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Distributed Smoothing Projection Neurodynamic
Approaches for Constrained
Nonsmooth Optimization

You Zhao, Xiaofeng Liao™, Fellow, IEEE, and Xing He

Abstract—This article considers constrained nonsmooth gen-
eralized convex and strongly convex optimization problems. For
such problems, two novel distributed smoothing projection neu-
rodynamic approaches (DSPNAs) are proposed to seek their
optimal solutions with faster convergence rates in a distributed
manner. First, we equivalently transform the original constrained
optimal problem into a standard smoothing distributed problem
with only local set constraints based on an exact penalty and
smoothing approximation methods. Then, to deal with nons-
mooth generally convex optimization, we propose a novel DSPNA
based on continuous variant of Nesterov’s acceleration (called
DSPNA-N), which has a faster convergence rate O(l/tz), and
we design a novel DSPNA inspired by the continuous variant of
Polyak’s heavy ball method (called DSPNA-P) to address the
nonsmooth strongly convex optimal problem with an explicit
exponential convergent rate. In addition, the existence, unique-
ness, and feasibility of the solution of our proposed DSPNAs
are also provided. Finally, numerical results demonstrate the
effectiveness of DSPNAs.

Index Terms—Arithmetic and exponential convergence, dis-
tributed smoothing projection neurodynamic approach (DSPNA),
nonsmooth.

I. INTRODUCTION

ISTRIBUTED optimization aims to minimize the addi-
D tive function with certain constraints by using the agents’
and their neighbors’ local information upon a multiagent
network, and it plays an important role in sensor networks [1],
machine learning [2], resource allocation [3]-[10], etc.
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Multifarious distributed methods, i.e., distributed continuous-
time approaches and distributed discrete-time algorithms,
have been presented to solve constrained and unconstrained
optimization problems. Regarding the distributed discrete-
time algorithms, they include the distributed subgradient
algorithm [7], the distributed dual averaging algorithm [8],
the distributed discrete-time algorithm based on primal-dual
method [9], distributed discrete-time algorithm [10] based
on Nesterov’s accelerated method and distributed discrete-
time algorithm [11] inspired by the “momentum” method,
ADMM [12], and so on. The continuous-time approaches are
increasingly popular because they can be realized by ana-
log circuits, and furthermore, the Lyapunov analysis method
of the dynamical system, providing an effective guiding tool
for their convergence analysis. Many recent interesting works
on continuous-time approaches were researched for address-
ing distributed optimization problems. For example, these
works include the distributed continuous-time approaches
(i.e., differential equations and differential inclusions) based
on augmented Lagrangian multiplier methods [13], [14] for
unconstrained distributed optimization, distributed approaches
based on primal-dual dynamical system and projection oper-
ators [15], [16], and penalty-based approaches [17], [18] for
constrained distributed problems.

Convergence rate is an essential evaluation criterion for
the performance of distributed continuous-time dynamical
approaches. Particularly, the distributed continuous-time
approaches, which have an arithmetic convergence rate for
distributed generally convex optimization and an exponential
convergence for distributed strongly convex optimization, have
been studied. For instance, in order to solve the constrained
distributed nonsmooth constrained optimization, distributed
nonsmooth dynamical approaches inspired by primal-dual
dynamics with an algebraic convergence rate O(1/f) have
been investigated in [19] and [20], and a continuous-time
multiagent neurodynamic approach (MNA) on the basis of
projection operators and penalty method with a convergence
rate O(1/1),0 < r < 1 was proposed in [21]. In the dis-
tributed strongly convex case, several distributed continuous-
time approaches [22], [23] were proposed based on primal-
dual dynamics, which have exponential convergence rates
for constrained and unconstrained optimizations. In addition,
to solve constrained distributed nonsmooth strongly convex
optimization problems, Li et al. [24] proposed a distributed
subgradient projection continuous-time approach based on the
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differential projection operator with an exponential conver-
gence rate. In [25] and [26], two distributed continuous-time
approaches were explored to address a constrained resource
allocation problem with an exponential convergence rate.
Wang et al. [27] investigated a distributed projection algorithm
in delayed multiagent networks, which achieves the O(1/+/k)
convergence rate for a constrained distributed convex problem.
Yang et al. [28] investigated a distributed neurodynamic
approaches for convex optimization under the presence of
communication delays. Zhao and Liu [29] proposed a consen-
sus algorithm based on the collective neurodynamic system
(CNS) to solve distributed constrained nonsmooth convex
optimization problems. Zhu et al. [30] proposed a distributed
approach based on primal-dual dynamics and differential pro-
jection operator to solve distributed constrained, nonsmooth,
convex optimization problem.

Recently, Su ef al. [31] revealed that the continuous variant
of Nesterov’s acceleration is a second-order dynamical system
with a vanishing friction, which has a faster arithmetic conver-
gence rate O(1/7%) for unconstrained smooth convex optimal
problems. Combining the continuous variant of Nesterov’s
acceleration and primal-dual method, a primal-dual acceler-
ated dynamical method (PDAD) was first proposed in [32],
which maintains the fast convergence rate O(1/%) for solving
the smooth convex optimal problem with affine constraints. In
addition, the PDAD was extended to solve two unconstrained
distributed smooth optimization problems. Jiang et al. [33]
proposed a second-order accelerated neurodynamic approach
to deal with constrained convex problems based on inertial
systems and the time-varying penalty method, which has a
superquadratic convergence rate when the time is greater than
a certain moment. In [34], by using the proximal operator
to deal with nonsmooth functions, Wang et al. proposed a
distributed proximal-gradient algorithm based on second-order
multiagent systems (i.e., continuous variant of Polyak’s heavy
ball method [35]). However, the authors only analyzed the
convergence of their proposed algorithm and did not discuss
its convergence rate. Wei et al. [36] investigated a double
proximal primal-dual algorithm to deal with a class of dis-
tributed nonsmooth convex consensus optimization problems
only with the analysis of the convergence properties of the
proposed approach. In addition, Chai et al. [37] presented an
approximation-based strategy to deal with chance-constrained
trajectory optimization problems (CCOCPs). They converted
the model of CCOCP into a parametric nonlinear program-
ming model by using the smooth differentiable approximation
function to replace probabilistic constraints, and then used the
two-nested gradient-based algorithm [38] to deal with them.
Chai et al. [39] investigated a specific multiple-shooting dis-
cretization technique with the newest NSGA-III optimization
algorithm and three constraint handling algorithms to deal with
multiobjective trajectory planning problems. Nevertheless, for
constrained distributed nonsmooth convex and strongly convex
optimization problems, the designs for distributed acceler-
ated neurodynamic approaches with faster convergence rate
O(1/1%) and faster exponential convergence rate still remain
challenging issues. To the best of our knowledge, there are
two difficulties as follows.

1) There exist both consensus and set constraints. It is diffi-
cult to satisfy the above constraints effectively in design-
ing the distributed smoothing projection neurodynamic
approaches (DSPNAs).

2) The other is to use a new approximation technique
to solve nonsmooth objective functions in optimization
problems. Although the differential inclusion tech-
nique can effectively solve the nonsmooth optimization
problem, there exists subgradient selection challenge
in implementing neurodynamic approaches especially
when designing accelerated neurodynamic approaches.

