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Abstract

The pretraining-finetuning paradigm has gained widespread adoption in vision
tasks and other fields. However, the finetuning phase still requires high-quality
annotated samples. To overcome this challenge, the concept of active finetuning
has emerged, aiming to select the most appropriate samples for model finetuning
within a limited budget. Existing active learning methods struggle in this scenario
due to their inherent bias in batch selection. Meanwhile, the recent active finetuning
approach focuses solely on global distribution alignment but neglects the contri-
butions of samples to local boundaries. Therefore, we propose a Bi-Level Active
Finetuning framework (BiLAF) to select the samples for annotation in one shot,
encompassing two stages: core sample selection for global diversity and boundary
sample selection for local decision uncertainty. Without the need of ground-truth
labels, our method can successfully identify pseudo-class centers, apply a novel
denoising technique, and iteratively select boundary samples with designed evalua-
tion metric. Extensive experiments provide qualitative and quantitative evidence of
our method’s superior efficacy, consistently outperforming the existing baselines.

1 Introduction

The advancement of deep learning significantly relies on extensive training data. However, annotating
large-scale datasets is challenging, requiring significant human labor and resources. To address this
challenge, the pretraining-finetuning paradigm has gained widespread adoption. In this paradigm,
models are first pretrained in an unsupervised manner on large datasets and then finetuned on a smaller,
labeled subset. While there is substantial research about both unsupervised pretraining [7, 11, 13, 17]
and supervised finetuning [15, 27], the optimization of sample set selection for annotation has received
less attention, especially in scenarios with limited labeling resources.

Active learning methods [33, 36, 31], though effective in identifying valuable samples for training
from scratch, face significant challenges when integrated into the pretraining-finetuning framework [3,
41]. The primary limitation stems from the batch-selection strategy commonly used by these methods.
Allocating a limited annotation budget across multiple iterations can introduce harmful biases,
which leads to overfitting. Consequently, this undermines the general representational quality of the
pretrained model and leads to the accumulation of errors in the iterative selection process.

To fill in the research gap, the Active Finetuning task has been formulated in [41], which focuses on the
selection of samples for supervised finetuning using pretrained models. This method optimizes sample
selection by minimizing the distributional gap between the selected subset and the entire data pool.
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Figure 1: Design philosophy of our BiLAF framework. In contrast to the previous method, our
method ensures the selection of central samples to maintain diversity while also reserving capacity to
choose boundary samples to enhance decision boundary learning.

Despite its notable performance, it fundamentally concentrates on the global diversity of selected
samples, which neglects the local decision boundaries—also referred to as sample uncertainty in data
selection. As the volume of data increases, we found the model’s capabilities drops dramatically,
which indicates the selected samples become increasingly redundant and less informative.

To mitigate the inherent limitations of existing approaches, we introduce the innovative Bi-Level
Active Finetuning Framework (BiLAF), which can effectively capture both diversity and uncer-
tainty of selected samples, as depicted in Fig. 1. The key challenge lies in measuring uncertainty
within the pretraining-finetuning paradigm. Without labels and a trained classifier head, traditional
methods based on posterior probability [24, 39], entropy [18, 29] and loss metrics [16, 45] are
infeasible. Notably, we observe that the global feature space of pretrained models inherently captures
the interrelations among samples from different classes. Consequently, we can effectively utilize
their feature outputs to facilitate the identification of support samples that are proximate to the
model’s decision boundary. This concept has been extensively supported by theoretical [23] and
methodological research [4, 5] across various domains.

To elucidate, our BiLAF framework operates through two distinct stages. The initial phase, Core
Samples Selection, is dedicated to identifying pivotal samples for each class. The selection mechanism
employed can vary, including options such as K-Means or ActiveFT [41]. The second stage, Boundary
Samples Selection, begins with our innovative unsupervised denoising technique that precisely isolates
noisy outliers. Following this, we systematically identify boundary samples adjacent to each core
sample and efficiently eliminate redundant samples, employing our newly proposed boundary score.

In conclusion, our contributions are summarized as follows:

• We propose a Bi-Level Active Finetuning Framework (BiLAF) emphasizing boundary importance
to balance sample diversity and uncertainty. This framework exhibits remarkable flexibility and
can accommodate various methods seamlessly.

• The proposed unsupervised denoising technique in BiLAF can effectively eliminate the outlier
samples and an iterative strategy with newly designed metric can identify the marginal boundary
samples in feature space. Compared to other methods, our approach has high accuracy and
efficiency.

• Extensive experiments and ablation studies demonstrate the effectiveness of our method. Com-
pared to the current state-of-the-art approach, our method achieves a remarkable improvement of
nearly 3% absolute accuracy on CIFAR100 and approximately 1% on ImageNet. What’s more, it
outperforms the other baselines in object detection, semantic segmentation, and the long-tail tasks.

2 Related Work

2.1 Active Learning / Finetuning

Active learning maximizes annotation efficiency by selecting the most informative samples. Typically,
uncertainty-driven methods select difficult samples based on heuristics like posterior probability [24,
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Figure 2: Our BiLAF framework in the Active Finetuning task. In the high-dimensional feature
space, the Core Sample Selection focuses on pinpointing pseudo-class centers. Following this, we
have devised a denoising method to eliminate noise samples. Subsequently, we compute the Boundary
Score metric for each sample, which aids in the iterative selection of samples and the removal of
candidates from the pool. Ultimately, the selected samples are labeled for supervised finetuning.

39], entropy [18, 29], or loss metrics [16, 45], while diversity-based approaches approximate the
original data distribution using metrics like sample distance or gradient directions [33, 1, 40, 2, 20, 36].
However, these methods struggle within the pretraining-finetuning paradigm [12, 41]. ActiveFT [41]
addresses this by aligning the sample distribution with the unlabeled pool, often prioritizing high-
density over boundary areas. Our algorithm, by integrating both diversity and uncertainty, refines the
selection process to enhance decision boundary samples selection for following supervised finetuning.

2.2 Decision Boundaries in Neural Networks.

Decision boundaries are pivotal in neural network-based classifiers, influencing both performance and
interpretability [23, 25]. Their optimization enhances generalizability and accuracy in complex data
spaces [42, 5]. In SVMs, decision boundaries separate hyperplanes and maximize geometric margins
for robust classification [4]. This concept extends to neural networks, where margin maximization
also promotes generalization. For imbalanced datasets, adjusting the decision boundary is crucial
for accurate minority class classification, with approaches like LDAM loss [5] and ELM loss [19]
developed to modify the boundary and balance errors across classes. Neural networks tend to utilize
simple or highly discriminative features for decision boundaries [30, 34]. A theoretical framework
exploring decision boundary complexity and its inverse relation to generalizability is introduced
in [23]. Notably, this is not trivial in unsupervised scenarios. Despite the challenge, we effectively
leverage features from pretrained models, thereby introducing innovative denoising and selection
methods without labels. This approach addresses a significant gap in the active finetuning domain.

3 BiLAF: Bi-Level Active Finetuning

In this section, we introduce our novel Bi-Level Active Finetuning Framework (BiLAF), as illustrated
in Fig. 2. BiLAF operates in two distinct stages: Firstly, Core Samples Selection (Sec. 3.2) involves
identifying multiple pseudo-class centers, which ensures comprehensive coverage across all classes.
Secondly, Boundary Samples Selection (Sec. 3.3) focuses on the accurate identification of boundary
samples for each pseudo-class, using the novel denoising and iterative selection method. Algorithm 1
summarizes the complete workflow. The theoretical time complexity is analyzed in Appendix D.

3.1 Preliminary: Active Finetuning Task

The active finetuning task is defined in [41]. Apart from a large unlabeled data pool Pu = {xi}i∈[N ]

where [N ] = {1, 2, . . . , N} identical to the traditional active learning task, we have the access to
a deep neural network model f(·;w0) with the pretrained weight w0. It should be noted that the
function f(·;w0) can be pretrained either on the current data pool Pu or any other external data

3



sources. Using the pretrained model, we can map the data sample xi to the high dimensional feature
space as fi = f(xi;w0) ∈ Rd, where fi is the normalized feature of xi. From this, we can derive the
feature pool Fu = {fi}i∈[N ] from Pu, which assists us in selecting the optimal samples.

Our task is to select the subset Pu
S from Pu for annotation and the subsequent supervised finetuning.

