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Abstract

The veracity of a factoid is largely independent
of the language it is written in. However, lan-
guage models are inconsistent in their ability
to answer the same factual question across lan-
guages. This raises questions about how LLMs
represent a given fact across languages. We ex-
plore multilingual factual knowledge through
two aspects: the model’s ability to answer a
query consistently across languages, and the
ability to “store” answers in a shared repre-
sentation for several languages. We propose
a methodology to measure the extent of rep-
resentation sharing across languages by repur-
posing knowledge editing methods. We exam-
ine LLMs with various multilingual configu-
rations using a new multilingual dataset. We
reveal that high consistency does not neces-
sarily imply shared representation, particularly
for languages with different scripts. Moreover,
we find that script similarity is a dominant fac-
tor in representation sharing. Finally, we ob-
serve that if LLMs could fully share knowledge
across languages, their accuracy in their best-
performing language could benefit an increase
of up to 150% on average. These findings high-
light the need for improved multilingual knowl-
edge representation in LLMs and suggest a path
for the development of more robust and consis-
tent multilingual LLMs.

1 Introduction

Pretrained large language models (LLMs) have
demonstrated a remarkable capacity to encode and
retrieve factual knowledge (Petroni et al., 2019;
Chang et al., 2024) across diverse languages (Kass-
ner et al., 2021; Jiang et al., 2020). However, sub-
stantial variation in model performance across lan-
guages with a strong bias toward high-resource
languages (Kassner et al., 2021; Jiang et al., 2020;
Fierro and Sg¢gaard, 2022; Jiang et al., 2022; Qi
et al., 2023a) highlights the issue of cross-lingual
knowledge (in-)consistency.
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Figure 1: Illustration of our method for distinguish-
ing between cross-lingual consistency and representa-
tions sharing in a pairwise language setting. The sports
(green) question demonstrates mere cross-lingual an-
swer consistency, while the query about Allan Turing’s
birthplace (blue) exemplifies a shared underlying rep-
resentation. Edits to the shared representation propa-
gate across both languages, unlike the consistent-only
fact. This method exposes the crucial difference be-
tween surface-level answer consistency and genuine
cross-lingual knowledge sharing.
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This inconsistency raises questions about how
LLMs represent factual knowledge in different lan-
guages. On one end of the range of possibilities,
models may store a set of distinct knowledge copies
for each language. On the other end, models may
store a single, shared representation of the factual
knowledge and “decode” it into surface forms in
different languages. Thus, a shared representation
manifests in consistency across languages, but con-
sistent behavior can also occur without it.

While consistency can be readily measured
through agreement on identical queries across lan-
guages, measuring the extent to which knowledge
representation is shared across languages requires
more than just evaluating black box outputs. To



quantify representation sharing, we propose editing
factual knowledge in one language and examining
the effects on other languages. For this purpose,
we employ three knowledge editing techniques:
two locate-and-edit methods, ROME (Meng et al.,
2022a) and MEMIT (Meng et al., 2022b), and a
finetuning-based method (Gangadhar and Stratos,
2024). These methods are designed to surgically
modify the relevant components of the model re-
sponsible for storing factual knowledge and only
them, as illustrated in Fig 1.

As a test bed for our experiments, we com-
piled CLIKE, a multilingual “fill-in-the-blank” fac-
tual knowledge probing dataset with 35k samples,
designed for evaluation and editing across para-
phrases in 13 languages with 7 scripts. We exper-
iment with diverse 7B-parameter LLMs support-
ing different sets of languages in different setups:
monolingual, bilingual, multilingual, and language-
extended models. Our analysis reveals a significant
disparity in factual knowledge retrieval across lan-
guages. We assessed that on average these models
answer correctly in at least one language 150%
more facts than their best-performing language and
triple the number of facts averaged across all 13
languages.

We assess for the first time the extent of cross-
lingual knowledge representation sharing. We find
that languages within the same script family ex-
hibit the highest degree of representation sharing.
This trend is consistent across all the models we
studied, regardless of their level of multilingual-
ism. Moreover, we find that high agreement in an-
swers across certain language pairs does not entail
shared internal representations, especially with lan-
guage pairs that do not share the same script. This
mismatch is particularly evident when comparing
lower-resource languages to any language with a
different script, which shows high consistency but
limited representation sharing.

