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Abstract

The veracity of a factoid is largely independent001
of the language it is written in. However, lan-002
guage models are inconsistent in their ability003
to answer the same factual question across lan-004
guages. This raises questions about how LLMs005
represent a given fact across languages. We ex-006
plore multilingual factual knowledge through007
two aspects: the model’s ability to answer a008
query consistently across languages, and the009
ability to ”store” answers in a shared repre-010
sentation for several languages. We propose011
a methodology to measure the extent of rep-012
resentation sharing across languages by repur-013
posing knowledge editing methods. We exam-014
ine LLMs with various multilingual configu-015
rations using a new multilingual dataset. We016
reveal that high consistency does not neces-017
sarily imply shared representation, particularly018
for languages with different scripts. Moreover,019
we find that script similarity is a dominant fac-020
tor in representation sharing. Finally, we ob-021
serve that if LLMs could fully share knowledge022
across languages, their accuracy in their best-023
performing language could benefit an increase024
of up to 150% on average. These findings high-025
light the need for improved multilingual knowl-026
edge representation in LLMs and suggest a path027
for the development of more robust and consis-028
tent multilingual LLMs.029

1 Introduction030

Pretrained large language models (LLMs) have031

demonstrated a remarkable capacity to encode and032

retrieve factual knowledge (Petroni et al., 2019;033

Chang et al., 2024) across diverse languages (Kass-034

ner et al., 2021; Jiang et al., 2020). However, sub-035

stantial variation in model performance across lan-036

guages with a strong bias toward high-resource037

languages (Kassner et al., 2021; Jiang et al., 2020;038

Fierro and Søgaard, 2022; Jiang et al., 2022; Qi039

et al., 2023a) highlights the issue of cross-lingual040

knowledge (in-)consistency.041
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Figure 1: Illustration of our method for distinguish-
ing between cross-lingual consistency and representa-
tions sharing in a pairwise language setting. The sports
(green) question demonstrates mere cross-lingual an-
swer consistency, while the query about Allan Turing’s
birthplace (blue) exemplifies a shared underlying rep-
resentation. Edits to the shared representation propa-
gate across both languages, unlike the consistent-only
fact. This method exposes the crucial difference be-
tween surface-level answer consistency and genuine
cross-lingual knowledge sharing.

This inconsistency raises questions about how 042

LLMs represent factual knowledge in different lan- 043

guages. On one end of the range of possibilities, 044

models may store a set of distinct knowledge copies 045

for each language. On the other end, models may 046

store a single, shared representation of the factual 047

knowledge and “decode” it into surface forms in 048

different languages. Thus, a shared representation 049

manifests in consistency across languages, but con- 050

sistent behavior can also occur without it. 051

While consistency can be readily measured 052

through agreement on identical queries across lan- 053

guages, measuring the extent to which knowledge 054

representation is shared across languages requires 055

more than just evaluating black box outputs. To 056
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quantify representation sharing, we propose editing057

