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ABSTRACT

We theoretically analyze a convex variant of two-layer ReLU neural networks and
how it relates to the standard formulation. We show that the formulations are
equivalent with respect to their output values for a fixed dataset and also behave
similarly during gradient-based optimization as long as the weights on the first
layer of standard networks do not change too much, which is a common assump-
tion for their convergence to an arbitrarily good solution. We further show that
for any two-layer ReLU neural network, even considering those of infinite width,
there exists a (weighted) network of width O(nd−1) with the same output value on
all data points. Furthermore, these finite networks have exactly the same eigenval-
ues λ of their neural tangent kernel (NTK) matrix and the same NTK separation
margin γ as in the infinite width limit. After handling these preliminaries, we get
to our main results: We give a (1± ϵ) approximation algorithm for the separation
margin γ which was not known how to evaluate in general and we study two data
examples: 1) a circular example for which we strengthen an Ω(γ−2) lower bound
against previous worst-case width analyses; 2) a hypercube example that can be
perfectly classified by the convex network formulation but not by any standard
network, distinguishing their expressibility.

1 INTRODUCTION

The theory of neural networks is an active field of research with intriguing open questions. One
important direction studies relatively ’simple’ neural networks with only two layers, which allows
a tractable formal treatment, while so called universal approximator theorems (Shalev-Shwartz and
Ben-David, 2014) ensure that their expressive power is not limited compared to deep networks
when two-layer networks are sufficiently wide. A property of two-layer neural networks with ReLU
activation is that in the infinite width limit their kernel matrix and corresponding feature mapping
computed on the first layer become stationary and the optimization problem becomes convex, given
that the loss function used for training is convex (Jacot et al., 2018). This holds for an array of
popular loss functions such as squared loss for regression and logistic loss for classification. A
standard gradient descent can thus optimize up to arbitrarily small error in neural tangent kernel
(NTK) space (Jacot et al., 2018). Unfortunately, convexity does not persist when their width is
finite. The main issue lies in changing neuron activations when the network parameters are adjusted
during optimization. However, gradient descent (GD) is popular and surprisingly successful for non-
convex neural network optimization. It is thus very important to find theoretical explanations for this
phenomenon (Li and Liang, 2018). To this end, our paper analyzes theoretically a formulation that
we call convex two-layer ReLU neural networks. They are almost equivalent to the standard non-
convex formulation under mild assumptions to be specified later. In particular, they require the same
size and width as the standard formulation up to a factor of two. Thus any bound on their width
implies a bound for the standard setting as well. At the same time they allow significantly simplified
theoretical analyses since by decoupling the weight vectors to be trained from the orientation vectors
that determine neuron activations, the training problem is convex for arbitrary convex loss functions.

Related work An ever-growing series of theoretical works study necessary and sufficient condi-
tions on the width of standard two-layer ReLU networks such that GD converges to arbitrarily small
error despite the non-convex optimization problem.

A large body of work studied convergence results for over-parameterized neural networks (Li and
Liang, 2018; Du et al., 2019c; Allen-Zhu et al., 2019c;b; Du et al., 2019b; Allen-Zhu et al., 2019a;
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Song and Yang, 2019; Arora et al., 2019b;a; Cao and Gu, 2019b; Zou and Gu, 2019; Du et al.,
2019a; Lee et al., 2020; Huang and Yau, 2020; Chen and Xu, 2020; Brand et al., 2021; Li et al.,
2021; Song et al., 2021). Early works proved the first finite upper bounds on the network width m,
i.e., the number of neurons in the hidden layer (Li and Liang, 2018). (Du et al., 2019a) achieved
m = O(λ−4n6), where λ denotes the smallest eigenvalue of the (NTK) kernel matrix, and n is the
number of input points. This was improved to m = O(λ−4n4) (Oymak and Soltanolkotabi, 2020;
Song and Yang, 2019).

Under the additional assumption that the data points are pairwise almost orthogonal, (Song and
Yang, 2019) improved to m = O(λ−4n2). Various data distributions such as uniform points on the
sphere, or random hypercube vertices yield similar properties. Remarkably, if the standard Gaussian
initialization of the weights on the first layer is coupled, where every Gaussian vector is copied
once with positive and once with negative sign, then even m = O(n/d) could be shown under
the aforementioned data distributions (Oymak and Soltanolkotabi, 2020; Fiat et al., 2019; Daniely,
2020), or similar assumptions (Bubeck et al., 2020). (Kawaguchi and Huang, 2019; Zhang et al.,
2021) also claim linear bounds in restricted settings, but no general guarantees.

It is important to continue work on the width of two-layer neural networks in the worst-case and
without distributional assumptions, because we usually train our networks on arbitrary data and we
are not a priori aware of simplifying structure in the data that could be exploited. In the worst-
case setting, where arbitrary data in arbitrary dimension d ≥ 2 is allowed, a lower bound of Ω(n)
has been shown in (Munteanu et al., 2022), which is larger than the aforementioned O(n/d) upper
bounds under various assumptions. On the positive side, the m = O(λ−4n4) worst-case bound
of (Song and Yang, 2019) was improved to m = O(λ−2n2) by combining their analysis with a
coupled initialization (Munteanu et al., 2022). The gap between linear and quadratic was left as an
open problem. To our knowledge, it is still the state of the art for distribution-independent worst-
case bounds. A recent work (Karhadkar et al., 2024) studied eigenvalues of the NTK kernel matrix
at initialization and also ran into a linear vs. quadratic gap.

The above works focused on general convex or specifically on squared loss which is standard for
regression tasks. This was complemented by the logistic loss for binary classification. Separability
assumptions for two-layer ReLU networks and smooth loss functions led to polynomial dependen-
cies of the width m on n in (Cao and Gu, 2019b;a; Allen-Zhu et al., 2019a; Nitanda et al., 2019). A
breakthrough result (Ji and Telgarsky, 2020) established a polylogarithmic dependence on n. In this
under-parameterized regime for classification, a parameter γ captures the maximum classification
margin of the NTK. The upper bound of m = O(γ−8 log n) was complemented by a lower bound
of m = Ω(γ1/2) against NTK analyses in (Ji and Telgarsky, 2020). Combining with the coupled
initialization technique, (Munteanu et al., 2022) improved the upper bound to m = O(γ−2 log n)
and corroborated tightness by a Ω(γ−2) lower bound against the standard initialization analysis. The
general lower bound was improved to an unconditional m = Ω(γ−1) and m = Ω(γ−1 log n) was
established against NTK analyses. Generalization errors with SGD and gradient flow with quadratic
O(γ−2) dependence followed shortly after by (Telgarsky, 2022) using slightly different analysis
methods, that allow for more movement than typical NTK analyses. To the best of our knowledge,
the bounds of (Munteanu et al., 2022; Telgarsky, 2022) are the current state of the art in the worst-
case without distributional or geometric data assumptions, and the quadratic vs. linear gap is an
unresolved open problem in this regime.

Early convex formulations of neural networks are due to (Bengio et al., 2005) who leverage con-
vexity in the measure space to develop a training algorithm that iteratively adds neurons. (Bach,
2017) leverage convexity to show that infinitely wide neural networks can break the curse of dimen-
sionality. More recently, (Pilanci and Ergen, 2020) developed a finite-width convex reformulation
for two-layer ReLU networks using duality theory. Their approach is based on enumerating all
activation patterns encoded in cones. A significant body of work has developed ever since, includ-
ing extensions to vector outputs (Sahiner et al., 2021), polynomial activations (Bartan and Pilanci,
2023), threshold activations (Ergen et al., 2023), and constrained optimization (Prakhya et al., 2025).
Most relevant are (Mishkin et al., 2022; Dwaraknath et al., 2023) that draw connections to the NTK.

The notion of convex neural networks instead of the well-known gated neural networks is used
to emphasize the property of allowing for convex training, which is of uttermost importance to
our work. However, we note that two-layer gated ReLU neural networks denote the same family
of networks as our convex formulation. Decoupling activation from the linear mapping was first
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proposed by (Fiat et al., 2019), who called it gated linear unit. Their architecture is different from
ours because they do not merge parameters on the two layers. As a result, the optimization problem
is non-convex. (Mishkin et al., 2022) merges the parameters to obtain a convex model that they call
gated ReLU network. They study connections between gated ReLU networks and standard ReLU
networks based on convex cone programs and duality theory. Our work follows a different, more
direct approach. We focus on gradient descent analysis, the explicit functional network formulations
and their geometric interpretation. While we focus on two-layer ReLU networks, (Chen et al.,
2021; Bartan and Pilanci, 2023) extend to multi-layer networks with ReLU activation. Furthermore,
(Fiat et al., 2019) provide experiments showing that gated networks perform similar to standard
neural networks even for small width and (Mishkin et al., 2022) compares different optimization
approaches for convex neural networks.

Convex two-layer networks have remarkable similarities to random feature models (RFMs), (Rahimi
and Recht, 2007; Rudi and Rosasco, 2017). Crucially, only the output weights of RFMs are trainable
which considerably limits their expressibility (Yehudai and Shamir, 2019; Gonon, 2023).

2 PRELIMINARIES ON NEURAL NETWORKS

Two-layer ReLU networks A two-layer ReLU network consists of a set of weights w1, . . . , wm ∈
Rd for the first layer and weights a1, . . . , am ∈ {−1, 1} for the second layer. These can be summa-
rized as (W,a) ∈ Rm×d × {−1, 1}m. We will also use the notion of a weighted two-layer ReLU
network (W,a, ρ) if we have an additional weight vector ρ ∈ [0, 1]m. We will usually assume that∑m

j=1 ρj = 1, and in particular the unweighted case is the special case where we set all ρj = 1
m

and omit ρ from the notation for simplicity. We will refer to m as the width of the network, which
is an important parameter in the context of convergence analyses of gradient descent based neural
network training. The classification of a point x ∈ Rd by the network (W,a, ρ) is then given by

fS(W,a, ρ, x) =
∑m

j=1
ρjaj⟨x,wj⟩1[⟨x,wj⟩ > 0],

where 1[r > 0] = 1 if r > 0 and 0 otherwise. This simplifies by omitting ρ in the uniform case.

For training and evaluating a network, we are given n data points x1, . . . , xn ∈ Rd and binary labels
y1, . . . , yn ∈ {−1, 1} or real-valued targets y1, . . . , yn ∈ R depending on the task at hand. We
adopt the common standard assumptions that ∥xi∥ = 1 and |yi| ∈ O(1) for all i ∈ [n]. We note
that there are different normalizations in the literature. For instance a common normalization (Du
et al., 2019c; Song and Yang, 2019; Ji and Telgarsky, 2020) is given by 1/

√
m. We normalize by

1/m unless stated otherwise, which has the same effect if every weight is rescaled by
√
m since it

cancels the additional 1/
√
m factor. This simplifies our analyses and is equivalent, see Appendix A.

We specify a loss function LS(W ) =
∑n

i=1 ℓ(yi, f(W,a, xi)), as a sum of individual losses. We
will focus on the following choices. The logistic loss is often used for binary classification and is
defined as ℓ(v1, v2) = ln(1 + exp(−v1v2)). The squared loss is given by ℓ(v1, v2) =

1
2 (v1 − v2)

2

and is often used for regression with continuous target. Note that both are convex. Most of our
analyses hold for arbitrary convex losses and it will be made clear when we focus on logistic loss.

