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Abstract

In this work, we improved the analysis of the running time of SparseGPT [Frantar,
Alistarh ICML 2023] from O(d3) to O(dω + d2+a+o(1) + d1+ω(1,1,a)−a) for any
a ∈ [0, 1], where ω is the exponent of matrix multiplication. In particular, for the
current ω ≈ 2.371 [Alman, Duan, Williams, Xu, Xu, Zhou 2024], our running
time boils down to O(d2.53). This running time is due to the analysis of the lazy
update behavior in iterative maintenance problems such as [Deng, Song, Weinstein
2022; Brand, Song, Zhou ICML 2024].

1 Introduction

Large Language Models (LLMs) have been widely applied in many AI applications. Accelerating
its inference speed is crucial to reduce the latency time during user usage. One of the recent
brilliant works, SparseGPT [FA23], uses calibration data to prune the parameters of GPT-family
models [BMR+20, ZRG+22], by using the optimal brain damage technique [LDS89, HS92]. Their
algorithm (Algorithm 1) can prune at least 50% parameters with structure patterns, while the perplexity
increase is negligible. Thus, SparseGPT can reduce the running time and GPU memory usage while
keeping high performance for LLMs’ applications.

SparseGPT [FA23] claims their main pruning algorithm (Algorithm 1) takes running time O(d3)
where d is the model’s hidden feature dimensions. In our work, we improved the running time
analysis to get a tighter running time complexity bound, i.e., O(d2.53), for Algorithm 1. Formally,
we state our main results as follows.
Theorem 1.1 (Main result (Restatement of Theorem 4.1)). Let lazy update block size B = da for
any a ∈ [0, 1]. Then Procedure SPARSEGPT in Algorithm 1 achieves the running time

O(dω + d2+a+o(1) + d1+ω(1,1,a)−a).

For the current ω ≈ 2.371, according to the Table 1 in [ADW+24], we should choose a ≈ 0.5275
in order to balance the terms d2+a+o(1) and d1+ω(1,1,a)−a. Then the running time boils down to
O(d2.53), which is better than O(d3) as claimed in [FA23].

The key technique in our analysis is to compute the complexity of SparseGPT by using lazy update.
It comes from an interesting fact of fast rectangular matrix multiplication: the time complexity of
multiplying a d× d matrix by a d× 1 matrix is the same as the times complexity of multiplying a
d× d matrix by a d× da matrix for any nonnegative a ≤ α where α is the dual exponent of matrix
multiplication and currently α ≈ 0.321 [WXXZ24, LG24, LGU18]. The lazy update has been widely
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used to speed up the training of neural networks [CLP+20, BPSW21, SZZ24] and maintain dynamic
attention in large language models [BSZ24]. The high-level intuition of lazy update is that during
iterative one-rank updates for a d× d matrix, we use an external matrix d× da to save the input for
updates while we conduct fast matrix multiplication only when da updates happen. Based on the lazy
update idea, we achieve our tighter complexity bound.

2 Related Work

2.1 Model Acceleration

Model acceleration is critical and urgently needed in many practical applications. There are many
techniques for model acceleration. One line of work is to change model architecture to support
fast inference, e.g., Mamba [GD23, DG24], PolySketchFormer [KMZ23], Linearizing Transform-
ers [ZHDK23, ZBKR24, MVK+24], Hopfield Model [HCW+24, HCL+24, WHHL24, XHH+24,
HLSL24, WHL+24, HYW+23, HWL24] and so on. Another line of work is accelerating model
computation on system level, e.g., FlashAttetnion [DFE+22, Dao23, SBZ+24, SY24, LLS+24a],
parallel decoding [SSU18], quantization [ZLC+24, TZZ+24, LTT+24, ZDH24] and so on. To
accelerate LLMs training and inference, there is a line of work to approximate attention ma-
trix computation [AS23, AS24, HJK+24, ZHMK24, LSSZ24, PMN+23, CTWC24, LSSY24,
LLS+24b, GSWY23, LSSY24, LSS+24, CLL+24, HWSL24, CLS+24] in almost linear time.
Some specific technique is developed to accelerate LLMs generation, e.g., KV-Cache compres-
sion [GZL+23, LDLG23, XTC+23, ZSZ+24, LWD+23, DYZ+24, SCY+24, SMN+24] and specu-
lative decodings [CLG+24, LCH+24, SCY+24, ESL+24, DMS24].