factual knowledge in one language and examining058

the effects on other languages. For this purpose,059

we employ three knowledge editing techniques:060

two locate-and-edit methods, ROME (Meng et al.,061

2022a) and MEMIT (Meng et al., 2022b), and a062

finetuning-based method (Gangadhar and Stratos,063

2024). These methods are designed to surgically064

modify the relevant components of the model re-065

sponsible for storing factual knowledge and only066

them, as illustrated in Fig 1.067

As a test bed for our experiments, we com-068

piled CLIKE, a multilingual “fill-in-the-blank” fac-069

tual knowledge probing dataset with 35k samples,070

designed for evaluation and editing across para-071

phrases in 13 languages with 7 scripts. We exper-072

iment with diverse 7B-parameter LLMs support-073

ing different sets of languages in different setups:074

monolingual, bilingual, multilingual, and language-075

extended models. Our analysis reveals a significant076

disparity in factual knowledge retrieval across lan-077

guages. We assessed that on average these models078

answer correctly in at least one language 150%079

more facts than their best-performing language and080

triple the number of facts averaged across all 13081

languages.082

We assess for the first time the extent of cross-083

lingual knowledge representation sharing. We find084

that languages within the same script family ex-085

hibit the highest degree of representation sharing.086

This trend is consistent across all the models we087

studied, regardless of their level of multilingual-088

ism. Moreover, we find that high agreement in an-089

swers across certain language pairs does not entail090

shared internal representations, especially with lan-091

guage pairs that do not share the same script. This092

mismatch is particularly evident when comparing093

lower-resource languages to any language with a094

different script, which shows high consistency but095

limited representation sharing.096

We expect that shedding light on these mecha-097

nisms will support the development of better multi-098

lingual models, with more efficient representation099

of factual knowledge. This will in turn lead to100

a more balanced knowledge across different lan-101

guages, ultimately enhancing LLM performance102

across languages.103

2 Methodology104

In our analysis, we would like to measure two main105

aspects:106

1. Cross-lingual Knowledge Consistency 107

(CKC). The extent to which a model shows 108

consistency in answering factual questions 109

when asked in different languages. 110

2. Cross-lingual Knowledge Representation 111

Sharing (CKR). The degree to which the 112

model uses a common inner representation 113

for the same fact across different languages. 114

2.1 Measuring CKC 115

For simplicity, we say an LLM knows a fact in a 116

specific language, modeled as a question and an- 117

swer pair, if it can correctly answer it through a 118

query written in this language. We start by defining 119

a model’s Knowledge Base (KB) for a specific lan- 120

guage, as a set of facts an LLM ’knows’ in that lan- 121

guage. Formally, for a given LLM M and a dataset 122

D = {fi}i∈[N ] of facts. Where f l
i := (qli, a

l
i) is a 123

question-answer pair written in the language l ∈ L: 124

KBl := {fi ∈ D | M
(
qli

)
= ali}. 125

To capture the pairwise relationship of knowing 126

a fact in language l1 to know it in l2, we define 127

C(l1,l2) as the conditional probability 128

P (fi ∈ KBl2 | fi ∈ KBl1) =
|KBl1 ∩KBl2 |

|KBl1 |
. 129

We continue by defining the Number of Consistent 130

Languages (NCL) a fact f known in as: 131

NCL(f) = |{l ∈ L : f ∈ KBl}| 132

With this aggregation, we can then compute the 133

overall CKC of a model, as the average number of 134

languages in which the LLM knows a fact: 135

E[NCL] =
1

N

∑
f∈D

NCL(f) 136

2.2 Measuring CKR 137

Measuring the extent of shared knowledge repre- 138

sentation across languages in LLMs cannot be done 139

by merely evaluating model outputs. The same cor- 140

rect answer to a factual query across multiple lan- 141

guages could be generated from distinct, language- 142

specific representations within the model, rather 143

than a unified, language-agnostic abstraction. This 144

requires a more sophisticated approach. 145

To measure this, we use an editing method E 146

that modifies the model’s parameters to provide a 147
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wrong answer for a query in a given language. We148

then examine the impact of such a change on the149

same fact query in other languages. Let M l
i denote150

the updated model applying E to the fact f l
i in the151

language l to the target answer tli. The model’s152

KB for a specific language l′ after the modification153

in language l is defined as the collection of facts154

for which the incorrect target answer, edited in155

language l, also propagates to language l′, which156

can be formally expressed as:157

KBl
l′ := {fi ∈ KBl1 : M l1

i

(
ql2i

)
= tl2i }.158

We can then estimate the amount of pairwise CKR159

between a language l1 to l2 by defining SR(l1,l2)160

as the conditional probability161

P (f ∈ KBl1
l2
| f ∈ KBl1

l1
) =

∣∣∣KBl2
l1
∩KBl1

l1

∣∣∣∣∣∣KBl1
l1

∣∣∣ .162

We further define the Number of Transferred Lan-163

guages (NTL) for a given fact edited in the lan-164

guage l as165

NTL(f l) =
∣∣∣{l′ : f ∈ KBl

l′}
∣∣∣166

With this aggregation, we can then compute overall167

CKR, as the average number of languages in which168

the LLM represents a fact as169

E[NTL] =
1

|L|
∑
l∈L

 1

|KBl|
∑

f∈KBl

NTL(f l)

