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Abstract

Deep learning has had a significant impact on many fields. Recently, code-to-code
neural models have been used in code translation, code refinement and decompila-
tion. However, the question of whether these models can automate compilation has
yet to be investigated. In this work, we explore neural compilation, building and
evaluating Transformer models that learn how to produce x86 assembler from C
code. Although preliminary results are relatively weak, we make our data, models
and code publicly available to encourage further research in this area.

1 Introduction

Machine learning based compilation has been explored for over a decade [Wang and O’Boyle} 2018]].
Early work focused on learning profitability heuristics while more recently, deep learning models
have been used to build code-to-code models, for translating or decompiling code. However, to
the best of our knowledge, there has been no prior work on using machine learning to entirely
automate compilation, i.e given a high level source code program generate the equivalent assembler
code. Compilers are large, complex objects [Lattner and Advel 2004]] and automating their behavior
represents a significant research challenge.

In this paper, we investigate whether it is possible to learn an end-to-end machine compiler using
neural machine translation. In particular, we focus on the translation of small C functions to x86
assembler. Given that there has been over 50 years research into developing reliable compiler
technology, it may seem unnecessary to expend further effort in learning a solved problem. However,
using a neural translation approach opens up the possibility of unsupervised compilation from
a language to an ISA (instructon set architecture/machine code). This means we may be able
to automatically generate compilers for new programming languages and new hardware. If true,
this enables programming language researchers and hardware architects to rapidly explore new
designs and will have a transformational impact on both domains. Indeed, there is already work in
unsupervised translation between programming languages [Lachaux et al., 2020]]. However, before
we can begin to consider unsupervised compilation, we first have to determione whether supervised
neural compilation is feasible.

To learn this C — x86 translation, we use an existing function-level C corpus, Anghabench [da
Silva et al., 2021]], to build a parallel C-x86 assembler corpus. Then, we model the compilation
task as a sequence-to-sequence task (akin to machine translation) with the Transformer architecture
[Vaswani et al.,|2017]]. We study the effect of modifying different settings by varying training data
size, model size, number of epochs, and other hyperparameters. While we can successfully generate
syntactically correct assembler over 80% of the time and obtain high BLEU scores (c. 90 BLEU in
some benchmarks), generating semantically correct assembler is more challenging.
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The best model can only compile correctly about 33% of the functions in a benchmark built from
an existing program synthesis evaluation set [Collie et al., 2020]; it specially struggles to compile
functions with numerous arguments and arrays.

The article is structured as follows. In Section 2] we briefly summarise related work in NLP and
machine learning for code. In Section 3] we formalize the task of machine compilation and propose
how to effectively build neural compilers and fairly evaluate them. Then, in Section[d] we establish
our experimental framework and report results. Finally, we discuss our approach and conclude, in
sections [5]and [6] respectively.

2 Related Work

Natural Language Processing and Machine Translation In Natural Language Processing (NLP),
the current state-of-the-art typically involves using some variant of the Transformer architecture
[Vaswani et al.,[2017]] together with some form of subword tokenization [Sennrich et al.,2015]. In
this work, we omit the prolific literature in unsupervised NLP (most famously, BERT [Devlin et al.,
2018]]) and machine translation because we focus on a supervised setting.

Deep Learning for Code and Symbolic Data Recent works have proposed to use the encoder-
decoder Transformer architecture out of the box for symbolic mathematics [Saxton et al., 2019,
Lample and Chartonl [2019]], or even for automated symbolic proving with decoder-only Transformers
[Polu and Sutskever, [2020]. The state-of-art NLP systems for unsupervised pretraining have also
been with successfully applied to code, as in CodeBERT [Feng et al.,|2020]]. However, other research
lines explore the use of alternative modeling strategies for code instead of flat sequences, such as
trees to leverage the grammar [[Chen et al., |2018]] or other kinds of graphs for data flow analysis
[Cummins et al., 2021]].

Machine Learning for Compilers Many works have proposed the use of machine learning for
performance improvement[Emani and O’Boyle}, 2015] or code optimization [Leather and Cummins),
2020]]. The field is gaining momentum with recent works such as the CompilerGym [[Cummins et al.
2020], a reinforcement learning environment for compilers optimization. However, the common
approach is to use machine learning for decision-making e.g. |(Cavazos et al.|[2000], not to directly
generate assembler with a machine learning decoder.

Code Translation and Code-to-Code models Code-to-code models have been applied in tasks
such as 1. programming language translation Drissi et al| [2018]], even in unsupervised settings
Lachaux et al.| [2020], 2. code refinement Tufano et al.| [2018]], or 3. decompilation Katz et al.|[2019].
The latter is the inverse task of the one we are posing, and in this specific work it was constrained to a
highly restricted subset of C with a maximum of 5 statements.

To the best of our knowledge, no previous work has addressed the task of machine compilation. One
specific additional challenge we note, is that the target sequences are considerably longer (being
assembler) instead of a similar size (as usual in machine translation) or considerably shorter (as usual
in summarization or decompilation).

3 Methods

We pose machine compilation as a sequence-to-sequence task. Akin to machine translation, machine
compilation is the task of translating code into assembler language. More formally, given a dataset D
with NV pairs (x;, yi), where x; is an input program and y; is the corresponding assembler code, the
system is trained with max likelihood estimation: £(6,D) = >_ . = cp, Inp(yi|xi, 0). Posing the
task as a sequence-to-sequence task conditions both the data generation and the model building.