The subset Pu
S = {xsj}j∈[B] is determined by the sampling strategy S = {sj ∈ [N ]}j∈[B], where

B represents the annotation budget. The labels {ysj}j∈[B] ⊂ Y , a subset of the label space Y , are
accessed through an oracle, resulting in a labeled data pool P l

S = {xsj ,ysj}j∈[B]. Subsequently, the
pretrained model f(·;w0) undergoes supervised finetuning on P l

S . Our objective is to optimize the
sampling strategy S to select the labeled set that minimizes the expected error of the finetuned model
under the given annotation budget constraints.

3.2 Core Samples Selection

We start data selection procedure by selecting core samples. Those core samples can represent the
distribution of the entire dataset. Popular methods include K-Means, Coreset [33], and ActiveFT [41],
differing in their design targets and optimization procedures. We employ ActiveFT, the most advanced
method to date, as our primary approach in the initial phase. For detailed implementation of ActiveFT,
see Appendix B. Using ActiveFT, we obtain K core samples, which serve as the center for each
pseudo-class i, where K represents the predefined budget for core samples.

3.3 Boundary Samples Selection

In addition to those K core samples, we continue to select samples close to the boundaries of semantic
categories, which can enhance the training of the model’s decision boundaries.

By leveraging pretrained models, data samples are mapped to robust feature representations that
elucidate the relationships among samples, their intra-class counterparts, and inter-class samples
from diverse classes. We introduce a novel method for boundary sample selection— the first in this
field. Given the pseudo-class centers, our method involves three steps: 1) Identifying the samples
associated with each pseudo-class center; 2) Implementing denoising processes to refine these
samples; 3) Developing precise metrics to select boundary samples for each pseudo-class.

3.3.1 Sample Clustering

Given K pseudo-class centers denoted by C = {c1, c2, . . . , cK} where ci ∈ [N ], a sample xj with its
feature vector fj ∈ Rd is assigned to the pseudo-class center ci that minimizes the distance D(fj , fci).
This assignment can be mathematically represented as:

ci = argmin
c∈C

D(fj , fc) (1)

where D(·, ·) denotes the distance function. While the choice of D can vary based on the design of
the clustering model, we employ the Euclidean distance in our implementation, which efficiently
aligns each sample point with a corresponding pseudo-class center during the optimization process.

3.3.2 Boundary Sample Denoising

Boundary samples within a pseudo-class are crucial for optimizing decision boundaries. However,
they can also introduce noise, which potentially hinders the model’s performance. For each class
i, with Ni samples, we define a removal ratio Prm to identify and eliminate Ni,rm = Ni · Prm

peripheral noisy samples from the candidate boundary set. This elimination process is based on the
density of samples in the feature space, where we define the concept of density distance as follows:
Definition 1 (Density Distance). The density distance of a sample is defined as the average distance
to its k nearest neighbors. Formally, for a given sample xj characterized by its feature vector fj , its
density distance ρ(xj) is defined as:

ρ(xj) =
1

k

k∑
l=1

D(fj , fnjl
), (2)

where njl represents the index of the l-th nearest neighbor of xj in the feature space, and D denotes
a distance function.
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Inspired by the classical clustering method DBSCAN [8], we propose an Iterative Density-based
Clustering (IDC) algorithm. IDC clusters the candidate samples Xi = {xai,1 ,xai,2 , ...xai,Ni

} where
the index ai,j ∈ [N ] and j ∈ [Ni]. The algorithm initiates with the core sample index ci as the
seed set Ui = {ci}. In each subsequent iteration, a fraction Pin of samples are included, which
corresponds to Ni,in = Ni · Pin peripheral samples being integrated into the existing cluster Ui.

Algorithm 1 Pseudo-code for BiLAF
Input: Unlabeled data pool Pu = {xi}i∈[N ], pretrained model
f(·;w0), annotation budget B.
Parameter: Core samples budget K, removal ratio Prm, den-
sity neighbours k, IDC cluster ratio Pin, opponent penalty
coefficient δ, distance function D(·, ·).
Output: The selected samples index S = {sj}j∈[B]

▷ Stage 1: Core Samples Selection
1: for i ∈ [N ] do
2: fi = f(xi;w0)

3: Select K centers in feature space F using ActiveFT
▷ Can be K-Means and any other core selection method

▷ Stage 2: Boundary Samples Selection
4: for each pseudo-class ci do

▷ Step1: Assign the pseudo-class samples
5: Initial the candidate index set U0

i = {}
6: for j ∈ [N ] do
7: if ci == argminc∈C D(fj , fc) then
8: Add the index j to the set U0

i

▷ Step2: Iterative Density-based cluster then denoise
9: Initialize the pseudo-class cluster Ui = {ci}.

10: while |U0
i | > |Ui| do

11: for each candidate index j ∈ U0
i and j /∈ Ui do

12: ρ(xj) =
1
k

∑k
l=1,njl∈Ui

D(fj , fnjl
) where

njl is the nearest l-th sample index of xj .
13: Sort samples by increasing density distance ρ(xj)
14: Add the previous Pin · |U0

i | samples to Ui

15: Remove the last Prm · |Ui| samples from Ui to denoise
▷ Step3: Selection Process

16: Initialize opponent penalty counts tl = 0 for l ̸= i
17: for m = 1 to Bi do
18: for each candidate index j ∈ Ui do
19: dintra(xj) =

1
|Ui|

∑
l∈Ui

D(fj , fl)

20: BS(xj) = mini ̸=l
cl∈C

δtl ·D(fj ,fcl )−dintra(xj)

max(D(fj ,fcl ),dintra(xj))

21: Select xjmin
with the lowest Boundary Score if

m > 1, otherwise set jmin = ci.
22: Add the index jmin to selected samples set S
23: tl = tl + 1 where nearest opponent class is l if

m > 1.
24: Remove the nearest |Ui|/Bi samples of xjmin

from Ui

25: return the selected samples index S

The density distance of each candidate sample
is redefined from Eq. 2 as the average distance
to the nearest k selected sample in the cluster
Ui. Specifically, the density distance ρ(xj) for
each remaining point xj is calculated as:

ρ(xj) =
1

k

k∑
l=1,njl∈Ui

D(fj , fnjl
), (3)

where njl represents the index of the l-th nearest
sample in Ui to xj . In each iteration, the Ni,in

samples with the lowest density distance are
selected. This process repeats until all samples
have been included. The order of inclusion into
the cluster reflects each point’s proximity to the
center, with later-added samples more likely to
be peripheral and noisy. Consequently, the last
Ni,rm samples can be removed from Ui.

3.3.3 Iterative Sample Selection

After successfully eliminating noise samples, we
advance to the selection of boundary samples
from the centers of pseudo-classes. To stream-
line this process, we introduce a set of defini-
tions that facilitate the computation of a bound-
ary score for each sample.

Definition 2 (Intra-class Distance). Let xj be
a sample in the set Ui of the pseudo-class ci.
The intra-class distance for xj is the average
distance from fj to all other samples within the
same class set Ui. It can be formally defined as:

dintra(xj) =
1

|Ui|
∑
l∈Ui

D(fj , fl) (4)

where D is the distance function and |Ui| is the
number of samples in pseudo-class ci.

Definition 3 (Inter-class Distance). The inter-class distance for a sample xj in the pseudo-class ci is
defined as the distance from fj to the nearest center of other pseudo-classes. It is defined as:

dinter(xj) = min
cl∈C,i ̸=l

D(fj , fcl) (5)

where D is the distance function, C = {c1, . . . , cK} are the pseudo-class centers, and i ̸= l ensures
that the pseudo-class ci of the sample xj is excluded from the calculation.

Definition 4 (Boundary Score). The Boundary Score for sample xj in psuedo-class ci can be defined
as a function of both intra-class and inter-class distances. It is defined as:

BS(xj) =
dinter(xj)− dintra(xj)

max(dinter(xj), dintra(xj))
(6)

where dintra and dinter are the intra-class and inter-class distances, respectively. A smaller Boundary
Score indicates closer proximity to the boundary.
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For each pseudo-class ci with the samples set Ui, we allocate the sample selection budget in proportion
to the size of the pseudo-class. Specifically, the budget Bi for pseudo-class ci is calculated as:
Bi = B · |Ui| /

∑K
j=1 |Uj | where |Ui| represents the number of samples in pseudo-class ci.