2.2 Model Pruning

Pruning is a technique aimed at reducing the number of weights in a neural network by selectively
removing certain neurons [LDS89, HS92]. This approach has gained considerable attention in recent
years as a method to enhance the efficiency and scalability of deep learning models [HPTD15, FC18,
LAT19, WZG19, BGOFG20, BMBE20, LZ20, TKYG20, CJD+21, HABN+21, HCI+21, JCR+22,
FA22, FA23, SLBK24]. Pruning can be categorized based on its stage in the training process: pre-
training pruning and post-training pruning. Pre-training pruning involves pruning the network at
initialization. [FC18] demonstrated that a neural network pruned at initialization could be trained to
achieve performance comparable to a dense model, a phenomenon referred to as the lottery ticket
hypothesis. This discovery motivated a line of research focused on developing methods to reduce the
computational cost of pruning neural networks at initialization [LAT19, WZG19, LZ20, TKYG20,
CJD+21]. More recently, [YLG+23] provided theoretical evidence that pre-training pruning can
enhance a model’s generalization ability. Post-training pruning, initially popularized through its
application in quantization [NAVB+20, HNH+21, LGT+21, SLBK24], was later extended to pruning
by [HCI+21, FA22, KKM+22, LLS+24c]. Post-training pruning aims to compress a well-optimized
model using a small set of calibration data. This process typically involves layer-wise pruning of
the neural network. Notably, [HCI+21] proposed a provable and efficient method for compressing a
model by “stitching together” individually compressed layers.

2.3 Lazy Update

In recent years, the lazy update idea used in iterative maintenance problems has emerged as a
crucial technique to effectively and efficiently solve various optimization problems, including
linear programming [CLS19, Bra20, BLSS20, JSWZ21, SY21, LSZ+23], semi-definite program-
ming [JKL+20, HJS+22, GS22, SYZ23], empirical risk minimization [LSZ19, GSZ23, QSZZ23],
cutting plane methods [JLSW20], neural network training [CLP+20, BPSW21, SZZ24], discrepancy
minimization [DSW22], dynamic attention problems [BSZ24] and so on.

We highlight several previous papers that share similar running time complexity. For comparison, we
assume the input size of these problems is dominated by a parameter d. In the line of developments of
fast linear program solvers, [CLS19] first introduced the lazy update idea to develop efficient dynamic
inverse structures for implementing interior point methods in solving linear programming problems,
and it achieves the running time O∗(dω + d2.5−a/2 + d1.5+a). [SY21] uses a different method to
achieve linear programming in the same complexity O∗(dω + d2.5−a/2 + d1.5+a) by incorporating
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the sparse sketching matrix to speed up the online matrix-vector multiplication. [JSWZ21] improves
the linear programming to O∗(dω+d2.5−a/2+d1.5+a−ã/2+d0.5+a+(ω−1)ã) time where ã ∈ [0, αa]
by designing a two-level lazy update framework for efficiently maintaining a projection matrix.
Later, [LSZ19] generalizes the algorithm for linear programming to empirical risk minimization,
which also takes O∗(dω + d2.5−a/2 + d1.5+a) time. Different from [CLS19], which employs a
stochastic central path method that updates weights using a random sparse vector, [LSZ19] introduces
a robust deterministic central path method. Additionally, [LSZ19] proposes an efficient data structure
capable of handling updates efficiently even when the weight update vector is dense. Further,
[QSZZ23] uses a different method to achieve empirical risk minimization in the same complexity
O∗(dω + d2.5−a/2 + d1.5+a) via online projection matrix-vector multiplication.