We expect that shedding light on these mecha-
nisms will support the development of better multi-
lingual models, with more efficient representation
of factual knowledge. This will in turn lead to
a more balanced knowledge across different lan-
guages, ultimately enhancing LLM performance
across languages.

2 Methodology

In our analysis, we would like to measure two main
aspects:

1. Cross-lingual Knowledge Consistency
(CKC). The extent to which a model shows
consistency in answering factual questions
when asked in different languages.

2. Cross-lingual Knowledge Representation
Sharing (CKR). The degree to which the
model uses a common inner representation
for the same fact across different languages.

2.1 Measuring CKC

For simplicity, we say an LLM knows a fact in a
specific language, modeled as a question and an-
swer pair, if it can correctly answer it through a
query written in this language. We start by defining
a model’s Knowledge Base (KB) for a specific lan-
guage, as a set of facts an LLM ’knows’ in that lan-
guage. Formally, for a given LLM M and a dataset
D = {fi};en of facts. Where fli=(¢,al)isa
question-answer pair written in the language [ € L:

KB :={f;e D| M (qﬁ) = aj}.

To capture the pairwise relationship of knowing
a fact in language /; to know it in /o, we define
C, 1) as the conditional probability

|KBl1 ﬁKBb’
P(fi € KBy | fi € KBy,) = ~00 08P
' ? ' ! |KB11|

We continue by defining the Number of Consistent
Languages (NCL) a fact f known in as:

NCL(f)=|{le L: f € KB}|

With this aggregation, we can then compute the
overall CKC of a model, as the average number of
languages in which the LLM knows a fact:

E[NCL] = % > NCL(f)
febD

2.2 Measuring CKR

Measuring the extent of shared knowledge repre-
sentation across languages in LLMs cannot be done
by merely evaluating model outputs. The same cor-
rect answer to a factual query across multiple lan-
guages could be generated from distinct, language-
specific representations within the model, rather
than a unified, language-agnostic abstraction. This
requires a more sophisticated approach.

To measure this, we use an editing method E
that modifies the model’s parameters to provide a



wrong answer for a query in a given language. We
then examine the impact of such a change on the
same fact query in other languages. Let Mf denote
the updated model applying F' to the fact fil in the
language [ to the target answer tﬁ-. The model’s
KB for a specific language [’ after the modification
in language [ is defined as the collection of facts
for which the incorrect target answer, edited in
language [, also propagates to language !’, which
can be formally expressed as:

KBl = {fi € KBy, : M]' () = 2},

We can then estimate the amount of pairwise CKR
between a language [; to I3 by defining SR, ;,)
as the conditional probability

KB KB},
P(feKB)|feKB))=1————+

l
KB

We further define the Number of Transferred Lan-
guages (NTL) for a given fact edited in the lan-
guage [ as

NTL(f') = |{I': f € KB}}

With this aggregation, we can then compute overall
CKR, as the average number of languages in which
the LLM represents a fact as

E[NTL]_éZ ]KlBl] > NTL(f)

leL fEKB,

3 Experimental Setup

3.1 Data

Dataset. We present CLIKE (Cross-LIngual
Knowledge Editing), a dataset for evaluating and
editing factual knowledge of pretrained LMs across
languages and paraphrased expressions. CLIKE
contains approximately 35k facts spanning 13 lan-
guages: English (en), French (fr), Italian (it), Span-
ish (es), Russian (ru), Ukrainian (uk), Bulgar-
ian (bg), Hindi (hi), Bengali (bn), Chinese (zh),
Japanese (ja), Hebrew (he), and Arabic (ar). Each
fact is modeled as a language-independent (sub-
ject, relation, object) triplet and each relation has
3 paraphrased natural language templates for ev-
ery language. Each template forms a sentence that
conveys a fact and ends with the object, which we
omit and expect the model to fill.

For example, the triplet
(Bach, BirthC'ity, Leipzig) will be converted to
’Bach was born in the city of” and *The birth city
of Bach is’, and "The birthplace of Bach is the city
of” expecting the pretrained LM to complete the
prompt with ’Leipzig’ correctly using its initial
pretraining task without altering the model with a
finetuning intervention.