Initially, one might consider simply selecting the top Bi samples with the lowest boundary scores.
However, this approach risks over-concentration of selections within specific areas of the feature
space. To address this, we employ an iterative selection and removal strategy, which progressively
selects and eliminates candidate samples. Furthermore, to prevent the aggregation of multiple samples
near the same pseudo-class boundary that faces the same opposing pseudo-class center, we introduce
an opponent penalty. This mechanism increases the influence of previously selected boundary
samples on subsequent selections, encouraging greater diversity across different boundaries.

Iterative selection and removal begins by selecting samples with the lowest Boundary Score in each
iteration. Subsequently, the nearest ⌊|Ui|/Bi⌋ samples surrounding the selected sample are removed
to prevent clustering. This process is repeated Bi times, starting from the center samples.

Opponent penalty monitors the relationship between the currently selected samples and the bound-
aries to other pseudo-classes, imposing a penalty on opponent pseudo-classes whose boundaries have
already been selected. Specifically, for the selected pool of pseudo-class ci, if boundary samples
related to an opposing pseudo-class l ̸= i have been selected tl times, the inter-class distance for
the subsequent samples to this pseudo-class l will be scaled by a factor of δtl , where the opponent
penalty coefficient δ is a hyperparameter greater than 1. This indicates that the more often a sample is
selected in relation to pseudo-class l’s boundary, the higher its Boundary Score with that pseudo-class
becomes, making it less likely to be chosen in future rounds. Consequently, we recalibrate the
Boundary Score for each sample in each iteration, leading to a modification from Eq. 6:

BS(xj) = min
cl∈C,i ̸=l

δtlD(fj , fcl)− dintra(xj)

max(D(fj , fcl), dintra(xj))
(7)

where D(fj , fcl) measures the distance from sample xj to the opponent pseudo-class l and the δtl

reflects the imposed penalty.

In each pseudo-class i, we select the Bi samples through an iterative selection and removal strategy
that incorporates this opponent penalty in the increasing order of BS(xj). The selected samples from
various pseudo-classes are ultimately aggregated to form the comprehensive annotation subset Pu

S .

4 Experiments

Our approach has been rigorously evaluated using three primary image classification benchmarks,
alongside various tasks with different sampling ratios, as detailed in Sec. 4.1. We compare its
performance against multiple baselines and conventional active learning techniques, with results
discussed in Sec. 4.2. The analysis of our method is presented in Sec. 4.3, and a comprehensive
ablation study is provided in Sec. 4.4. All experiments were conducted using GeForce RTX 3090(24G)
GPUs and Intel(R) Core(TM) i9-10920X CPUs. The source code will be made publicly available.

4.1 Experiment Setup

Datasets and Evaluation Metrics. Firstly, we evaluate our method using three widely recognized
classification datasets: CIFAR10, CIFAR100 [22], and ImageNet-1k [32]. The raw training data from
these datasets constitute the unlabeled pool Pu from which selections are made. For performance
evaluation, we employ the Top-1 Accuracy metric. In addition to these classification tasks, extensive
experiments have also been conducted in object detection, semantic segmentation, and long-tail tasks.
Further details on these experiments can be found in Appendix E and F.

Baselines. We compare our approach with three heuristic baselines Random, FDS and K-Means;
five active learning methods CoreSet [33], VAAL [36], LearnLoss [45], TA-VAAL [20], and ALFA-
Mix [31]; and the well-designed active finetuning method ActiveFT [41]. We utilize the overlapping
results reported in [41]. The detailed information of the baselines is listed in Appendix E.

Implementation Details. In line with the SOTA method ActiveFT [41], we use DeiT-Small [38]
model, pretrained using the DINO [6] framework on ImageNet-1k in the unsupervised pretraining
phase. For all the datasets, we resize images to 224× 224 consistent with the pretraining for both
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Table 1: Benchmark Results. Experiments are conducted on three popular datasets with different
annotation ratios. We report the mean and standard deviation over three trials. Traditional active
learning methods require random initial data to start, thus we use “-” to represent. BiLAF has shown
a significant competitive advantage across the majority of scenarios, affirming its effectiveness.

Methods CIFAR10 CIFAR100 ImageNet
0.5% 1% 2% 1% 2% 5% 10% 1% 2% 5%

Random 77.3±2.6 82.2±1.9 88.9±0.4 14.9±1.9 24.3±2.0 50.8±3.4 69.3±0.7 45.1±0.8 52.1±0.6 64.3±0.3
FDS 64.5±1.5 73.2±1.2 81.4±0.7 8.1±0.6 12.8±0.3 16.9±1.4 52.3±1.9 26.7±0.6 43.1±0.4 55.5±0.1
K-Means 83.0±3.5 85.9±0.8 89.6±0.6 17.6±1.1 31.9±0.1 42.4±1.0 70.7±0.3 49.8±0.5 55.4±0.3 64.0±0.2

CoreSet [33] - 81.6±0.3 88.4±0.2 - 30.6±0.4 48.3±0.5 62.9±0.6 - 52.7±0.4 61.7±0.2
VAAL [36] - 80.9±0.5 88.8±0.3 - 24.6±1.1 46.4±0.8 70.1±0.4 - 54.7±0.5 64.0±0.3
LearnLoss [45] - 81.6±0.6 86.7±0.4 - 19.2±2.2 38.2±2.8 65.7±1.1 - 54.3±0.6 63.2±0.4
TA-VAAL [20] - 82.6±0.4 88.7±0.2 - 34.7±0.7 46.4±1.1 66.8±0.5 - 55.0±0.4 64.3±0.2
ALFA-Mix [31] - 83.4±0.3 89.6±0.2 - 35.3±0.8 50.4±0.9 69.9±0.6 - 55.3±0.3 64.5±0.2

ActiveFT [41] 85.0±0.4 88.2±0.4 90.1±0.2 26.1±2.6 40.7±0.9 54.6±2.3 71.0±0.5 50.1±0.3 55.8±0.3 65.3±0.1

BiLAF (ours) 81.0±1.2 89.2±0.6 92.5±0.4 31.8±1.6 43.5±0.8 62.8±1.2 73.7±0.5 50.8±0.4 56.9±0.3 66.2±0.2

Table 2: Performance on Object Detection, Semantic Segmentation and Long-Tailed Dataset.
Methods

PASCAL VOC (mAP) ↑ ADE20k (mIoU) ↑ CIFAR100LT (IR=100) ↑
#1000 #2000 #3000 #5000 5% 10% 15% 5% 10% 15%

Random 51.1±0.9 60.9±0.6 64.2±0.5 67.5±0.4 14.54±1.02 20.27±1.68 23.55±1.35 21.49±2.37 28.55±1.93 34.58±1.29
FDS 49.1±0.6 58.4±0.4 62.1±0.3 64.5±0.2 12.14±0.27 17.66±0.33 23.55±0.53 16.53±0.65 23.45±0.57 28.76±0.36
K-Means 52.3±0.4 60.7±0.4 64.9±0.3 67.8±0.3 13.62±0.52 19.12±0.47 23.10±0.69 22.98±0.99 29.26±0.82 34.47±0.61

Coreset [33] - 61.5±0.3 66.0±0.3 69.0±0.2 - 20.25±0.44 23.68±0.62 - 28.37±0.71 35.12±0.55
VAAL [36] - 61.2±0.5 65.7±0.4 68.9±0.3 - 20.54±0.75 23.87±0.88 - 29.97±0.66 35.62±0.35
LearnLoss [45] - 60.8±0.6 64.9±0.4 68.9±0.3 - 19.71±1.05 22.94±1.19 - 28.16±1.43 34.02±1.01
TA-VAAL [20] - 61.4±0.4 65.9±0.3 69.1±0.2 - 20.63±0.77 24.24±0.93 - 30.01±0.96 35.59±0.64

ActiveFT [41] 54.9±0.3 61.8±0.3 66.0±0.2 69.1±0.2 15.37±0.11 21.60±0.40 25.03±0.87 24.60±1.02 31.58±0.76 37.01±0.63

BiLAF(Ours) 55.7±0.5 62.3±0.3 66.3±0.3 69.2±0.2 16.54±0.37 22.03±0.53 25.71±0.79 26.56±1.18 32.35±0.81 37.33±0.71

data selection and supervised finetuning. In the core samples selection stage, we utilize ActiveFT and
optimize the parameters θS using the Adam [21] optimizer (learning rate 1e-3) until convergence. We
set the core number K as 50(0.1%), 250(0.5%), 6405(0.5%) for CIFAR10, CIFAR100 and ImageNet
separately. In the boundary samples selection stage, we consistently set nearest neighbors number k
as 10, both removal ratio Prm and clustering fraction Pin as 10%, opponent penalty coefficient δ as
1.1. The experiment details of supervised finetuning are listed in the Appendix E.