Inspired by the works [24], [31], and [35], we focus on
designing neurodynamic approaches to solve the additive non-
smooth optimal problem with local set constraints, where
the objective functions are nonsmooth generally convex and
strongly convex. Our contributions are listed as follows.

1) By applying an exact nonsmooth penalty method for
solving consensus constraints, a projection operator
with an auxiliary variable is used to contend with
set constraints, and a smoothing approximation tech-
nique is applied to dispose of the nonsmooth func-
tions. Consequently, we propose two faster DSPNAs
for distributed nonsmooth generally convex and strongly
convex optimizations, i.e., a DSPNA-N for nonsmooth
generally convex optimization with faster convergence
rate O(1/r*) and DSPNA-P for nonsmooth strongly
convex optimization with faster explicit exponential con-
vergent rate. In addition, our proposed DSPNAs have
lower communication and computation costs than the
existing primal-dual algorithms [4], [40] since auxil-
iary variables do not need to communicate with their
neighbors.

2) Compared with the works in [15], [20], and [24]
based on the differential inclusion method, our proposed
DSPNAs can avoid the difficulties of calculating and
implementing differential inclusion or differential pro-
jection operators. Moreover, different from the dis-
tributed approaches in [21] and [23], we relax the
regularity assumptions on the objective function and
guarantee the existence and uniqueness to the solution
of DSPNAs.

3) Different from the works in [16] and [18], we offer two
novel Lyapunov functions based on projection operators
and smoothing parameters that can easily derive explicit
accelerated convergence rate.

The research is organized as follows. In Section II,
some preliminaries are introduced. The distributed constrained
optimization problem is reformulated by the exact penalty and
smoothing approximation methods are discussed in Section III.
In Section IV, two DSPNAs are proposed based on continu-
ous variant of Nesterov’s acceleration and Polyak’s heavy ball
method to solve constrained generally convex and strongly
convex optimization problems, respectively. In Section V,
experimental results are provided, and the conclusion is given
in Section VI.

Notations: Let R be a real number set and R~ be a positive
real number and R" be a n-dimensional column vector set.
Superscript T represents the transpose. |x| = Y i, |x;| denotes
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the 1-norm if x € R"; moreover, it denotes the absolute value
function if x € R. ||x|| = (Z?zl xl.z)l/ 2 denotes the Euclidean
norm. Denote ||x||op as the O-norm that describes the number of
nonzero elements of x € R". Denote 1 and 0 as vectors with
all entries being 1 and 0, respectively. L' (0, +00) denotes the
Lebesgue integrable function in (0, 400). If x; € R", i =
I,...,m, then x = col(xy, ..., x,) € R"™. Let Q1 X -+ x Q,
be the Cartesian product of sets i,..., Q2,. sgn(x) is the
signum function.

II. PRELIMINARIES
A. Projection Operator

For a nonempty, closed and convex set 2 € R", the projec-
tion operator is defined as [N (x) = argmigrzlﬂu — x|| and it has
ue

the following properties.

Lemma 1 [41]: If Q € R" is a nonempty, closed, and convex
set, then it yields the following.

D Jlu—vll = [[He) — Do) Vu,veR"

2) (M) —WI(Mg(v) —u) <0 YveR ucq.

3) The normal cone of set Q2 is

Na@) = d | vada

v=>0

={veR P (y-x=<0 Vyeq}

where the symbol cl(S) represents closure of set S,
do(x) = glisgllx — ull.

From 2) and 3) in Lemma 1, we have x — ITq(x) € Nq(x).
In addition, the v is a nonnegative scalar and ddgq(x) means
the Clarke generalized gradient of function dgq(x), which is
given in Section II-B.

Lemma 2 [41]: Define a function ¢(u,v) : R x R" — R as
follows:

o) = 3 (=TGP~ Ju— T I?) (1)

and it has two properties as follows: 1) ¢(u,v) >
(1/2)|IMqw) — MoW)||* and 2) ¢(u,v) is a continuously
differentiable function, and its gradient with respect to u is
Vg (u,v) = o) — Mo®).

Lemma 3 [42]: For box, Euclidean sphere, and affine
constrained sets, there exist analytical expressions of the
projection operator.

1) Let Q be a box or hyperrectangle set, i.e., 2 = {x €

R" |x,-,m <Xi<XiMm , i=1,...,n}; then

Xim, Xi < Xim
No@); =13 %, Xim <X <Xim )
XiM» Xi > XiM-

2) Assume Q is an Euclidean sphere set, ie., Q2 = {x €
R'||lx—z| <r, z€R", d > 0}, then

lx—zll =d

Ho(x) = Ix—z|| > d.

3)

x?
r(x—z)
S TR

3) If Q is an affine set, i.e., Q2 = {x € R" | Ax = b}, then

Mox) =x+ AT (b — Ax) 4)
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where A" is the Moore—Penrose pseudoinverse of A. For
example, if m < n and rank(A) = m, then this projection
operator yields

Ma(x) = x +AT(AAT) " (b — Ax). (5)

B. Convex Analysis

The Clarke generalized gradient of the locally Lipschitz
function g is defined as follows:

aglx) = co{ lim b Vag(xk)}

Xp—>X:XpE€EDg

where Dy is a set at which g is differentiable and co(S) defines
the convex hull of a set S.

A function g : 2 — R is a nonsmooth generally convex
function if it only satisfies

(@) —gw) > z—wlgrw) Yz, weQ (6)

where gr(w) € 0g and Q C R".
For any z, w € €2, the function g is a strongly convex if it
satisfies

2(2) — gw) > (2 — w) gr(w) + gu—wn2 %)

where gr(w) € 0g.

C. Smoothing Approximation
Definition 1 [43]: If g : R" x (0, +00) — R is a smoothing
function of g, where g : R — R is a locally Lipschitz function,
then we have the following.
1) For any u > 0, g(-, ) is continuously differentiable of
x in R", and g(x, -) is differentiable in [0, +00) with any
fixed x € R".
2) lim g(x, u) = g(x) with any fixed x € R".
n—0t

3) There exists a positive constant «; > 0 such that
|V,.8(x, w)| <k; Vue[0,+00), x€R".
4) { lim

7—=>x,u—0

tions 2) and 3), for any fixed x € R", the following
conditions are true.
5  lim gz, p) = g).

z—x,u—0
6) 18(x, ) —gW)| < kzu Y € [0, +00),x € R".
Lemma 4 [44]: Let g1, ..., g, be smoothing functions of

V.8(z, u)} € 9g(x). From the above defini-

gi,...,&m, such that > %', a;g; is a smoothing function of
Yo aigi with Ky g = Y il aiky, when a; > 0 and g; is
regular for any i = 1,2, ..., m.

In this article, a smoothing approximation function of the
absolute value function |s|, s € R presented in [43] is used

L if || > .
S, = 2 .
T s itz a
where lim g(s, u) = |s| from 2) in Definition 1, and it is
n—0t

shown in Fig. 1.
In addition, the derivative g(s, i) of s with any fixed u > 0
is given by

sgn(s), if |s| >

Vig(s, u) = { ﬁ’ if |s] < w. 9
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Fig. 1. g(s, u) with different parameters p.