 .170

3 Experimental Setup171

3.1 Data172

Dataset. We present CLIKE (Cross-LIngual173

Knowledge Editing), a dataset for evaluating and174

editing factual knowledge of pretrained LMs across175

languages and paraphrased expressions. CLIKE176

contains approximately 35k facts spanning 13 lan-177

guages: English (en), French (fr), Italian (it), Span-178

ish (es), Russian (ru), Ukrainian (uk), Bulgar-179

ian (bg), Hindi (hi), Bengali (bn), Chinese (zh),180

Japanese (ja), Hebrew (he), and Arabic (ar). Each181

fact is modeled as a language-independent (sub-182

ject, relation, object) triplet and each relation has183

3 paraphrased natural language templates for ev-184

ery language. Each template forms a sentence that185

conveys a fact and ends with the object, which we186

omit and expect the model to fill.187

For example, the triplet 188

(Bach,BirthCity, Leipzig) will be converted to 189

’Bach was born in the city of’ and ’The birth city 190

of Bach is’, and ’The birthplace of Bach is the city 191

of’ expecting the pretrained LM to complete the 192

prompt with ’Leipzig’ correctly using its initial 193

pretraining task without altering the model with a 194

finetuning intervention. 195

Fact Collection. Following a similar approach to 196

Petroni et al. (2019); Sciavolino et al. (2021); Kass- 197

ner et al. (2021); Wei et al. (2024), fact triplets were 198

collected from Wikidata Query Service. We man- 199

ually crafted and published 14 SPARQL relation 200

queries. Each query extracts wikidata entries for 201

subjects and objects satisfying the query relation 202

with their labels in all available languages. We then 203

filtered all triplets with labels containing less than 204

8 of the examined languages to balance the lan- 205

guages in the dataset. Appendix B in the appendix 206

includes the languages and relation distributions. 207

Dataset Construction. We used ”Gemini Ad- 208

vanced” and ”Claude Opus” to generate the tem- 209

plates of each relation in all languages. For each 210

relation, we generated 3 paraphrases adjusted to 211

grammar rules such as the gender of the subject. 212

The prompts for these templates were executed 213

on the models’ official websites (Gemini, Claude). 214

Subsequently, professional translators or native 215

speakers refined the templates and sampled gen- 216

erated fill-in-the-blank queries across all languages, 217

following instructions detailed in Appendix A. For 218

the knowledge editing task, we generated false but 219

plausible objects for each fact by randomly sam- 220

pling from other facts within the same relation cat- 221

egory. This approach provided consistent incorrect 222

alternatives across all languages for each query. 223

3.2 Models 224

We examine a range of LLMs with 7B parameters 225

and decoder-only architectures. We focus on base 226

pretrained language models to capture the knowl- 227

edge acquired during the pretraining process, prior 228

to any finetuning. BLOOM-7B (Scao et al., 2022) 229

serves as our multilingual model. Qwen-7B (Bai 230

et al., 2023) represents a bilingual Chinese-English 231

model with a low tokenization compression rate 232

multilingual vocabulary. We include two monolin- 233

gual English models: Llama-2-7B (Touvron et al., 234

2023) and Mistral-7B-v0.1 (Jiang et al., 2023). Ad- 235

ditionally, we examine two language-extended 236

models, Chinese-llama-2-7B, and Hebrew-Mistral- 237
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7B, based on Llama-2-7B and Mistral-7B-v0.1238