4.2 Overall Peformance Comparison

The average performance and standard deviation from three independent runs are presented in Tab. 1.
Under a low sampling ratio of 0.5% for CIFAR10, our method is marginally outperformed by
ActiveFT. This can be attributed to the more stable model training aided by core point selection
at extremely low budgets, whereas boundary samples tend to introduce greater instability and
perturbation. However, as the volume of data increases, the advantages of constructing precise
boundaries become more pronounced. Our approach BiLAF exhibits significant superiority across
most scenarios, markedly outperforming competing methods. Notably, on CIFAR100, BiLAF
consistently outperforms the previously best-performing model, ActiveFT, by approximately 3%. On
ImageNet, BiLAF achieves a consistent improvement of about 1%. These significant enhancements
underscore the effectiveness of the BiLAF method. Further details on the robust performance of our
method across various pretraining paradigms and model architectures, which substantiate both its
effectiveness and generality, are provided in Appendix F.

Tab. 2 presents the performance of our method across diverse tasks and scenarios. Although our
design, based on boundary sample selection, appears to be tailored for classification tasks, the
performance of BiLAF still effectively surpasses that of other models in these domains. We attribute
this success to our effective denoising of outlier samples and the method’s focus on selected sample
uncertainty. The less pronounced advantage in certain tasks may be due to global features not fully
representing task requirements such as in object detection involving multiple objects, and the default
denoising removal ratio parameters might remove minority samples in long-tail distributions. Despite
these challenges, BiLAF demonstrates robust performance across various scenarios, confirming its
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Table 4: Ablation on CIFAR100. In the denoising process,“DG", “DB" and “IDC" indicate the
basic distance-guide method, density-based method and iterative density-based clustering method.
In the selection criterion,“BD", “BS" indicate the basic distance metric and the boundary score
metric. In the selection process,“OS", “ISR", “OP" indicate selecting the top samples in one shot,
iterative selection and removal and whether to use opponent penalty. BiLAF represents the complete
implementation and we explore the influence of three designs separately.

ID Denoising Process Selection Criterion Selection Process Annotation budget
DG DB IDC BD BS OS ISR OP 1% 2% 5% 10%

BiLAF - - ✓ - ✓ - ✓ ✓ 31.82 43.48 62.75 73.67

1 - ✓ - - ✓ - ✓ ✓ 31.10 (−0.72) 41.06 (−2.42) 61.60 (−1.15) 73.39 (−0.28)
2 ✓ - - - ✓ - ✓ ✓ 29.27 (−2.55) 36.42 (−7.06) 61.16 (−1.59) 72.87 (−0.80)
3 - - - - ✓ - ✓ ✓ 28.88 (−2.94) 36.78 (−6.70) 60.83 (−1.92) 72.76 (−0.91)

4 - - ✓ ✓ - - ✓ ✓ 27.94 (−3.88) 33.76 (−9.72) 54.03 (−8.72) 71.17 (−2.50)

5 - - ✓ - ✓ - ✓ - 32.13 (+0.31) 43.09 (−0.39) 62.07 (−0.68) 72.92 (−0.75)
6 - - ✓ - ✓ ✓ - - 30.52 (−1.30) 42.13 (−1.35) 60.24 (−2.51) 69.66 (−4.01)

strength as a general sample selection method. As a flexible framework, there is still considerable
scope for improvement in our method by further designing it based on task-specific features.

4.3 Analysis

Data Selection Efficiency. Traditional active learning methods typically follow a paradigm involv-
ing multiple iterations of selection and training. However, this approach not only demands substantial
computational resources due to repeated training but also results in prolonged data selection times
and increased management costs associated with multiple annotation processes in practical scenarios.
In contrast, our method, alongside ActiveFT [41], adopts a one-shot selection strategy, offering
distinct advantages. Tab. 3 presents a comparison of the time spent in selecting varying proportions
of data across different methods on CIFAR100. For a deeper understanding of the theoretical time
complexity and further analysis, please refer to Appendix D.

Table 3: Time compelxity. Our method exhibits signif-
icant advantages beyond conventional active learning
approaches and comparable speed to ActiveFT.

Ratio K-Means CoreSet VAAL LearnLoss ActiveFT BiLAF(ours)
2% 16.6s 1h57m 7h52m 20m 12.6s 18.6s
5% 37.0s 7h44m 12h13m 1h37m 21.9s 19.2s
10% 70.2s 20h38m 36h24m 9h09m 37.3s 20.3s

Selected Samples Visualization. Fig. 3
illustrates the sample selection process of
our method. Firstly, we identify the central
samples represented by pentagrams, and
then expand to the boundary points denoted
by circles from each center. Our method
focuses on the boundaries between two cat-
egories rather than purely fitting the entire distribution. This approach allows for the selection of
more valuable samples. For a more detailed comparison with other methods and the visualization of
denoising process, please refer to the Appendix J.

4.4 Ablation Study

Figure 3: tSNE Embeddings on CIFAR10
with 1% annotation budget of BiLAF. Penta-
grams represent the chosen core samples, while
circles denote the chosen boundary samples.

Effectiveness of Designs. Tab. 4 demonstrates
the contributions of all proposed components out-
lined in Sec. 3.3 to the model performance. Our
framework is structured around three core compo-
nents: Denoising Process, Selection Criterion, and
Selection Process. IDs 1 to 3 evaluate the impact of
the Denoising Process, comparing iterative density-
based clustering with other strategies detailed in
Appendix C, and scenarios without denoising. We
observe that performance degradation is substantial
under smaller budgets but diminishes as the bud-
get increases. This suggests that with fewer data
selected, the adverse effects of noisy samples are
more pronounced; however, with an increased data
volume, these deficiencies are mitigated, underscor-
ing the efficacy of our denoising strategy. ID 4
explores the impact of our Selection Criterion de-
sign. In the absence of the Boundary Score metric,
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models struggle to accurately identify potential boundary samples and are negatively impacted by
irrelevant marginal samples, significantly reducing performance. IDs 5 and 6 assess the effects of
our Selection Process design. While removing the opponent penalty does not critically undermine
performance and might even enhance it at a 1% data volume, iterative selection and removal are
essential, particularly as data volume increases. These steps effectively increase the diversity of
boundary samples selected. Conversely, a one-time selection approach at increased data volumes
leads to the accumulation of redundant samples, resulting in wastage and performance degradation.

Core Samples Selection Number. Without ground truth labels, ensuring that each pseudo-class
center selected during the core sample selection stage of our BiLAF method represents a distinct
category is challenging. Tab. 5 illustrates the impact of varying the number of core samples on
accuracy across different annotation budgets within the CIFAR100 dataset. We found that perfor-
mance significantly suffers when fewer centers are selected. For instance, selecting 125 centers for
100 categories resulted in suboptimal performance, primarily due to the limited number of centers
being unable to represent all categories adequately. This limitation poses significant challenges for
subsequent boundary sample selection. However, performance stabilizes once a sufficient number of
centers to encompass all categories is established. Optimizing the ratio of center samples to boundary
samples can yield the performance gains. For example, the best performance at 5% data volume was
achieved with 375 centers, and at 10% data volume, 500 centers were optimal. Although there is
potential to further enhance our method, we maintained the number of centers across all experiments
with different annotation ratio for consistency.