3.1 Training data

Regarding the granularity, as a first approach we decided to consider functions, following |Lachaux’
et al.| [2020]). Functions, unlike statements, are standalone units of meaning that can be translated, but
at the same they are shorter and easier to test (unit tests) than a whole program (integration tests).



Since we investigate a supervised setting, we need pairs (C functions, x86 assembler). However, C
functions cannot be directly compiled; they typically need additional context (inclusion of headers,
type definitions, constant definitions). Thus, even if we have pre-exiting C compilers, generating
these data pairs is not trivial.

For this work, we base our dataset on Anghabench [da Silva et al.,[2021]], a benchmark of around
1 million C functions coupled with the required minimal C code to compile them. Anghabench
is built by crawling C code from Github repositories. The authors extracted individual functions,
and applied type-inference to reconstruct the missing definitions required to compile them (e.g.,
declarations of auxiliary functions, type definitions, etc). However, while these reconstructions makes
the functions compilable, they are not executable. Apart from not necessarily having a main function
and input/output calls, the declared auxiliary functions are not defined. This, among other issues,
prevents execution.

It is not practical to directly use this dataset for neural compilation. The inclusion of headers and
type definitions while necessary for GCC, adds noise to the machine translation task. We refer to
Appendix [A]for the description of our preprocessing pipeline together with the statistics (Appendix
of the resulting dataset, which we call Angha-Par (Angha Parallel). After filtering for length, we
kept as many as 500k programs (Angha-Par500k) and a subset (250k) of those for an ablation study
(Angha-Par250k).

3.2 Evaluation

BLEU Machine translation is usually evaluated with BLEU score [Papineni et al., |2002], based
on n-gram overlaps between the generated sequence and the ground truth one (in our case, the GCC
assembler). This metric does not take into account syntactical or semantic correctness. However, it is
easy to compute for all cases.

Syntactic accuracy We use GCC to check if the assembler generated is syntactically correct, by
asking it to generate object code from the assembler. This metric is more relevant and even easier to
compute.

IO accuracy We evaluate semantic correctness using observational equivalence or 10 accuracy
between the reference GCC assembler and the one output by the model, following recent works on
program translation [Lachaux et al.| 2020]. That is, we check whether for a given set of inputs, the
assembler predicted by the models have the same output as the reference GCC compilation (in other
words, we evaluated whether the assembler functions generated by the models pass the available
unit tests). While this is no proof that the two programs are formally equivalent, in practice it is a
high indicator that it is. This is the most relevant metric and the one we use for selecting the best
model and assessing its real performance. However, Anghabench programs, while compilable, are not
executable, since the function dependencies are not included. Thus, we cannot run unit tests on them.
For this reason, we take a subse of 64 functions extracted from the program synthesis benchmark
collated in |Collie et al.|[2020]]. We then add a main function with the required input/output calls to
execute them with randomly generated input/output pairs (referred as IO examples, from now on).
We refer to this benchmark as Synthesis-bench.

3.3 Model

Following previous work on machine translation and deep learning for symbolic mathematics and
source code modeling, we use a Transformer model (encoder-decoder) in different settings. We
implement all models with Fairseq [Ott et al., [2019]], a PyTorch [Paszke et al., 2019]] sequence
modeling library. As usual in sequence-to-sequence models, we train with teacher forcing and use a
special token to denote the end of the sequence, which is also predicted by the model.

3.4 Code and Data Availability

We releas both the code and the data used in this work for the sake of reproducibility.

! Arbitrarily selected based on difficulty of evaluation implementation.
2Athttps://github.com/jordiae/neural-compilers
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SYNTHESIS ANGHA-PAR
MODEL PARAMS 10 SYNTAX BLEU SYNTAX BLEU
Trans-Small 30.9M 0/64 0/64 32.68 98.50 47.53
Trans-Med 142.7M | 18/64 35/64 77.99 81.60 89.52
Trans-Big 193.1M | 19/64 37/64 78.03 82.70 89.20
- 50% data 193.1M | 13/64 34/64 76.81 88.16 83.80
- 1/2x vocab 184.7M | 19/64 36/64 78.07 75.60 88.63
+ 1/2x vocab 209.8M | 20/64 36/64 79.48 79.30 89.21
+ le2x w.-decay 193.1M | 18/64 34/64 77.73 82.00 89.55
+ 1/2x epochs 193.1M | 21/64 37/64 78.10 82.50 90.19
Trans-Big+ 251.9M | 19/64 34/64 78.19 82.50 89.76

Table 1: Results summary. For each model (namely, the small Transformer variant, the medium-size
Transformer, the bigger Transformer variant, the latter plus varying training data size, vocabulary size,
with additional weight decay regularization, and with additional training iterations, and an even bigger
Transformer variant) we show the total parameter count and report their results in Synthesis-Bench
and the Angha-Par test set. Specifically, we report the correct IO examples in Synthesis-Bench, and
the syntactic accuracy and BLEU score in Synthesis-Bench and the Angha-Par test. The syntactic
accuracy is reported as a fraction for Synthesis-Bench and as a percentage for Angha-Par (due to
having a considerably larger number of instances). In bold, the best results for each metric and
dataset, and the best model (Transformer-Big + 1/2 epochs) as per the most relevant variant, correct
10 examples.