with additional pretraining in English and their ex-239

panded language (EL) and an expand EL tokenizer240

vocabulary. These models represent a diverse set of241

multilingual configurations, enabling a extensive242

analysis of cross-lingual knowledge representation.243

3.3 Knowledge Editing Methods244

We employ three knowledge editing methods: Fine-245

tuning (FT) (Gangadhar and Stratos, 2024), ROME246

(Meng et al., 2022a), and MEMIT (Meng et al.,247

2022b). The ROME and MEMIT editing meth-248

ods leverage causal mediation analysis (Vig et al.,249

2020a,b) to identify the LM layer that has causally250

contributed to factual knowledge recall, suggesting251

the middle MLP layers act as key-value associative252

memory. ROME then computes a closed-form rank-253

one update to the layer’s weights, inserting a new254

fact while minimizing disruption to existing knowl-255

edge stored in the weights. Similarly, MEMIT256

identifies a range of MLP layers that jointly con-257

tribute to the model’s factual associations. Then it258

iteratively updates the weights of each MLP layer,259

distributing the changes across the MLP layers.260

Both ROME and MEMIT use interpretability261

techniques to precisely locate and surgically mod-262

ify the relevant components of the model responsi-263

ble for storing factual knowledge. This approach al-264

lows for direct control over the model’s memorized265

information while preserving its overall capabili-266

ties, providing a framework for isolating changes267

in actual knowledge without altering other compo-268

nents.269

Finetuning, our baseline approach, involves up-270

dating the weights of all middle layers in the model271

without the MLP restrictions imposed by ROME272

and MEMIT. For each fact to be edited, we fine-273

tuned the model on a single example consisting of274

the edition prompt paired with its new target an-275

swer. It incorporates new factual knowledge that276

resembles standard language model training prac-277

tices.278

We use the EasyEdit code library (Wang et al.,279

2023b) to perform all language model knowledge280

edits. Default parameters are employed for all281

models except BLOOM. Since BLOOM lacks a282

pre-existing implementation, we optimized and283

published custom hyperparameters for the editing284

methods.285

3.4 Metrics and Evaluation 286

We employed the Exact Match (EM) metric to eval- 287

uate all answers to queries across our experiments. 288

To provide context for the pretrained LLM, we used 289

3-demonstrations fewshot concatenated facts for 290

both evaluation and editing tasks, maintaining the 291

same examples and order. All answer generation 292

was performed using greedy decoding to ensure 293

deterministic outputs. 294

Model performance and CKC in a given lan- 295

guage were assessed as follows. The overall ac- 296

curacy for a language was computed as the per- 297

centage of facts correctly answered in at least one 298

paraphrased form. C(l1, l2), was measured by com- 299

puting the mean score in language l2 across all 300

paraphrases for facts known in language l1. Sim- 301

ilarly, within-language consistency, C(l, l), was 302

computed using the same approach, evaluating the 303

model’s consistency across paraphrases within a 304

single language. 305

For the knowledge editing experiments, we ran- 306

domly selected 500 known facts in each language 307

to modify. We assessed the effectiveness of these 308

edits using three standard metrics: Reliability, Gen- 309

eralization, and Locality. Reliability measures the 310

accuracy of the model on the edited prompt itself. 311

Generalization, denoted with SR(l1, l2), evaluates 312

the mean score across all paraphrases of the edited 313

fact in all languages, including the language in 314

which the edit was made (l1). This quantifies how 315

well the edit transfers across both languages and 316

paraphrases variations of the fact. For Locality test- 317

ing, we randomly sampled known facts for each 318

language and evaluated the model’s mean accuracy 319

to answer these unrelated queries correctly. This 320

ensured that the edits did not negatively impact 321

other knowledge in different languages. 322

4 Results 323

Before presenting our main findings, we first val- 324

idate the methodology’s performance. We found 325

a strong correlation (0.87) between the results ob- 326

tained from different knowledge editing methods. 327

This consistency across various editing techniques 328

suggests that our findings are robust and not re- 329

liant on a specific method. Given this consistency, 330

we primarily present results using MEMIT, with 331

other methods’ results available in Appendix C. 332

Additionally, all knowledge editing methods main- 333

tained high locality scores (averaging above 70%), 334

indicating that edits were specific and preserved 335
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Figure 2: Cross-lingual performance variability: the
accuracy of factual knowledge retrieval across different
languages for several LLMs supporting different lan-
guage sets. ’Any Language’ (green) – facts known in at
least one language, ’Best Language’ (orange) – accuracy
in the best-performing language, and ’Cross-lingual Av-
erage’ – mean accuracy across all 13 languages in the
CLIKE dataset, with error bars indicating standard devi-
ation.