There are numerous other applications of the lazy update technique. For instance, [DSW22] employs
this approach to solve a subroutine of the discrepancy minimization problem in O∗(dω + d2+a +
d1+ω(1,1,a)−a). This is achieved by designing a data structure that efficiently implements the iterative
Edge-Walk partial-coloring algorithm proposed by [LM15], utilizing the lazy update concept. More
recently, [BSZ24] demonstrates how the lazy update concept can be applied to a dynamic attention
problem, achieving an amortized update time of O(dω(1,1,a)−a).

3 Preliminary

3.1 Notations.

For a matrix A, we denote its transpose by A⊤. We use Id×d to denote a d× d identity matrix. We
use 1n×d to denote an n× d matrix where all entries are ones and 0n×d to denote an n× d matrix
where all entries are zeros. For a matrix A, the notation A[i1,i2],[j1,j2] refers to the submatrix of A
corresponding to the rows from i1 to i2 (including i1 and i2) and columns from j1 to j2 (including j1
and j2). When we write A∗,[j1,j2], it denotes the submatrix of A that includes all rows and restricts
the columns to those from j1 to j2. For two matrices A,B of the same size, we denote the Hadamard
product of A and B by A ◦B. We use O∗(f(d)) to hide f(d)o(1) factor.

3.2 Definitions and Facts

We now introduce some key definitions and key facts.
Definition 3.1. For three positive integers d1, d2, d3, we use Tmat(d1, d2, d3) to denote the time of
multiplying a d1 × d2 matrix with a d2 × d3 matrix.

The following fact shows that the order of d1, d2, d3 only results in a constant factor difference.
Fact 3.2 ([BCS13, Blä13]). It holds that

Tmat(d1, d2, d3) = O(Tmat(d1, d3, d2)) = O(Tmat(d2, d1, d3)).

We provide a definition of ω(·, ·, ·) here.

Definition 3.3. For a, b, c > 0, we use dw(a,b,c) to denote the time complexity of multiplying a da×db

matrix with a db × dc matrix. We define ω := ω(1, 1, 1) as the exponent of matrix multiplication.
We use α to denote the dual exponent of matrix multiplication, which is the largest value such that
ω(1, α, 1) = 2 + o(1).

In other words, ω means that multiplying two d× d matrices require time O(dω), and α is the largest
number such that we can multiply a d× dα matrix with a dα × d in the subquadratic time.
Lemma 3.4 ([ADW+24, WXXZ24, LG24]). Currently, we have ω ≈ 2.371 and α ≈ 0.321.

4 Main Results

In this section, we present our principal findings. Our analysis demonstrates that SparseGPT (refer to
Algorithm 1) attains the desired running time of O(dω + d2+a + d1+ω(1,1,a)−a) (Theorem 4.1). For
the sake of clarity, we assume that both the weight matrix W and the input feature matrix X are of
dimensions Rd×d. However, our analysis remains valid for more general cases where W ∈ Rn×d

and X ∈ Rd×N , provided that n = O(d) and N = O(d).
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Algorithm 1 The SparseGPT algorithm (Algorithm 1 in [FA23]).

1: procedure SPARSEGPT(p ∈ [0, 1], W ∈ Rd×d, X ∈ Rd×d, B ∈ N+, Bs ∈ N+, λ > 0)
2: ▷ Pruning ration p ∈ [0, 1]
3: ▷ Weight matrix W ∈ Rd×d

4: ▷ Input feature matrix X ∈ Rd×d

5: ▷ Lazy update block size B ∈ N+, B = da for any a ∈ [0, 1]
6: ▷ Adaptive mask size Bs ∈ N+

7: ▷ Regularization parameter λ > 0
8: M, E ← 1d×d, 0d×B ▷ O(d2)

9: H̃ ← (XX⊤ + λId×d)
−1 ▷ O(dω) by Lemma 5.2

10: for i = 0, B, 2B, . . . , ⌊ dB ⌋B do
11: for j = i+ 1, . . . , i+B do
12: if j mod Bs = 0 then ▷ O(d)

13: M∗,[j,j+Bs] ← MASKSELECT(p,W∗,[j,j+Bs], H̃, j − 1) ▷ O(d2 log d) by
Lemma 5.1