Convex two-layer ReLU networks In the infinite width limit, NTK theory (Jacot et al., 2018)
ensures a stationary kernel and convexity of the training problem. This implies that gradient descent
in the functional space converges to a globally optimal zero-error solution. Most, if not all, theo-
retical convergence results on gradient descent for training finite width two-layer ReLU networks
(Du et al., 2019c; Song and Yang, 2019; Ji and Telgarsky, 2020) use the structural property that for
almost all data points xi, i ∈ [n] and weight vectors wj , j ∈ [m], the activation of neurons, i.e., the
indicator 1[⟨xi, wj⟩ > 0] does not change during optimization. We note that this is the only source
violating the convexity of the overall loss function LS , given that the individual loss function ℓ is
convex.

This motivates us to analyze a variant that we call convex two-layer ReLU networks, also known as
gated ReLU networks (Fiat et al., 2019; Mishkin et al., 2022), where the activation is changed to stay
constant after an initial random initialization. In addition to the set of weight vectors w1, . . . , wm ∈
Rd, we use a set v1, . . . , vm ∈ Rd of orientation vectors that control the activation of neurons
independently of the current choice of the corresponding weight vectors wi. The parameterization
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of such a convex network will be summarized as a pair of two matrices (V,W ) ∈ Rm×d × Rm×d.
The classification of a point x ∈ Rd is then given by

f(V,W, ρ, x) =
∑m

j=1
ρj⟨x,wj⟩1[⟨x, vj⟩ > 0],

for an additional vector ρ ∈ [0, 1]m, ∥ρ∥1 = 1 weighting the contributions of neurons. We omit ρ in
the uniform case as before. Due to the more complex activation function, we also do not need the
sign vector a for the second layer, or equivalently set aj = 1 for all j ∈ m.

We initialize all weight vectors in W to be 0. The orientation vectors V are initialized as usual
for standard networks by drawing i.i.d. standard Gaussians. Crucially, the activations determined
by V do not change during optimization after initialization. Only the weights W are optimized
using a standard gradient descent update rule that iteratively minimizes the loss function L(W ) =
L(V,W ) =

∑n
i=1 ℓ(yi, f(V,W, xi)), where ℓ is an individual convex loss function as before.

Note that, in contrast to LS , if ℓ is convex then L(W ) is also convex, since for any fixed choice of
V ∈ Rm×d, any two weight matrices W,W ′ ∈ Rm×d and any t ∈ [0, 1], it holds that

L(tW + (1− t)W ′)

=

n∑
i=1

ℓ(yi, f(V, tW + (1− t)W ′, xi)) =

n∑
i=1

ℓ
(
yi,

1

m

m∑
j=1

⟨xi, twj + (1− t)w′
j⟩1[⟨x, vj⟩ > 0]

)
=

n∑
i=1

ℓ
(
yi,

t

m

∑m

j=1
⟨xi, wj⟩1[⟨x, vj⟩ > 0] +

(1− t)

m

∑m

j=1
⟨xi, w

′
j⟩1[⟨x, vj⟩ > 0]

)
≤

n∑
i=1

tℓ
(
yi,

1

m

∑m

j=1
⟨xi, wj⟩1[⟨x, vj⟩ > 0]

)
+ (1− t)ℓ

(
yi,

1

m

∑m

j=1
⟨xi, w

′
j⟩1[⟨x, vj⟩ > 0]

)
= tL(W ) + (1− t)L(W ′).

By fixing the orientation vectors V , we thus remove the issue where the activation causes a non-
convex structure in the standard version of two-layer ReLU networks. We also note that not all
convex two-layer ReLU networks can be represented by regular two-layer ReLU networks. How-
ever, we will show that they behave very similarly to two-layer ReLU networks under mild standard
conditions that were used in previous literature to derive convergence results.

Motivation of convex two-layer ReLU networks Our motivation for theoretically analyzing con-
vex two-layer ReLU networks is to show that under mild conditions they are almost equivalent to
the standard setting. Due to convexity, standard convergence analyses apply after successful initial-
ization. By the equivalence they considerably simplify the theoretical analysis of standard two-layer
ReLU neural networks regarding their width by reducing the analysis solely to the initialization.
Further, our aim is to gain deeper insights into the role of the orientation and activation vectors for
neural networks at initialization. This allows us to considerably strengthen results on the remaining
linear vs. quadratic gaps on the width of two-layer ReLU networks that could not be resolved with
previous approaches of (Munteanu et al., 2022; Karhadkar et al., 2024).

Advantages Convex two-layer ReLU networks allow a considerably simpler theoretical analysis
since under any convex loss function their optimization remains convex. This is achieved by decou-
pling the weights that are optimized from the weights that control the activation of hidden neurons.
Further, every standard two-layer ReLU network (W,a) can be simulated by a convex two-layer
ReLU network (V,W ′) that yields the same classification function for all x ∈ Rd. The opposite
direction is not true, since there exist datasets that can be classified correctly by convex two-layer
ReLU networks but cannot be classified correctly by any standard two-layer ReLU network, see
Theorem 7.3. But under mild conditions on the relationship between data and orientation vectors
V , a convex two-layer ReLU network (V,W ) of width m can be simulated by a standard two-layer
ReLU network (W ′, a) of width 2m that yields the same classification function on the input data.

Disadvantages Convex two-layer ReLU networks require twice the memory of standard two-layer
ReLU networks since we have to store two instead of just one vector for each hidden neuron. We
note that the degrees of freedom remain the same since only one set of parameters is optimized.
Further, they heavily depend on the initial choice of orientations that stay fixed during optimization.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We note that the latter disadvantage is not very restrictive. While standard two-layer ReLU networks
adapt their weights and activations simultaneously, most, if not all theoretical analyses require that
in fact almost all their activations do not change during optimization (Du et al., 2019c; Song and
Yang, 2019; Ji and Telgarsky, 2020). Available initializations ensure desirable properties with high
probability. Many in-depth analyses thus focus on properties of a successful initialization, and one
can assume that the subsequent optimization converges, cf. (Karhadkar et al., 2024).

2.1 CONTRIBUTIONS AND ROADMAP

We state our three main contributions as follows:

1) We give an algorithm based on gradient descent on convex neural networks (NNs) that approxi-
mates the margin parameter γ of standard non-convex NNs. Evaluating or approximating γ was only
known to be possible before in a few analytically tractable cases (Ji and Telgarsky, 2020; Munteanu
et al., 2022; Telgarsky, 2022).
2) We improve the quadratic m = Ω(γ−2) worst case width lower bound of (Munteanu et al., 2022)
to not only hold against the standard perfect NTK separator, but against any perfect NTK separator
that is not adaptive to the initial weights. This new lower bound thus holds against all upper bound
analyses since adaptivity has not yet been explored.
3) Along the way, we analyze and establish novel theoretical properties of convex (resp. gated) two-
layer ReLU neural networks, in particular their close connection to standard two-layer ReLU neural
networks and their NTK properties.

All missing details and formal proofs are in the appendix. The rest of our paper is structured as
follows:
• In Section 3 we define a data dependent set of cones S0(X). We use the cones to show that
the convex and standard variants of two-layer ReLU networks are almost equivalent. We also
show that any (possibly infinitely wide) network is equivalent to a network of finite width at most
|S0(X)| = O(nd−1).
• In Section 4, we study two common parameters, the NTK separation margin γ and the smallest
eigenvalue λ of the NTK kernel matrix. We show that there exist weighted two-layer ReLU net-
works of width at most |S0| for which the infinite width limits of these parameters are attained.
• In Section 5, we show that for the networks studied in Section 3 the gradient and weight updates
are similar as long as the weights of standard networks do not change neuron activations too much.
• In Section 6, we consider gradient descent for optimizing convex two-layer ReLU net-
works of small width with logistic loss for binary classification. In particular, we show
that standard gradient descent converges to a network (V,W ) that satisfies (1 + ε)γ ≥
mini∈[n] yif(V,W/maxj∈[m] ∥wj∥2, xi) ≥ (1 − ε)γ, thus providing a provable approximation
algorithm for calculating γ.
• In Section 7, we consider two datasets: 1) we study the alternating points on the circle data to
show that existing non-adaptive techniques for proving m = O(γ−2) (omitting parameters other
than γ) cannot give a bound of O(γ−(2−δ)), for any δ > 0, as we show that any perfect NTK sepa-
rator mapping must be chosen adaptively to the initial weights unless m = Ω(γ−2).
2) we study the three-dimensional hypercube with parity labels data and show that convex two-layer
ReLU networks can perfectly classify this data using orientations that are orthogonal to data points,
while any standard two-layer ReLU network must have at least one misclassification.

3 CONES AND EQUIVALENCE OF CONVEX AND STANDARD NETWORKS

The following lemma shows that the two variants of neural networks are very similar in the sense
that standard ReLU networks can be simulated by convex ReLU networks such that all points in
the dataset evaluate to the same classification (resp. target value). The reverse simulation is also
possible albeit under a factor two blow-up of the width and under a mild condition on the relation-
ship between data and orientation vectors V. Related, though different uni-directional equivalences
appeared in (Mishkin et al., 2022; Pilanci and Ergen, 2020; Mishkin and Pilanci, 2023). Our result
was previously unknown and establishes a bi-directional equivalence.
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Theorem 3.1. For any two-layer ReLU network (W ′, a) ∈ Rm×d × {−1, 1}m there exists a
convex two-layer ReLU network (V,W ) ∈ Rm×d × Rm×d such that for all x ∈ Rd it holds
that f(V,W, x) = fS(W

′, a, x). Further, for any convex two-layer ReLU network (V,W ) ∈
Rm×d × Rm×d such that for any i ∈ [n], j ∈ [m] it holds that ⟨xi, vj⟩ ≠ 0, there exists a
two-layer ReLU network (W ′, a) ∈ R2m×d × {−1, 1}2m such that for any i ∈ [n] it holds that
fS(W

′, a, xi) = f(V,W, xi).

Note that for the first transformation, the number of hidden neurons stays the same. But in the
other direction the number grows from m to 2m. Also note that in the set of functions that standard
networks represent, can also be represented by convex networks. In particular this implies that the
ability of generalization is at least preserved. In the other direction, the equivalence of functions is
restricted to training data, which is due to higher expressibility of convex networks, cf. Theorem 7.3.

Most of our analysis will be centered around the following data-dependent definition of cones, which
is originally due to (Munteanu et al., 2022). We define for any subset U ⊆ [n] a cone

C(U) = C(U,X) = {x ∈ Rd | ⟨x, xi⟩ > 0 iff i ∈ U}.
We remark that the disjoint union of all cones satisfies

⋃̇
U⊆[n]C(U) = Rd and it holds that C(∅) =

{x ∈ Rd | ⟨x, xi⟩ ≤ 0 for all i ∈ [n]}. We set S0 := S0(X) = {C(U) | U ⊆ [n], C(U) ̸= ∅}. By
definition we have |S0| ≤ 2n, but as a direct consequence of Theorem 1 in (Cover, 1965) it follows
that |S0| is actually bounded by O(nd−1). We include a proof in the appendix for completeness.
Lemma 3.2. For any dataset X it holds that |S0(X)| ≤ 4nd−1. Further if X is in general position
and n ≥ d > 2, i.e., any subset of d points is linearly independent, then |S0(X)\{0}| =

∑d−1
k=0

(
n
k

)
.