broader model knowledge. Furthermore, all mod-336

els exhibit some variation in performance across337

paraphrases even within the same language, align-338

ing with findings from Mizrahi et al. (2024) and339

further justifying our approach of assessing knowl-340

edge using multiple paraphrases.341

4.1 The Issue of Knowledge Variability342

Large language models (LLMs) exhibit signifi-343

cant variability in their factual knowledge retrieval344

across different languages, as illustrated in Fig. 2.345

Our analysis of four 7B-parameter LLMs reveals346

a striking disparity: while models demonstrate347

knowledge of 42.5% of the facts on average in at348

least one language, their best-performing language349

achieves only 27.6% accuracy, and their average350

performance across all 13 languages in the CLIKE351

dataset is merely 11.8%.352

If models could share knowledge across all lan-353

guages, the best-performing language could poten-354

tially increase its accuracy by up to 53%. Moreover,355

models could then potentially more than triple their356

current cross-lingual average accuracy. This ob-357

servation motivates our subsequent investigations358

into CKR, as we seek to understand and potentially359

leverage these untapped reservoirs of knowledge.360

4.2 Consistency Does Not Imply361

Representation Sharing362

We decouple CKC and CKR between languages,363

examining both general measures across languages364

(Fig. 3) and pairwise language relationships ad- 365

dressing their specific identities (Fig. 4). Our anal- 366

ysis reveals that high CKC does not necessarily 367

imply high CKR, and in some cases, we observe 368

inverse patterns. 369

At the general level, we observe for all models 370

that E[NCL] is consistently higher than E[NTL], 371

indicating that models tend to exhibit CKC across 372

more languages than they share representations be- 373

tween. Interestingly, while E[NCL] values show 374

considerable variation across models, E[NTL] val- 375

ues are more uniform. The persistent gap between 376

E[NCL] and E[NTL] across all models highlights 377

that consistent answers do not necessarily translate 378

to shared internal representations. Moreover, we 379

find that models with a lower proportion of facts 380

known in only one language (NCL = 1) tend to 381

have a higher proportion of facts represented in 382

only one language (NTL = 1) as shown in Fig. 3. 383

At the pairwise language level, we find differ- 384

ences between CKC and CKR patterns. For in- 385

stance, most models (except Qwen) exhibit a high 386

degree of CKC among low-resource languages with 387

different scripts (Chinese, Japanese, Hebrew, Ara- 388

bic). However, when examining CKR, we find 389

limited evidence of shared encoding between these 390

languages. Conversely, we observe a higher de- 391

gree of shared representation among Cyrillic lan- 392

guages compared to the shared representation be- 393

tween Cyrillic and Latin languages. This is despite 394

the fact that CKC scores show an opposite trend, 395

with higher CKC between Cyrillic and Latin lan- 396

guages than among Cyrillic languages themselves. 397

4.3 The Key Role of the Language Script 398

Our analysis provides quantifiable measures of 399

CKR in LLMs. Following previous work (Qi et al., 400

2023a; Beniwal et al., 2024), our study highlights 401

the importance of the script of a language for mul- 402

tilingual knowledge. We observe that the pairwise 403

SR measure is relatively consistent across models, 404

despite their varying language support. 405

We find that languages within the same script 406

family exhibit the highest degree of CKR across all 407

models. As shown in Fig. 4, we observe a script- 408

based grouping in both CKC and CKR likely high- 409

lighting a tokenization induced bias (Singh et al., 410

2019). Notably, we observe strong CKR between 411

languages with Latin scripts (English, French, Ital- 412

ian, Spanish) and between languages with Cyrillic 413

scripts (Russian, Ukrainian, Bulgarian). For De- 414

vanagari script languages (Hindi, Bengali) we ob- 415
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(NTL) across multiple languages for different models. Right: Expected number of languages per fact (E[NCL])
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relationship between knowledge CKC and CKR.