In addition, the derivative g(s, u) at u with any fixed x is
represented as

R 0, if |s] > u
Vug(s’ M) = 1 5%

2 2/,4,2’
Note that (1/2) > V,&(s, u) > 0 holds for any fixed x and
w € [0, +00).

if |s] < p. (10)

D. Graph Theory

An undirected communication topology graph is a triplet
G =W,¢&, A with node set V = {v, vy, ..., vy}, edge set
£ €V x V, and connection matrix A = {ajj};xm With non-
negative elements a;; = a;; > 0if (i,j) € £, and a;; =a;; =0
otherwise. The coupling of agents in an undirected graph is
unordered, which means that there exists information exchange
for both agent i and agent j. A path in an undirected graph
between agent i and agent j is a sequence of edges of the
form (i, i), (i1, i), ..., (is,j), where i, iy, ..., i5, j denote
different agents. Let N; = {j|(i,j) € &£} be an agent i’s
neighbors set. The undirected graph G is connected if there
exists a path between any pair of distinct nodes v; and v;
(G,j=1,2,...,m).

III. PROBLEM
A. Distributed Optimization Problem Formulation

Consider an undirected network that consists of m agents.
For every agent, there exists a local nonsmooth generally
convex or a nonsmooth strongly convex objective function
fi + R" — R with local feasible constraints €2; € R". Then,
all agents work together with their neighbors to achieve a
consistent solution that optimizes the global objective func-
tion Y i, fi(x) in a constraint set ()., €2;. Therefore, the
optimization problem is reformulated as

m m
minF(x) = Y fi(x) st xe () (11)
i=1 i=1
where €2; is a closed convex set for any i, and x € R" is
the optimization variable. Problem (11) arises in many areas,
such as signal processing, resource scheduling, and wireless
communication network.

Moreover, the local constraints are unavoidable due to the
agents’ limitations in computation performance and commu-
nication capabilities.

Assumption 1: The function f; is Lipschitz continuous on
constrained set ; Viel,...,m, ie.,

fiGw) =il < lillu —vll,i=1,....m (12)

with a positive constant [.
Assumption 2: f; is nonsmooth generally convex or strongly
convex, i.e., it satisfies conditions (6) or (7), respectively.
Assumption 3: The graph is undirected and connected.

B. Reformulation

Note that problem (11) is a centralized structure. By
utilizing Assumption 3, problem (11) is equivalent to

min F@) = fix)
i=1

S.t. xiGQieR",xl-zxj,iGVi,je./\/,- (13)
where N; represents the neighbor set of agent i. Furthermore,
based on the penalty method, (13) becomes

m T m
min Zfi(xi) + > Z Z |x,~ —xj}
i=1 i=1 jeN;
s.t. x; € Qi€ (14)
where | - | is the 1-norm, and Y > O is a penalty parameter.

Lemma 5 (Sufficient Condition): If Assumptions 1 and 3

hold and YT > ﬂlrgix {I;}; then, x* = col(x}, ..., x}) is an
=m
optimal solution of problem (11) and (13) if and only if x* is
also the optimal solution of (14).

Proofs Let X = (I/m)Y ", x and D(x)*
Y =X < (/m) Y Y Ik —xlE <
(1/m) Y1 3™ | |x;i — xj|1%. Moreover, for any p, g € V, there
exists a path P,, C £ because Assumption 3 holds, such that

1 1
322 li—xl=5 3 bl

Al

H(x) =
i=1 jeN; (.9l
1
25 D =Xl =i -l (15)
(P.9) Py

Furthermore, we have D(x)2 < mh()c)2 = D(x) < /mH(x).
Let Y > ﬁlmax {1;}, thus
<i<m

Fx)+YH(X) > F(x) + 1m‘ax {l;}D(x)
=FX) + Fx) — F(x) +711;l_ax {l}D(x) = F(x). (16)

The first and second inequalities are derived from the con-
dition (15) and the Lipschitz continuous property in (12),
respectively. Equation (16) implies that F(x) + TH(x) >
miny—; F(x), ie., F(x) + TH(x) = ming,=yF(x) holds if
xi=x,1€V. |
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C. Smoothing Approximation Reformulation

It follows from Lemma 5 that solving problem (14) without
consensus constraints is equivalent to solving problem (13).
However, problem (14) is nonsmooth, even though the function
F(x) is smooth, due to the existence of a nonsmooth penalty
function. Smoothing approximation is a useful tool to address
nonsmooth problems in optimization and has a lower com-
putational cost than the approximation operator. By utilizing
the smoothing approximation method in (8), the smoothing
problem of (14) is given as follows:

min ]:'(x, w)
m
=Y filxi, m) + = Z > h(xi = x5, )
i=1 i=1 jeN;

s.t. x; € Qi €V (17)

where fi(x,-, i) is a smoothing approximation function of
fi(x;), and

I:l( — X, Mz th

ik — Xj,kl,
— 5
=) Guenio)” sk

2 ki 2
i=1,...

-xjv Ml

if [xi 6 — Xkl > i
if [xix — Xkl < Wi
k=1,...,n

, m,

By 2) in Definition 1, one has lim,, o+fi(xi, i) = fi(x),
lim,,, o+ h(x; — xj, wi) = |x; — xjl.

IV. MAIN RESULTS!

In this section, two DSPNAs are proposed to address the
problem (14). For problem (14) with nonsmooth generally
convex objective functions, DSPNA-N based on continuous
variant of Nesterov’s acceleration is proposed with a fast arith-
metic convergence rate O(1/¢%). Then, we present DSPNA-P
on account of continuous variant of Polyak’s heavy ball
method for (14) with nonsmooth, strongly convex objective
functions, which can reach an explicit exponential convergence
rate.

A. DSPNA-N for Problem (14) With Nonsmooth Generally
Convex Objective Functions

For problem (14) with nonsmooth generally convex objec-
tive functions, we present the following DSPNA-N:

(HQ (Yz -xl)
Vi = __fol(xh //Lz R (18)
2T Z,EN 2 h( = Xj. 14i)
Xi0 € Q,, i=1,....,m

where

n
Vi (i, i) = Z Vi (xiks ik)

k=1

IFor convenience, the variables x(1), y(t), and () are simply marked as
x, y, and p in the neurodynamic approaches and the proof.

679

k(Xik — Xk Mik)

inl( - Xj, ,u, Z
k=

Vg (xik — Xj.k» 14i)

_ {Sgn(xtk —xj), if Ixik — Xkl > pik

N % if |xix — xjkl < ik
The compact form of (18) is given by

¥= (g0 — %)

5= —L(VeF @ ) + YV ) (19)
X0 € 5_2
where V F(x, 1) = Z;”Zlf(xl-, wi), @ = x - x Qy and

VeH (x, 1) = (1/2) 0Ly Yjen; Vah(xi — xj, 12).

Theorem 1: For any given initial values xo € Q, yo € R™,
DSPNA-N (19) has a unique strong global solution if the
smoothing gradient V. F(x, 1) is Lipschitz continuous. In addi-
tion, the solution x is always in the closed convex set Q if
X0 € Q

Proof: Existence and Uniqueness: In phase space R™" x R™",
the DSPNA-N (19) can be equivalently described as

7Z=F(t2) (20)
where Z = (x, y)
o
F(t,Z) = <?(H§2(y) — x)
t N ~
— (Ve ) + Vel ) ).

By the Cauchy-Lipschitz—Picard theorem, we derive the exis-
tence and uniqueness of the solution to (19) as follows.

