B
models. Orthogonalization showed less improvement compared to LoRA and ReFT, which may be
due to its more conservative approach in parameter adjustments.

4.1.5 DebateSum Performance

In evaluating the DebateSum dataset (Table 4), the fine-tuned LLaMA3-70B models demonstrated
notable improvements over all other models. The LoRA fine-tuned LLaMA3-70B model achieved
the highest scores across all ROUGE metrics and exhibited the lowest perplexity, indicating superior
summarization capabilities. ReFT also significantly enhanced the LLaMA3-70B model’s performance,
confirming its robustness in refining models for complex summarization tasks involving argumentative
content.

The base versions of Google Gemini and Anthropic Claude also performed well on DebateSum,
outperforming the base versions of smaller models but not reaching the performance levels of the fine-
tuned LLaMA3-70B models. This suggests that while these models have strong general capabilities,
targeted fine-tuning can lead to substantial performance gains in specific tasks. Orthogonalization,
while providing some improvements, was less effective compared to LoRA and ReFT, consistent
with observations on the other datasets.

In summary, the new experimental results demonstrate the effectiveness of fine-tuning techniques,
especially LoRA, when applied to larger models like LLaMA3-70B. These techniques consistently
improved performance across all datasets, highlighting their utility in enhancing large language
models for complex summarization tasks. The base versions of Google Gemini and Anthropic Claude
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showed strong capabilities, but targeted fine-tuning of large models remains crucial for achieving
state-of-the-art results.

4.2 Additional Experiments

We conducted additional experiments to further evaluate the robustness and generalizability of
our fine-tuning techniques. These experiments included assessments on the xSum dataset, a non-
argumentative summarization task, and an analysis of inter-human and human-GPT-4 agreement rates
in evaluating summary quality. We also conducted further experiments to evaluate our models on
argument detection, classification tasks, stance detection, and downstream tasks. We also assessed
the reliability of GPT-4 as an evaluator by comparing its ratings with those of human experts. These
additional experiments are included in the appendix

5 Conclusion

In this paper, we introduce OpenDebateEvidence, a large-scale dataset for argument mining and
summarization, comprising over 3.5 million documents from the OpenCaseList project. After exten-
sive preprocessing and deduplication, we created a high-quality dataset enriched with metadata that
captures the hierarchical structure and semantics of debate arguments. Our experiments demonstrated
the potential of fine-tuning modern large language models for argumentative abstractive summariza-
tion in a parameter-efficient manner. The results showed significant improvements in performance
on the OpenDebateEvidence, DebateSum, and BillSum datasets, validating the effectiveness of our
approach.

By providing this resource to the community, we aim to advance computational argumentation and
support practical applications for debaters, educators, and researchers. The OpenDebateEvidence
dataset, with its rich metadata and diverse collection of debate formats, offers an excellent resource
for developing and evaluating argument mining and summarization models.

Future work includes exploring additional fine-tuning techniques and expanding the dataset to include
more diverse debate formats. We also plan to investigate the integration of multimodal data to enhance
argument comprehension and explore cross-linguistic adaptations to broaden the applicability of
our models. By continuing to refine and expand this resource, we hope to further enhance language
models’ capabilities in understanding and generating complex argumentative discourse.
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Appendix

We include additional experiments, which could not fit within the page limits of the original paper in
this section.

Summarization Performance on xSum

The xSum dataset (Narayan et al., 2018) (Table 5) comprises 11,334 validation documents and is
designed for single-sentence news summarization. Unlike the argumentative datasets, xSum focuses
solely on factual accuracy and conciseness without requiring support quality. Our experiments
on xSum demonstrate that the fine-tuning techniques, particularly LoRA, consistently improve
summarization performance across different model sizes.

Table 5: Performance on xSum (Validation Set, 11,334 documents). ROUGE F1 scores and perplexity
on the validation set. Scores are averaged over three runs. R-1, R-2, and R-L denote ROUGE-1,
ROUGE-2, and ROUGE-L respectively. Error bars represent one standard error over 3 trials.