The following lemmas are novel and show that if our dataset is finite, then for every (convex) two-
layer ReLU network there exists a (convex) two-layer ReLU network of width at most |S0| =
O(nd−1) such that their classification is the same for all xi, i ∈ [n]. The idea is that in fact we need
only one orientation vector in each cone that is hit by at least one orientation in the original network,
which reduces their remaining analysis to the set of cones in S0 rather than all orientation vectors.
Lemma 3.3. For any convex two-layer ReLU network (V,W ) ∈ Rm×d × Rm×d let SV = {C ∈
S0 | ∃j ∈ [m] : vj ∈ C} and m′ = |SV | ≤ min{m, |S0|}. Then there exists a convex two-layer
ReLU network (V ′,W ′) ∈ Rm′×d × Rm′×d together with weights ρ1, . . . , ρm′ such that for all
i ∈ [n] it holds that

f(V,W, xi) =
1

m

m∑
j=1

⟨xi, wj⟩1[⟨xi, vj⟩ > 0] =

m′∑
j=1

ρj⟨xi, w
′
j⟩1[⟨xi, v

′
j⟩ > 0] = f(V ′,W ′, ρ, xi).

We note that the weights are not necessary to obtain the result as we can replace w′
j by w′

j · ρj .
However, if we take the derivative with respect to wj , using the weighted version simplifies the
presentation and allows us to argue that the gradient also remains the same.

We have an equivalent novel result for standard two-layer networks. However, up to technical details
including the weights, it also follows if we transform the standard network to a convex network by
Theorem 3.1, then adjust (reduce) its size using Lemma 3.3 and then apply Theorem 3.1 again to get
the equivalent standard two-layer network.
Lemma 3.4. For any two-layer ReLU network (W,a) ∈ Rm×d × {−1, 1}m let SV = {(C, a0) ∈
S0 × {−1, 1} | ∃j ∈ [m] : wj ∈ C} and m′ = |SV | ≤ min{m, 2|S0|}. Then there exists a
two-layer ReLU network (W ′, a′) ∈ Rm′×d × Rm′×d together with weights ρ1, . . . , ρm′ such that
for all xi, i ∈ [n] it holds that

fS(W,a, xi) =
1

m

∑m

j=1
aj⟨xi, wj⟩1[⟨xi, wj⟩ > 0]

=
∑m′

j=1
ρj⟨xi, w

′
j⟩1[⟨xi, w

′
j⟩ > 0] = fS(W

′, a′, ρ, xi).

4 SEPARATION MARGIN AND THE SMALLEST EIGENVALUE OF THE NTK

In this section, we define our versions of the two parameters that are used to bound the width of
two-layer ReLU networks for binary classification with logistic loss and regression with squared
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loss. We first define the smallest eigenvalue of the NTK λ introduced in (Du et al., 2019c). We
note that λ is tightly related to separation and collinearity conditions studied earlier, e.g. in (Li and
Liang, 2018; Oymak and Soltanolkotabi, 2020).

Smallest eigenvalue of the NTK kernel matrix The NTK kernel matrix H ∈ Rn×n is defined as
in previous work by

Hij = Ev∼N (0,I)[⟨xi, xj⟩1[⟨xi, v⟩ > 0, ⟨xj , v⟩ > 0]]

We set λ = λ(X) = λ(H) to be the minimum eigenvalue of H .

Given a matrix of activation vectors V , and a vector of weights ρ, we further define the finite coun-
terpart. To this end, recall that the default is ρk = 1/m, which corresponds to previous work.

Hdis
ij = Hdis

ij (V ) =
∑m

k=1
ρk⟨xi, xj⟩1[⟨xi, vk⟩ > 0, ⟨xj , vk⟩ > 0]

and λV = λ(X,V ) = λ(Hdis) to be the minimum eigenvalue of Hdis.

NTK separation margin Next, we define the NTK separation margin parameter γ, which was
introduced in (Ji and Telgarsky, 2020) and further analyzed in (Munteanu et al., 2022). Intuitively,
γ quantifies the maximum classification margin of the points in the RKHS of the NTK. Let B =
Bd = {x ∈ Rd | ∥x∥2 ≤ 1} be the unit ball in d dimensions. We set FB to be the set of functions
f mapping from dom(f) = Rd to range(f) = B. Let µN denote the Gaussian measure on Rd,
specified by the Gaussian density with respect to the Lebesgue measure on Rd.
Definition 4.1. Given a data set (X,Y ) ∈ Rn×d × Rn and a map v ∈ FB we set γv equal to

γv(X,Y ) := min
i∈[n]

yi

∫
⟨v(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z).

Further set γ = γ(X,Y ) := maxv′∈FB
γv′ We say that v is optimal if γv = γ.

We note that maxv′∈FB
γv′ always exists since FB is a set of bounded functions on a compact

subset of Rd. In (Munteanu et al., 2022) it was shown that for every mapping v, there exists another
mapping v′, which is constant on all cones in S0 and satisfies that γv′ = γv . This implies that there
exists a finite (weighted) convex neural network that satisfies yif(V,W, xi) ≥ γv′ . In particular it
holds that equality is attained for every optimal v.

The network is given by m = |S0|, V consists of one representative vC ∈ C for each cone C ∈ S0,
wC = v′(vC) and ρC = P (z ∈ C) according to the Gaussian measure as in Definition 4.1.

Given V ∈ Rm×d, and any B ∈ R>0, we set WB = {W ∈ Rm×d | ∥wj∥2 ≤ B for all j ∈ [m]}
and define γV = maxW∈W1

mini∈[n] yif(V,W, xi, ρ). Moreover, we set WV ∈ W1 to be a weight
matrix that attains the maximum, i.e., it holds that

γV = min
i∈[n]

yif(V,WV , xi). (1)

Convex two-layer networks can attain the infinite width limit parameters To show that gradi-
ent descent applied to two-layer ReLU networks converges, one usually shows that if the width m
of the network is large enough, then the finite width parameters γW resp. λW for the initial weight
vectors W0 are close to their infinite width limits γ resp. λ. Further one shows that this does not
change significantly during the iterative optimization procedure.

We note that for convex two-layer ReLU networks, the values of γV resp. λV are determined at
initialization since they depend only on V and the data, both of which do not change during opti-
mization. The parameters thus do not change at all which makes the second argument obsolete and
simplifies the convergence analysis. The following theorem establishes that there exists a weighted
convex network (V,WV , ρ) such that γV = γ and λV = λ. This novel finding will be important
for provably approximating the (theoretical) integral valued quantity γ in Section 6 using a convex
network and a simple gradient descent.
Theorem 4.2. Let m = |S0| and for C ∈ S0 set ρC = P (C) where P (C) is the probability that a
random vector in V is in C. Further let vC be any vector in C, and let V be the matrix whose rows
are the collection of all vC , C ∈ S0. Then it holds that λV = λ and γV = γ.
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5 GRADIENT DESCENT WEIGHT UPDATES

In this section, we study the loss function and its directional derivatives showing more similarities
between the two variants of ReLU networks. Further, we show that the gradient behaves similarly in
both formulations of two-layer ReLU networks, which prepares the subsequent convergence results
presented in the next section. For a weighted convex neural network (V,W, ρ) we set L′(W ) to be
the gradient of the loss function L(W ), i.e.,

L′(V,W, ρ)j =
∂L(W )

∂wj
=
∑

i∈[n],⟨xi,vj⟩>0
∂wj ℓ(yi, f(V,W, ρ, xi)).

We note that

L′(V,W, ρ) =
∑n

i=1
ℓ′(yi, f(V,W, ρ, xi))∇f(V,W, ρ, xi),

where

(∇f(V,W, ρ, xi))j =
∂f(V,W, ρ, xi)

∂wj
= ρj1[⟨xi, vj⟩ > 0]xi.

Thus, we also have for any W,W ′ ∈ Rm×d that

⟨∇f(V,W, ρ, xi),W
′⟩ =

∑
j∈[m]

⟨∇f(V,W, ρ, xi))j , w
′
j⟩ = f(V,W ′, ρ, xi).

Similarly, we have for a weighted standard ReLU network (W,a, ρ) that

L′
S(W,a, ρ)j =

∂LS(W )

∂wj
=
∑

i∈[n],⟨xi,wj⟩>0
∂wj ℓ(yi, fS(W,a, ρ, xi)),

L′
S(W,a, ρ) =

∑n

i=1
ℓ′(yi, fS(W,a, ρ, xi))∇f(W,a, ρ, xi),

(∇f(W,a, ρ, xi))j =
∂fS(W,a, ρ, xi)

∂wj
= ρjaj1[⟨xi, wj⟩ > 0]xi,

and ⟨∇f(W ′, a, ρ, xi),W
′⟩ = fS(W

′, a, ρ, xi).

Recall that the default vector ρ has all entries equal to 1/m. In the following, we consider the
equivalent networks from previous sections and show that their gradient based weight updates have
a similar effect on all variants. More precisely, we start with a standard two-layer ReLU network
(W,a). We then define a transformation map T1, which maps (W,a) to the equivalent network
(V,W ′) as in Theorem 3.1, T2, which maps (W,a) to the network (V ′,W ′′, ρ) which is similar to
(V,W ′) by Lemma 3.3, and T3, which maps (W,a) to the network (W ′, a′, ρ′) as in Lemma 3.4.
The exact formal definitions of T1, T2, and T3 are detailed in Appendix D. They are technically
slightly different in that they only map the matrices to one another, not the whole networks. But
their idea follows along the lines of the intuitive explanation above. They are used in the following
lemma to express that the gradients of transformed networks equal the transforms of the gradients.
Lemma 5.1. For the gradient it holds that

L′(V, T1(W,a)) = T1(L
′(V,W ), a) (2)

L′(V ′, T2(W,a), ρ) = T2(L
′(V,W ), a) (3)

L′
S(T3(W,a), a′, ρ′) = T3(L

′(V ′,W, ρ′), a). (4)

Further for any weight update ∆W such that for all i ∈ [n] it holds that 1[⟨xi, wj⟩ > 0] =
1[⟨xi, wj +∆wj⟩ > 0] we have that

LS(W +∆W,a) = L(V, T1(W +∆W,a))

= L(V ′, T2(W +∆W,a), ρ) = LS(T3(W +∆W,a), a′, ρ′). (5)

The lemma thus proves that the network transformations that apply to the weight matrices of equiv-
alent networks, also apply to the matrices that carry all partial derivatives. Thus weight updates
have a similar effect across all network types. This is again a novel and important reduction, which
implies that gradient descent has similar training dynamics on convex networks as on non-convex
standard networks under their usual properties and thus enables our approximation results covered
in the next section.
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6 GRADIENT DESCENT APPROXIMATION RESULTS

Next, we establish an approximation result for convex two-layer ReLU networks with logistic loss,
i.e., ℓ(r) = ln(1 + exp(−r)). Recall that we initialize V according to a suitable distribution such
as i.i.d. Gaussians and set W = W0 to be a zero matrix. We keep V fixed during training and apply
gradient descent to update the weights Wt for t ≥ 0 in an iterative manner

Wt+1 = Wt − ηtL
′(Wt)

where ηt ∈ R≥0 is a learning rate parameter and L′(Wt) is the gradient of the loss function L(Wt)
at Wt, i.e.,

L′(Wt)j =
∂L(Wt)

∂(Wt)j
=
∑

i∈[n],⟨vj ,xi⟩>0
xj∂wj

ℓ(yi, f(V,Wt, xi)).