1) Letr € [ty, +00) be fixed and consider the pair (x, y) and
(x,y) in R™ x R™ . Then, by the Lipschitz continuity
property of function V. F(x, w) and inequality la+b]? <
2a%2 4+ 2b6% Va,b € R™ one has

@ x,y) — F@ % )

a2 _ a2 _ 2

< (2(7) Iy =512 +2(5 ) e =51 +2( )

2.2 g

x| 2+ (2 Ym 2 )
1§i§£¥zl,llnfk§n{ul’k}

<[ (e

2 2
Ym2n?
min  {uix}

1<i<m,1<k<n

X flx =%y =7l (2D
Denote
, 2\ 72
\2 N2, Yn
o= |a(2 +2(2) z+(2l o {M})
<si<m,I<kzn

where [ is the Lipschitz constant of Vxﬁ (x, n). We have
7 x,y) — F@,x, ) < LO|x—x,y —.

Note that L(¢) is continuous on [#y, +00); hence, L(?) is
integrable on (0, T') for all 0 < T' < +o0.

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:20:10 UTC from IEEE Xplore. Restrictions apply.



680 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 53, NO. 2, FEBRUARY 2023

2) Next, we will show that F(-, x,y) € L'((0, +00), R™ x
R™) for any x, y € R™. For any T > 0, we obtain the
following estimate:

/Tl\ﬂt,x,y)udt
0
T a2 2 AT t
= [ [2(3) mami+2(2) 1 +2(<)
0 t t o

2

R 2 2 mindx|?
< Ve P +2(2) —= 5 | a
lsisrritl,llngkgn{m’k}
T 2 2
o t A
= [ 12(5) mao? +2(5) 19k
0 t o
1
2
a2 N2 mind|x)? )
42 (7) +(5) — P ar
lgigrr:z],llngkgn{ﬂi’k}
1
< (I + 1MW + 19:F @ 1)
2
T 2 2 334012
x/ a(%) +2(1) S L — |
0 t a min {Mi,k}

1<i<m,1<k<n
where the first inequality is derived from VXI:I (x,n) <
((P72m2 x|/l min  {uig}]) and Jla + blI* <
1<i<m,1<k<n

202 4+ 262 Va,b € R™. The conclusion is satisfied
since

0=

2 1\2 3.3 2
(st (e
! o min  {uix}

1<i<m,1<k<n

is continuous.
Thus, the existence and uniqueness of the solutions of
DSPNA-N (19) hold from the Cauchy-Lipschitz—Picard theo-
rem.

Feasibility: Next, the solution x(f) is always in the closed
convex set Q for any ¢ > 0. From the first equation in (19)
x(@®) = (a/0(Mgy@) — x(1)), we have (d/dn)(*x(1)) =
at"_ll'lg-z(y(t)). Integrating the inequality above from O to ¢,
one has *x(t) = fé as""ll'lg(y(s))ds and it can be equiv-
alently written as x(f) = f(; (as*~ /1) 5 (y(s))ds. Since
(s® /1) > 0, for any ¢ > 0, Tlg(y(t)) € 2,0 < s <t
and fo "(as* 1 /t%)ds = 1 and  is a nonempty, closed, and
convex set, we have x(r) = fot ([ozs“_ll'lg-z(y(t))]/t"‘)ds € Q,
since t € (0, +o00) is arbitrary, which concludes that x(¢) €
Q. te (0, 1). Combining the above results with the condition
X0 € €, the conclusion can be drawn. [ |

Theorem 2: Let x* = col(xT, ..., x}) be an optimal strong
global solution of NSPNA-N (19) and o > 2, ik > 0, f1ix <
0, f0+°°t,u,-,kdt < 400, i =1,....mk = 1,...,n; there
exists a constant C, such that:

1) the trajectory of (zx,x) V¢t > 0 is bounded;

2) DSPNA-N (19) has a faster arithmetic convergence rate

Fee i+ 00, 1) — (F() + TH()) < 5 veed

and [x]| = O(1/¢).

Proof: B
1) Designing a Lyapunov function on €2 as

Vi x ) = A(Fe ) + TG ) - F() = TH() )
+ P+ a(lly = Mg () 12
— Iy = MgMI?).x € €

where F + YH = T', x* = Mg(y*) and V(5 x,y) >
allg@y) — HQ(y*)HZ, which can be obtained from the
first equality in (19) and property 6) in Definition 1 and
Lemma 2. Taking the derivative of V(z, x, y) in time and
along the trajectory of DSPNA-N (19), we have

V(t, X, y)
= 2 (b + i ) — () + TH()))
N N T
+ Z(VXF(x, )+ TV A, u)) (Mg ) —x)
— (Mg ) — Mg ()" (VaF e ) + YVl (x, 0

N ~ T
Ty (VMF(x, 1) + TV, H(x, 1) + K 1) i+ 2017 1

IA

2. .
é(F(x, )+ TG ) = (F(&*) + TH(x")) )

N N T
n t(VxF(x, W) + TV, H(x, u)) (v — x) + 2017

< %(ﬁ(x, )+ TH(, p) — (F(x*) + TH(x*)))
+ 2tk 1+ Og(l:"(x*, n) + TI:I(x*, ,u))
- (ﬁ (x, ) + TH(x, M))
o

= (I:"(x, w) + YH(x, p) — F(x*) —TH(x*) + KI:ITM)
Q—a) Q2—a)
> _
o a

KﬁlT/L + 3tk 170+ Og
X (1:"()6*, n) + Tﬁ(x*, n) — KlalT/L

—F(x) = TH(x"))

2
< (4 — *)l‘Kf‘lTpL (22)

o
where the first inequality holds due to f;x < O,
i = 1,....mk = 1,...,n and |V, F(x,u) +

TVMFAI (x, w)| < K, which comes from 3) in Definition

1. The second inequality holds from the convexity of

F(x,u) + YH(x, ). The last inequality holds from

o > 2 and the following inequalities:

D G @)+ THG, ) = (F) + THW)| < iep s

2) Fee, p) + THx, 1)+ KlalT/L — F(x*) — TH(x*);

> F(x) + TH(x) — (F(x*) + TH(x*)) = 0

3) |F(x*, u) + YH(x*, n) — (F(x*) + TH(x*))| < kp17p.
(23)