Model R-1 (%) R-2 (%) R-L (%) Perplexity Output
Quality

Mistral-7B
Base 39.2± 0.7 16.5± 0.6 31.5± 0.8 34.7± 2.8 7.6± 0.2
LoRA 40.8± 0.6 17.2± 0.5 32.7± 0.7 30.5± 2.5 7.7± 0.2
ReFT 40.5± 0.7 17.1± 0.5 32.5± 0.7 31.8± 2.6 7.7± 0.2

LLaMA3-8B
Base 42.0± 0.6 18.0± 0.6 34.0± 0.8 29.2± 2.4 7.8± 0.2
LoRA 43.7± 0.5 19.1± 0.4 35.2± 0.7 26.8± 2.2 8.0± 0.2
ReFT 43.4± 0.6 19.0± 0.5 35.0± 0.8 27.3± 2.3 8.0± 0.2

LLaMA3-70B
Base 46.5± 0.7 21.2± 0.6 38.0± 0.8 22.4± 2.0 8.4± 0.2
LoRA 48.2± 0.6 22.5± 0.5 39.5± 0.7 19.6± 1.8 8.6± 0.2
ReFT 47.9± 0.7 22.3± 0.5 39.2± 0.8 20.5± 1.9 8.5± 0.2

Argument Detection and Classification

We performed evaluations on argument detection and classification tasks using the same fine-tuning
techniques—LoRA, ReFT, and Orthogonalization—as in our original experiments. We used evidence
from OpenDebateEvidence which randomly sampled. The evidence was labeled based on if the
category string was included within the hat, pocket, or label. The objective of these tasks was to
classify arguments into one of 4 specified categories: “Topicality,” “Disadvantages,” “Advantages,”
and “Counterplans.” The following table summarizes model performance on a training set of 10, 000
examples and a validation set of 1, 000 examples, reporting accuracy, F1 score, precision, and recall.
Results are averaged over three runs with one standard error.

Table 6: Model Performance on Argument Detection and Classification Tasks - Validation scores
on a training set of 10,000 examples and a validation set of 1,000 examples. Results are averaged
over 3 runs with error reported as ± one standard error.

Model Technique Accuracy (%) F1 Score Precision Recall
Mistral-7B Base 72.8± 0.5 0.70± 0.04 0.68± 0.03 0.69± 0.03

LoRA 78.2± 0.4 0.76± 0.03 0.75± 0.04 0.76± 0.04
ReFT 77.9± 0.6 0.75± 0.02 0.74± 0.03 0.75± 0.03
Orthogonal 73.1± 0.6 0.71± 0.03 0.70± 0.03 0.71± 0.03

LLaMA3-8B Base 74.5± 0.6 0.72± 0.03 0.70± 0.02 0.71± 0.03
LoRA 81.2± 0.3 0.79± 0.02 0.78± 0.03 0.79± 0.02
ReFT 80.8± 0.5 0.78± 0.03 0.77± 0.02 0.78± 0.03
Orthogonal 75.2± 0.7 0.73± 0.04 0.71± 0.03 0.72± 0.04
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Stance Detection Performance

We expanded our experimentation to assess model performance on stance detection tasks, using
a sampled subset of OpenDebateEvidence with 10,000 examples in the training set and 1,000 for
validation. This experiment aims to examine each model’s ability to classify arguments as either
"affirmative" (aff) or "negative" (neg), focusing on models fine-tuned with different techniques. We
label each row based on "side" dataset column.

Results, displayed in Table 7, show that the LLaMA3-8B models consistently outperformed the
Mistral-7B models across all metrics, particularly in accuracy and F1-score. Fine-tuning with LoRA
and ReFT provided notable improvements over the base models, with LoRA yielding the highest
accuracy and F1-scores on LLaMA3-8B when using 1,000,000 examples for fine-tuning. This
reinforces LoRA’s effectiveness in parameter adaptation and generalization across diverse tasks.
ReFT also showed substantial gains in stance detection, suggesting robustness in refining hidden
representations for classification tasks. Orthogonalization provided moderate improvements, but
its impact was less pronounced than LoRA and ReFT, potentially due to its paramater subtractive
technique.

These findings highlight the importance of fine-tuning techniques, especially LoRA and ReFT, in
enhancing model performance on stance detection. The LoRA fine-tuned LLaMA3-8B model, using
an extended dataset, achieved an accuracy of 87.1%± 0.9 and an F1-score of 85.6± 0.6, the highest
among all models, underscoring the technique’s adaptability and efficiency.

Table 7: Performance of Models on Stance Detection Tasks - 10,000 examples in the training set,
1,000 validation examples, validation scores reported. Outputs were constrained to either "aff" or
"neg".