Table 5: Ablation for Core Samples Numbers.
Budget Core Ratio / Core Number

0.25% / 125 0.50% / 250 0.75% / 375 1.00% / 500

1% 21.51 31.82 28.37 27.24
2% 36.64 43.48 42.68 42.18
5% 59.20 62.75 63.32 62.46
10% 71.86 73.67 73.58 74.32

Table 6: Ablation for Core Selection Method.
Budget Core Selection Method

Random FDS K-Means ActiveFT

1% 25.58 20.69 28.80 31.82
2% 36.22 33.22 41.17 43.48
5% 60.68 60.13 62.39 62.75
10% 72.84 71.05 74.27 73.67

Core Samples Selection Method. In the core sample selection, we primarily utilized ActiveFT.
However, there are numerous existing methods, such as Random, FDS, and K-Means. Tab. 6 presents
the model performance based on boundary selection using different pseudo-class centers. We found
that the accuracy of the BiLAF framework is closely tied to the quality of the method used for
selecting pseudo-class centers. Mis-selection of centers can introduce significant bias, adversely
affecting subsequent sample selection. Notably, ActiveFT tended to yield the highest performance,
while the traditional K-Means method also demonstrated strong results and outperform ActiveFT
even in 10% budget, validating the robustness of our framework with well-defined centers.
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Figure 4: The Hyperparameter Influence.

Hyperparameter Influence. Our pri-
mary handcrafted parameters include
the removal rate of noise samples dur-
ing the denoising process and the oppo-
nent penalty applied during the selection
process to penalize boundaries within
the same class. Fig. 4 examines the im-
pact of varying these parameters on our
model’s performance on the CIFAR100
dataset, with annotation budgets of 2%

and 5%. We observe that the removal rate significantly influences performance. A low setting allows
excessive noise accumulation, while a high setting depletes boundary sample points as the budget
increases, adversely affecting performance. In contrast, the opponent penalty exerts a more subtle
effect and can modestly enhance model performance.

Threshold of Core Numbers. Tab. 5 illustrates the impact of different Core Numbers on perfor-
mance. In practical applications, determining the optimal Core Number directly is a question worth
exploring. Similarly, in traditional active learning, the effectiveness of different methods often varies
with the scale of the data. The classic Coreset [33] seeks to cover all samples using selected points.
However, ProbCover [44] highlights that Coreset struggles when the dataset is very small, prompting
the introduction of a coverage radius to ensure each selected point influences a fixed area.
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Table 7: Threshold of Core Numbers. Distance and Rate of Return on CIFAR10 and CIFAR100.
Core Num 50 100 150 250 375 500 1000 1500 2500 5000

CIFAR10
Distance 0.7821 0.7588 0.7472 0.7307 0.7203 0.7117 0.6896 0.6746 0.6506 0.6010
Rate of Return ×10−4 - 4.6575 2.3264 1.6422 0.8362 0.6887 0.4420 0.3002 0.2398 0.1984

CIFAR100
Distance 0.8378 0.8082 0.7913 0.7724 0.7564 0.7478 0.7229 0.7059 0.6800 0.6272
Rate of Return ×10−4 - 5.9221 3.3791 1.8906 1.2797 0.6845 0.4985 0.3404 0.2589 0.2112

In our case, using central points to approximate dense distributions seems more appropriate, especially
when the budget is highly constrained, without selecting additional boundary samples. However,
as the budget increases, the selection of boundary samples becomes more meaningful. To further
investigate, we explore what an appropriate threshold might look like. We employed the Core
Sample Selection method to derive different numbers of central points and analyzed their benefits.
Specifically, we define Distance as the average Euclidean distance from each sample to its nearest
selected sample in the feature space. Additionally, we examine the Rate of Return (incremental
benefit per core sample) within different ranges, where Rate of Return = Distance Difference /
Core Number Difference between two adjacent columns.

In Tab. 7, We found that the Rate of Return diminishes gradually, indicating that core samples are
crucial in the early stages, while the benefits decrease significantly later on. A clear demarcation point
can serve as a guide for when to begin Boundary Sample Selection, such as the range of 250-375 for
CIFAR-10 and 375-500 for CIFAR-100. This provides a simple yet effective guideline. Additionally,
in practical applications, we discovered that introducing boundary points earlier may yield better
results, such as CIFAR100 with 1% (500 samples) annotation samples.

Table 8: Performance on Different Pretraining Frameworks and Models on CIFAR10.

Methods DeiT-S Pretained with iBOT ResNet50 Pretrained with DINO
1% 2% 1% 2%

Random 83.0 89.8 76.2 83.7
CoreSet 82.8 89.2 70.4 83.2

LearnLoss 83.6 89.2 71.7 81.3
VAAL 85.1 89.3 75.0 83.3

ActiveFT 88.3 90.9 78.6 84.9
BiLAF(Ours) 89.1 92.2 79.3 85.8

Generality on Pretraining Frameworks and Model Architectures. Our method BiLAF demon-
strates versatility across various pretraining frameworks and models. BiLAF has effectively integrated
with the DINO [6] framework and the DeiT-Small [38] model. Here, we apply the method to a
DeiT-Small [38] trained with generative unsupervised pretraining framework iBOT [47] and CNN
model ResNet50 [14] trained with DINO [6]. All models are pretrained on ImageNet-1k and finetuned
on CIFAR10 with other same implementation details described in Appendix E. Tab. 8 highlights our
approach’s substantial improvement over other sample selection baseline across different sampling
ratios, illustrating our method’s broad applicability to diverse pretraining strategies and model types.

5 Conclusion

In this paper, we underscore the significance of active finetuning tasks and critically examine existing
methods, which often overlook uncertainty aspects, particularly under the pretraining-finetuning
paradigm. We propose an innovative solution: the Bi-Level Active Finetuning Framework (BiLAF).
This framework not only ensures diversity in the selection of central points but also prioritizes
boundary samples with higher uncertainty. BiLAF effectively amalgamates existing core sample
selection models and introduces a novel strategy for boundary sample selection in unsupervised
scenarios. Our extensive empirical studies validate BiLAF’s effectiveness, demonstrating its capability
to enhance predictive performance. Through comparative experiments, we explore new avenues,
such as finding the optimal balance between central and boundary points. We believe our work offers
valuable insights into Active Finetuning and will serve as a catalyst for further research in this field.
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A Related Work

Due to space limitations in the main part, a more detailed account of related work is provided here.

A.1 Active Learning / Finetuning

Active learning aims to maximize the efficacy of a limited annotation budget by strategically selecting
the most informative data samples. In pool-based scenarios, existing algorithms generally adopt
criteria such as uncertainty or diversity for sample selection. Uncertainty-based methods make
selections based on the difficulty of each sample, assessed through various heuristics including
posterior probability [24, 39], entropy [18, 29], loss function [16, 45], or their impact on model
performance [10, 28]. Conversely, diversity-based algorithms aim to select representative samples
that closely approximate the distribution of the entire data pool. This concept of diversity can be
measured by the distance between global [33] and local [1, 40] representations, or through other
metrics such as gradient directions [2] or adversarial loss [20, 36].

Nevertheless, the algorithms previously discussed are primarily tailored for training from scratch
and encounter significant obstacles within the pretraining-finetuning paradigm [12, 41]. In response
to this, ActiveFT [41] has been developed specifically for this framework. It operates by aligning
the distribution of selected samples with that of the original unlabeled pool within the feature space.
However, ActiveFT tends to prioritize high-density areas, frequently neglecting boundary samples. In
contrast, our proposed algorithm integrates both diversity and uncertainty into the selection process,
which is important for determining the decision boundary in the supervised finetuning.

A recent work ActiveDC [43] employs pseudo-labeling techniques from semi-supervised learning.
However, this approach focuses on fine-tuning after sample selection rather than optimizing the
sample selection process itself. While it performs exceptionally well under extremely small budgets,
our tests show that it falls short when compared to the K-Nearest Neighbors or Linear Probing
methods we discuss in Appendix G.

A.2 Decision Boundaries in Neural Networks.

Decision boundaries play a pivotal role in neural network-based classification models, significantly
affecting both performance and interpretability [23, 25]. Optimizing these boundaries can substan-
tially improve model generalizability and accuracy, especially in complex, high-dimensional data
environments [42, 5]. In the case of support vector machines (SVMs), decision boundaries are integral
to defining separating hyperplanes, and maximizing the geometric margin around these boundaries
is crucial for robust classification [4]. This principle is equally pertinent to neural networks, where
enhancing the margin can similarly boost generalization capabilities. When dealing with imbalanced
datasets, adjusting the decision boundary becomes essential for accurately classifying minority
classes. To address this, techniques such as Label-Distribution-Aware Margin (LDAM) loss [5] and
Enlarged Large Margin (ELM) loss [19] have been developed to refine the decision boundary, thereby
improving the balance of generalization errors across different classes. Studies have shown that
neural networks tend to utilize the most discriminative or simplest features in constructing decision
boundaries [30, 34]. Additionally, a theoretical framework has been proposed for evaluating the
complexity of decision boundaries using the novel metric of decision boundary variability, which is
inversely related to generalizability [23].