14: end if
15: E∗,j−i ← (1d×1 −M∗,j) ◦W∗,j/H̃j,j ▷ O(d2)

16: W∗,[j,i+B] ←W∗,[j,i+B] − E∗,j−iH̃j,[j,i+B] ▷ O(d2+a) by Lemma 5.3
17: end for
18: W∗,[i+B,d] ←W∗,[i+B,d] − EH̃[i,i+B],[i+B,d] ▷ O(d1+ω(1,1,a)−a) by Lemma 5.4
19: end for
20: W ←W ◦M ▷ O(d2)
21: end procedure
22:
23: procedure MASKSELECT(p ∈ [0, 1], W ′ ∈ Rd×r, H̃ ∈ Rd×d, s ∈ N+)
24: ▷ Sub-weight matrix W ′ ∈ Rd×r; Inverse of Hessian matrix H̃ ∈ Rd×d

25: ▷ Index s ∈ N+, recording the position of W ′ in W
26: M ′ ← 0d×r ▷ O(dr)
27: for k = 1, . . . , r do
28: w ←W ′

∗,k ▷ w ∈ Rd, O(dr)

29: w ← (w ◦ w)/(H̃s+k,s+k)
2 ▷ O(dr)

30: J ← indices of top (1− p)d largest entries of w ▷ O(r · d log d) by sorting
31: for j ∈ J do
32: M ′

k,j ← 1 ▷ O(dr)
33: end for
34: end for
35: return M ′

36: end procedure

Theorem 4.1 (Main result). Let lazy update block size B = da for any a ∈ [0, 1]. Then Procedure
SPARSEGPT in Algorithm 1 achieves the running time

O∗(dω + d2+a + d1+ω(1,1,a)−a).

Proof. We split the analysis of running time in the following

• Line 8 takes time O(d2) to initiate M and takes time O(d1+a) to initiate E.

• By Lemma 5.2, Line 9 takes time O(dω).

• In each iteration, Line 12 takes time O(1) to check if j mod Bs = 0. Since there are d
iterations, the total time is O(d).

• By Lemma 5.1, Line 13 takes time O(d2 log d) = O(d2+o(1)) over all iterations.
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• In each iteration, Line 15 takes time O(d) to compute W∗,j/[H̃]2jj and takes time O(d) to
compute 1d×1 −M∗,j and then takes time O(d) to compute the Hadamard product of them.
Since there are d iterations, the total time is O(d2).

• By Lemma 5.3, Line 16 takes time O(d2+a) over all iterations.

• By Lemma 5.4, Line 18 takes time O(d1+ω(1,1,a)−a) over all iterations.

• Line 20 takes time O(d2) to compute the Hadamard product of two d× d matrices.

Summing up, Algorithm 1 runs in time

O( d2︸︷︷︸
Line 8

+ dω︸︷︷︸
Line 9

+ d︸︷︷︸
Line 12

+ d2+o(1)︸ ︷︷ ︸
Line 13

+ d2︸︷︷︸
Line 15

+ d2+a︸︷︷︸
Line 16

+ d1+ω(1,1,a)−a︸ ︷︷ ︸
Line 18

+ d2︸︷︷︸
Line 20

).

Absorbing the same terms and lower order terms, we get our target running time

O(dω + d2+a+o(1) + d1+ω(1,1,a)−a).

The proof is complete.

Remark 4.2. The O(d2) space complexity is sufficient to implement fast matrix multiplication,
which is equivalent to that of standard matrix multiplication. In fact, all algorithms derived from
Strassen’s original approach exhibit a Θ(d2) space complexity. For further details, we refer readers
to [Yes84, Abr91].

5 Detailed Complexity Analysis

From now on, we let the lazy update block size B = da for any a ∈ [0, 1] without defining it in the
statement of lemmas. We first analyze the running time of the subroutine Procedure MASKSELECT
in Algorithm 1.
Lemma 5.1. The running time of Procedure MASKSELECT in Algorithm 1 is O(rd log d). Hence
the running time of Line 13 in Algorithm 1 over all iterations is O(d2 log d).