Model Technique Accuracy (%) Precision Recall F1-Score
Mistral-7B Base 77.3± 0.6 75.8± 0.7 76.2± 0.5 76.0± 0.4
Mistral-7B LoRA 82.4± 0.5 81.2± 0.6 81.7± 0.4 81.4± 0.5
Mistral-7B ReFT 81.9± 0.4 80.7± 0.5 81.1± 0.6 80.9± 0.5
Mistral-7B Orthogonal 78.8± 0.5 77.2± 0.6 77.5± 0.4 77.3± 0.4
LLaMA3-8B Base 79.5± 0.7 77.9± 0.8 78.2± 0.7 78.0± 0.6
LLaMA3-8B LoRA 85.3± 0.8 83.8± 0.7 84.1± 0.5 83.9± 0.6
LLaMA3-8B ReFT 84.1± 0.6 82.5± 0.7 83.0± 0.6 82.7± 0.5
LLaMA3-8B Orthogonal 80.5± 0.7 79.2± 0.6 79.5± 0.6 79.3± 0.5
LLaMA3-8B LoRA (1M Ex) 87.1± 0.9 85.4± 0.8 85.8± 0.7 85.6± 0.6

Using OpenDebateEvidence for Pre-Training

We evaluated OpenDebateEvidence pretrained vs non-pretrained versions of the Mistral-7B and
LLaMA3-8B models on several downstream tasks, including DebateSum, ArgAnalysis35K, and
Multi-LexSum. The results indicate that pretraining contributes significantly to improved performance
across ROUGE scores, perplexity (PPL), and LLM as Judge (LJ) scores for both output quality (LJ-Q)
and support quality (LJ-S). These findings reinforce the value of pretraining for enhancing model
capabilities in argument classification, summarization, and multi-domain summarization tasks.

In Table 8, we report the averaged performance metrics across three runs, using a plus/minus notation
to denote the standard error. Notably, pretrained versions of both Mistral-7B and LLaMA3-8B consis-
tently outperform their non-pretrained counterparts across all datasets. The Mistral-7B model showed
considerable improvements on the DebateSum and Multi-LexSum tasks when pretrained, achieving
substantial gains in R-1, R-2, and R-L scores while reducing perplexity by over 60%. Similarly,
pretraining LLaMA3-8B on these tasks led to significant gains, especially on the ArgAnalysis35K
dataset, with ROUGE scores increasing by more than 4 points across all metrics.

These results underscore the importance of targeted pretraining in enhancing performance on specific
tasks. The improvements in support quality (LJ-S) and output quality (LJ-Q) further suggest that
pretraining helps the models generate more coherent and contextually relevant summaries, which are
essential in tasks requiring argument understanding and summarization.
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Table 8: Performance of Pretrained and Non-Pretrained Models on Downstream Tasks - The
entire dataset is used for both pretraining and fine-tuning. ArgAnalysis35K is an argument quality
classification task.

Model Dataset PT R-1 R-2 R-L PPL LJ-Q LJ-S Steps
Mistral-7B DebateSum No 26.3 ± 4 7.5 ± 3 23.1 ± 6 130.5 ± 42 7.3 ± 3 7.0 ± 3 60k
Mistral-7B DebateSum Yes 30.4 ± 1.4 9.4 ± 0.9 26.5 ± 1.1 19.8 ± 1.7 7.8 ± 0.3 7.6 ± 0.3 40k
LLaMA3-8B DebateSum No 24.2 ± 5 6.9 ± 3 21.9 ± 8 95.7 ± 4.5 7.0 ± 3 6.7 ± 3 60k
LLaMA3-8B DebateSum Yes 32.2 ± 1.5 9.9 ± 1.0 27.4 ± 1.2 21.8 ± 2.5 8.0 ± 0.2 7.8 ± 0.2 35k
Mistral-7B ArgAnalysis35K No 44.8 ± 0.3 21.2 ± 0.5 40.5 ± 0.8 25.2 ± 1.1 7.2 ± 0.3 7.0 ± 0.3 50k
Mistral-7B ArgAnalysis35K Yes 48.2 ± 1.5 24.9 ± 1.0 43.4 ± 1.2 21.8 ± 0.5 7.8 ± 0.2 7.6 ± 0.2 35k
LLaMA3-8B ArgAnalysis35K No 42.4 ± 6 19.6 ± 2 38.8 ± 1.3 27.3 ± 1.3 7.0 ± 3 6.8 ± 3 50k
LLaMA3-8B ArgAnalysis35K Yes 48.9 ± 1.7 25.1 ± 1.2 44.2 ± 1.4 22.7 ± 0.7 8.0 ± 0.3 7.8 ± 0.3 30k
Mistral-7B Multi-LexSum No 40.1 ± 5 20.3 ± 4 37.7 ± 9 30.1 ± 2.3 7.1 ± 2 7.0 ± 2 65k
Mistral-7B Multi-LexSum Yes 45.2 ± 1.2 22.5 ± 0.7 40.8 ± 1.0 22.0 ± 1.1 7.7 ± 0.3 7.5 ± 0.3 45k
LLaMA3-8B Multi-LexSum No 38.2 ± 8 19.5 ± 3 36.0 ± 1.0 32.5 ± 2.5 7.0 ± 2 6.8 ± 2 65k
LLaMA3-8B Multi-LexSum Yes 46.8 ± 1.4 23.0 ± 0.8 41.7 ± 1.3 23.9 ± 1.4 7.8 ± 0.3 7.6 ± 0.3 40k