We note that this reaches a factor 2 approximation to the optimal solution using standard gradient
descent analyses (Nesterov, 2004; Bubeck, 2015) in O(B2) iterations by simple boundedness and
Lipschitz arguments detailed in the appendix. The following lemma shows that after gradient descent
converges to a constant factor approximation, it is a (1± ε)-approximation of the real value of γV .
Lemma 6.1. Let γV > 0 as defined in Equation (1). Let ℓ(r) = ln(1 + exp(−r)) and ε > 0. Let
B ≥ (ln(4) + ln(n))/(εγV ). Let W ∗ ∈ WB minimize L(W ) and let W ∈ WB be any solution
such that L(W ) ≤ 2L(W ∗). Then it holds that γV ≥ mini∈[n] yif(V,W/B, xi) ≥ (1− ε)γV

We note that the previous Lemma has a circular dependence on the value of γV because to estimate
this quantity, we need to find the right value of B, which depends on γV again. This can be handled
simply by guessing γV in powers of 2, which contributes only an additional factor of log2(1/γV ) to
the number of iterations.

Finally, the following theorem shows how γV , approximated by gradient descent in Lemma 6.1, can
be related to the infinite width limit γ up to a (1± ε) multiplicative error.
Theorem 6.2. Assume V ∈ Rm×d is initialized with i.i.d. Gaussians and 0 < δ ≤ ε. For any
m it holds that EγV ≤ γ over the Gaussian measure. Further, if the network width is m ≥ c ·
(εδγ)−2 ln(n/ε) for an absolute constant c > 0, then with probability at least 1 − δ it holds that
(1 + ε)γ ≥ γV ≥ (1− ε)γ.

The Gaussian initialization of V and a refinement by gradient descent that updates only the weights
W thus suffices to estimate the infinite width limit value of γ up to arbitrary precision. This is an
important main finding of our work, because evaluating or approximating the true infinite width
limit value of γ was only known in a few special and analytically tractable cases, see for instance (Ji
and Telgarsky, 2020; Munteanu et al., 2022).

7 TWO IMPORTANT DATA EXAMPLES

The alternating circle and why it might be hard to prove that a two-layer ReLU network of
linear width suffices for arbitrarily small error Consider the following set of points for k ∈ [n]:

xk =

(
cos

(
2kπ

n

)
, sin

(
2kπ

n

))
and yk = (−1)k.

The dataset consists of equidistant points on the circle with alternating labels. It has been used
in (Munteanu et al., 2022) to derive lower bounds of different strengths on the width of two-layer
ReLU networks. In particular we will strengthen their Ω(γ−2) bound to hold against any fixed
choice of v, not only for a special choice of v commonly used in (Ji and Telgarsky, 2020; Munteanu
et al., 2022) for proving upper bounds. This implies that proving any upper bound better than
O(γ−2) requires choosing v adaptively to the initial weights, which to our knowledge is completely
unexplored except for the case of two dimensional data, see Lemma 3.5 resp. F.2 (Munteanu et al.,
2022), which allows a width of O(γ−1 log n). The authors state however, that the same construction
is not extendable to higher dimensions, as in 3 dimensions or higher, the bounds achieved by their
construction deteriorate to values larger than O(γ−2).

We first prove the following technical lemma. It establishes that the data set has a small margin
γ ≈ 1/n and for any NTK separator, the estimate for some data point must have high variance.
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Lemma 7.1. (informal version of Lemma F.2) Let X be the alternating points on the circle dataset
defined above with n ≡ 0 mod 4. Then the following holds:
(1) The separation margin is given by γX = Θ(1/n)
(2) For any fixed map v ∈ FB there exists an index i ∈ [n] such that for an absolute constant c∫

⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] dµN (z)∫
|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0] dµN (z)

≤ cγX

and for Zi = ⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] we have that Var(Zi) ≥ Ω(γ−2
X E(Zi)

2).

Using Lemma 7.1 we prove for our alternating points on the circle dataset X that if the width of
the network is m = o(γ−2) then for any fixed perfect NTK separator, the finite network has with
constant probability at least one misclassification.
Theorem 7.2. Let X be the alternating points on the circle dataset with n divisible by 4 and let
W ∈ Rm×2 be a matrix consisting of m Gaussians. Then there is a constant c0 > 0 such that
if m ≤ c0γ

−2
X , then for any fixed v ∈ FB there exists an index i ∈ [n] such that with constant

probability
1

m

∑m

s=1
yi⟨v(ws), xi⟩]1 [⟨xi, ws⟩ > 0] ≤ 0.

Thus, our result reveals that constructing the perfect NTK separator v̄ adaptively to the initialization
is the only last hope for linear Õ(γ−1) upper bounds (or anything between linear and quadratic) in
the worst case setting. Our Ω(γ−2) lower bound thus almost closes an important open problem,
since it matches the previous O(γ−2) upper bounds of (Munteanu et al., 2022; Telgarsky, 2022)
and adaptivity has never been explored in previous work except for the aforementioned case that is
restricted to 2 dimensional data. This motivates studying adaptive techniques that extend to arbitrary
dimensions as a future research direction.

The 3-dimensional hypercube and cones of measure zero The next example we want to consider
is the 3-dimensional hypercube with parity labels. More precisely, the dataset is given by X =
{−1, 1}3 and for x ∈ X we set yx = x1x2x3, i.e., yx = 1 if the number of 1’s in x is odd, and
otherwise we set yx = −1. This toy example was studied before in (Munteanu et al., 2022). In our
context it becomes important for the following new reason: we have that γX = 0 and we will show
in the following that there exists no standard two-layer ReLU network that correctly classifies all
points. However, there exists a convex two-layer ReLU network that classifies all points correctly
using cones of measure zero. The following theorem thus highlights an important difference in the
expressibility of standard compared to convex networks.
Theorem 7.3. Let X be the 3-dimensional hypercube with parity labels. Then the following holds:
(1) γX = 0,
(2) there exists no (standard) two-layer ReLU network that classifies all points correctly,
(3) there exists a convex two-layer ReLU network that classifies all points correctly.

8 CONCLUSION

We theoretically analyzed convex two-layer ReLU networks, which are a strict generalization of the
standard non-convex formulation with similar properties. Under mild assumptions that are standard
in previous literature, we have shown that they are almost equivalent to standard two-layer ReLU
networks. Their main purpose in our context is simplifying the theoretical analysis of two-layer
ReLU networks that in their standard formulation require considerable technical overhead for con-
trolling the amount of weights and data points, that change the activation of neurons during training.
Using convex networks, we showed new properties that by equivalence extend to standard two-layer
ReLU networks. Convex networks allow for standard gradient descent analyses to apply directly,
based on which we showed how to approximate the NTK classification margin γ up to a (1 ± ε)
factor. We also strengthened existing quadratic lower bounds on the width, which imply that cur-
rent analyses are tight and improving worst-case upper bounds below the Ω(γ−2) barrier requires
currently unexplored adaptive techniques for constructing a perfect NTK separator during or after
initialization. We hope our methods will be extended to yield better bounds on the width of two-layer
ReLU networks in future research or finally lead to unconditional Ω(γ−2) lower bounds.
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A EQUIVALENCE OF DEFINITIONS

In the standard literature we have that classification of a point is given by

f0(W
′, a, x) =

1√
m

∑m

j=1
aj⟨x,w′

j⟩1[⟨x,w′
j⟩ > 0],

which results in a normalized classification if W ′ is normalized by 1/
√
m as well. Further each

gradient for logistic loss is 1-Lipschitz leading to a convergence when using a step size of 1 (resp.
1/n). In our definition, the norm of each row of W is independent of m and thus can be rescaled
by a factor

√
m without problems. If we set the step size to m (resp. m/n) then each step in the

gradient descent has the exact same effect as it would have in the standard definition.

More precisely we get the following equivalences:

Let W ∈ Rm×d be any matrix and set W ′ = W/
√
m. Further set L0(W

′) =∑
i∈[n],⟨xi,w′

j⟩>0 ℓ(yi, f0(W
′, a, xi)) and L′

0(W
′) =

∑
i∈[n] ℓ

′(yi, f0(W
′, a, xi))∇f0(W

′, a, xi).

Then we have that

fS(W,a, x) =
1

m

∑m

j=1
aj⟨x,wj⟩1[⟨x,wj⟩ > 0]

=
1√
m

∑m

j=1
aj⟨x,w′

j⟩1[⟨x,w′
j⟩ > 0]

= f0(W
′, a, x) .

Further it holds for all j ∈ [m] that

(∇fS(W,a, x))j =
1

m
aj1[⟨x,wj⟩ > 0]x

=

(
1√
m
aj1[⟨x,wj⟩ > 0]x

)/√
m

=

(
1√
m
aj1

[〈
x,

wj√
m

〉
> 0

]
x

)/√
m

=
1√
m
(∇f0(W

′, a, x))j .

Thus, for any η ∈ R, we have that

1√
m

(
W −mηL′

S(W )
)
=

W√
m

− m√
m
η
∑
i∈[n]

ℓ′(yi, fS(W,a, xi))∇fS(W,a, xi)

=
W√
m

− m√
m
η
∑
i∈[n]

(ℓ′(yi, f0(W
′, a, xi)))

1√
m
∇f0(W

′, a, xi)

= W ′ − η
∑
i∈[n]

ℓ′(yi, f0(W
′, a, xi))∇f0(W

′, a, xi)

= W ′ − ηL′
0(W

′).

B CONES AND EQUIVALENCE OF CONVEX AND STANDARD NETWORKS

Given a subset U ⊆ [n] we define the following cone:

C(U) = C(U,X) = {x ∈ Rd | ⟨x, xi⟩ > 0 if and only if i ∈ U}.

Note that C(∅) = {x ∈ Rd | ⟨x, xi⟩ ≤ 0 for all i ∈ [n]} and that the disjoint union of all cones
satisfies

⋃̇
U⊆[n]C(U) = Rd. For any cone C = C(U) we set U(C) = U . Further we set P (U)

to be the probability that a random Gaussian is an element of C(U) and PU to be the probability
measure of random Gaussians z ∼ N (0, Id) restricted to the event that z ∈ C(U), where Id ∈ Rd×d

denotes the d dimensional identity matrix.
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Given a matrix M ∈ Rm×d we set K(M) = {x ∈ Rd | ∃j ∈ [m] : ⟨mj , x⟩ = 0} to be the union of
the hyperplanes that are orthogonal to one of the rows of M .

The following theorem shows that the two variants of neural networks are very similar in the sense
that standard ReLU networks can be simulated by convex ReLU networks such that all points in
the dataset evaluate to the same classification (resp. target value). The reverse simulation is also
possible albeit under a factor two width blow-up and under a mild condition on the relationship
between data and orientation vectors V .

Theorem B.1. For any two-layer ReLU network (W ′, a) ∈ Rm×d × {−1, 1}m there exists a
convex two-layer ReLU network (V,W ) ∈ Rm×d × Rm×d such that for all x ∈ Rd it holds
that fS(W

′, a, x) = f(V,W, x). Further for any convex two-layer ReLU network (V,W ) ∈
Rm×d × Rm×d with K(X) ∩ {v1, . . . , vm} = ∅ (i.e., for any i ∈ [n], j ∈ [m] we have that
⟨xi, vj⟩ ≠ 0), there exists a two-layer ReLU network (W ′, a) ∈ R2m×d × {−1, 1}2m such that for
any i ∈ [n] we have that fS(W ′, a, xi) = f(V,W, xi).