serve relatively high CKR for models that perform416

well on these languages (Bloom, Mistral).417

While most CKR occurs among languages that418

use the same script, there is still some knowledge419

transfer between languages with different scripts.420

This cross-script transfer is particularly evident be-421

tween Cyrillic and Latin script languages across422

various models. Additionally, in specific cases,423

such as with the BLOOM model, we observe a424

moderate degree of CKR between seemingly un-425

related language pairs, e.g., 28% from Italian to426

Hindi.427

Notably, these relations between language428

scripts are sometimes asymmetrical. For exam-429

ple, knowledge in Cyrillic script languages implies430

a higher probability (approximately 40-60%) of431

knowing the same facts in Latin script languages.432

However, the reverse relation is weaker, with only433

about 10-20% probability of Cyrillic knowledge434

given Latin script knowledge. A similar asymmet-435

rical relation appears across models suggesting a436

stronger transfer of knowledge from Cyrillic to437

Latin. We hypothesize that the dominance of Latin438

script languages, especially English, in the train-439

ing data leads to more robust fact representations440

in Latin scripts, facilitating easier transfer from441

Cyrillic to Latin than vice versa.442

4.4 Impact of Model Design Languages443

How does a model’s designed language support444

affect its CKR and CKC patterns? Although the445

patterns of CKR are relatively similar across mod-446

els supporting different language sets, our analysis447

reveals some nuanced differences.448

The multilingual BLOOM model demonstrates449

the highest pairwise average of language pairwise 450

CKC (36%) and CKR (8.4%) across different script 451

pairs. As shown in Fig. 4, BLOOM exhibits no- 452

table transfer between seemingly unrelated lan- 453

guage pairs. These cross-script patterns validate 454

BLOOM’s design as a multilingual model, empha- 455

sizing its cross-lingual relationships rather than its 456

overall low accuracy performance. 457

We find that the bilingual English-Chinese Qwen 458

model is showing relatively high overall accuracy 459

in Chinese. However, this Chinese knowledge re- 460

mains largely distinct from English both in terms 461

of language pairwise CKC and CKR Fig. 4. This 462

pattern validates Qwen’s design as a bilingual 463

model, emphasizing its language-specific capabil- 464

ities rather than cross-script knowledge sharing. 465

Surprisingly, when examining the global shared 466

representation, Qwen exhibits a higher number of 467

4-lingual representations sharing (NTL = 4) from 468

uniquely represented facts. Although Qwen lacks 469

cross-script knowledge sharing, it developed some 470

degree of multilingual representation, particularly 471

within script families. 472

Monolingual English models (Mistral, LLaMA) 473

exhibit a unique pattern. We discover an anoma- 474

lous peak in the results for facts known and rep- 475

resented in exactly four languages (Fig. 3), cor- 476

responding primarily to the four Latin script lan- 477

guages in our dataset. This highlights the strong 478

association between script similarity and knowl- 479

edge sharing even in ostensibly monolingual mod- 480

els. Surprisingly, Mistral demonstrates the highest 481

E[NCL], E[NTL] and average of language pair- 482

wise CKC (54.7%) and CKR (37.6%) within script 483

families, despite being designed as a monolingual 484
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Figure 4: The pairwise relationships of factual knowledge across languages for four language models, with all
scores reported using Exact Match. C(l1, l2) shows the percentage of facts known in the row language which
were also retrieved in the column language. SR(l1, l2) indicates the percentage of successfully edited facts in the
row language which generalized to the column language using MEMIT. Under each language abbreviation is the
overall accuracy for initial knowledge retrieval and the edition-reliability score for C and SR measures respectively.
Languages are color-coded by script family.

English model. This result highlights how Mis-485

tral’s strong English foundation naturally extends486

to other Latin script languages, underscoring the487

impact of script similarity on cross-lingual knowl-488

edge representation even in monolingual models.489

4.5 Language Extended LMs 490

How does additional pretraining on both English 491

and an extended language (EL) impact cross- 492

lingual CKC and shared representation in initially 493

monolingual models? Analysis of chinese-llama- 494

2-7b and he-mistral-7b reveals a similar trade-off: 495
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Model EL Acc/Rel En Acc/Rel EL → en en → EL
C zh EL 10 (142%↑) 5 (29%↓) 12 (80%↓) 22 (440%↑)
C he EL 18 (600%↑) 10 (32%↓) 13 (37%↓) 18 (900%↑)
SR zh EL 96 (252%↑) 81 (96%↓) 2 (200%↑) 4 (400%↑)
SR he EL 90 (152%↑) 83 (90%↓) 10 (500%↑) 6 (600%↑)

Table 1: CKC and CKR in extended LLMs compared
to their base models. EL: Extended Language, Acc:
Accuracy, and Rel: Reliability.