Inter-Annotator Agreement

To assess the reliability of our evaluation metrics, we measured the agreement rates between human
annotators and between humans and GPT-4 in scoring summary quality. Table 9 presents the inter-
human correlation and human-GPT-4 correlation for different debate formats. The results indicate a
high level of agreement both among human annotators and between humans and GPT-4, validating
the consistency and reliability of our evaluation approach.

Table 9: Inter-Annotator Agreement Rates and Human-GPT-4 Agreement Rates (50 samples, 10
individuals total). Average scores reported.

Debate Format Team
1

(Argu-
ment
Qual-
ity)

Team
1 (Sup-

port
Score)

Team
2

(Argu-
ment
Qual-
ity)

Team
2

(Sup-
port

Score)

Inter-
Human
Corr.
(AQ)

Inter-
Human
Corr.
(SQ)

Human-
GPT-

4 Corr.
(AQ)

Human-
GPT-

4 Corr.
(SQ)

Policy Debate 7.4 7.8 7.3 7.7 0.81 0.79 0.78 0.75
Lincoln-Douglas Debate 8.1 8.4 8.0 8.2 0.84 0.82 0.82 0.80

Inter-Annotator Agreement: Human vs. GPT-4 Ratings on Summaries

In this section, we present the results of our inter-annotator agreement analysis between human
expert debaters and GPT-4 on summary evaluations. We measured both Argument Quality (AQ) and
Support Quality (SQ) across various debate formats, including Policy, Lincoln-Douglas, and Public
Forum. Fifty expert debaters rated six summaries each, with results averaged over three runs. Pearson
correlation metrics were calculated to assess agreement between human and GPT-4 ratings.

Table 10: Inter-Annotator Agreement: Human vs. GPT-4 Ratings on Summaries - 50 expert
debaters rated 6 summaries each. Scores represent mean values with standard error over three trials.

ID Format Human-AQ GPT4-AQ Human-SQ GPT4-SQ
S1 Policy 8.2 ± 0.1 8.0 ± 0.1 8.0 ± 0.1 7.9 ± 0.1
S2 Lincoln-Douglas 7.6 ± 0.1 7.8 ± 0.1 7.4 ± 0.1 7.6 ± 0.1
S3 Public Forum 7.2 ± 0.1 7.4 ± 0.1 7.1 ± 0.1 7.3 ± 0.1
S4 Policy 8.5 ± 0.1 8.3 ± 0.1 8.3 ± 0.1 8.2 ± 0.1
S5 Lincoln-Douglas 7.8 ± 0.1 7.7 ± 0.1 7.5 ± 0.1 7.6 ± 0.1
S6 Public Forum 7.4 ± 0.1 7.2 ± 0.1 7.2 ± 0.1 7.1 ± 0.1

The results in Table 10 show a strong agreement between human and GPT-4 ratings, with both
Argument Quality (AQ) and Support Quality (SQ) ratings closely aligned across different debate
formats. The Pearson correlation values presented in Table 11 further confirm this, with high
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Table 11: Pearson Correlation Results - Statistical correlation of Argument Quality and Support
Quality between human and GPT-4 ratings.

Metric Pearson Correlation
Argument Quality 0.78 ± 0.02
Support Quality 0.74 ± 0.02

correlation values for both AQ and SQ, indicating that GPT-4’s evaluations closely mirror human
assessments.

These results provide further confidence in the reliability of GPT-4’s evaluation metrics when
assessing argumentation and support quality, suggesting potential for consistent automated evaluation
alongside human judgment in summarization tasks.