Proof. For the first part of the lemma we simply set wj = ajw
′
j and vj = w′

j . Then it follows
immediately for any x ∈ Rd that

fS(W
′, a, x) =

1

m

∑m

j=1
aj⟨x,w′

j⟩1[⟨x,w′
j⟩ > 0]

=
1

m

∑m

j=1
⟨x, ajw′

j⟩1[⟨x,w′
j⟩ > 0]

=
1

m

∑m

j=1
⟨x,wj⟩1[⟨x, vj⟩ > 0] = f(V,W, x).

For the second part note that the infimum α = infj∈[m],z∈K(X){∥z − vj∥2} is attained as it is the
minimum distance of the finite set of data points and a finite set of hyperplanes that by assumption
do not contain any of the input points and thus it must be strictly greater than 0. For j ∈ [m] we set
w′

j = vj · 2∥wj∥2

α +wj , aj = 1 and w′
j+m = vj · 2∥wj∥2

α and aj+m = −1. Note that for any i ∈ [n]
and j ∈ [m] we have that

1[⟨xi, w
′
j⟩ > 0] = 1[⟨xi, vj⟩ > 0]

as we also have that infz∈K(X){∥z − vj · ∥wj∥2

α ∥2} ≥ 2∥wj∥2 and thus the sign of all points in
vj · 2∥wj∥2

α + βwj for β ∈ [0, 1] are the same.

We conclude that

fS(W
′, a, xi) =

1

m

∑2m

j=1
aj⟨x,w′

j⟩1[⟨x,w′
j⟩ > 0]

=
1

m

∑m

j=1
ai⟨x,w′

j⟩1[⟨x,w′
j⟩ > 0] + aj+m⟨x,w′

j+m⟩1[⟨x,w′
j+m⟩ > 0]

=
1

m

∑m

j=1
⟨x,wj⟩1[⟨x, vj⟩ > 0] = f(V,W, xi).

We set S0 := S0(X) = {C(U) | U ⊆ [n], C(U) ̸= ∅}. The following lemmas show that if our
dataset is finite, then for every (convex) two-layer ReLU network there exists a (convex) two-layer
ReLU of width at most |S0| such that their classification is the same for all xi, i ∈ [n]. We note that
|S0| ≤ 2n, but we will show O(nd−1) bounds on |S0| below.

Lemma B.2. For any convex two-layer ReLU network (V,W ) ∈ Rm×d × Rm×d let SV = {C ∈
S0 | ∃j ∈ [m] : vj ∈ C} and m′ = |SV | ≤ min{m, |S0|}. Then there exists a convex two-layer
ReLU network (V ′,W ′) ∈ Rm′×d × Rm′×d together with weights ρ1, . . . , ρm′ such that for all
i ∈ [n] it holds that

f(V,W, xi) =
1

m

∑m

j=1
⟨xi, wj⟩1[⟨xi, vj⟩ > 0]

=
∑m′

j=1
ρj⟨xi, w

′
j⟩1[⟨xi, v

′
j⟩ > 0] = f(V ′,W ′, ρ, xi).
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Before proving the lemma we note that in this statement the weights are not necessary as we can
replace w′

j by w′
j · ρj , however if we take the derivative with respect to wj then using the weighted

version, we simplify the argument that the gradient also stays the same.

Proof of Lemma B.2. For each C ∈ SV let J = {j ∈ [m] | vj ∈ C} be the set of indices of
orientation vectors in C. We set vC to be an arbitrary vector in C. We set ρC = ρC(V ) = |J |/m to
be the fraction of orientation vectors in C. Further we set wC =

∑
j∈J wj/|J |. Then we have that∑

C∈SV

ρC⟨xi, wC⟩1[⟨xi, vC⟩ > 0] =
∑

C∈SV ,i∈U(C)
ρC⟨xi, wC⟩

=
1

m

∑
j∈[m],⟨vj ,xi⟩>0

⟨xi, wj⟩ = f(V,W, xi).

There is an equivalent result for the usual two-layer networks:
Lemma B.3. For any two-layer ReLU network (W,a) ∈ Rm×d × {−1, 1}m let SV = {(C, a0) ∈
S0 × {−1, 1} | ∃j ∈ [m] : wj ∈ C} and m′ = |SV | ≤ min{m, 2|S0|}. Then there exists a
two-layer ReLU network (W ′, a′) ∈ Rm′×d × Rm′×d together with weights ρ1, . . . , ρm′ such that
for all xi, i ∈ [n] it holds that

fS(W,a, xi) =
1

m

∑m

j=1
aj⟨xi, wj⟩1[⟨xi, wj⟩ > 0]

=
∑m′

j=1
ρj⟨xi, w

′
j⟩1[⟨xi, w

′
j⟩ > 0] = fS(W

′, a′, ρ, xi).

Proof. Given a cone C and a sign a0 we set JC,a0
= {j ∈ [m] | wj ∈ C and aj = a0}, ρC,a0

=
ρC(V ) = |JC,a0 |/m. Further we set wC,a0 =

∑
j∈JC,a0

wj/|JC,a0
|. Note that wC,a0

∈ C. Then
we have that∑

(C,a0)∈SV

ρC,a0
a0⟨xi, wC,a0

⟩1[⟨xi, wC,a0
⟩ > 0] =

1

m

∑
j∈[m],aj⟨wj ,xi⟩>0

⟨xi, wj⟩

= f(V,W, xi).

The following lemma shows that if there exists a cone C(U) that is contained in a hyperplane
h = K({x}) = K({−x}) for some x ∈ Rd then there exists a set U ′ ⊆ X ∩K(C(U)) such that
both x and −x are an affine combination of vectors in U ′. If x ̸= 0 this implies that U ′ is linearly
dependent. We also note that if there exists a non-empty cone C(U) with a Gaussian measure of 0
then C(U) is contained in a hyperplane.
Lemma B.4. Let U ⊆ [n] such that C(U) ̸= ∅ and x ∈ Rd with C(U) ⊆ K({x}). Then there
exists U1 ⊆ X ∩K(C(U)) such that for

C ′(U1) = {z ∈ Rd | z =
∑
i∈U1

αixi for some α ∈ R|U1|
≥0 }

it holds that x ∈ C ′(U1).

Proof. We construct U1 as follows: we start with U1 = ∅ and then add points from X ∩K(C(U))
iteratively until x ∈ C ′(U1). Since C(U) ̸= ∅ there exists zU ∈ C(U). We further choose zU to be
in the interior of C(U), i.e., for all i ∈ [n] we have that ⟨zU , xi⟩ = 0 if and only if for all z ∈ C(U)
it holds that ⟨z, xi⟩ = 0.

If x /∈ C ′(U1) then we claim that we can find a point z ∈ Rd such that ⟨z, x⟩ ≠ 0 and for all x′ ∈ U1

we have that ⟨x′, z⟩ ≤ 0: if U1 = ∅ then we can set z = x. Otherwise let x0 ∈ C ′(U1) ∩ Sd−1

minimize the distance between x and x0. Then we claim that z = x − x0 satisfies ⟨z, x⟩ ̸= 0 and
for all x′ ∈ U1 we have that ⟨x′, z⟩ < 0. Note that

⟨z, x⟩ = ⟨x− x0, x⟩ = 1− cos(α) ̸= 0
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where α is the angle between x and x0. Further if there was a point x′ ∈ U1 with ⟨x′, z⟩ > 0 then
there would be another point x′′ ∈ C ′(U1) ∩ Sd−1 with x′′ = x0+βx′

∥x0+βx′∥2
for a sufficiently small

β ∈ R>0 such that x′′ is closer to x.

Since ⟨zU , x⟩ = 0, for any β ∈ R>0 it holds that ⟨zU + βz, x⟩ = ⟨βz, x⟩ ≠ 0 and C(U) ⊆ K({x}).
Thus, there must be a point xi such that 1[⟨xi, zU ⟩ > 0] ̸= 1[⟨xi, zU + βz⟩ > 0]. By choice of zU
this implies that ⟨zU , xi⟩ = 0 and ⟨βz, xi⟩ = ⟨zU + βz, xi⟩ > 0 which in particular implies that
xi /∈ U1. Further since ⟨zU , xi⟩ = 0 we also have that xi ∈ K(C(U)) by choice of zU . Thus we
can add xi to U1 and after iterating the previous steps at most n times it holds that x ∈ C ′(U1).

Next, we show that |S0| is actually bounded by O(nd−1) which we can combine with the previous
results to show that for any two-layer ReLU-network there exists a similar one whose width is
bounded by at most O(nd−1). The lemma follows as a direct consequence of Theorem 1 in (Cover,
1965). We prove the result for completeness.
Lemma B.5. For any dataset X it holds that |S0(X)| ≤ 4nd−1. Further if X is in general position
and n ≥ d > 2, i.e., any subset of d points is linearly independent, then |S0(X)\{0}| =

∑d−1
k=0

(
n
k

)
.

Proof. Assume that X is in general position and n ≥ d ≥ 3. Then all cones in S0 have a Gaussian
measure greater than 0, which in particular implies that two cones are separated by a face. Consider
a connected non-empty subset B ⊆ Sd−1 of the sphere such that B =

⋃
C∈S1

C where S1 ⊆ S0.
We claim that the number of cones in B equals the number of faces of the cones that are in B plus 1
(we say that a face is in B if it passes through the interior of B, i.e., excluding its boundaries). We
show this via induction on the number of faces in B. The statement holds trivially if there exists no
face in B. If there are more faces, we split B along a hyperplane h (a (d−1)-dimensional face) into
subsets B1 and B2. We now apply the induction hypothesis which yields that the number of cones
in B1 equals the number of faces in B1 plus 1 and the number of cones in B2 equals the number of
faces in B2 plus 1. The number of faces on B is exactly the number of faces in B1 plus the number
of faces in B2 plus 1. To see this, note that any face that is completely contained in one of the Bi

remains a face in B and if a face crosses h then this creates a new face. Now we have an additional
term of plus 2, but we also have one additional face corresponding to the splitting hyperplane h.

It remains to count the number of faces of Sd−1 with respect to the set of hyperplanes {hi | i ∈ [n]}
where hi = {x ∈ Sd−1 | ⟨x, xi⟩ = 0}. Since X is in general position, every subset S ⊆ [n] of size
at most d−1 represents a (non-trivial) face given by

⋂
i∈S hi. Further since d > 2, the intersection of

any face with the sphere is connected. Thus, the number of cones that have a non-trivial intersection
with Sd−1 is equal to

∑d−1
k=0

(
n
k

)
.

Finally, by combining all arguments, it holds for any dataset X that

|S0(X)| ≤ 1 +

d−1∑
k=1

(
n

k

)
≤ 2nd−1.

If X is not in general position, most of the arguments still apply, but some faces can be cones
themselves. For instance, if there exist xi and xj such that xi = −xj , then there are cones that are
completely contained in K(xi). In this case, faces can still divide one cone into two cones, but they
can also be a cone themselves. Thus we still have that

|S0(X)| ≤ 1 + 2

d−1∑
k=1

(
n

k

)
≤ 4nd−1.