4 Experiments

We experiment with 4 Transformer sizes (Trans-Small, Trans-Med-Trans-Big, Trans-Big+). With
Trans-Big we further experiment with different vocabulary and data sizes, and number of epochs.
See Table|[T] for the parameter count of each of the models, and Appendix [C]for more details on the
models. We train all models with the same data (except from the ones that have a different vocabulary,
which use a different tokenizer, and the one that uses half of data) and the same number of epochs, 5
(except for the model additionally trained for 5 more epochs). Regarding other hyperparameters, all
models are trained with the Adam optimizer [Kingma and Ba,|[2017]]. We refer to Fairseq and our
source code for additional details. We do not conduct any hyperparameter search, aside from the
different configurations reported in Table[T] We then evaluate as described in Section [3.2] always
with beam search (k = 5) and taking the best hypothesis among the top 5.

Table [T] shows the results summary of each model, together with their respective size. The best
model, as per the most relevant metric (IO evaluation, that is, observational equivalence) is the
Transformer-Big trained for 10 epochs.

5 Discussion and Conclusion

Results Transformer-Big+1/2x epochs is the best model in terms of the most relevant metric,
IO accuracy (observational equivalence). It is the best model in terms of syntactical accuracy in
Synthesis-Bench and BLEU score in the Angha-Par test. The smallest model clearly underfits the task
of machine compilation, while all reasonably sized models achieve similar enough results (except the
model trained with half of the data, which performs considerably worse).

On the surprisingly high syntax accuracy of the small model The smallest model variant,
Transformer-Small obtains a surprisingly high syntactic accuracy in Angha-Par, as shown in Table
given that that its outputs are abnormally long (see Table [/| On inspection the outputs do not
correlate with the inputs. Instead, the model behaves as a nunconditional assembler language model.
Furthermore, we observe repeated outputs with different inputs. This phenomenon is reminiscent of
the hallucinations described in other Sequence-to-Sequence models [Raunak et al.l|2021]] and the
mode collapse of some generative models [Thanh-Tung et al.,[2018]].

Error analysis Focusing on the outputs of the best model, we observe that 1. if a model has one
correct IO example for a given function, then it is highly likely that other IO examples are correct



2. many syntactical errors occur because of a premature end of the hypothesis, 3. IO accuracy does
not correlate with cyclomatic complexityﬂ but with the number of function arguments and pointer
variables in the function (as shown in Table[6), 4. models fail and succeed in the same functions,
5. correct model outputs look very similar to the GCC ones although not necessarily identical, 6. there
are some trivial errors, such as true and false being confused with variable names instead of
boolean values. For a more complete error analysis, we refer to Appendix [E| and for samples of
the model, to Appendix [F} In Appendix [D] we break down the results for each of the functions
in Synthesis-Bench, include the average length of the outputs of the different models, and report
the most frequent syntactical errors and error intersections between statistics between the different
models.

Scaling There is no compelling reason to believe that neural networks would not scale with data,
model size, and compute in a similar way to other domains [Kaplan et al., 2020]]. Indeed, the models
generally perform better with more data, compute, and parameters, even though the largest model
we trained was not the best. This may be due to insufficient training data or a sub-optimal training
procedure e.g. insufficient updates. However, unlike other domains, code quality is evaluated in a
binary fashion, correct or illegal which may cause sharp accuracy curves.

Limits Our best model can correctly compile less than half of the examples in the IO evaluation.
It is, therefore, far from being usable in practice. Furthermore, we have no control over the output
space, and we operate on small functions instead of entire programs. In this work, apart from using
code tokenizers and IO evaluation, we have not included any domain knowledge. Given the large
amount of prior syntatctic and semantic information available for source and target, an obvious next
step is to incorporate this in to the translation scheme.

Ethical concerns regarding crawling data Finally, we remark on the potential ethical and legal
implications of training models on Github data, an emerging topic in the machine learning for code
community due to the release of OpenAI’s Codex |Chen et al.| [2021]]. This is not an immediate
concern, as we limit our training to an already published dataset. Any future work, however, which
accesses Github code, needs to address these issues and not to access repositories with restrictive
licenses.

6 Conclusion

We conclude that our neural compilation approach shows that sequence-to-sequence deep learning
models can, indeed, learn to compile end-to-end. Nevertheless, the performance is far from ideal and
the restrictions make it still far from being usable in practice. The task presents many challenges,
such as output length or hard syntactic and correctness constraints, that were not explicitly tackled in
this work.

As future work, we suggest 1. scaling up our approach, in terms of data, compute, and model
parameters, 2. investigating how to incorporate domain knowledge in form of inductive biases or
alternative data representations and inputs, and 3. researching unsupervised techniques to leverage
unlabelled (i.e., not parallel) code or assembler.

3See Appendix@for the definition of cyclomatic complexity, a well-known complexity measure.
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A Preprocessing pipeline

Our preprocessing pipeline is composed of the following steps:

1. Compilation: We use the GCC compiler to compile the C code into x86 assembler. We do
not apply any optimizations (-O0).

2. Boilerplate removal: We remove the headers and type and constant definitions. Likewise,
we remove the header and footer of the assembler. In both cases, we believe those inject
noise and make sequences longer than need be.