while gaining substantial knowledge in EL, models496

sacrifice much of their original English expertise.497

These extensions reshape cross-lingual knowledge498

distribution but fall short of fully bridging the gap499

between disparate writing systems.500

As shown in Table 1, both models exhibit in-501

creased accuracy in the extended language (EL)502

coupled with decreased English accuracy. CKC503

measures paint a nuanced picture: models acquire504

extensive new knowledge in EL, largely unknown505

in English, yet this new EL knowledge covers more506

of English knowledge. Shared representation met-507

rics underscore this asymmetry. Despite increased508

bidirectional knowledge transfer between English509

and EL, transfer remains stubbornly low. This510

suggests that even with targeted pretraining, mod-511

els struggle to forge robust representations sharing512

across linguistically distant languages.513

For analysis of how different relation types affect514

CKR, see Appendix D.515

5 Related Work516

Cross-lingual Knowledge Consistency. While517

monolingual knowledge consistency has been stud-518

ied often in LMs (Elazar et al., 2021; Mizrahi et al.,519

2024), limited work has been done on cross-lingual520

knowledge consistency. Qi et al. (2023b) proposed521

a cross-lingual consistency metric named RankC522

to measure similarity across multiple candidate an-523

swers, whether correct or incorrect. Our focus524

on correct answers allows a simpler assessment525

without being limited to pairwise language compar-526

isons.527

Cross-lingual Knowledge Representation Shar-528

ing. Previous studies explored this angle through529

different approaches. Some works studied param-530

eter sharing across languages by analyzing neu-531

ron activation/deactivation when evaluating knowl-532

edge in different languages (Libovickỳ et al., 2020;533

Zhao et al., 2024b; Chen et al., 2024; Tang et al.,534

2024; Kojima et al., 2024). Enhancing language-535

independent neurons resulted in better multilingual536

abilities in a specific language without compromis- 537

ing others. Other works investigated the knowledge 538

related to the training data and identified the lan- 539

guage source of the acquired data (Choenni et al., 540

2023; Zhao et al., 2024a), providing evidence that 541

knowledge from training data in one language can 542

benefit the model in other languages. Another line 543

of work analyzed how inputs in different languages 544

affect the activation patterns, showing that seman- 545

tically equivalent content in different languages 546

tends to produce similar activation patterns (Singh 547

et al., 2019; Libovickỳ et al., 2020; Chang et al., 548

2022). 549

These works pointed to a connection between 550

knowledge in different languages. However, they 551

do not yield an assessment of the amount of shared 552

knowledge. While passive analysis can take as 553

far as measuring the similarity between languages, 554

active modification tools can also suggest a clear 555

causal relation between the knowledge representa- 556

tion in different languages. 557

Multilingual Knowledge Editing. Previous 558

work on multilingual knowledge editing (Si et al., 559

2024; Xu et al., 2022; Wei et al., 2024; Wang et al., 560

2023a) primarily focused on comparing and im- 561

proving editing methods’ performance in multilin- 562

gual settings. Our approach is different. We use 563

these editing tools as analytical tools to understand 564

representation sharing across languages and across 565

models with different multilingual configurations. 566

6 Conclusion 567

This work investigated the relationship between 568

cross-lingual knowledge consistency and represen- 569

tation sharing in LLMs. Our findings reveal that 570

high consistency across languages does not neces- 571

sarily imply shared internal representations, par- 572

ticularly for languages with different scripts. We 573

introduced a novel methodology and dataset for 574

quantifying these phenomena, providing a more nu- 575

anced understanding of how LLMs represent and 576

retrieve factual knowledge. The significant dis- 577

parity we observed in factual knowledge retrieval 578

across languages, coupled with the potential for 579

substantial performance improvements if knowl- 580

edge could be fully shared, underscores the im- 581

portance of developing more effective multilingual 582

knowledge representations. We expect that our in- 583

sights will guide the development of more efficient 584

and equitable multilingual models, ultimately en- 585

hancing their performance across all languages. 586
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Limitations587