Neural Semantic Deduplication

We applied neural semantic deduplication using the gte-base-en-v1.5 model, as recommended
by the Massive Text Embedding Benchmark (MTEB) and implemented via the sentence-transformers
library4. Rows with a "spoken" summary with a similarity score above 0.95 were identified as near-
duplicates and removed. Table 12 summarizes the changes in document count after null removal and
deduplication. We note that most "duplicates" still have value since rows with duplicate documents
often have very different metadata (for example, a different debater using the same piece of evidence).

Table 12: Neural Semantic Deduplication Results - Summary of document counts and duplicate
cluster statistics after deduplication.

Metric Value
Initial number of Rows in OpenDebateEvidence 4,830,561
Initial Documents in OpenDebateEvidence (Valid fulltext column) 3,512,280
Documents after Nulls in other columns Removed 2,634,023
Documents after Deduplication 692,989
Percentage of Documents Removed 77.4%
Total Duplicate Clusters Identified 10,819,328
Average Cluster Size 30
Largest Cluster Size 2,081

Cross-Dataset Deduplication Analysis

To ensure the uniqueness of OpenDebateEvidence within the context of other argumentation and
legislative datasets, we performed a cross-dataset deduplication analysis. We identified 31,353
overlapping documents (4.01%) with the DebateSum dataset, primarily comprising Policy Evidence
(96%) and Lincoln-Douglas Evidence (4%). No overlap was detected with BillSum, confirming
OpenDebateEvidence’s distinctiveness for legislative and argumentation-focused tasks. Table 13
provides a summary of the overlap findings.

Table 13: Cross-Dataset Deduplication Analysis - Overlap between OpenDebateEvidence and other
datasets.

Dataset Overlapping Documents Percentage Overlap (%)
DebateSum 31,353 4.01
BillSum 0 0.00

These deduplication efforts, removing nearly 78% of near-duplicate content, alongside cross-
dataset comparisons, affirm OpenDebateEvidence’s uniqueness and utility in argumentative tasks,
with minimal redundancy or overlap with other prominent datasets. The deduplicated dataset is

4https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5
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publicly available for research and can be accessed at https://huggingface.co/datasets/
Hellisotherpeople/OpenCaseList-Deduplicated.
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A Limitations

A.1 Representation Bias

While the OpenDebateEvidence dataset is extensive, it may not fully represent the diversity of
argumentation styles and topics across all debate communities. The dataset primarily includes
evidence from American high school and college debates and, therefore, might not capture the
nuances of debates in other cultural or educational contexts or in other languages.

Format-Specific Challenges

The unique formatting conventions used in debate evidence may present challenges for standard
natural language processing tools. The presence of shorthand, abbreviations, and specialized jargon
may require additional preprocessing or specialized models to accurately interpret and analyze the
text.

Incomplete or Inconsistent Metadata

While the dataset includes extensive metadata, there may be inconsistencies or gaps in this information.
For example, citation details might be missing or incorrect for some documents, and the standardized
tags describing the type of argument might not be uniformly applied across all documents.

Potential Noise and Redundancy

The dataset’s size and diversity may also introduce noise and redundancy. Duplicate documents,
irrelevant content, or errors in formatting and citation may exist within the dataset, potentially
affecting the quality of the analyses in spite of efforts taken to reduce or eliminate this.

Limited Accessibility to Public Forum Debate Evidence

With Public Forum Debate making up such a small percentage of the evidence included within
OpenDebateEvidence, research focusing on this specific debate format may face limitations in terms
of data quantity and diversity.

B Ethics Statement

The OpenDebateEvidence dataset presented in this paper derives from openly shared debate evidence
across various educational forums and debate formats. This dataset strictly adheres to the principles
of fair use, focusing on academic and research intent. The files that make up OpenDebateEvidence
have been hosted online in some cases for over a decade without any known ethical issues arising as
a result of it.

We performed this research and released this dataset with the full blessing and support of the
OpenCaseList project.

C Social Impacts

Our introduction of OpenDebateEvidence, a comprehensive dataset sourced from the American
Competitive Debate community, is poised to have significant positive societal impacts. By offering
a rich collection of over 3.5 million documents with detailed metadata, this dataset provides an
unparalleled resource for training and evaluating language models in the domain of argument mining
and summarization.