C SEPARATION MARGIN AND THE SMALLEST EIGENVALUE OF THE NTK

In this section, we consider two parameters used to bound the width for binary classification with
logistic loss and regression with squared loss. We first define the parameter γ which was introduced
and analyzed in (Ji and Telgarsky, 2020; Munteanu et al., 2022) and λ introduced in (Du et al.,
2019c) and further analyzed in (Du et al., 2019a; Song and Yang, 2019; van den Brand et al., 2020;
Munteanu et al., 2022) among others. We note that λ is tightly related to separation and collinearity
conditions studied earlier and extended, e.g. in (Li and Liang, 2018; Oymak and Soltanolkotabi,
2020).
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C.1 NTK SEPARATION MARGIN

Intuitively, γ determines the separation margin of the NTK. Let B = Bd = {x ∈ Rd | ∥x∥2 ≤ 1}
be the unit ball in d dimensions. We set FB to be the set of functions f mapping from dom(f) = Rd

to range(f) = B. Let µN denote the Gaussian measure on Rd, specified by the Gaussian density
with respect to the Lebesgue measure on Rd.
Definition C.1. Given a data set (X,Y ) ∈ Rn×d × Rn and a map v ∈ FB we set

γv = γv(X,Y ) := min
i∈[n]

yi

∫
⟨v(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z).

We say that v is optimal if γv = γ(X,Y ) := maxv′∈FB
γv′ .

We note that maxv′∈FB
γv′ always exists since FB is a set of bounded functions on a compact subset

of Rd.

In (Munteanu et al., 2022) it was shown that for every map v there exists another map v′ with
γv′ = γv such that γv′ is constant on all cones in S0. In particular this implies that there exists a
finite (weighted) convex neural network that satisfies

f(V,W, xi) ≥ γv′ ,

see also Theorem C.2. The network is given by m = |S0|, V consists of one representative vC ∈ C
for each cone C ∈ S0, wC = v′(vC) and ρC = P (z ∈ C)

Given V we set W = {W ∈ Rm×d | ∥wj∥2 ≤ 1 for all j ∈ [m]}

γV = max
W∈W

min
i∈[n]

f(V,W, xi, ρ). (6)

Moreover we set WV ∈ W to be a weight matrix that attains the maximum, i.e., γV =
mini∈[n] f(V,WV , xi).

Given V , we further define the map vV,W ∈ FB as follows: let x ∈ Rd then we set vV (x) =
vV (C(x)) = wC(x) where wC =

∑
j∈{j∈[m]|vj∈C} wj/ρC as in Lemma B.3 if ρC > 0 and

vV (x) = 0 otherwise.

C.2 SMALLEST EIGENVALUE OF THE NTK KERNEL MATRIX

The kernel matrix H ∈ Rn×n is defined by

Hij = Ew∼N (0,I)[⟨xi, xj⟩1[⟨xi, w⟩ > 0, ⟨xj , w⟩ > 0]]

We set λ = λ(X) = λ(H) to be the minimum eigenvalue of H . Given V, ρ we further define the
finite counterpart. To this end, recall that the default is ρk = 1/m for all k ∈ [m], which corresponds
to previous work.

Hdis
ij = Hdis

ij (V ) =

m∑
k=1

ρk⟨xi, xj⟩1[⟨xi, vk⟩ > 0, ⟨xj , vk⟩ > 0]

and λV = λ(X,V ) = λ(Hdis) to be the minimum eigenvalue of Hdis.

C.3 CONVEX TWO-LAYER NETWORKS CAN ATTAIN THE INFINITE WIDTH LIMIT
PARAMETERS

To show that a two-layer ReLU network converges, one usually shows that if the width m of the
network is large enough, then the finite width parameters γW resp. λW for the initial weight vectors
W are close to their infinite width limits γ resp. λ. Further one shows that this does not change
significantly during optimization. We note that for convex two-layer ReLU networks the values of
γV resp. λV are determined at initialization since they depend only on V and the data, which do
not change during optimization. The parameters thus do not change at all which makes the second
argument obsolete and simplifies the convergence analysis. The following theorem establishes that
there exists a weighted network (V, ρ) such that γV = γ and λV = λ.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Theorem C.2. Let m = |S0| and for C ∈ S0 set ρC = P (C) where P (C) is the probability that a
random vector is in C. Further let vC be any vector in C, and let V be the matrix whose rows are
the collection of all vC , C ∈ S0. Then it holds that λV = λ and γV = γ.

Proof. We recall that Rd =
⋃̇

C∈S0
C is the disjoint union of the cones as each point of x ∈ Rd

belongs to a unique cone. To see the equivalence of the eigenvalues (in particular the smallest
eigenvalues) observe that

Hij = E[⟨xi, xj⟩1[⟨xi, w⟩ > 0, ⟨xj , w⟩ > 0]]

=

∫
⟨xi, xj⟩1[⟨xi, w⟩ > 0, ⟨xj , w⟩ > 0] dµN (w)

=
∑
C∈S0

∫
⟨xi, xj⟩1[⟨xi, w⟩ > 0, ⟨xj , w⟩ > 0]1[w ∈ C] dµN (w)

=
∑
C∈S0

P (C)⟨xi, xj⟩1[⟨xi, vC⟩ > 0, ⟨xj , vC⟩ > 0]

= Hdis
ij

using that by definition of the cones, the activation indicators 1[⟨xi, w⟩ > 0] and 1[⟨xj , w⟩ > 0] are
constant for any cone C if we restrict to w ∈ C. This implies that λV = λ.

By (Munteanu et al., 2022, Lemma C.2) there exists a map v ∈ FB that is constant on cones and
such that

γ = min
i∈[n]

yi

∫
⟨v(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z).

Similarly to the above, we also have for any i ∈ [n] that

yi

∫
⟨v(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z) = yi

∑
C∈S0

P (C)⟨v(vC), xi⟩1[⟨xi, vC⟩ > 0]

= yif(V, v(V ), ρ, xi),

thus implying γV = γ.

D GRADIENT DESCENT WEIGHT UPDATES

In this section we study the loss function and its directional derivatives showing more similarities
between the two variants of ReLU networks. Further, we show that the gradient behaves similarly
in both formulations of the networks introduced in previous sections.

For a weighted convex neural network (V,W, ρ) we set L′(W ) to be the gradient of the loss function
L(W ), i.e.

L′(V,W, ρ)j =
∂L(W )

∂wj
=

∑
i∈[n],⟨vj ,xi⟩>0

∂wj ℓ(yi, f(V,W, ρ, xi))

We note that

L′(V,W, ρ) =

n∑
i=1

ℓ′(yi, f(V,W, ρ, xi))∇f(V,W, ρ, xi)

and

(∇f(V,W, ρ, xi))j =
∂f(V,W, ρ, xi)

∂wj
= ρj1[⟨xi, vj⟩ > 0]xi.

Thus we also have that for any W,W ′ ∈ Rm×d

⟨∇f(V,W, ρ, xi),W
′⟩ =

∑
j∈[m]

⟨∇f(V,W, ρ, xi))j , w
′
j⟩ = f(V,W ′, ρ, xi)
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Similarly we have for a weighted neural network (W,a, ρ) that

L′
S(W,a, ρ)j =

∂LS(W )

∂wj
=

∑
i∈[n],⟨wj ,xi⟩>0

∂wj ℓ(yi, f(W,a, ρ, xi)),

L′
S(W,a, ρ) =

n∑
i=1

ℓ′(yi, f(W,a, ρ, xi))∇f(W,a, ρ, xi).

and

(∇f(W,a, ρ, xi))j =
∂f(W,a, ρ, xi)

∂wj
= ρjaj1[⟨xi, wj⟩ > 0]xi.

Recall that the default value for ρ is the vector where all entries are equal to 1/m.

In the following we consider the equivalent networks from previous sections. Intuitively, we start
with a standard two-layer ReLU network (W,a). We then define matrix transformations T1, which
maps (W,a) to the equivalent network (V,W ′) from Theorem B.1, T2, which maps (W,a) to the
network (V ′,W ′′, ρ) which is similar to (V,W ′) from Lemma B.2, and T3, which maps (W,a) to
the network (W ′, a′, ρ′) from Lemma B.3.

Before we define the transformations more formally, we need some details about cones. Let W ∈
Rm×d be any weight matrix and a ∈ {−1, 1}m to be a sign vector. For any vector v ∈ Rd we
set C(v) to be the cone C ∈ S0(X) containing v. We assume without loss of generality that there
exists m′ ≤ m such that for any distinct j, j′ ≤ m′ we have that C(wj) ̸= C(wj′) and for any
j ∈ [m] there exists a unique index i(j) ≤ m′ such that C(wj) = C(wi(j)). Further we assume
without loss of generality that there exists m′′ ≤ m such that for any distinct j, j′ ≤ m′′ we have
that C(wj) ̸= C(wj′) or aj ̸= aj′ and for any j ∈ [m] there exists a unique index i′(j) ≤ m′′ such
that C(wj) = C(wi′(j)) and aj = ai′(j).

We now define the transformations more formally. We set V = W and for w ∈ Rd we set T1,j(w) =

ajw and T1(W,a) to be the matrix whose j-th row is T1,j(wj). Further we set V ′ ∈ Rm′×d to be
the matrix V restricted to the first m′ rows and ρj = |i−1(j)|/m where i−1(j) = {j′ ∈ [m] |
i(j′) = j}. For W ′ ∈ Rm×d and for j ∈ [m′] we set T2(W,a) to be the matrix with j-th row
T2,j(W ) =

∑
j′∈i−1(j) wj′/|i−1(j)|. Finally, we set a′ ∈ {−1, 1}m′′

to be the vector with a′j = aj
and for j ∈ [m′′] we set T3,j(W ) =

∑
j′∈i′−1(j) wj′/|i′−1(j)| and T3(W,a) to be the matrix with

rows T3,j(W ) and weights ρ′j = |i′−1(j)|/m.

Then we get the following lemma:
Lemma D.1. For the gradient it holds that

L′(V, T1(W,a)) = T1(L
′(V,W ), a) (7)

L′(V ′, T2(W,a), ρ) = T2(L
′(V,W ), a) (8)

L′
S(T3(W,a), a′, ρ′) = T3(L

′(V ′,W, ρ′), a). (9)

Further for any weight update ∆W such that for all i ∈ [n] it holds that 1[⟨xi, wj⟩ > 0] =
1[⟨xi, wj +∆wj⟩ > 0] we have that

LS(W +∆W,a) = L(V, T1(W +∆W,a))

= L(V ′, T2(W +∆W,a), ρ) = LS(T3(W +∆W,a), a′, ρ′). (10)

Proof. In the following we use that for any j ∈ [m] we have that

1[⟨xi, wj⟩ > 0] = 1[⟨xi, vj⟩ > 0] = 1[⟨xi, v
′
i(j)⟩ > 0] = 1[⟨xi, wi′(j)⟩ > 0]

as well as aj = ai′(j). We have that

T1(L
′(V,W ), a)j = ajL

′(V,W )j

=

n∑
i=1

ajℓ
′(yi, f(V,W, ρ, xi))(∇f(V,W, ρ, xi))j = L′(V, T1(W,a))j .
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Similarity we have that

T2(L
′(V,W ), a)j = ρj

∑
j′∈i′−1(j)

L′
S(V,W )j′/|i−1(j)|

= ρj
∑

j′∈i′−1(j)

1

|i−1(j)|
∑

i∈[n],⟨wj′ ,xi⟩>0

ℓ′(yi, f(V,W, ρ, xi))aj′xi

= ρj
∑

i∈[n],⟨wj ,xi⟩>0

ℓ′(yi, f(V,W, ρ, xi))xiaj = L′(V ′, T2(W,a), ρ)

and
T3(L

′(V ′,W, ρ′), a)j = ρ′j
∑

j′∈i−1(j)

L′(V,W )j′/|i−1(j)|

= ρj
∑

j′∈i−1(j)

1

|i−1(j)|
∑

i∈[n],⟨wj′ ,xi⟩>0

ℓ′(yi, f(V,W, ρ′, xi))xi

= ρj
∑

i∈[n],⟨wj ,xi⟩>0

ℓ′(yi, f(V,W, ρ′, xi))xi = L′
S(T3(W,a), a′, ρ′).