Our main limitation lies in the constraints imposed588

by our chosen editing methods and their focus on589

specific model components. By primarily target-590

ing middle layers associated with factual knowl-591

edge storage, our analysis may have overlooked592

important cross-lingual interactions occurring else-593

where in the model architecture. Our reliance on594

specific editing techniques (ROME, MEMIT, and595

Finetuning) may not capture the full spectrum of596

knowledge representation and modification within597

the model. There might be multiple pathways to598

change the output in a specific language, poten-599

tially exhibiting different cross-lingual generaliza-600

tion patterns than those we observed.601

Our analysis focused exclusively on decoder-602

only language models with 7B parameters, lim-603

iting the generalizability of our findings across604

different architectures and sizes. Similarly, while605

our CLIKE dataset covers a diverse range of lan-606

guages and relations, it may not fully represent the607

breadth of factual knowledge or linguistic phenom-608

ena. These constraints in both model selection and609

dataset composition could influence the observed610

patterns of cross-lingual representation.611
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A Native Speaker Instruction932

Dear <Native Speaker>,

We are reaching out to you for assistance in an important project that aims to improve the abil-
ity of Artificial Intelligence (AI) to understand and generate text in your native language. Your skills and
knowledge as a native speaker are crucial to the success of this project.
Our research team has created a collection of fill-in-the-blank sentences and templates in multiple
languages, including yours. These sentences will be used to evaluate the knowledge and understanding of
AI language models. To ensure the accuracy and effectiveness of our collection, we need your help in
verifying the grammatical correctness of the sentences and templates we have created.
Attached, you will find a list of approximately 60 simple sentences and sentence templates and templates
that cover various relationships between subjects and objects in your native language. The task should
take no more than 15-20 minutes to complete. Your task is to review each sentence and template and
determine whether they are grammatically correct. If you find any grammatical errors, please provide a
corrected version of the template. Additionally, if you wish, you may provide an optional explanation in
English of what was wrong with the original template.

Example:

Relation: Birth City, Subject: Wolfgang Amadeus Mozart, and Object: Salzburg
Original template:
"[subj] birthplace the city [obj]" -> "Wolfgang Amadeus Mozart birthplace the city Salzburg"
Fixed template:
"[subj]’s birthplace is the city of [obj]" -> "Wolfgang Amadeus Mozart’s birthplace is the city of Salzburg"
Explanation:
The original template is missing the verb "is" and the preposition "of" to form a grammatically correct
sentence.

When fixing the templates, please keep in mind the following guidelines:

1. Be explicit about the relationship to avoid ambiguity. For example, given the information (Bach,
Birth Year, 1685) and the template "[subj] born in [obj]", the AI might complete the prompt "Bach
was born in" with the object "Leipzig" (his birth city) or "31 March" (his birth date) rather than the
year "1685". Therefore, a good template should contain words that explicitly describe the relationship.
The template "Bach was born in the year [obj]" will likely output "1685" since the word "year"
appeared in the sentence.

2. For each relationship, we have provided three different prompt paraphrases that are supposed to be
different from one another.

3. The subject must always appear before the object.

4. The last word of the prompt template should be the object.

Please note that the sentences do not necessarily need to sound natural or be well-written. Our primary
focus is on ensuring that they are grammatically correct. However, if you have suggestions on how to
make the sentences sound more natural without changing the core structure, feel free to include them in
your feedback.
Your contribution to this project is valuable and will help us create a reliable collection of sentences for
advancing AI’s ability to understand and generate text in your language. If you have any questions or
concerns about the project or your role in it, please don’t hesitate to reach out to us.
Thank you for your participation in this project. We look forward to receiving your feedback.
Best regards,

933
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B CLIKE Dataset Key statistics.934
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D On CKR Features937
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Figure 7: Distribution of shared representation facts
across different relation types.

Figure 7 illustrates that relations with fewer pos-938

sible categories generally exhibit higher CKR. This939

trend is evident for relations such as countries, in-940

struments, continents, and company developers,941

with sports type and religion as notable exceptions.942

Numerical relations like birth year and death year943

also demonstrate strong transfer capabilities. In944

contrast, relations involving names (e.g., book au-945

thors, movie directors, discoverers) and those with946

numerous categories (e.g., cities) show lower trans-947

fer rates.948
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