However, in the active finetuning task, the selection of decision boundaries has not traditionally
been emphasized. Although challenging in unsupervised scenarios, we effectively leverage features
from pretrained models, thereby introducing innovative denoising and selection methods without
dependency on labels. This approach addresses a significant gap in the active finetuning domain.

B Details of ActiveFT Method

ActiveFT [41] selects the most useful data samples in the feature space of the pretrained model under
the guidance of two basic intuitions: 1) bringing close the distributions between the selected subset
Pu
S and the original pool Pu. 2) maintaining the diversity of Pu

S . Formally, the goal is to find the
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optimal selection strategy S as follows.

Sopt = argmin
S

D(pfu , pfS )− λR(Fu
S ) (8)

where D(·, ·) is some distance metric between distributions pfu of Pu and pfS of Pu
S , R(·) is to

measure the diversity of a set, and λ is a scale to balance these two terms.

Due to the difficulty in directly optimizing the discrete selection strategy S, pfS is alternatively
modeled with pθS , where θS = {θjS}j∈[K] are the continuous parameters and K is the budget size of
core samples. Each θjS after optimization corresponds to the feature of a selected sample fsj . We
would find fsj closest to each θjS after optimization to determine the selection strategy S . The goal of
this continuous optimization is written in Eq. 9.

θS,opt = argmin
θS

D(pfu , pθS )− λR(θS) s.t.||θjS ||2 = 1 (9)

Following the mathematical derivation in [41], Eq. 9 can be solved by optimizing the following loss
function through gradient descent.

L = D(pfu , pθS )− λ ·R(θS)

= − E
fi∈Fu

[sim(fi, θ
ci
S )/τ ] + E

j∈[B]

log ∑
k ̸=j,k∈[B]

exp
(
sim(θjS , θ

k
S)/τ

) (10)

where sim(·, ·) is a cosine similarity between normalized features, the temperature τ = 0.07 and the
balance weight λ is empirically set as 1.

After the optimization process, it finds features {fsj}j∈[K] with the highest similarity to θjS .

fsj = arg max
fk∈Fu

sim(fk, θ
j
S) (11)

The corresponding data samples {xsj}j∈[K] are selected as the subset Pu
S with selection strategy

S = {sj}j∈[K].

C Denoising Algorithm

We propose three progressive methods to address the challenge of denoising: the distance-guide
method, the density-based method, and iterative density-based clustering (IDC), with the latter
elaborated in detail in the main body of the paper. In this appendix section, we introduce two
additional methods.

Distance-guide method: This method removes the top Ni,rm samples that are furthest from the
current class center, based on their distance. Although straightforward and simple, it has limitations,
particularly in scenarios where the class distribution varies significantly in different directions,
resembling an elliptical shape. In such cases, this rudimentary method may inadvertently remove a
distant cluster of samples instead of the actual noise.

Density-based method: This approach removes the top Ni,rm samples with the highest density
distance from their class. The underlying rationale is that noise samples are generally farther away
from their neighboring samples. Thus, using the distance to nearby samples as an auxiliary measure
to identify noise is reasonable. The definition of density distance is provided in Eq. 2.

D Time Complexity of BiLAF

Theoretical Time Complexity. Given that our approach is a bi-level method, the overall time is
influenced by two components: Core Sample Selection and Boundary Sample Selection. Here, we
analyse the theoretical complexity of the Boundary Sample Selection component in Algorithm 1.

Define N as the total number of samples, B as the annotation budget, M = αN as the number
of core samples, T as the number of cluster iterations, where α = 0.5% in CIAFR100 and T =
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1/Pin = 1/10% = 10 in all the datasets. Based on Algorithm 1, we divide the Stage 2 Boundary
Samples Selection into three steps:

1. Assigning the pseudo-class samples is O(NM) = O(αN2) because we need to assign each data
sample to its corresponding pseudo-center.

2. Iteratively density-based clustering then denoising is O(TN/α). Considering that for each
pseudo-center, the expected number of samples is N/M , we need to compute pairwise distances
and find the k nearest samples, resulting in a complexity of O(N2/M2). Subsequently, we must
sort these distances based on density distance, which has a complexity of O(N/M logN/M). We
need to repeat the process for T times in the iterative clustering. Therefore the time is O(TN2/M2 +
TN/M logN/M) for each pseudo-center. The total complexity is then multiplied by M , yielding an
overall complexity of O(TN2/M + TN logN/M) = O(TN/α+ TN log 1/α) = O(TN/α).

3. Selection process is O(N/α+BN). Considering each pseudo-center, the expected number of
samples is N/M . We need to calculate the pairwise distances to compute the intra-class distance,
dintra, resulting in a complexity of O(N2/M2). When considering the inter-class distances, due
to the presence of the coefficient δtl , adjustments are required each time, thus the complexity
becomes |Bi| × (N/M ×M) = O(|Bi|N), where |Bi| represents the number of selections within
this pseudo-category, and

∑M
i=1 |Bi| = B. Therefore, the overall complexity in this process is

O(N2/M +BN) = O(N/α+BN).

Thus, the overall complexity is O(αN2 + TN/α + BN). In practice, matrix multiplication and
constants can impact the speed across different steps.

Experimental Results. Tab. 3 provides the specific execution times of our method (including the
time spent on selecting core samples using ActiveFT). Actually, we should not omit T , which is a
relatively small constant (e.g., 10), because T/α can be comparable in scale to B when B is small.
Therefore, the complexity remains almost consistent according to different B in Tab. 3.

E Experiment Setup

Due to space limitations in the main part, we provide a comprehensive overview of the experiment
setup for classification tasks in this section.

Datasets and Evaluation Metrics. Our approach is evaluated using three widely recognized datasets:
CIFAR10, CIFAR100 [22], and ImageNet-1k [32]. Both CIFAR10 and CIFAR100 contain 60,000
images with resolutions of 32x32, but they differ in classification complexity, offering 10 and 100
categories, respectively. Each comprises 50,000 images for training and 10,000 for testing. The
large-scale dataset ImageNet-1k includes 1,000 categories and a total of 1,281,167 training images
along with 50,000 validation images. The raw training data serve as the unlabeled pool Pu from
which selections are made. We employ the Top-1 Accuracy metric for performance evaluation.

Baselines. We compare our approach with three heuristic baselines, five active learning methods and
the well-designed active finetuning method ActiveFT [41].

Three heuristic baselines are listed as follows:

1. Random: The selection of samples for annotation is entirely stochastic.

2. FDS: The method is also known as the K-Center-Greedy algorithm, which selects the next
sample feature that is farthest from the current selections. As proven in [33], it minimizes
the expected loss over the entire pool and the selected subset.

3. K-Means: We implement the K-Means method on the feature pool Fu and select samples
nearest to the centroids, where the number K equals to the budget size B.

Five active learning methods are listed as follows:

1. CoreSet [33]: CoreSet selects samples that are central to the data distribution, effectively
minimizing the maximum distance between any data point and the nearest selected sample,
thus representing the core characteristics of the dataset.
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2. VAAL [36]: The Variational Adversarial Active Learning (VAAL) framework combines
variational autoencoders with adversarial learning to facilitate active learning in an unsuper-
vised setting. It utilizes a discriminator to distinguish between labeled and unlabeled data,
guiding the selection of samples likely to enhance model performance upon labeling.

3. LearnLoss [45]: LearnLoss employs a deep learning strategy to estimate the value of
labeling each data sample. It involves training a secondary network alongside the primary
model to predict the potential reduction in loss from labeling specific unlabeled samples.

4. TA-VAAL [20]: Task-Aware Variational Adversarial Active Learning (TA-VAAL) enhances
the VAAL framework by integrating task-specific objectives into the adversarial model,
making the active learning process more attuned to the requirements of the specific task,
thereby optimizing data selection.

5. ALFA-Mix [31]: ALFA-Mix merges active learning with data augmentation techniques to
boost model performance. It selects informative samples and employs a mixup strategy to
create synthetic samples by blending selected data points, thereby enriching the training
dataset and promoting robust feature learning.