For the second part of the lemma, note that since V = W , we have

f(V, T1(W +∆W,a), xi) =
1

m

∑m

j=1
⟨xi, wj +∆wj⟩1[⟨xi, vj⟩ > 0]

=
1

m

∑m

j=1
⟨xi, wj +∆wj⟩1[⟨xi, wj⟩ > 0]

=
1

m

∑m

j=1
⟨xi, wj +∆wj⟩1[⟨xi, wj +∆wj⟩ > 0]

= f(W +∆W,T1(W +∆W,a), xi).

and f(W + ∆W,T1(W + ∆W,a), xi) = fS(W + ∆W,a, xi) by Lemma B.1 and thus also
LS(W+∆W,a) = L(V, T1(W+∆W,a)). The equations L(V, T1(W+∆W,a)) = L(V ′, T2(W+
∆W,a), ρ) and LS(W +∆W,a) = LS(T3(W +∆W,a), a′, ρ′) follow similarly.

E GRADIENT DESCENT APPROXIMATION RESULTS

Next we establish an approximation result for convex two-layer ReLU networks with logistic loss,
i.e. ℓ(r) = ln(1 + exp(−r)).

Recall that we initialize W = W0 to be a zero matrix and apply gradient descent to update the
weights for t ≥ 0 in an iterative manner

Wt+1 = Wt − ηtL
′(Wt)

where ηt ∈ R≥0 is a learning rate parameter and L′(Wt) is the gradient of the loss function L(Wt)
at Wt

L′(V,W, ρ) =

n∑
i=1

ℓ′(yi, f(V,W, ρ, xi))∇f(V,W, ρ, xi)

We note that −ℓ′(r) ≤ min{1, ℓ(r)} which in particular implies that L(W ) is a n
m -Lipschitz func-

tion, which becomes L(W )
m -Lipschitz if we restrict to a small radius around W . Combining these

properties of the convex loss function L and the fact that maxj∈[m] ∥wj − w′
j∥2 ≤ 2B for any

W,W ′ ∈ WB = {W ∈ Rm×d | maxj∈[m] ∥wj∥2 ≤ B} implies a similar bound in Frobenius
norm canceling the factor m and yields that gradient descent converges to within a factor 2 to the
optimal solution W ∗ using standard gradient descent analyses (Nesterov, 2004; Bubeck, 2015) in
roughly B2 iterations. The following lemma guarantees that there exists a real number B ∈ R>0

that is not too large and a near-optimal solution within the restricted domain W ∈ WB such that
mini∈[n] yif(V,W, xi) is close to γ.
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Lemma E.1. Let γV > 0 as defined in Equation (6). Let ℓ(r) = ln(1 + exp(−r)) and ε > 0. Let
B ≥ (ln(4) + ln(n))/(εγV ). Let W ∗ ∈ WB minimize L(W ) and let W ∈ WB be any solution
such that L(W ) ≤ 2L(W ∗). Then it holds that γV ≥ mini∈[n] yif(V,W/B, xi) ≥ (1− ε)γV

Proof. First recall that WV ∈ W = {W ∈ Rm×d | ∥wj∥2 ≤ 1 for all j ∈ [m]} was defined to be a
maximizer of maxW∈W mini∈[n] yif(V,W, xi) = γV , see Equation (6).

We set W = BWV and note that W ∈ WB . Using that exp(−r)/(1 + exp(−r)) = −ℓ′(r) ≤
ℓ(r) ≤ exp(−r) and ln(4) + ln(n)− γV B ≤ 0 we get that

L(W ∗) ≤ L(W ) =

n∑
i=1

ℓ(yif(V,BWV , xi))

≤
n∑

i=1

ℓ(γV B)

= n ℓ(γV B)

≤ n exp(−γV B)

=
1

2
· exp(ln(4) + ln(n)− γV B)

2

≤ 1

2
· exp(ln(4) + ln(n)− γV B)

1 + exp(ln(4) + ln(n)− γV B)

≤ ℓ((1− ε)γV B)/2

Now let W ∈ WB be any solution with L(W ) ≤ 2L(W ∗). Then for any i ∈ [n] we have that

ℓ(yif(V,W, xi)) ≤ L(W ) ≤ 2L(W ∗) ≤ ℓ((1− ε)γV B)

which by strict monotonicity of ℓ and linearity of f implies that yif(V,W/B, xi) ≥ (1− ε)γV .

Next we show that γ and γV can be related to each other. To prove this we will use the Hoeffding
bound.

Lemma E.2 (Hoeffding bound (Hoeffding, 1963)). Let X1, . . . , Xn denote n independent bounded
variables in [ai, bi]. Let X =

∑n
i=1 Xi. Then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Theorem E.3. Assume V ∈ Rm×d is initialized with i.i.d. Gaussians and 0 < δ ≤ ε. For
any m it holds that EγV ≤ γ over the Gaussian measure. Further, if the network width is m ≥
c · (εδγ)−2 ln(n/ε) for an absolute constant c > 0, then with probability at least 1− δ it holds that
(1 + ε)γ ≥ γV ≥ (1− ε)γ.

Proof. Given V, V ′ ∈ Rm×d we define that V ≃ V ′ if for all cones C ∈ S0 it holds that ρC(V ) =

ρC(V
′). We set V to be the set of equivalence classes with respect to ≃ and given Ṽ ∈ V we set

P (Ṽ ) to be the probability that a randomly drawn set V ′ ∈ Ṽ , i.e., V ′ ≃ V . For any cone C ∈ S0

let VC = {Ṽ ∈ V | ∃j ∈ [m] : ṽj ∈ C} the set of orientation matrices such that there exists at least
one orientation in C. Further we set P (C) to be the probability that a random vector z ∈ Rd is in C

and P (Ṽ | v′1 ∈ C) to be the probability that a randomly drawn V ′ is equivalent to V given that the
first vector of V ′ is in C. We partition each cone C ∈ S0 into subregions C =

.⋃
Ṽ ∈VC

C(Ṽ ) such
that the probability that a random vector z ∈ C is in C(Ṽ ) is P (Ṽ | v′1 ∈ C). Note that this yields
a partition Rd =

.⋃
C∈S0,Ṽ ∈VC

C(Ṽ ).

Using Bayes’ theorem and the fact that P (v1 ∈ C | Ṽ ) = ρC we get that

P (Ṽ | v1 ∈ C)P (C) = P (v1 ∈ C | Ṽ )P (Ṽ ) = P (Ṽ )ρC .
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For any z ∈ C(Ṽ ) we set v(C) = v(z) = vV (z) ∈ B. Then for any i ∈ [n] we have that

γ ≥ γv = yi

∫
⟨v(z), xi⟩1[⟨xi, z⟩ > 0] dµN (z)

= yi
∑
C∈S0

P (C)
∑

Ṽ ∈VC

P (Ṽ | v1 ∈ C)⟨vV (C), xi⟩1[⟨xi, vC⟩ > 0]

= yi
∑
C∈S0

∑
Ṽ ∈VC

P (Ṽ )ρC⟨vV (C), xi⟩1[⟨xi, vC⟩ > 0]

=
∑
Ṽ ∈V

P (Ṽ )
∑
j∈[m]

yi⟨vV (vj), xi⟩1[⟨xi, vj⟩ > 0] = EγV .

For the second part assume that m ≥ c · (εδγ)−2 ln(n/ε) and let v be optimal, i.e. γ = γv̄ . We first
fix i ∈ [n] and set Zj = yi⟨vV (vj), xi⟩1[⟨xi, vj⟩ > 0] and note that Zj ∈ [−1, 1] and E(Zj) ≥ γ.
Then using Hoeffding’s bound for Z =

∑m
j=1 Zj , we get that

Pr[|Z − E[Z]| ≥ mγε] ≤ 2 exp

(
−2(mγε)2

4m

)
≤ ε/n.

Using the union bound over all i we have that γV ≥ (1− ε)γ holds with probability at least 1− ε.
We further have that γV ∈ [0, 1] and

γ ≥ EγV ≥ (1− ε)(1− ε)γ + P (γV ≥ (1 + ε′)γ)ε′γ

≥ (1− 3ε)γ + P (γV ≥ (1 + ε′)γ)ε′γ

We conclude that
P (γV ≥ (1 + ε′)γ)ε′ ≤ 3ε.

Now choosing ε′ = 3ε/δ gives us P (γV ≥ (1 + ε′)γ) ≤ δ. Thus the second part follows by
substituting ε by ε′.

F TWO IMPORTANT DATA EXAMPLES

F.1 THE ALTERNATING CIRCLE AND WHY IT MIGHT BE HARD TO PROVE THAT A TWO-LAYER
RELU NETWORK OF LINEAR WIDTH SUFFICES FOR ARBITRARILY SMALL ERROR

Consider the following set of n points:
xk =

(
cos
(
2kπ
n

)
, sin

(
2kπ
n

))
and yk = (−1)k. The dataset consists of equidistant points on the

circle with alternating labels. It has been used in (Munteanu et al., 2022) to derive lower bounds of
different strengths on the width of two-layer ReLU networks. Since the labels are alternating this
can be considered a hard dataset for two-layer ReLU networks and we will use it to show that if one
wants to prove that a network of linear width suffices one will need more advanced proof techniques
than the ones established previously.

(Munteanu et al., 2022) proved that for the specific choice of v ∈ FB used in the upper bounds of
(Ji and Telgarsky, 2020), there exists an index i ∈ [n] with

1

m

m∑
s=1

yi⟨v(ws), xi⟩]1 [⟨xi, ws⟩ > 0] ≤ 0.

with constant probability if the network has smaller width than m < c · γ−2. We will strengthen
the lower bound of (Munteanu et al., 2022) by showing that this holds for any fixed v ∈ FB . This
strengthened lower bound leaves two possible options, one of which is true:

• m = Ω(γ−2) is indeed a general lower bound, i.e., lower m precludes the existence of a
separating v,

• or showing m = o(γ−2) requires to choose v adaptively to the size m subsample of neu-
rons.
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In particular, our new bound thus shows that existing non-adaptive proof techniques are not sufficient
to show m = o(γ−2) upper bounds.

We will need the following lemma:

Lemma F.1 ((StEx, 2011)). For any a, b ∈ R and ñ ∈ N it holds that

ñ−1∑
k=0

cos(a+ kb) =
cos(a+ (ñ− 1)b/2) sin(ñb/2)

sin(b/2)
.