3. Pre-tokenization: We use the GCC C and x86 assembler (GAS) tokenizers with the Pyg-
mentﬂ library. In C, new lines are meaningless and just used to make code more human
readable, but in GAS end of lines delimits the end of each instruction. Thus, in the latter we
replace end of lines by a special token <newline>.

4. Length filtering: Due to computational restrictions and potentially easing the task, we
discard the (C, assembler) pairs such that when summing the length of tokens of the C code
and assembler we get more than 314 tokens.

5. Train-valid-test split: We randomly split the pairs into training, validation, and test sets, with
2k programs for validation and test and the rest for training.

6. Subword tokenization: We use subword encoding to automatically split tokens into further
tokens based on n-gram frequencies in the train set. Specifically, subword-nmt [Sennrich
et al.,[2015] E] This has the benefit of decreasing the vocabulary size while making out-of-
vocabulary tokens virtually impossible (since unknown tokens can be reconstructed from
ASCII characters or other subwords present in the vocabulary).

7. Formatting: We write each C and assembler programs in plain text files, such that we have
one program for each line.

B Data
DATASET # PROGRAMS Filter # KEPT PROGRAMS 10
Angha-Par500k 1.044M Max. length 500k X
Angha-Par250k 1.044M  Max. length + random 250k X
Synthesis-Bench 112 Manual (difficulty) 64

Table 2: Used datasets, original number of programs, filter criteria, number of kept programs after
filtering, and whether they have input/output examples (which only Synthesis-Bench does). The
AnghaPar corpus was filtered with a maximum combined (C + assembler) length of 314 tokens. The
250k subset was further subsampled randomly. Finally, the Synthesis-Bench was built from a manual
selection of 64 functions from the original benchmark, based on implementation difficulty.

SPLIT PROGRAMS  TOKENS C (AVG) TOKENS ASM (AVG)
Angha-Par500k Train 500,439 22,653,480 (45.27) 65,910,582 (131.71)
Angha-Par250k Train 250,000 11,281,616 (45.12) 32,992,914 (131.97)
Angha-Par Valid 1,000 45,737 (45.74) 132,424 (132.42)
Angha-Par Test 1,000 44,643 (44.64) 132,446 (132.37)

Table 3: Dataset splits. assembler code has almost 3x tokens than its corresponding C code.

*nttps://pygments.org/
https://github.com/rsennrich/subword-nmt
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VocAB SUBW/TOK C (AVG LEN) SUBW/TOKEN ASM (AVG LEN) COVERAGE

K 1.55 (69.85) 1.14 (149.85) 100%
8k 1.42 (64.22) 1.10 (144.99) 100%
16k 1.33 (59.96) 1.08 (143.12) 100%

Table 4: Subwords per token. All vocabularies have a coverage of 100% (i.e., no unknowns) since
they include all ASCII characters. C code length is more sensitive to the vocabulary size, since it has
a larger vocabulary (e.g., identifiers, except procedure names, are translated as memory positions or
registers). There is a clear trade-off between sequence length and vocabulary size.

C Experiments

We experiment with the following models:

 Transformer-Small: The small model follows the transformer_iwslt_de_en configura-
tion in Fairseq, that is, 6 encoder layers and 6 decoder layers, an embedding size of 512 and
4 attention heads.

* Transformer-Big (base): The big model follows the transformer_wmt_en_de_big_t2t
configuration in Fairseq, with 6 encoder layers and 6 decoder layers, an embedding size of
1024 and 16 attention heads

— -50% data: Transformer-Big trained with Angha-Par250k instead of Angha-Par500k.

— -1/2x vocab: Transformer-Big trained with a vocabulary of 4k tokens (instead of 8k
tokens).

— +1/2x vocab: Transformer-Big trained with a vocabulary of 16k tokens (instead of 8k
tokens).

— +1e2x weight-decay: Transformer-Big further regularized (a weight decay of 0.01
instead of 0.0001)

— +1/2 epochs: Transformer-Big trained for a total of 10 epochs (instead of 5).

* Transformer-Med: The medium-size model roughly follows the Transformer-Big configu-
ration, but with 8 attention heads (instead of 16) and a Feed-Forward hidden size of 2048
(instead of 4096).

* Transformer-Big+: This model has the same configuration as Transformer-Big, but with 2
additional layers for both the encoder and the decoder.

D Expanded results

We report the fine-grained IO evaluation for the best model in Table[5] together with other metrics to
ease the analysis of the results. Specifically, apart from the aforementioned syntactic accuracy and
BLEU scores, we also report: 1. LOC: Lines of Code, the number of lines of the C implementation.
2. Tokens: The number of tokens of the C implementation. 3. Cyclo: The cyclomatic complexity:
Cyclomatic complexity = E'— N 42 x P where E is the number of edges in the flow graph, IV is
the number of nodes in the flow graph, and P is the number of nodes that have exit points. 4. Params:
The number of parameters of the C function. 5. Pointers: The number of pointer parameters (typically
arrays) of the C function.

Finally, Tables [6] [7] [8] [0] show the correlations between IO errors and other metrics, the mean
output length of each model, the most frequent syntactical errors, and the most frequent IO errors,
respectively.