These methods has been modified and applied specifically for active finetuning tasks following the
instructions in [41]. These approaches utilize a batch-selection strategy for data sampling. Initially,
the model is trained on a randomly chosen initial dataset. Subsequently, it employs this trained model
to pick a batch of images from the training set. The model is then retrained using the cumulatively
selected samples. The chosen active learning techniques encompass strategies based on both diversity
and uncertainty in the active learning domain, serving as the baselines in the active finetuning field.

In this scenario, ActiveFT [41] emerges as the strongest baseline due to its tailored design for the task.
This approach generates a representative subset from the unlabeled pool by aligning its distribution
with the entire dataset and enhances diversity through the optimization of parametric models within a
continuous space.

Implementation Details. In the unsupervised pretraining phase, we use DeiT-Small [38] model,
pretrained using the DINO [6] framework on ImageNet-1k, due to its recognized efficiency and
popularity. For all three datasets, we resize images to 224× 224 consistent with the pretraining for
both data selection and supervised finetuning. In core samples selection stage, we utilize ActiveFT
and optimize the parameters θS using the Adam [21] optimizer (learning rate 1e-3) until convergence.
We set the core number K as 50(0.1%), 250(0.5%), 6405(0.5%) for CIFAR10, CIFAR100 and
ImageNet separately. In the boundary samples selection stage, we set nearest neighbors number k as
10, both removal ratio Prm and clustering fraction Pin as 10%, opponent penalty coefficient δ as 1.1.
In the supervised finetuning phase, we finetune DeiT-Small model 1 following the setting in [41]. We
finetune the models using the SGD optimizer with learning rate as 3e-3, weight decay as 1e-4 and
momentum as 0.9. We employ cosine learning rate decay with a batch size of 256 distributed across
two GPUs. The models are finetuned for 1000 epochs on all datasets with different sampling ratios,
except for ImageNet with sampling ratio 5%, where we finetune for 300 epochs. Our experiments are
implemented using the mmclassification framework 2.

F More Extensive Experiments

To further investigate the generalizability of our method, we conducted extensive experiments. Firstly,
We applied our method to diverse downstream tasks, including Object Detection (F.1) and Semantic
Segmentation datasets (F.2). Then, we explored the performance of our method in different scenarios,
such as the long-tail distribution scenarios (F.3). Finally, we conduct experiments on fine-grained
classification scenarios (F.4).

F.1 Object Detection

Datasets. We conduct our experiments on the PASCAL VOC dataset [9]. Following established
protocols from prior studies [45], we merge the training and validation sets of PASCAL VOC 2007
and 2012, forming a training data pool of 16,551 images. We assess the performance of the task

1https://github.com/facebookresearch/deit
2https://github.com/open-mmlab/mmclassification
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model on the PASCAL VOC 2007 test set, utilizing the mAP (mean Average Precision) metric for
evaluation.

Implementation Details. To facilitate comparison and model alignment in testing, we only use the
DeiT-Small for feature extraction and data selection in this dataset. In the data selection stage, We
set the core number K as 500. The other settings are the same as described in Sec. 4.1 in main part.
Then in the finetuning process, for alignment with methods previously documented in [45], we train
an SSD-300 model [26] with a VGG-16 backbone [35] on the selected samples. Following protocols
from prior studies [45], we train the model for 300 epochs with a batch size of 32. We utilize an SGD
optimizer with a momentum of 0.9. The initial learning rate is set at 1e-3, decaying to 1e-4 after 240
epochs. Our experiments are implemented using the mmdetection framework 3.

F.2 Semantic Segmentation

Datasets. For the segmentation task, we utilize the ADE20K dataset [46], which comprises 20,210
images for training, 2,000 images for validation, and 3,352 images for testing. Each image is
annotated with fine-grained labels across 150 semantic classes. We designate the training set as
the unlabeled pool Pu for selection purposes. The performance is assessed using the mIoU (mean
Intersection over Union) metric.

Implementation Details. We utilize DeiT-Small [38] model pretrained with DINO framework [6]
the same as in image classification tasks. In the data selection stage, We set the core number K as
2.5% of data samples. The other settings are the same as described in Sec. 4.1 in main part. We resize
the images to 224× 224 as well and adopt Segmenter [37] for finetuning in the segmentation task,
which is a pure transformer model, using the same DeiT-Small model as its backbone for finetuning.
The model is trained for 127 epochs following [37], corresponding to 16k/32k/48k iterations on
5%/10%/15% of the training data, respectively. Training employs the SGD optimizer (learning rate
= 1e-3, momentum = 0.9) with a batch size of 8 and polynomial decay of the learning rate. Our
experiments are implemented using the mmsegmentation framework 4.

F.3 Long-Tailed Classification

Datasets. In the long-tailed datasets, we define the imbalance ratio (IR) as IR = nmax/nmin,
where nmax and nmin represent the number of training samples in the largest and smallest class,
respectively. CIFAR100LT is derived from the original balanced CIFAR100 dataset [22], which
includes 50,000 training images and 10,000 test images, each sized 32×32 across 100 classes.
Following the methodology of [5], we constructed the long-tailed version, CIFAR100LT, by applying
exponential decay to the sampling of training images per class, while keeping the balanced test
set unchanged. We utilize CIFAR100LT with imbalance factors (IR) as 100 in our experiments.
CIFAR100LT (IR=100) has 10847 training samples.

Implementation Details. We set the core number K as 217(2%) for CIFAR100LT. Other settings
are consistent with the main experiment. See Appendix E for reference.

Table 9: CUB-200-2011 Dataset. Comparison of Random, ActiveFT, and BiLAF on Different
Selection Budget.

Budget Select Number Random ActiveFT BiLAF (Ours)

20% 1198 46.32 47.83 48.53
30% 1798 58.85 59.67 60.52
40% 2397 66.75 67.36 68.31
50% 2997 72.98 73.25 74.06

3https://github.com/open-mmlab/mmdetection
4https://github.com/open-mmlab/mmsegmentation
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F.4 Fine-Grained Classification

We utilized the CUB-200-2011 dataset, which includes 200 bird species with a total of 11, 788 images.
According to the default configuration of the dataset, 5, 994 samples are used for training, with the
remainder used for testing. Given the large number of classes, we used 10% of the data as Core
Samples to select Boundary Samples, while all other parameters were set according to the default
values reported in the paper. Tab. 9 clearly demonstrates that our approach continues to hold a leading
position in fine-grained classification datasets.

G Extra Finetuning Methods: Linear Probing and K-Nearest Neighbors

Aside from the Full Fine-Tuning, Linear Probing or even K-Nearest Neighbors (KNN) classifiers are
also effective approaches. In this section, we explore whether BiLAF remains selecting high-quality
data points with these fine-tuning methods. We conducted experiments using Linear Probing and
KNN on the CIFAR10 dataset, comparing the results across Random, ActiveFT, and BiLAF (ours).

Table 10: Results on CIFAR10 using KNN, Linear Probing, and Full Fine-Tuning across different
budgets.

Finetuning Methods Selection Method B = 0.5% B = 1% B = 2% B = 5%

K-Nearest Neighbors Random 82.1 86.7 88.2 90.8
K-Nearest Neighbors ActiveFT 86.8 87.2 88.5 91.7
K-Nearest Neighbors BiLAF (ours) 85.7 87.4 88.7 91.8

Linear Probing Random 85.1 87.6 90.1 92.5
Linear Probing ActiveFT 87.8 88.7 90.6 92.8
Linear Probing BiLAF (ours) 86.5 89.1 91.0 93.0

Full Fine-Tuning Random 77.3 82.2 88.9 94.8
Full Fine-Tuning ActiveFT 85.0 88.2 90.1 95.2
Full Fine-Tuning BiLAF (ours) 81.0 89.2 92.5 95.7

From the table, the following conclusions can be drawn:

1. At extremely low data volumes, Linear Probing and K-Nearest Neighbors outperform Full
Fine-Tuning.

2. As the data volume increases, the performance improvements of Linear Probing and K-Nearest
Neighbors start to slow down, which gradually necessitates the use of Full Fine-Tuning.

3. Interestingly, the quality of data selected by different methods shows a consistent trend across K-
Nearest Neighbors classifiers, Linear Probing, and Full Fine-Tuning. Our method, compared
to competitors, is able to select more suitable data, which is effective across different
fine-tuning paradigms.