Therefore, V(t,x,y) < (4 — (2/a))tp17 . Then, inte-

grating both sides of it from 0 to 400 and combining the

condition w;x > 0, ftix < 0 and f0+°° t xdt < 400,
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i=1,....,mk=1,...,n, we deduce that the positive
part [V(z,x,y)]T of V(z, x, y) belongs to L' € (0, +00).
Since V(t, x,y) is bounded from below, it follows that
V(t,x,y) has a limit C as t — 400, and hence, C is
bounded, i.e., V(t,x,y) < C < 4o0o. Note that Q is
a closed convex set, x € Q Vr in Feasibility implies
that x is bounded. Moreover, since o|I1g(y) — X)? =
al(t/a)x + x — x*||> < V(t,x,y) < C < +oo, which
combines with the boundedness of x(¢) to yield the
boundedness of tx.
2) Since 2(F(x,pn) + THx, p) — F(&x*) — TH(x*) <
V(t,x,y) < C Vx € Q, which implies that F(x, u) +
YH(x, ) — F(x*) — YH(x*) < (C/2) Vx € Q. In addi-
tion, | (t/a)x + x — x*||> < C < +oo in 1) implies
(/) |x]|> < C + allx — x*||%. Since x(r) is bounded,
there exists A = C + asup,|lx — x| < +o0, such
that [|X]* < ([&(C +allx —x*[))]/7) < @A/), ie.,
lx|| = O(1/t). Thus, the proof is completed. |
Remark 1: The Lyapunov function V(¢, x, y) in Theorem 2
is constructed on feasible set 2, which is feasible due to
x € Q introduced in Feasibility of Theorem 1. In addi-
tion, the conditions w;x > 0, fiix < O, f0+°° thppigdt <
+oo,i=1,....mk=1,....,nimply pjp =77,y > 2.
Furthermore, from inequality (22), we have V(f,x,y) <
V (0, xo, y0) + fé 4 - [Z/CX])SKf-lT/LdS = C < 4o0; thus, the
result in Theorem 2 holds and tz(I:"(x, pL)—i—TﬁI(x, w)—F(x*)—
TH(x*) + KI:ITM) < C is also satisfied. By using inequality
2) in (23), we have F(x)—i—TH(x) F(x*)— TH®x*) < (C/1%).

Note that according to F(x, w) + YH(x, w — fi&x* —
TH(x*) < (C/ﬂ) V x € Q in Theorem 3, we
have llm,_>+ooF(x W + TH(x W — F(&x*) — TH(x*) =
0,lim; oot =0 V x € Q. Since F (x, n) with respect to
x is convex with any fixed u > 0, NSPNA-N (19) converges
to the optimal solution as the time goes to infinity.

B. DSPNA-P for Problem (14) With Nonsmooth Strongly
Convex Objective Functions

In this section, to address problem (13) with nonsmooth
strongly convex objective functions with an explicit expo-
nential convergent rate, we propose a DSPNA-P based on
continuous variant of Polyak’s heavy ball method as follows:

= (Mo, () — x)

= B(xi — yi) R (24)

—-(foz(xz, wi) + YD en; S Vih(xi — xj, m))
xi0€ Q,i=1,....,m

where 8 > 0, and the compact form of DSPNA-P (24) is
given by

= (M50 —3)
i = (v —y— L(VF o + YV ) 25)
X0 € Q
Theorem 3: Under Assumptions 1 and 3, if the con-
ditions lim u = 0, x € £ hold, and x* =
——400
col(xf, ..., xp), y* =col(y],...,yy) € R™ is an equilibrium

point of DSPNA-P (25), then x* = col(x], ..., x;,) € R™" of
DSPNA-P (25) is an optimal solution of problem (14).
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Proof: Based on Karush-Kuhn-Tucker (KKT) conditions,
x* = col(x], ..., xy) is an optimal solution of problem (14)
if and only if it fulfills the following condition:

afi(x}) +Tngn<x —x)—f—/\fg( )20
jeN;

i=1,...,m (26)

where sgn(x} — xf) = doksen(x, —x7) € dlxf — xf| and
NQ is a normal cone of set €2; deﬁned in Lemma 1.

Let (x*, y*) be an equilibrium point of DSPNA-P (25). In
what follows, we will show that x* satisfies the KKT condi-
tions (26). From the first equation in DSPNA-P (25), we have
M) = Mg(x™) = x* € Q. By using 2) in Lemma 1, we
have n(y* — Mg (N (Y — Mg (") = n(* —x)T (Y —x*) <
0 VY € Q with n > 0, which implies n(y* — x*) €
Ng(x*). Moreover, from the second equation in DSPNA-
P (25), we also obtained that 0 = n(x* —y*) — (Vxl:"(x*, w*)+
YV HE, 1*) € nx* —y*) — (0F(x*) + YIH(x*)) from 4)
in Definition 1. It combines with n(y* — x*) € Ng(x*), we
get 0 € IF(x*) + YOH (x*) + Ng(x*). Therefore, the proof is
completed. |

Theorem 4: For any given initial values xo € Q, yo € R™,
the DSPNA-P (25) has an unique solution if the smoothing
function fo? (x, nw) + TVXI:I (x, i) is Lipschitz continuous in
regard to x over €. Moreover, the solution x is always in the
closed convex set .

Proof Existence and Uniqueness: The DSPNA-P (25) can

be equivalently described as ¥ = G(Y), where ¥ = (x7, y)T
. B(M150) — )
~ B =) = B (Ve ) + Vil )

Let Y, Y € R"™ be two different solutions to the
DSPNA-P (25) with the same initial state Yy € R™. Then,
there exist 7 > 0 and 8§ > 0, such that Y(7) # Y(?)
for any t € [f,7 + §]. Since Y(@®), Y, and u() > 0
are continuous and bounded on ¢t € [0,7 + 8], there exists

| = 48+ (B/m)l+ ([m*n*YB1/[2min; <j<m 1 <k<n{tix}nl) > 0,
such that
IG(Y) — G(Y)Il
< BlMg @) — Hg(z)n + 281X — x|l + Blly — yll
B _ B lmznzT _
+ ;lux—)_cn 5 rjﬂn m }ux—)_cn
1<i<m,1<k<n Hik
_ _ Bl B Lm2n2Y
<285 —yl + 1T — x| 28+ = + = —2
noon {mix}
1<l<m 1<k<n
2.2
mn°Y _
< (4p+ L 2 ’{3 i LU
g 1<i<m,1<k<n kg
=Y —Y| Vre[0,7+35]
where | = 48+ B/ml +  (mPnYBl/

[2ming <j<m, 1<k<n{iix}nl). It follows that:

-0 (Gr- )

d1
— Y - Y|
dt?2
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= (T-1)'(6(V) - 6m)
<Y —Y|*te[0,i+35]

Integrating the above inequality from O to t € (0, 48] and then
applying Gronwall’s inequality, one has Y(r) = Y(r) Vt €
[0, 7 4 8], which leads to a contradiction.

Feasibility: Next, the solution x of approach (25) that is
always in the nonempty, closed, and convex set Q for any
t > 0 will be discussed. From the first equation in (25),
we have x(f) = B(I1q(y(#)) — x(¢)), which is equivalent to
(d/dt)(eP'x(D)) = BeP'Tig(y(1). Integrating the both sides
of the inequality mentioned above from 0 to ¢ and then
dividing it by ef', we derive that x(r) = (1/¢f)x(19) +
f (BePs /eﬁ’)l'lQ (v(s))ds and it can be equivalently written as
(1/ePx0 + (1 = (1/eP1) [ (BeP* /P — 1)1 (y(s))ds. Since
(ﬂeﬂS/e/f‘f ) > 0, Mgs) € Q@ VO < s <1,
fo (BePsJeP — 1)ds = 1 and Q is a nonempty, closed, and
convex set, we have f (BePs /ePt — DIlg((s))ds € Q Vie
[0, +00). Since xo € Q, we further obtain x(t) €  Vr €
[0, 4-00). Therefore, the proof is completed. |

Theorem 5: Suppose that the smoothing function F(x, w) of
F(x) is a strongly convex function and that p;x > 0, @t;x < 0,
f0+°°eﬁtxlam,kdt < 4o00,i = 1,....mk = 1,...,n and
Mg (") = x*, y* € R™ is the optimal solution to problem (13)
with strongly convex objective functions. Then, under the
initial values xo € 2, yo € R™, one has:

1) The trajectory of (x,x) V¢ > 0 of DSPNA-P (25) is

bounded;

2) For any t+ > 0 and Vx € Q, DSPNA-P (25) has the

following exponential convergence rate:

B
E,
2VB

B

Fx, p) + YH(x, p) — F(x*) — TH(x*) <

lx —x*l <

27)
ne?

where B is a positive constant.