The comprehensive nature of OpenDebateEvidence, capturing the nuanced complexity of arguments
in high school and college debates, will enable more rigorous and representative assessments of
language models. This, in turn, will drive advancements in computational argumentation research
and applications.
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Practitioners and researchers will benefit from this benchmark, which is designed to reflect real-world
argumentative scenarios more accurately. The dataset’s ability to enhance model performance across
various argumentative tasks suggests its utility in improving the robustness and reliability of language
technologies.

Moreover, by making OpenDebateEvidence publicly available, we encourage broader participation
and innovation in this field. This democratization of resources can lead to more diverse contributions
and perspectives, fostering a more inclusive research environment.

In summary, we believe our work will accelerate research, improve model evaluation and training,
and ultimately enhance the capabilities of language models in handling complex argumentative texts
with no foreseeable negative societal impacts.

D Fine-Tuning Techniques

D.1 Low-Rank Adaptation (LoRA)

LoRA introduces low-rank matrices into the model’s architecture, reducing the number of trainable
parameters. Given a weight matrix W ∈ Rd×k, LoRA decomposes it into two low-rank matrices
A ∈ Rd×r and B ∈ Rr×k, where r ≪ min(d, k). The updated weight matrix is then W ′ = W+AB.
We used the PeFT Mangrulkar et al. (2022) package with default settings (rank 8).

D.2 Representation Fine-Tuning (ReFT)

ReFT modifies hidden representations through targeted interventions in specific subspaces. Low-rank
Linear Subspace ReFT (LoReFT) is defined as:

ΦLoReFT(h) = h+R⊤(Wh+ b−Rh)

where R ∈ Rr×d has orthonormal rows. We used the PyReft package with default settings (rank 4).

D.3 Orthogonalization

Orthogonalization controls specific features in the model’s residual stream by modifying the weights.
Given a direction r̂ ∈ Rd, each weight matrix Wout ∈ Rd×dinput is modified as:

W ′
out = Wout − r̂r̂⊤Wout

We used this notebook for performing this process.

E Prompts Used in Experiments

E.1 OpenDebateEvidence/DebateSum

E.1.1 Traditional NLP Metrics Prompt

SYSTEM PROMPT: You are a Policy Debater.
USER PROMPT:
DOCUMENT: <full text of the document>
Provide an abstractive summary/card-tag of the argument made in the document
above.
ABSTRACT:

E.1.2 LLM as Judge Prompt

SYSTEM PROMPT: You are a Policy Debate Judge.
USER PROMPT:
DOCUMENT: <full text of the document>
ABSTRACT: <generated abstract>
Score the abstract from 0-10 on it’s how well it supports the documents argument,
and on its general quality.
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E.2 BillSum

E.2.1 Traditional NLP Metrics Prompt

SYSTEM PROMPT: You are a lawmaker.
USER PROMPT:
DOCUMENT: <full text of the document>
Provide an abstractive summary of the law made in the document above.
ABSTRACT:

E.2.2 LLM as Judge Prompt

SYSTEM PROMPT: You are a lawmaker. USER PROMPT:
DOCUMENT: <full text of the document>
ABSTRACT: <generated abstract>
Score the abstract from 0-10 on how well it supports the documents argument, and
on its general quality.

F OpenDebateEvidence Dataset Details

F.1 Dataset Card for OpenDebateEvidence
• - Homepage: Here
• - Repository (Access/download dataset and code): Here
• - Croissant Metadata: Here

F.1.1 Dataset Summary

This dataset is a gargantoum follow-up to DebateSum, which includes a ton of improvements

Among those improvements are the following:

• Massively increased size (about 25X the size of DebateSum), including nearly all debate
evidence ever open-sourced over the past 20 years from High School and College Public
Forums, Policy, and Lincoln Douglas debate leagues

• Far more metadata: Lots of new columns indicating everything from the number of times
a piece of evidence has been seen (a good heuristic for evidence quality) to the teams and
tournaments and rounds where a piece of evidence was deployed

• Better deduplication and parsing techniques, including better accounting of the hierarchical
nature that debaters use for underlining evidence

F.1.2 Supported Tasks and Leaderboards

This dataset is useful for text generation, summarization, information retrieval, question answering,
and related tasks. This dataset is further highly useful as a "trustworthy" dataset. All evidence within
it has corresponding citations and is, in general, "factual" or grounded in facts. We do the evaluation
in our paper, establishing the first "leaderboard" for measuring the performance of models trained on
this dataset.