FuNC 10 SyNTAX BLEU LOC TOKENS CYCLO PARAMS POIN
add X v 85.23 6 39 2 3 1
array_inc X v 87.6 5 34 2 2 1
array_prod v v 97.96 7 42 2 2 1
array_sum v v 97.8 7 42 2 2 1
binary_digits v v 97.27 8 31 2 1 0
binary_mul_sum X X 50.59 8 66 2 3 2
clamp X v 96.77 7 45 3 2 1
collatz v v 98.2 12 54 3 1 0
count_odds v v 87.58 9 52 3 2 1
cube_in_place X X 65.55 5 47 2 2 1
digit_prod X X 59.63 9 38 2 1 0
digits v v 82.32 8 31 2 1 0
diveq X v 75.31 5 41 2 3 2
diveq_sca X v 82.79 5 37 2 3 1
dot X v 97.5 7 51 2 3 2
elementwise_ X X 3.25 15 122 4 4 3

_sum_of_

_negated_sum_

_and_max
eq X X 81.47 9 57 3 3 2
fact v v 96.94 8 31 2 1 0
fact_fact v v 96.94 8 31 2 1 0
fib_n v v 97.42 10 46 2 1 0
fourth_in_place X X 45.37 6 57 2 2 1
int_sqrt v v 86.34 9 43 2 1 0
last_elem v v 97.8 7 42 2 2 1
last_zero_idx v v 98.04 9 50 3 2 1
length X X 4135 1 14 1 2 1
max X X 79.59 11 63 3 2 1
max_elt X X 87.36 9 53 3 2 1
min X X 80.04 11 63 3 2 1
min_elt X X 88.04 9 53 3 2 1
min_so_far_ X v 0.0 18 157 6 4 3

_subtracted
mirror_image X X 77.16 9 61 3 3 2
muleq X v 73.78 5 41 2 3 2
muleq_sca X v 85.0 5 37 2 3 1
negate X v 87.71 5 38 2 2 1
pluseq X X 76.4 5 41 2 3 2
prod_elts v v 97.96 7 42 2 2 1
prod_n_squared v v 97.66 8 39 2 1 0
prod_sq_elts X X 85.46 8 49 2 2 1
replace_first X X 79.77 9 62 3 2 1
replace_last X X 79.89 9 62 3 2 1
reverse X X 55.01 7 62 2 2 1
reverse_int X X 61.04 9 37 2 1 0
search v v 95.23 9 59 4 3 1
sort X X 33.63 9 84 4 2 1
subeq X X 7426 5 41 2 3 2
subeq_sca X v 89.73 5 37 2 3 1
subtract_of_ X X 46.71 8 82 3 4 3

_min_reverse
sum_abs X X 59.81 7 57 3 2 1
sum_elts v v 97.8 7 42 2 2 1
sum_n v v 96.74 8 30 2 1 0
sum_n_squared v v 92.65 8 32 2 1 0
sum_of_lists_ X X 18.44 13 105 4 3 2

_multiplied_

_after_dividing_

_by_three
sum_of _positives X X 44.02 10 91 4 4 3
sum_of_squares v v 98.27 7 47 2 2 1
triangle_prod v v 97.95 9 51 3 1 0
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triangle_sum v v 97.86 9 51 3 1 0
vadd X X 7397 5 50 2 4 3
vcopy X v 84.61 5 41 2 3 2
viill X v 96.03 5 37 2 3 1
vmul X X 7234 5 50 2 4 3
vneg X 4 87.71 5 38 2 2 1
voffset X v 85.23 5 37 2 3 1
vscal X v 85.0 5 37 2 3 1
vsub X X 71.26 5 50 2 4 3

Table 5: Best model in Synthesis-Bench: 10 and syntactic accuracy and BLEU of the model output,
and cyclomatic complexity, n. of parameters and pointer parameters of the C function.

E Expanded error analysis

Focusing on the outputs of the best model, we observe:

* When the model has one correct IO test in a given function, it is likely that the others will be
also correct, as shown in Table[9] The probability of generating a program that only passes
one unit test by chance is, indeed, very low.

* After manually inspecting the most frequent syntactical errors (Table[8), we find that most
of these occur because the output finishes prematurely. For instance, it is common to find
outputs with operators with unbalanced parentheses as the last instruction, not because the
model has not learned the syntax, but because the decoding terminated in the middle of the
program. This occurs when outputs are long and the model predicts the end of the program
special token prematurely.

* In our experiments, IO accuracy does not correlate with cyclomatic complexity, as shown
in Table[6] We see two potential reasons for that, namely, 1. in Synthesis-Bench there are
not enough functions to observe sufficient variability in cyclomatic complexity to observe
the expected correlation, or 2. the sources of the errors are more simple (e.g., the mere
presence of an array) than the complexity captured by cyclomatic complexity.. In fact, the
number of function parameters and the number of points seems to be indeed negatively
correlated with the 10 accuracy. Thus, we conclude that the more function parameters and
more pointers, the more difficult is for neural models to correctly interpret C and generate
the corresponding assembler. Finally, with no surprise, syntactical accuracy and BLEU score
positively correlate with 10 accuracy, since correct solutions are clearly syntactically correct
and, with a lesser degree, lexically similar to the GCC solution. However, the correlation is
not strong enough for these metrics to be used as reliable proxies of the IO accuracy in case
unit tests are not available.