Proof:

1) A novel Lyapunov function on set Q is established as
follows:

E(t,x,y) = eP'kp1"p
+ eﬁ’(ﬁ(x, W)+ YH(x, ) — F(x*) — TH(x*))
+ (= Ma07)I2 = Iy = Mg®I?).  @8)
The derivative of E(t, x, y) along (25) satisfies
Et, x,y)
= el 1T i+ npef! (Mg () — Mg ()"
x (x _y— %(Vxﬁ(x, W) + TV H(x, M)))
+ (Kfl n (Vuﬁ(x, 10 + TV, A, u)))Tu
+ ﬁeﬁ’<vxf7(x, ) + TV H(x, M))T(HQ o) — x)
~ F(¥') = TH(¥"))

+ B (Fly = Mg ()12 = Jly — Ma)I?). (29)

+ ,Beﬁ’(f”(x, W) + YH(x, 1)

According to 3) in Definition 1, one has that every
element of «p1 + VMIA?(x, nw) + TVMI:I(x, W) is greater
than or equal to 0 and combining with f;; < 0,i =
l,....mk=1,...n wehave (kp1 + (V,F(x, 1) +
TV, H(x, 1)) 1 < 0. Since Mg (y*) = x* [which can
be obtained from the first equation in (25)], we have

E@,x, y)
< P+ e (Mg () — Mg () (x — )
+ ﬂeﬁt(v F(x, u) + YV H(x, /L)) ( y ) )
+ Be?!(Fox, ) + THGx, i) = F(x*) = TH(x"))

+ e (Ziy g ()12 — iy - ma 1),
(30)

Using the strongly convex property of smoothing func-
tion F(x, i)

(Vxl:"(x, W) + YV H(x, /L))T(x* - x)
< 1:"()6* u) + TI:I(x*, u) — F(x, )

~ n
“YHE ) = S lx =" I

and F(x*, w) + THE*, 1) — F(*) — TH(*) < «p17p
from 6) in Definition 1, we derive

E(t,x,y) < 2BeP'kcp1" p + Bef'n
(=gl =P+ 3= ig07)
1 2
= Sly = Ta0)l
+ (Mg — Mg () = ).
By the condition [T (y*) = x*, one has
(MaG) — M) -y
= M) — Na()I? + (MeG) - Na(*)"
x (x—x*) + (Mo — M () (MeG) —»
such that E(z, x, y) satisfies
E(t,x,y) < BeP'y
x (—;nx—x*n2 + 5l Pa(y") P
— Sl = PaO)IP = Mg — Mg (") I
+ (M0 = Ma() (x = x)) +28e7p 1
+nefin(Me) — e () (MaG) -
By adopting
%ny— Mg (v*) 117
= —||y MaM? + —||n9(y) Mg ()12
+ (= M) (Mg — Mg ()
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and
(MaO) = Mg(")" (Mg () —)

1 1
=5l M + Sl — M (V)12

1
+ 5IMg0) = Mg ()1
we obtain that
E(t,x,y) < pef'n

1 . 1
x (—Enx—x 1>+ 5y = a0’

5y am|* + 31150 - 1567

+(y - M) (Mg®) — Mg ("))

— Mg — Mg (") |* + (Mg () — Mg (™))" (x — x*)
+ (Mg — Mg ()" (M) —)) + 286”17

1 1
= ﬂeﬂ’n<—§||x — I = a0 — Mg ()|
=g (") (v =x7)) + 286 k1

€29

+ (M)

Pl
__# > 0 (||x - ng—z(y)nz) +2BeP 1 .

Thus, we derive E(z, x,y) < ZﬂeﬂlkﬁlTu. By integrat-
ing both sides of the above inequality from O to f,
one has E(t,x,y) < E(0,x0,y0) + [y2BeP*xx17 uds.
Consequently, combining with w;x > 0, ft;x < O and
fo eﬂt/(r,u,kdt<+001=1 mk—ll,...,n,
we deduce that the positive part [E(l x, I of E(t, x,y)
belongs to L' € (0, 4+00). Since E(, x, y) is bounded
from below, it implies that E(¢,x,y) has a limit as
t — 400, and hence it is bounded, and the bound is
defined as B < 400. According to Lemma 2, one has

2y = ma0M) = - nam|?)
. 2
> 2140 - M) = 2|5 +x -+

It implies (7/2)[|(x/B) + x — x*||*> < E(t,x,y) < +oo.
From the Feasibility in Theorem 4, we obtain that x(¢) €
Q vrelo, +00). Since Q is closed a convex set that x
is bounded can be obtained. Using again (n/2)||(x/8) +
X — x"‘||2 < E(t,x,y) < 400, we have x is bounded.

2) From 1), we have E(t, x, y) < B < +o00. Note that
E(t,x,y) = P (F(x, u) + TH(x, p) — F(x*) — YH(x")),
therefore, we have F(x, W + YH(x, p) — F(x*) —
YH(x*) < (B/ef') Vx € Q,t > 0. In addition, since
(n/Dllx — x I|2 < F(x) + TH(x) — F(x*) — TH(x")
F(x, w) + TH(x, p) — F(x*) — YH(*) + KFIT
(B/eP),x € Q@ Vt = 0, such that [x — x*|
VB/nef/?y, x € © V¥t > 0 holds.

Remark 2: 1) The Lyapunov function E(#,x,y) in
Theorem 5, which is designed on set Q, is valid from the
conclusion in the Feasibility premise in Theorem 4 and 2) the
conditions u;x > 0, ik < 0, f0+°° eﬂ’/clzm,kdt < 400, i =

HIAIAITA
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1,....,mk=1,..., nare satisfied if we take u; = e Bsgr,
y>2i=1,....mk=1,...,n

Remark 3: Note that the same lemma (i.e., Lemma 4)

and smoothing approximation function g(s, u) are used in
this article and in [45], but they have the following different
purposes.