Proof. We first analyze the running time of Procedure MASKSELECT. We split the analysis of
running time in the following

• Line 26 takes time O(dr) to initialize M ′.

• In every iteration, Line 28 takes time O(d) to initialize w. Since there are r iterations, the
total running time is O(dr).

• In every iteration, Line 29 takes time O(1) to compute (H̃s+k)
2 and then takes time O(d)

to compute (w ◦ w)/a. Since there are r iterations, the total running time is O(dr).

• In every iteration, Line 30 takes time O(d log d) to sort w (without overwriting) and takes
time O(d) to read the indices of top (1− p)d largest entries. Since there are r iterations, the
total running time is O(r(d log d+ d)) = O(rd log d).

• In every iteration over k, Line 32 takes time O(d) to update M ′. Since there are r iterations,
the total running time is O(dr).

Hence the Procedure MASKSELECT takes time

O(dr + dr + r + dr + rd log d+ dr) = O(rd log d).

Now, we analyze the running of Line 13 over all iterations in Algorithm 1. Let r = Bs. The total
number calls to MASKSELECT is d/Bs. Hence the running over all iterations is

O((d/Bs) · (Bsd log d)) = O(d2 log d).

Thus we complete the proof.
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Next, we analyze the running time of several key steps of Procedure SPARSEGPT in Algorithm 1.
We show that the inverse Hessian can be computed in time O(dω).

Lemma 5.2. The running time of Line 9 in Algorithm 1 is O(dω).

Proof. Line 9 takes time O(dω) to compute XX⊤, takes time O(d) to add XX⊤ and λId×d. Then
computing the inverse of a d× d matrix takes time O(dω). Hence Line 9 takes time

O(dω + d+ dω) = O(dω),

where it follows from ω ≥ 2.

Now, we compute the running time of updates of W in the inner iterations.

Lemma 5.3. The running time of Line 16 in Algorithm 1 over all iterations is O(d2+a).

Proof. In every iteration, Line 16 involves one matrix addition and one matrix multiplication. The
size of E∗,j−i is d× 1 and the size of H̃j,[j,i+B] is 1×B. Hence multiplying E∗,j−i with H̃j,[j,i+B]

takes time O(dB). Subtracting E∗,j−iH̃j,[j,i+B] from W∗,[j,i+B] takes time O(dB). Since there are
d iterations, the running time of Line 16 in Algorithm 1 over all iterations is

O(d · (dB + dB)) = O(d2B) = O(d2+a),

where the first step uses basic algebra and the second step is due to B = da.

Finally, we provide the analysis of the running time for updating W in the outer iterations.

Lemma 5.4. The running time of Line 18 in Algorithm 1 over all iterations is O(d1+ω(1,1,a)−a).

Proof. In every iteration, Line 18 involves one matrix addition and one matrix multiplication. The size
of E is d×B. The size of H̃[i,i+B],[i+B,d] is B× (d− (i+B)). Multiplying E with H̃[i,i+B],[i+B,d]

takes time Tmat(d,B, d− (i+B)) = Tmat(d,B, d). Subtracting EH̃[i,i+B],[i+B,d] from W∗,[i+B,d]

takes time O(dB). Hence, the running time of Line 18 over all iterations is

d/B∑
i=1

O(dB + Tmat(d,B, d)) =

d/B∑
i=1

O(Tmat(d,B, d))

= (d/B) ·O(Tmat(d,B, d))

= d1−a ·O(Tmat(d, d
a, d))

= d1−a ·O(dω(1,1,a))

= O(d1+ω(1,1,a)−a),

where the first step is because Tmat(d,B, d) ≥ Ω(dB), the second step follows from basic algebra,
the third step uses B = da, the fourth step is due to Definition 3.3, and the last step uses basic
algebra.

6 Conclusion

We improved the complexity analysis of SparseGPT from O(d3) to O(d2.53), using techniques from
fast matrix multiplication and lazy update ideas used in iterative maintenance problems. This tighter
bound demonstrates that large language models can be pruned more efficiently than previously
thought. Future work could explore further improvements or extensions of these methodologies to
other model compression algorithms.
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