¢ All models fail in the same functions: Table shows that the intersection of 10 errors
between the different models is almost full, meaning that errors are related to some intrinsic
difficulty of these functions (at least to neural compilers) and not to randomness in the
training process.

* Model outputs do appear like GCC outputs, but with some artifacts such as unnecessary nop
operations in some cases (see supplementary material).

e We observe some trivial errors. For instance, true and false (boolean values from
stdbool) are confused with variable names. If they are manually replaced with 1 and O, the
models usually generate a correct output.
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METRIC CORRELATION (P-VALUE)

Syntax 0.597 (1.92E-07)
BLEU 0.536 (4.96E-06)
LOC 0.174 (1.69E-01)
Tokens -0.269 (3.13E-02)
Cyclo -0.106 (4.04E-01)
Params -0.607 (1.04E-07)
Pointers -0.573 (7.56E-07)

Table 6: Pearson correlations between different metrics (syntactical accuracy, BLEU score, lines of
code and number of tokens in the C implementation, cyclomatic complexity of the C implementation,
number of parameters in the C function, and number of pointer parameters in the C function) and IO
accuracy. Bold values are statistically significant.

MODEL AVG OUTPUT LENGTH
Transformer-Small 162.29
Transformer-Med 124.94
Transformer-Big 124.61
- 50% data 125.00
- 1/2x vocab 127.22
+ 1/2x vocab 124.13
+ le2x weight-decay 124.74
+ 1/2x epochs 124.59
Transformer-Big+ 124.99
Ground truth 132.37

Table 7: Average length of the output of the different models in the Angha-Par test, vs. the ground
truth (GCC) one.

ERROR

open CFI at the end of file; missing .cfi_endproc directive
expecting operand after ’,’; got nothing

unbalanced brackets in operand 1.

number of operands mismatch for ‘mov’

number of operands mismatch for ‘add’

unbalanced brackets in operand 2.

bad or irreducible absolute expression

CFI instruction used without previous .cfi_startproc

junk at end of line, first unrecognised character is ‘%’
symbol ¢.L3’ is already defined
number of operands mismatch for
symbol ¢.L5’ is already defined
number of operands mismatch for ‘movq’

number of operands mismatch for ‘lea’

.cfi_endproc without corresponding .cfi_startproc

symbol ¢.L4° is already defined

operand type mismatch for ‘sar’

number of operands mismatch for ‘pop’

number of operands mismatch for ‘sal’

number of operands mismatch for ‘pxor’

number of operands mismatch for ‘movslq’

.size expression for sum_n does not evaluate to a constant

‘cmp’

Table 8: Frequent syntactical errors (sorted by frequency).
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ERROR

Syntax error 27
Compiled but O tests passed 15
Compiled but only 1 test passed 1

Compiled but more than 1 test passed 0
Table 9: 10 error typology for the best model.

MODEL INTERSECTIONS
Transformer-Small 0/0
Transformer-Med 18/19
Transformer-Big 19/19
- 50% data 13/13
- 1/2x vocab 19/19
+ 1/2x vocab 20/20
+ le2x weight-decay 18/18
+ 1/2x epochs 21/21
Transformer-Big+ 19/19

Table 10: Intersections between the correct outputs of each model and the correct outputs of the best
one (Transformer-Big + 1/2x epochs).
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F Output samples

We include some model output samples, together with the reference GCC output and the original C,

selected as follows:

 All outputs belong to the best model, specifically they are one of the top 5 hypothesis.

 All outputs belong to Synthesis-Bench.

* They have not been randomly sampled, or cherry-picked to show the best outputs only, but
manually curated to try to provide representative outputs of different cases, which may not

appear proportionally.

Listing 1: C input

Listing 2: Model assembler

Listing 3: GCC assembler

int triangle_sum(int n) {
int r = 0;

for (int i = 1; i < n;
++i) |

for (int m= 1; m< i;

++m) {

ro+=m;

}

}

return r;

}

triangle_sum :

.LFBO:
.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movl %edi, -20(%rbp)
movl $0, -12(%rbp)
movl $1, -8(%rbp)
jmp .L2

.L5:

movl $1, —4(%rbp)
jmp .L3

.L4:

movl -4 (%rbp), %eax
addl %eax, —12(%rbp)
addl $1, -4(%rbp)
.L3:

movl —4(%rbp), %eax
cmpl —8(%rbp), %eax
jl L4

addl $1, -8(%rbp)
JL2:

movl —-8(%rbp), %eax
cmpl —20(%rbp), %eax
jl .L5

movl —12(%rbp), %eax
popq %rbp
.cfi_def_cfa 7, 8
ret

.cfi_endproc

triangle_sum :

.LFBO:

.cfi_startproc

endbr64

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movl %edi, -20(%rbp)
movl $0, -12(%rbp)
movl $1, -8(%rbp)

jmp .L2

L5

movl $1, —4(%rbp)
jmp L3

.L4:

movl —4(%rbp), %eax
addl %eax, —12(%rbp)
addl $1, -4(%rbp)
.L3:

movl —4(%rbp), %eax
cmpl -8(%rbp), %eax

i1 L4
addl $1, -8(%rbp)
LL2:

movl -8(%rbp)., %eax
cmpl —20(%rbp), %eax
jl .L5

movl —12(%rbp ), %eax
popq %rbp
.cfi_def_cfa 7, 8
ret

.cfi_endproc

Figure 1: Correct output sample in which the system output is almost identical to the GCC one. The
only difference is the inclusion of the new instruction endbr64, which is used for security reasons
and is executed as a NOPs in targets that do not support it.
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Listing 4: C input