F.1.3 Languages

English with very minor exceptions (i.e., evidence from performance cases using non-English
evidence to make anti-colonialist arguments)

F.1.4 Dataset Creation

Gathered from the OpenCaseList project with their enthusiastic permission.

F.1.5 Source Data

Debate Evidence from NDCA/NDT debate leagues from 2002-2022.
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F.1.6 Dataset Format

This dataset was originally contained in CSV files, which were auto-converted into the parqueet
dataset format by Huggingface. It’s available for download and consumption in both formats.

F.1.7 Hosting, licensing, and maintenance plan

We host and maintain our dataset on Huggingface through its "dataset" feature. We plan to update this
dataset every year with new evidence as it is released by debaters, causing this to be a "living" dataset.
We pledge to make sure that this dataset remains accessible for the foreseeable future, and the ability
to regenerate this dataset is always preserved as its source documents are freely downloadable on
OpenCaseList’s website.

F.1.8 Discussion of Biases

Competitive debate at the highest levels has increasingly rewarded teams who cite particular subfields
of philosophy. A partial list of these highly represented topics is given below.

• Postmodernism
• Poststructuralism
• Frankfurt School
• Critical Theory
• Critical Race Theory
• Queer Theory
• Feminism

These cannons are dominated by so-called "left-wing" thinkers and have mostly marginalized so-
called "right-wing" thinkers within them with some notable exceptions

Note that despite a strong "left-wing" bias, large swaths of left-wing thought, such as anarchism, are
relatively absent.

Beyond this, most of the evidence was gathered with the argument being made first, and the evidence
found after-the-fact to support it. This means that while the evidence is almost all "truthful", a lot of
important information which might not help support an argument may be omitted.

F.1.9 Other Known Limitations

There are cases of academic dishonesty within this dataset (i.e. evidence that had specific insertions
made by a debater which weren’t in the original text). It’s also possible that the source had changed
in-between when it was cited and retrieved. We believe that this is extremely rare in practice, affecting
no more than 200 examples.

F.1.10 Consent

We got the enthusiastic consent and approval to use this data from the OpenCaseList project. Debaters
who submit their evidence there fully consent for this evidence to be freely used, including for curated
datasets like this

F.1.11 Personal Information

We removed all Personal Information from the metadata of this evidence (first/last name of debaters).
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Table 14: Description of OpenDebateEvidence Columns
Column Name Description
id Unique identifier for the row
tag Biased abstractive summary of the evidence/argument made by the debater with evidence.
cite String indicating the short citation of the source used for the evidence
full cite Full citation of the source used for the evidence
summary Underlined longer word level extractive summary of the evidence, note that summary is biased

towards supporting the tag argument
spoken Highlighted shorter extractive summary of the evidence / The spoken text of the evidence, note

that summary is biased towards supporting the tag argument
full text The full text of the evidence
text length The length of the text in the evidence in characters
markup The full text of the evidence with HTML markup for parsing/visualization purposes
pocket String indicating the virtual “pocket” (top-level section, usually the speech name) in which the

evidence is stored within its original document
hat String indicating the virtual “hat” (medium-level section, usually the broad type of argument)

in which the evidence is stored within its original document
block String indicating the virtual “block” (low-level section, usually the specific type of argument)

in which the evidence is stored within its original document
bucketId Unique identifier for the bucket in which the evidence is stored
duplicateCount The number of duplicates of the evidence. This acts as a rough proxy for evidence quality, as

good evidence will be duplicated across many debate files
fileId Unique identifier for the file in which the evidence is stored
filePath The file path of the file in which the evidence is stored
roundId Unique identifier for the debate round in which the evidence was used
side The debate side on which the evidence was used (Affirmative or Negative)
tournament The name of the tournament in which the evidence was used
round The round number in which the evidence was used
opponent The name of the opposing team in the debate round in which the evidence was used
judge The name of the judge in the debate round in which the evidence was used
report A report associated with the evidence filled out by one of the debaters, usually summarizing