1) Smoothing function g(s, u) is used to approximate
different functions. In this article, the smoothing approx-
imation function g(s, u) of the absolute value function
|s| is used to approximate nonsmooth convex functions
(1-norm) to get > i, fi(xi, o). In addition, we used

il — X, ,LL, th

|xi k — Xj,kl
=1 Gia—xia)’

I’le : P .
ik + 5=, if |x1,k x/,k| =< Wi
i=1,... k=1,...,n

x]a l‘(’l

if | — Xkl > i

, M,

to approximate the nonsmooth, convex penalty func-
tions (Y/2) Y ", Zje/\/,- |x; — xj| based on smoothing
approximation function g(s, u). In [45], the smooth-
ing approximation function g(s, ) of the absolute value
function |s| is used to approximate nonsmooth, noncon-
vex and non-Lipschitz function ||x||;, = 377 [x|” to get
O ) =370 &ilxi, )P
2) Smoothing function g(s, u) with different smoothing
approximation parameter p is used to obtain different
convergence rates. In this article, in order to obtain con-
vergence rate O(1/¢%) of DSPNA-N (19), the smoothing
approximation parameter © needs to satisfy the follow-
ing conditions in Remark 1: the conditions w;x > 0,
ik < 0, [ teppipdt < +oo,i = 1,...,mk =
1,...,nimply puix = t77,y > 2. To get convergence
rate O(e~P") of DSPNA-P, the smoothing approximation
parameters p should satisfy the following conditions
2) in Remark 2. The conditions w;x > O, ftix < O,
f0+°°eﬂ’/clzm’kdt <400, i=1,....mk=1,...,n
are satisfied if we take w;x = e Pyt 9 > 1,i =
1,....mk=1,...,n
Zhao et al. [45] only obtained the convergence property

(the convergence rate is not included) of SINA for solving

nonconvex, nonsmooth, and non-Lipschitz problem [i.e., L,-

minimization problem, p € (0, 1)], and the approximation

parameter u needs to meet u; > 0, t;(1) <0,i=1,...,n.

V. NUMERICAL SIMULATIONS

In the following, the proposed DSPNA-N (19) and
DSPNA-P (25) are used to address distributed optimization
problems with convex constrained sets to demonstrate their
feasibility and effectiveness.

Example 1: Consider a nonsmooth generally convex
optimization problem with a box constrained set over four
agents as follows:

min F(x)

4
~Yk-a
i=1
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State vector
State vector

Time (1) Time (t)

Fig. 2. Left: transient behaviors x of DSPNA-N (19); Right: transient
behaviors x of PPDD [30].

—DSDPA-P (ours)
DCTPA
—PPDD
—MNA

30

* Time () ”

Fig. 3. Left: communication topology of four agents; Right: conver-
gence rates of F(x) — F* of DSPNA-N (19), MNA [21], DCTPA [15], and
PPDD [30].

4
s.t. x e ﬂQi (32)
i=1
where Q; = {x € R3|d,',j = x = C,',j,j = 1,2,3.}, ay =

04,07, DT, ap = (0.1,0.9,2)7, a3 = (0.9,08, )7, a4 =
0.6,0.8, D7, d; = (0,0,007, c; = (1,1, D7, i=1,...,4.
Fig. 2 displays the state trajectories x of DSPNA-N (19) and
projected primal—-dual dynamics (PPDDs) [30]. As can be seen
from the results, both the DSPNA-N (19) with « =4, T =4,
pwix = (5/£),i = 1,...,3,k = 1,...,4 and PPDD [30]
converge to the same optimal solutions x* = (0.5, 0.8, DT.
The left figure in Fig. 3 displays the communication topol-
ogy of four agents. To further demonstrate the superiority of
DSPNA-N (19), we compare it with the distributed continuous-
time projection algorithm (DCTPA) [15], MNA [21], and
PPDD [30], which are based on the differential inclusion
method. As can be seen from Fig. 3(right), the proposed
DSPNA-N (19) has the fastest convergence rate because it
is designed based on Nesterov’s accelerated methods (see
Remark 4). Moreover, the PPDD outperforms the MNA and
DCTPA since an augmented Lagrangian term is added in
PPDD. It is meaningful to note that PPDD and DCTPA
exhibit strong oscillation in the later running period because
the subgradient in PPDD and DCTPA is a signal value used
in simulation experiment rather than a set. The DSPNA-
N can effectively avoid oscillation because the gradient of
the approximation function (single-valued function) is used
in DSPNA-N. Moreover, MNA does not produce oscillation
because there exists a damping factor of the subgradient in

MNA, which can suppress the oscillation in the experimental
simulation.

Example 2: In this experiment, we consider a sparse signal
reconstruction problem

min|x| s.t. Ax=2»
xeR"

(33)

where A € R™*"(m « n) is a sensing matrix, and b € R™
is an observed value. By splitting the matrix A and observed
value b into K parts sequentially, problem (33) is equivalent to

1 K K
min — x|, s.t. x € Q
XERM KZ| | ﬂ k
k=1 k=1
where Q¢ = {x € R"AysnX = by € Rllmilloy
Am|><n bm]xn
Am2><n Am2><n
K
AmKXn AmK

Note that problem (33) and the t;gnsformed problem men-
tioned above are not typical distributed optimization problems.
Nevertheless, under the condition of Assumption 3, it is
equivalent to solving the following distributed optimization
problem:

St AppsenXi = by, € RI™ 0 =1, K
X[ZXjERn,iGV,jE./\[j (34)

where X = (XT,...,XH)T € RK". DSPNA-N (19) is applied
to solve problem (34) with n = 32, m = 16 and the
sparsity of the original signal is 4 and K = 5. Fig. 4
(Top left) displays the communication topology of agents.
From the top middle and top right graphs in Fig. 4, we
can see that DSPNA-N (19) is globally asymptotically stable
(X = --- = X5 = x*) and DSPNA-N (19) has an arithmetic
convergence rate, i.e., O(1 /t2) in which matches the conclu-
sion in Theorem 2. Furthermore, the graphs in the bottom left
in Fig. 4 illustrate that the sparse signals can be effectively
reconstructed by the stable solutions of DSPNA-N (19) in a
distributed way. Compared with the recovered sparse signals
by PPDD [30] (bottom middle) and MNA [21] (bottom left),
our DSPNA-N (19) has a better performance behavior, i.e., the
solution more accurately approximates original sparse signals,
because the smoothing approximation methods are used in the
DSPNA-N (19).

Next, we will illustrate the effectiveness and convergence
rate of DSPNA-P (25) in two examples.

Example 3: Consider a numerical example with a commu-
nication network consisting of five agents connected by a ring
diagram as follows:

o 4 4 . .
min F(x) = i;fl(x) = 2; Sx Qx4 px+ I

i=
4
st. xe ﬂ Qi (35)
i=1
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Fig. 4. Top left: communication topology of the five agents; Top middle: transient behaviors x of DSPNA-N (19); Top right: convergence rates of DSPNA-
N (19); Bottom left: reconstructed signals of DSPNA-N (19); Bottom middle: reconstructed signals of PPDD [30]; Bottom right: reconstructed signals of

MNA [21].

where Q; € R**4 is a positive definite matrix and p; € R*.
The box constraints are considered, i.e., 2; = {x € R4|xj,m <
Xj < xjm,j = 1,..,4}. The matrix Q; € R¥4 g positive
definite and randomly generated and the elements of p;, —x;j m,
xj,m are randomly generated on the interval [0, 1]. Note that
the objective function of problem (35) is nonsmooth (|x|) and
strongly convex (x Qix+p!'x is with a positive definite matrix
Qi € RV

Fig. 5 (top, bottom left) displays that the trajectories x of
PPDD [30], CNS [29], and DSPNA-P (25) are globally asymp-
totically stable and converge to the same optimal solution in a
distributed way. Fig. 5 (bottom right) displays the convergence
rates of PPDD, CNS, and DSPNA-P (25). As can be seen from
Fig. 5 (bottom right), DSPNA-P (25) has a predicted exponen-
tial convergence rate, i.e., O(e_ﬂ’) when B = ./, which is
consistent with the conclusion in Theorem 5, and PPDD and
CNS solve nonsmooth strongly convex optimization problems,
which seemingly do not have exponential convergence rates.
It is easy to see that DSPNA-P has a faster convergence rate
than PPDD, CNS after a certain time.