H Analysis of Selection Samples to the Decision Boundary.

We conduct linear probing on all the samples with true labels using features from both the pre-trained
model and the oracle model which is fully finetuned on all samples. We analyze whether samples
selected using different methods—Random, ActiveFT, BiLAF (ours)—tend to be near the decision
boundaries. We use two metrics for this analysis: 1) Entropy, where a higher value indicates greater
uncertainty and a propensity towards boundary samples. 2) ProbDiff, calculated as the difference
between the highest and second-highest probabilities. A smaller value indicates that the sample is
closer to the boundary between these two classes.

From the Tab 11, 12, 13 and 14, the results demonstrate that our method can effectively select
boundary samples, maintaining consistency across models with various capabilities.
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Table 11: Results of Entropy and ProbDiff on CIFAR10 using Pretrained Model.
CIFAR10 (Pretrained) Selected Nums Entropy ↑ ProbDiff ↓ Entropy (Top50) ↑ ProbDiff (Top50) ↓
Random 250 0.0935 0.9486 0.4260 0.7536
ActiveFT 250 0.0424 0.9747 0.2073 0.8743
BiLAF (ours) 250 0.1023 0.9366 0.4769 0.6924

Random 500 0.0960 0.9416 0.7022 0.5056
ActiveFT 500 0.0433 0.9763 0.3690 0.7799
BiLAF (ours) 500 0.1149 0.9273 0.7089 0.4500

Random 1000 0.0955 0.9430 0.9181 0.3081
ActiveFT 1000 0.0849 0.9495 0.8810 0.3560
BiLAF (ours) 1000 0.1461 0.9064 1.0262 0.2005

Table 12: Results of Entropy and ProbDiff on CIFAR100 using Pretrained Model.
CIFAR100 (Pretrained) Selected Nums Entropy ↑ ProbDiff ↓ Entropy (Top50) ↑ ProbDiff (Top50) ↓
Random 500 0.6240 0.7295 2.2516 0.0876
ActiveFT 500 0.2962 0.8664 1.5663 0.2369
BiLAF (ours) 500 0.3933 0.8167 1.7832 0.1423

Random 1000 0.5317 0.7766 2.2375 0.0594
ActiveFT 1000 0.3650 0.8430 2.0812 0.0833
BiLAF (ours) 1000 0.4751 0.7815 2.2606 0.0542

Random 2500 0.5253 0.7749 2.6790 0.0232
ActiveFT 2500 0.4851 0.7936 2.6653 0.0206
BiLAF (ours) 2500 0.5795 0.7476 2.7196 0.0192

Random 5000 0.5442 0.7652 2.8791 0.0151
ActiveFT 5000 0.5197 0.7768 2.8487 0.0118
BiLAF (ours) 5000 0.6219 0.7336 2.9194 0.0090

Table 13: Results of Entropy and ProbDiff on CIFAR10 using Oracle Model.
CIFAR10 (Oracle) Selected Nums Entropy ↑ ProbDiff ↓ Entropy (Top50) ↑ ProbDiff (Top50) ↓
Random 250 0.001512 0.999831 0.002437 0.999729
ActiveFT 250 0.001521 0.999830 0.002403 0.999717
BiLAF (ours) 250 0.001541 0.999827 0.002473 0.999714

Random 500 0.001483 0.999835 0.002782 0.999676
ActiveFT 500 0.001542 0.999828 0.002958 0.999644
BiLAF (ours) 500 0.001605 0.999820 0.003020 0.999641

Random 1000 0.001551 0.999823 0.003543 0.999575
ActiveFT 1000 0.001527 0.999829 0.003472 0.999586
BiLAF (ours) 1000 0.001598 0.999820 0.003588 0.999567

Table 14: Results of Entropy and ProbDiff on CIFAR100 using Oracle Model.
CIFAR100 (Oracle) Selected Nums Entropy ↑ ProbDiff ↓ Entropy (Top50) ↑ ProbDiff (Top50) ↓
Random 500 0.049238 0.992216 0.176811 0.956287
ActiveFT 500 0.040140 0.993335 0.124594 0.962662
BiLAF (ours) 500 0.042792 0.994406 0.137114 0.965457

Random 1000 0.047730 0.993905 0.202417 0.963037
ActiveFT 1000 0.042763 0.993913 0.198896 0.961337
BiLAF (ours) 1000 0.045447 0.993854 0.203469 0.960462

Random 2500 0.046654 0.993407 0.297133 0.919803
ActiveFT 2500 0.047036 0.993245 0.303767 0.919122
BiLAF (ours) 2500 0.047357 0.993103 0.309907 0.917868

Random 5000 0.047028 0.993741 0.407092 0.897825
ActiveFT 5000 0.045173 0.994264 0.340326 0.925870
BiLAF (ours) 5000 0.049476 0.992885 0.466601 0.842029
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I Limitation and Social Impact.

Limitation. In this paper, our approach is based on general features and purposes. For specific tasks,
such as object detection task with multi-instances, our method does not show a significant advantage.
What’s more, in dealing with sample features in long-tail problems, denoising methods might remove
outliers that are key samples. However, as a flexible framework, we can make corresponding
improvements for different downstream tasks, which can be considered as future work.

Social Impact. We firmly believe that this work has a positive impact on society. By replacing
iterative sample selection with one-shot sample selection, our approach not only saves substantial
resources that would otherwise be wasted in training, but also enhances labeling efficiency without
the need for multiple arrangements. Additionally, our method achieves state-of-the-art performance
among similar approaches based on a small number of samples, effectively reducing resource waste
caused by ineffective labeling.

J Qualitative Visualization

(a) Denoising Ratio Prm = 0% (b) Denoising Ratio Prm = 10%

(c) Denoising Ratio Prm = 20% (d) Denoising Ratio Prm = 30%

Figure 5: Denoising Strength Visualization using tSNE Embeddings of CIFAR10.

Denoising Visualization. Fig. 5 illustrates the impact of variations in the removal rate Prm during
the denoising process on the retained samples. The red bounding boxes highlight regions with
significant changes. These areas include obvious outliers and zones of confusion where multiple
class intermingle. As the removal rate increases, the number of samples in these areas tends to
decrease gradually, thereby reducing their influence on subsequent boundary point selection, while
the relatively dense boundaries are often preserved. However, this represents a trade-off as some
important samples might also be removed. Therefore, we have conducted a quantitative analysis in
the main text to address this concern.

Selected Samples Visualization. Fig. 6 displays the sample selection by different methods when
annotating 1% samples from the CIFAR100 dataset. It is evident that the FDS method has significant
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(a) FDS (b) K-Means

(c) ActiveFT (d) BiLAF (ours)

Figure 6: tSNE Embeddings on CIFAR10 with 1% annotation budget of our BiLAF method
and other methods.

drawbacks, leading to an insufficient selection of sample samples from central classes in feature
space, which greatly impedes the model’s learning capability. Both the K-Means and ActiveFT
methods focus on selecting central samples, differing in their optimization goals and processes. As
seen in Fig. 6, both methods achieve their intended purpose, resulting in a relatively uniform selection
of samples. Our method further refines this approach. Firstly, we identify the central samples,
represented by pentagrams, and then expand to boundary samples, denoted by circles, from each
center. Our strategy emphasizes the boundaries between categories, rather than conforming to the
entire distribution. For example, considering the ’brown’ sample class, our method selects fewer
samples in its internal area, far from other categories, and focuses more on locating boundary samples.
Extensive experimental results quantitatively demonstrate the substantial improvement our method
brings to model performance, validating its effectiveness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims are clearly presented in the abstract and introduction, and are
further elaborated and substantiated throughout the subsequent sections of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Refer to Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: Refer to Appendix D.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In our paper, we provide detailed descriptions of each step of the algorithm,
the pseudocode, and all settings required to replicate the experiments. Additionally, we
commit to making the code publicly available by the time of the camera-ready submission.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide detailed descriptions of each step of the algorithm, the pseudocode,
and all settings required to replicate the experiments. Meanwhile, we make the code publicly
available with the GitHub link in the title.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Refer to the main part and Appendix E and F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the mean and variance of the experiment results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Refer to Appendix I.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of all assets used in the paper are properly
credited, and the licenses and terms of use are explicitly mentioned and fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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