the arguments presented
opensourcePath The path to the open-source repository in which the evidence is stored
caselistUpdatedAt The date on which the caselist was last updated
teamId Unique identifier for the team
teamName The name of the team
teamDisplayName The display name of the team
teamNotes Notes associated with the team
debater1First The first name of the first debater of the team
debater1Last The last name of the first debater of the team
debater2First The first name of the second debater of the team
debater2Last The last name of the second debater of the team
schoolId Unique identifier for the school
schoolName The name of the school
schoolDisplayName The display name of the school
state The state in which the school is located
chapterId Unique identifier for the chapter
caselistId Unique identifier for the caselist
caselistName The name of the caselist
caselistDisplayName The display name of the caselist
year The year in which the debate round took place
event The event in which the debate round took place
level The level of the debate (e.g., college, high school, etc.)
teamSize The number of debaters on the team
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Table 15: Sample Data Row from OpenDebateEvidence
Column Name Sample Data
id 282,369
tag “Biodiversity loss causes human extinction.”
cite “McCarthy 18”
fullcite “Joe McCarthy 18. Staff Writer...”
summary “As the sixth mass extinction event accelerates...”
spoken “As the sixth mass extinction accelerates humans ris...”
fulltext “As the sixth mass extinction event accelerates around the world...”
textLength 3,556
markup “<h4>Biodiversity loss causes human extinction.</h4><p>Joe <strong>McCarthy 18...’
pocket “1NC”
hat “OFF”
block “1NC—DA”
bucketId 18,967
duplicateCount 122
fileId 3,564
filePath “./documents/ndtceda22/Emory/KiLo/Emory-KiLo-Aff-JW-Round-3.docx”
roundId 932,619
side “A”
tournament “JW Patterson Debates hosted by UK”
round “3”
opponent “West Georgia CL”
judge “Ka***”

report “1AC - Manoomin 1NC - T Subsets States CP Human Right CP Rights K Politics DA
Fetal Personhood DA AI Bad DA 2NC - K Case 1NR - Case T 2NR - T”

opensourcePath “ndtceda22/Emory/KiLo/Emory-KiLo-Aff-JW-Patterson-Debates.docx”
caselistUpdatedAt “2022-10-05 19:30:41”
teamId 80,494
teamName “KiLo”
teamDisplayName “Emory KiLo”
debater1First “Aa***”
debater1Last “Ki***”
debater2First “Lu***”
debater2Last “Lo***”
schoolId 27,030
schoolName “Emory”
schoolDisplayName “Emory”
caselistId 2,001
caselistName “ndtceda22”
caselistDisplayName “NDT/CEDA College 2022-23”
year 2,022
event “cx”
level “college”
teamSize 2
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Feature Top Categories/Values Counts
Year (Top 5) 2022 861,774

2020 850,649
2021 787,765
2019 609,766
2018 423,395

Event cx 2,768,419
ld 1,526,383
pf 43,131

Caselist DisplayName (Top 3) HS LD 2020-21 383,524
HS LD 2021-22 381,591
HS LD 2020-21 326,172

TeamSize 2 2,811,550
1 1,526,383

Level hs 2,767,070
college 1,570,863

State (Top 5) None 2,433,648
CA 622,059
TX 507,454
IL 153,293

GA 127,500

Side N (neg) 2,437,000
A (aff) 1,900,933

DuplicateCount (Top 5) 1 1,639,292
2 189,148
3 136,422
4 110,012
5 91,405

Table 16: Sample statistics from the OpenDebateEvidence dataset.

24


	Introduction
	Background and Related Work
	Policy Debate
	Lincoln Douglas Debate
	Public Forum Debate
	Existing Datasets and Research

	OpenDebateEvidence Dataset
	Data Collection
	Data Preprocessing
	Data Deduplication
	Data Statistics
	Rich Metadata for Argument Structure

	Experiments
	Experimental Setup
	Traditional NLP Metrics
	LLM as Judge
	OpenDebateEvidence Performance
	BillSum Performance
	DebateSum Performance

	Additional Experiments

	Conclusion
	Limitations
	Representation Bias

	Ethics Statement
	Social Impacts
	Fine-Tuning Techniques
	Low-Rank Adaptation (LoRA)
	Representation Fine-Tuning (ReFT)
	Orthogonalization

	Prompts Used in Experiments
	OpenDebateEvidence/DebateSum
	Traditional NLP Metrics Prompt
	LLM as Judge Prompt

	BillSum
	Traditional NLP Metrics Prompt
	LLM as Judge Prompt


	OpenDebateEvidence Dataset Details
	Dataset Card for OpenDebateEvidence
	Dataset Summary
	Supported Tasks and Leaderboards
	Languages
	Dataset Creation
	Source Data
	Dataset Format
	Hosting, licensing, and maintenance plan
	Discussion of Biases
	Other Known Limitations
	Consent
	Personal Information