Listing 5: Model assembler

Listing 6: GCC assembler

int fib_n(int n) {
int i = 1;
int r = 1;
while (n > 1) {
i T
r
n
}

return r;

- i,
i+ r;
n - 1;

fib_n:

.LFBO:

.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6 , —-16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movl %edi , -20 ( %rbp )
movl $1 , -8 ( %rbp )

movl $1 , -4 ( %rbp )
jmp .L2
.L3:

movl —4 ( %rbp ), %eax
subl -8 ( %rbp ), %eax
movl %eax , -8 ( %rbp )
movl -8 ( %rbp ), %edx
movl -4 ( %rbp ), %eax
addl %edx , %eax

movl %eax , —4 ( %rbp )

subl $1 , -20 ( %rbp )
JL2:

cmpl $1 , -20 ( %rbp )
jg L3

movl -4 ( %rbp ), %eax
popq %rbp

.cfi_def_cfa 7 , 8

ret

.cfi_endproc

fib_n:

.LFBO:

.cfi_startproc

endbr64

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movl %edi, -20(%rbp)
movl $1, —8(%rbp)
movl $1, —4(%rbp)

jmp .L2

L3

movl —4(%rbp), %eax
subl —8(%rbp), %eax
movl %eax, —8(%rbp)
movl —-8(%rbp), %eax
addl %eax, —4(%rbp)
subl $1, —-20(%rbp)

L2

cmpl $1, -20(%rbp)
ig .L3

movl —4(%rbp), %eax
popq %rbp
.cfi_def_cfa 7, 8
ret

.cfi_endproc

Figure 2: Correct compilation of an iterative Fibonacci implementation, in which the system output

subtly differs from the GCC one.

15




Listing 7: C input Listing 8: Model assembler Listing 9: GCC assembler

int search(int =arr, search : search:
int v, .LFBO: .LFBO:
int n) { .cfi_startproc .cfi_startproc
int idx = -1; pushq %rbp endbr64
for (int i = 0; i < n; .cfi_def_cfa_offset 16 pushq %rbp
++i) { .cfi_offset 6, -16 .cfi_def_cfa_offset 16
if (idx == -1 && movq %rsp , %rbp .cfi_offset 6, —16
arr[i] == v) { .cfi_def_cfa_register 6 movq %rsp , %rbp
idx = i movq %rdi, -24(%rbp) .cfi_def_cfa_register 6
} movl %esi, —28(%rbp) movq %rdi, -24(%rbp)
} movl %edx , —-32(%rbp) movl %esi, —28(%rbp)
return idx; movl $-1, -8(%rbp) movl %edx, -32(%rbp)
} movl $0, —4(%rbp) movl $-1, —8(%rbp)
jmp .L2 movl $0, —4(%rbp)
.L4: jmp L2
cmpl $-1, —8(%rbp) .L4:
jne .L3 cmpl $-1, —8(%rbp)
movl —-4(%rbp), %eax jne .L3
movslq %eax , %rdx movl —4(%rbp), %eax
movq —24(%rbp), %rax cltq
addq %rdx , %rax leaq 0(,%rax ,4), %rdx
movl (%rax), %eax movq —-24(%rbp), %rax
cmpl —28(%rbp), %eax addq %rdx , %rax
jne .L3 movl (%rax), %eax
movl —4(%rbp), %eax cmpl %eax, —-28(%rbp)
movl %eax, -8(%rbp) jne .L3
.L3: movl —4(%rbp), %eax
addl $1, —4(%rbp) movl %eax, —8(%rbp)
JL2: .L3:
movl —4(%rbp), %eax addl $1, -4(%rbp)
cmpl —32(%rbp), %eax L2
jl L4 movl —-4(%rbp), %eax
movl —8(%rbp), %eax cmpl —-32(%rbp), %eax
popq %rbp il L4
.cfi_def_cfa 7, 8 movl —-8(%rbp), %eax
ret popq %rbp
.cfi_endproc .cfi_def_cfa 7, 8
ret
.cfi_endproc

Figure 3: Incorrect output sample (top 3 hypothesis of the best model in the search function) that
passes only some (5/9) of the IO examples. This is relatively uncommon, since usually either it passes
all tests or none, and when one hypothesis in the top 5 ones obtains better than half of the examples
right, it is likely that some other hypothesis will pass all tests, as happened in this case (top 1 and 2
hypothesis were correct).
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Listing 10: C input

Listing 11: Model assembler

Listing 12: GCC assembler

void min_so_far_subtracted

(int =arr, int =arr2,

int sresult, int n) {
int min_so_far_array[n];
int min_so_far = 1;
for (int i = 0; i < n;
i ++) {

min_so_far =
(min_so_far < arr[i])
? min_so_far : 1;
min_so_far_array[i] =
min_so_far;

}

int max_of_min_so_far
_and_other_array[n];

for (int i = 0; i < n;
i +4) {
int ml = min_so_far
_array [i];

int m2 = arr2[i];
int max = (ml > m2
?ml : m2);
max_of_min_so_far
_and_other_array[i]
= max;
}
for (int i = 0; i < n;
i ++) {
result[i] =
min_so_far
_array[i] -
max_of_min_so
_far_and_
other_array