Example 4: In this example, we apply DSPNA-P (25) to
solve the sensor network localization problem. Consider a
scenario in which there are five sensors and ten anchors in
the plane R?. The locations of ten anchors are marked as
b, € RZ(L e {1,2,...,10}) and the positions of five sen-
sors are tagged as x; = (xl-l,xiz) € RXi e {1,2,...,5}.
The links of all sensors and anchors are shown in Fig. 6
(top middle and bottom middle). In Fig. 6 (top middle),
the anchors’ locations b,(t € {1,2,...,10}) are labeled by

State vector
State vector

Time (t)

Prediced O (") rate
—DDSPNA-P
—PPDD

—CNS

State vector

Time (t)

Time(t)

Fig. 5. Top left: transient behaviors x of PPDD [30]; Top right: transient
behaviors x of CNS [29]; Bottom left: transient behaviors x of DSPNA-P (25);
Bottom right: convergence rates of F(x) — F(x*) with g = /.

yellow solid squares, while the initial locations of sensors
are labeled by black solid pentagrams x;( i € {1,2,...,5})
generated randomly. In Fig. 6 (bottom middle), the optimal
sensors’ locations xl’f( i e {l,2,...,5}) are labeled by red
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Fig. 6. Top left: consensus of the output vectors x of DSPNA-P (25); Top middle: topology and initial location of sensors and anchors; Top right: convergence

rates of I'(x, u) —
anchors; Bottom right: convergence rate of [|x — x*||.

solid pentagrams, and it is not difficult to see that the con-
straint (x> < 14, i € {1,2,...,5)) yields the optimal
values x;-k(i = 1,2,3,4,5) in the feasible region. Moreover,
the black-dotted lines refer to links between sensors, while
the green-dotted lines stand for the links between sensors and
anchors and the black circle refers to the feasible region. For
each sensor, there exists a bounded constraint to restrict the
location of the sensors. The associated target is to minimize
the connection length of the sensors and the anchors. Thus,
the optimization problem is given by

5
min Z% Z [|xi —lel2 + Z llxi — by

i=1 jeNi eN;
st x> <14, ie{1,2,...,5).
Applying DSPNA-P (25) to deal with this problem, where its

communication topology is similar to Fig. 4 (top left). For
agent i, the objective function is

Z i = x01% + Dl — b1

eN;

fix) =

where x = (x],x},x, x}, xD)T. From Fig. 6 (top left and

bottom left), the output values of sensors converge to con-
sensus optimal solutions of DSPNA-P (25) and the algorithm
in [24]. In addition, Fig. 6 (top right) displays the conver-
gence rate of f‘(x, n) —T'(x*) in DSPNA-P (25). It is easy to
see that the a DSPNA-P (25) has an exponential convergence
rate that is faster than the predicted exponential convergence
rate that matches the conclusion in Theorem 5. Compared
with the algorithm in [24], the DSPNA-P (25) has faster an
exponential convergence rate since it is designed based on

I'(x*); Bottom left: consensus of the output vectors x of the DCTPA [24]; Bottom middle: topology and optimal location of sensors and

heavy-ball dynamical method, which has a faster exponen-
tial convergence rate for solving strongly convex optimization
problems.

Remark 4: The continuous variant of Nesterov’s acceleration
for centralized unconstrained generally convex optimization
problem minf(x) has a faster convergence rate O(1/t%)

than the classical gradient dynamic method x = —Vf(x)
in [31], which is X + (3/t)x + Vf(x) = 0. It can be
=30

rewritten equivalently as: Note that the

—5Vf(x)

NSPNA-N (19) can be obtained by replacing y with Pq(y)
in x = (2/t)(y — x) and by taking the use of V)fi(xi, wi) +
T Zje/\/} V,jz(x,' —xj, u;) instead of Vf(x) in equation
y=—t/2)Vfx).

The continuous variant of Polyak’s heavy ball method

X+ Ax + Vf(x) = 0,1 = 2,/5 for centralized unconstrained
strongly convex optimization problem minf(x) has a faster
exponential convergence than the classical gradient dynamic
method X = —Vf(x) in [35]. ¥ +Ax + Vf(x) = 0,1 =2,/
i= /iy —x)
V=N —y =3V’
Note that the NSPNA-P (25) can be obtained by replacing y
and ./ with Pq(y) and B in x = ,/n(y — x) and by replac-
ing Vf(x) and ,/7 in equation y = /nMx—y—A/nVfx)
with fo,(xl, wi)+ 7Y Z jeN; V. hxi — xj, t;) and B. However,
DCTPA [15], MNA [21] the algorithm in [24], CNS [29],
and PPDD [30] are designed based on x = —Vf(x) and x =
—x+TI1q(x—Vf(x)) (both of them have no acceleration charac-
teristics). It is easy to understand that our NSPNAs converge
faster than DCTPA [15], MNA [21], the algorithm in [24],
CNS [29], and PPDD [30] for solving related optimization
problems.

can be rewritten equivalently as:

Authorized licensed use limited to: Southwest University. Downloaded on December 17,2024 at 07:20:10 UTC from IEEE Xplore. Restrictions apply.



ZHAO et al.: DSPNAs FOR CONSTRAINED NONSMOOTH OPTIMIZATION

VI. CONCLUSION

In this article, two fast convergent DSPNAs (DSPNA-N
and DSPNA-P) based on Nesterov’s and polyak’s accelerated
method have been proposed to solve distributed, nonsmooth,
constrained optimization problems (DNSCOP) in two cases
(more specifically, solving DNSCOP with generally con-
vex objective functions has an O(1/¢?) convergence rate by
DSPNA-N and solving DNSCOP with strongly convex objec-
tive functions has faster exponential convergence rates). An
exact penalty method has been used to transform the origi-
nal optimization problem into an optimization problem with
local set constraints and without consensus constraints. The
smoothing approximation method has been introduced in our
DSPNAs, which not only guarantee the existence and unique-
ness of solutions of DSPNAs but also avoids the difficulties
of selecting a suitable subgradient and computational diffi-
culties of proximal operators. A novel projection approach,
i.e., by introducing a projection operator for the auxiliary
variable to restrict the optimal variable to satisfy the local con-
straint sets, is proposed and used to guarantee the feasibility of
the solution of DSPNAs. A numerical example and practical
application example (sparse signal reconstruction) have been
done to illustrate the effectiveness and superiority of DSPNA-
N. Subsequently, the proposed DSPNA-P is applied to deal
with a numerical example (nonsmooth, constrained, quadratic
optimization problem) and practical application example (sen-
sor network localization problem). The experimental results
and comparative studies show that the DSPNAs proposed in
this article can solve DNSCOP efficiently, and the proposed
DSPNAs have better performance in terms of convergence
rates compared to other typical approaches. Future work may
focus on designing accelerated primal-dual mirror dynamical
approaches to solve centralized and distributed constrained
smooth and nonsmooth convex optimization problems. In addi-
tion, considering that many engineering optimization problems
in reality are nonconvex, nonsmooth, or even non-Lipschitz,
we intend to investigate distributed accelerated primal—dual
neurodynamic approaches for solving nonconvex, nonsmooth,
or even non-Lipschitz optimization problems and their related
theories in the future.
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