Proof. We use i to denote the imaginary unit defined by the property i2 = −1. From Euler’s identity
we know that cos(a+ kb) = Re(ei(a+kb)) and sin(a+ kb) = Im(ei(a+kb)). Then

ñ−1∑
k=0

cos(a+ kb) =

ñ−1∑
k=0

Re
(
ei(a+kb)

)
= Re

(
ñ−1∑
k=0

ei(a+kb)

)

= Re

(
eia

ñ−1∑
k=0

(eib)k

)

= Re
(
eia

1− eibñ

1− eib

)
= Re

(
eia

eibñ/2(e−ibñ/2 − eibñ/2)

eib/2(e−ib/2 − eib/2)

)
=

cos(a+ (ñ− 1)b/2) sin(ñb/2)

sin(b/2)
.

To keep the technical part simple, we will assume that n mod 4 = 0. However, it is possible to get
similar results for other n as well. The next lemma allows us to show that for the given data example
for any map v ∈ FB there exists an index i such that the variance of the random variable defined by
Zi = ⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] is lower bounded by Ω(γ−2

X E(Zi)
2).

Lemma F.2. Let X be the alternating points on the circle dataset defined above with n ≡ 0 mod 4.
Then the following holds for absolute constants c, and c′:

• The separation margin is given by γ = γX = Θ(1/n)

• For any fixed map v ∈ FB it holds that

1
n ·
∑

i∈n

∫
⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] dµN (z)

1
n ·
∑

i∈n

∫
|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0] dµN (z)

≤ c/n

• there exists at least one index i ∈ [n] such that∫
⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] dµN (z)∫

|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0] dµN (z)
≤ c′γX

and Var(Zi) ≥ Ω(γ−2
X E(Zi)

2).

Proof. Note that any cone C = C(U) ∈ S0 is related to a set of points of the form U =
{xk, xk+1, . . . , xk+⌈n/2⌉} or U = {xk, xk+1, . . . , xk+⌈n/2⌉−1}. Note that any cone with non-zero
probability is related to a subset containing exactly half of the points thus we will restrict to those
sets. By symmetry we can assume without loss of generality that U = {x1, . . . , xn/2}.
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Now let z ∈ R2 be any vector. In the following we calculate the contribution of z as a weight vector.
We rotate the circle so that z = (α, 0). Then by Lemma F.1 we have that

n/2∑
k=1

yk⟨xk, z⟩

=

n/2∑
i=1

(−1)kα cos(r0 + 2π · k/n)

=

n/4∑
i=1

α cos(r0 + k · 4π/n)−
n/4∑
i=1

α cos(r0 + 2π/n+ k · 4π/n)

= α ·
(
cos(r0 + (n/4− 1) · π/n) sin(π/2)

sin(2π/n)
− cos(r0 + 2π/n+ (n/4− 1) · π/n) sin(π/2)

sin(2π/n)

)
= α ·

(
(cos(r0 + (n/4− 1) · π/n)− cos(r0 + 2π/n+ (n/4− 1) · π/n))

sin(2π/n)

)
where r0 is given by the rotation. Note that sin(2π/n) = Θ(1/n). Further,

cos(r0+(n/4−1) ·π/n)−cos(r0+2π/n+(n/4−1) ·π/n) =
∫ r0+2π/n+(n/4−1)·π/n

r0+(n/4−1)·π/n
− sin(t) dt

is maximized for r0 = (3/2)π in which case it is in Θ(1/n) as well. Choosing α = 1, we thus get
that

n∑
i=1

∫
⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] dµN (z) = O(1)

By averaging over i ∈ [n], we get that γX = O(1/n). Further using the argumentation above using
the right z for each cone and using the symmetry of the instance, we get that γX = Θ(1/n).

For the second part, note that for any z ∈ R2 it holds for one third of the indices k ∈ [n] that the term
(−1)kα cos(r0 + 2π · k/n) is negative and cos(r0 + 2π · k/n) ≥ cos(π/3) = 1/2. Consequently
by a similar argumentation as above we have that∑

i∈n/2⟨z, yixi⟩∑
i∈n/2 |⟨z, yixi⟩|1[⟨z, yixi⟩ < 0] dµN (z)

=
O(1)

n/12
= O(1/n)

and thus it also holds for any map v ∈ FB that

1
n ·
∑

i∈n

∫
⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] dµN (z)

1
n ·
∑

i∈n

∫
|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0] dµN (z)

= O(1/n).

For the last part of the lemma, we observe by averaging that there exists one index i ∈ [n] such that∫
⟨v(z), yixi⟩1[⟨xi, z⟩ > 0] dµN (z)∫

|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0] dµN (z)
= O(1/n).

The numerator is exactly the expected value of Zi and the denominator is a lower bound on the root
of the variance of Zi, where we use that E(Zi) is non-neagtive

Var(Zi) =

∫
(⟨E(Zi)− v(z), yixi⟩1[⟨xi, z⟩ > 0])2 dµN (z)

≥
∫

(|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0])
2
dµN (z)

≥
(∫

|⟨v(z), yixi⟩|1[⟨v(z), yixi⟩ < 0]1[⟨xi, z⟩ > 0] dµN (z)

)2

.

Thus, it follows that Var(Zi) ≥ Ω(γ−2
X E(Zi)

2).
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Using Lemma F.2 we prove for our alternating points on the circle dataset X that if the width of
the network is m = o(γ−2) then with constant probability there exists an index i ∈ [n] such that∑

j∈[m]⟨v(zj), yixi⟩1[⟨xi, zj⟩ > 0] ≤ 0.

To show this we will use the following lemma:

Lemma F.3 ((Feller, 1943)). Let Z be a sum of independent random variables, each attaining values
in [0, 1], and let σ =

√
Var(Z) ≥ 200. Then for all t ∈ [0, σ2

100 ] we have

Pr[Z ≥ E[Z] + t] ≥ c · exp(−t2/(3σ2))

where c > 0 is some fixed constant.

Theorem F.4. Let X be the alternating points on the circle dataset with n divisible by 4 and let
W ∈ Rm×2 be a matrix consisting of m Gaussian’s. Then there is a constant c0 > 0 such that if
m ≤ c0γ

−2
X , then for any v ∈ FB there exists an index i ∈ [n] such that with constant probability

1

m

m∑
s=1

yi⟨v(ws), xi⟩]1 [⟨xi, ws⟩ > 0] ≤ 0.

Proof. Let v ∈ FB and for i ∈ [n] let Zi = ⟨v(z), yixi⟩1[⟨xi, z⟩ > 0]. By Lemma F.2 there exists
i ∈ [n] with Var(Zi) ≥ Ω(γ−2

X E(Zi)
2). Note that 1

m

∑m
s=1 yi⟨v(ws), xi⟩]1 [⟨xi, ws⟩ > 0] can be

viewed as a random variable Z which is a sum of independent random variables with the distribution
of Zi divided by m. We further set Z ′

i =
1−Zi

2 and

Z ′ =

(
m−

m∑
s=1

yi⟨v(ws), xi⟩]1 [⟨xi, ws⟩ > 0]

)
/2

and note that Z ′ is the sum of independent random variables with the distribution of Z ′
i. Further,

E(Z ′) = (m−mE(Zi))/2,

Var(Z ′) = m ·Var(Z ′
i) = m ·Var(Zi)/4 ≥ mc0γ

−2
X E(Zi)

2

and Z ′ ≥ m/2 if and only if Z < 0. Thus, we can apply Lemma F.3 with t = mE(Zi)/2 to get that

Pr[Z ′ ≥ E[Z ′] + t] ≥ c · exp(−t2/(3σ2)) ≥ c · exp(−c1),

for an absolute constant c1, which finishes the proof.

F.2 THE 3-DIMENSIONAL HYPERCUBE AND CONES OF MEASURE ZERO

The next example we want to consider is the 3-dimensional hypercube with parity labels. More
precisely the dataset is given by X = {−1, 1}3 and for x ∈ X we set yx = x1x2x3, i.e., yx = 1 if
the number of 1’s in x is odd, otherwise yx = −1.

This toy example is interesting for the following reason: we have that γX = 0 and we will show
in the following that there exists no two-layer ReLU network that correctly classifies all points.
However, there exists a convex two-layer ReLU network that classifies all points correctly using
cones of measure 0.

Theorem F.5. Let X be the 3-dimensional hypercube with parity labels. Then the following state-
ments hold:

• γX = 0,

• there exists no two-layer ReLU network that classifies all points correctly,

• there exists a convex two-layer ReLU network that classifies all points correctly.

Proof. The first item was proven in Lemma C.7 of (Munteanu et al., 2022) in general dimension
including the special case with d = 3.
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The second claim can be reformulated to state that for any weight vector w ∈ R3 it holds that

8∑
i=1

yi⟨xi, w⟩1 [⟨xi, ws⟩ > 0] = 0.

To see this, observe that for any w there exists i ∈ [8] that maximizes ⟨xi, w⟩. Let S ⊆ X consist of
xi and the three Hamming neighbors of xi. Then we have that

8∑
i=1

yi⟨xi, w⟩1 [⟨xi, w⟩ > 0]=
∑
x∈S

yx⟨x,w⟩ =

〈∑
x∈S

yxx,w

〉
= 0

since
∑

x∈S yxx = 0.

Next observe that this implies that also for any W ∈ Rm×3 and a ∈ {−1, 1}m it holds that

8∑
i=1

m∑
j=1

aj⟨xi, wj⟩1 [⟨xi, wj⟩ > 0] =

m∑
j=1

aj

8∑
i=1

⟨xi, wj⟩1 [⟨xi, wj⟩ > 0] = 0.

which means there exists at least one point x ∈ X with yif(W,a, x) ≤ 0.

For the last item it suffices to define a convex two-layer ReLU network that classifies all points
correctly. To check and explain the idea we give a concrete description of the dataset:

x1 = (1, 1, 1), x2 = (1, 1,−1), x3 = (1,−1, 1), x4 = (−1, 1, 1),

x5 = (1,−1,−1), x6 = (−1, 1,−1), x7 = (−1,−1, 1), x8 = (−1,−1,−1)

y1 = y5 = y6 = y7 = 1, y2 = y3 = y4 = y8 = −1

We set m = 8 and

v1 = (1, 1/2, 1/2), v2 = (1, 1/2,−1/2), v3 = (1,−1/2, 1/2), v4 = (1,−1/2,−1/2),

v5 = −(1, 1/2, 1/2), v6 = (1, 1/2,−1/2), v7 = −(1,−1/2, 1/2), v8 = −(1,−1/2,−1/2)

w1 = w4 = w6 = w7 = −e1, w2 = w3 = w5 = w8 = e1,

where e1 = (1, 0, 0) is the first standard unit vector.

The idea of this network is that for each orientation vector vj , there are exactly three points xi

with ⟨xi, vj⟩ > 0. Further for any point xi there are exactly two vectors vj with ⟨xi, vj⟩ = 1 and
⟨yixi, wj⟩ = 1, then there exists one vector vj with ⟨xi, vj⟩ = 2 and ⟨yixi, wj⟩ = −1 and for the
remaining vectors vj we have that ⟨xi, vj⟩ ≤ 0 which implies that

yif(V,W, xi) = 1

and thus all points are classified correctly.

As a remark, we note that if a convex network is initialized via random Gaussians as orientation
vectors, then the network will not converge to a network that classifies all points correctly since
there needs to be at least one orientation vj with ⟨xi, vj⟩ = 0 for some i but this event occurs with
probability 0.

We additionally remark that the alternating circle with n = 2 mod 4 and n ≥ 6 has similar proper-
ties as the 3-dimensional hypercube with parity labels.
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