[ils

min_so_far_subtracted:
.LFBO:

.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movq %rdi, —8(%rbp)
movq %rsi, —16(%rbp)
movq %rdx , —-24(%rbp)
movl %ecx, —28(%rbp)
movl %r8d, -32(%rbp)
nop

popq %rbp

.cfi_def_cfa 7, 8

ret

.cfi_endproc

min_so_far_subtracted:
.LFBO:

.cfi_startproc
endbr64

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp , %rbp
.cfi_def_cfa_register 6
pushq %rl5

pushq %rl4

pushq %rl3

pushq %rl12

subq $112, %rsp
.cfi_offset 15, =24
.cfi_offset 14, =32
.cfi_offset 13, -40
.cfi_offset 12, —48
movq %rdi, —120(%rbp)
movq %rsi , —128(%rbp)
movq %rdx , —136(%rbp)
movl %ecx, —140(%rbp)
movq %fs:40, %rax
movq %rax , —40(%rbp)
xorl %eax , %eax

movq %rsp , %rax

movq %rax , %rdi

movl -140(%rbp), %eax
movslq %eax, %rdx
subq $1, %rdx

movq %rdx , -72(%rbp)
movslq %eax , %rdx
movq %rdx , %rl4

movl $0, %rl15d

movslq %eax , %rdx
movq %rdx , %r8

movl $0, %r9d

cltq

leaq O0(,%rax ,4), %rdx
movl $16, %eax

subq $1, %rax

addq %rdx , %rax

movl $16, %esi

movl $0, %edx

divq %rsi

imulq $16, %rax , %rax
movq %rax , %rdx

andq $-4096, %rdx
movq %rsp, %rsi

subq %rdx, %rsi

movq %rsi , %rdx

L2

cmpq %rdx , %rsp

# CONTINUES FOR 168
# INSTRUCTIONS MORE. ..
.cfi_endproc

Figure 4: Syntactically correct, yet meaningless output. This case follows a common pattern we have
observed: when the input C is too complex for the model, the model just outputs a short, syntactically
correct assembler that semantically has almost nothing to do with the input C. The model seems to
behave like an unconditional assembler language model.
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Listing 13: C input

Listing 14: Model assembler

Listing 15: GCC assembler

void norm(float =vec,
float =0,
int n) {
float sum = 0.0f;
for (int i = 0; i < n;
++i) |
sum += vec[i];

}

for (int i = 0; i < n;
++i) |
o[i] /= sum;
}
}

subeq:

.LFBO:

.cfi_startproc

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movq %rdi, -24(%rbp)
movq %rsi, —-32(%rbp)
movl %edx, —-36(%rbp)
movl $0, —4(%rbp)

jmp .L2

.L3:

movl —4(%rbp),%eax
cltq

leaq 0(,%rax ,4), %rdx
movq —24(%rbp), %rax
addq %rdx , %rax

movl —-4(%rbp), %edx
movslq %edx , %rdx

leaq 0 (,%rdx, 4), %rcx
movq —24(%rbp), %rdx
addq %rcx , %rdx

movl (%rdx), %edx

movl %edx , %ecx

movl —4(%rbp), %edx
movslq %edx, %rdx

leaq 0 (, %rdx , 4 ), %rsi
movq -32 (%rbp), %rdx
addq %rsi, %rdx

movl (%rdx), %edx

subl %edx , %ecx

movl %ecx , %edx

movl %edx, (%rax)

addl $1, -4(%rbp

norm:

.LFBO:

.cfi_startproc

endbr64

pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, —16
movq %rsp , %rbp
.cfi_def_cfa_register 6
movq %rdi, -24(%rbp)
movq %rsi, -32(%rbp)
movl %edx, -36(%rbp)
pxor %xmm0, %xmmOQ

movss Yexmm0, —12(%rbp)
movl $0, —8(%rbp)

jmp L2
.L3:

movl —-8(%rbp), %eax
cltq

leaq 0(,%rax ,4), %rdx
movq —24(%rbp), %rax
addq %rdx , %rax

movss (%orax ), %xmm0
movss —12(%1bp ), %xmml
addss Yoxmml, %xmmO
movss Jexmm0, -12(%rbp)
addl $1, -8(%rbp)

JL2:

movl —8(%rbp), %eax

cmpl -36(%rbp), %eax

il .L3

movl $0, -4(%rbp)
jmp L4
.L5:

movl —4(%rbp), %eax
cltq

leaq 0(,%rax ,4), %rdx
movq —32(%rbp), %rax
addq %rdx , %rax

movss (%orax ), %xmm0
movl —-4(%rbp), %eax
cltq

leaq 0(,%rax ,4), %rdx
movq -32(%rbp), %rax
addq %rdx , %rax

divss —12(%1bp ), %xmmO
movss 9exmm0, (%rax)
addl $1, -4(%rbp)
L4

movl —4(%rbp), %eax
cmpl -36(%rbp), %eax

j1 L5

nop

nop

popq %rbp
.cfi_def_cfa 7, 8
ret

.cfi_endproc

Figure 5: Syntactically incorrect output (unbalanced parentheses in the last addl instruction) that
actually is caused by the hypothesis terminating before it should have, like most detected syntax

C€ITOrS.
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