Fact Collection. Following a similar approach to
Petroni et al. (2019); Sciavolino et al. (2021); Kass-
ner et al. (2021); Wei et al. (2024), fact triplets were
collected from Wikidata Query Service. We man-
ually crafted and published 14 SPARQL relation
queries. Each query extracts wikidata entries for
subjects and objects satisfying the query relation
with their labels in all available languages. We then
filtered all triplets with labels containing less than
8 of the examined languages to balance the lan-
guages in the dataset. Appendix B in the appendix
includes the languages and relation distributions.

Dataset Construction. We used "Gemini Ad-
vanced” and “Claude Opus” to generate the tem-
plates of each relation in all languages. For each
relation, we generated 3 paraphrases adjusted to
grammar rules such as the gender of the subject.
The prompts for these templates were executed
on the models’ official websites (Gemini, Claude).
Subsequently, professional translators or native
speakers refined the templates and sampled gen-
erated fill-in-the-blank queries across all languages,
following instructions detailed in Appendix A. For
the knowledge editing task, we generated false but
plausible objects for each fact by randomly sam-
pling from other facts within the same relation cat-
egory. This approach provided consistent incorrect
alternatives across all languages for each query.

3.2 Models

We examine a range of LLMs with 7B parameters
and decoder-only architectures. We focus on base
pretrained language models to capture the knowl-
edge acquired during the pretraining process, prior
to any finetuning. BLOOM-7B (Scao et al., 2022)
serves as our multilingual model. Qwen-7B (Bai
et al., 2023) represents a bilingual Chinese-English
model with a low tokenization compression rate
multilingual vocabulary. We include two monolin-
gual English models: Llama-2-7B (Touvron et al.,
2023) and Mistral-7B-v0.1 (Jiang et al., 2023). Ad-
ditionally, we examine two language-extended
models, Chinese-llama-2-7B, and Hebrew-Mistral-
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7B, based on Llama-2-7B and Mistral-7B-v0.1
with additional pretraining in English and their ex-
panded language (EL) and an expand EL tokenizer
vocabulary. These models represent a diverse set of
multilingual configurations, enabling a extensive
analysis of cross-lingual knowledge representation.

3.3 Knowledge Editing Methods

We employ three knowledge editing methods: Fine-
tuning (FT) (Gangadhar and Stratos, 2024), ROME
(Meng et al., 2022a), and MEMIT (Meng et al.,
2022b). The ROME and MEMIT editing meth-
ods leverage causal mediation analysis (Vig et al.,
2020a,b) to identify the LM layer that has causally
contributed to factual knowledge recall, suggesting
the middle MLP layers act as key-value associative
memory. ROME then computes a closed-form rank-
one update to the layer’s weights, inserting a new
fact while minimizing disruption to existing knowl-
edge stored in the weights. Similarly, MEMIT
identifies a range of MLP layers that jointly con-
tribute to the model’s factual associations. Then it
iteratively updates the weights of each MLP layer,
distributing the changes across the MLP layers.

Both ROME and MEMIT use interpretability
techniques to precisely locate and surgically mod-
ify the relevant components of the model responsi-
ble for storing factual knowledge. This approach al-
lows for direct control over the model’s memorized
information while preserving its overall capabili-
ties, providing a framework for isolating changes
in actual knowledge without altering other compo-
nents.

Finetuning, our baseline approach, involves up-
dating the weights of all middle layers in the model
without the MLP restrictions imposed by ROME
and MEMIT. For each fact to be edited, we fine-
tuned the model on a single example consisting of
the edition prompt paired with its new target an-
swer. It incorporates new factual knowledge that
resembles standard language model training prac-
tices.

We use the EasyEdit code library (Wang et al.,
2023b) to perform all language model knowledge
edits. Default parameters are employed for all
models except BLOOM. Since BLOOM lacks a
pre-existing implementation, we optimized and
published custom hyperparameters for the editing
methods.

3.4 Metrics and Evaluation

We employed the Exact Match (EM) metric to eval-
uate all answers to queries across our experiments.
To provide context for the pretrained LLM, we used
3-demonstrations fewshot concatenated facts for
both evaluation and editing tasks, maintaining the
same examples and order. All answer generation
was performed using greedy decoding to ensure
deterministic outputs.

Model performance and CKC in a given lan-
guage were assessed as follows. The overall ac-
curacy for a language was computed as the per-
centage of facts correctly answered in at least one
paraphrased form. C(l1, l2), was measured by com-
puting the mean score in language [ across all
paraphrases for facts known in language /5. Sim-
ilarly, within-language consistency, C'(l,1), was
computed using the same approach, evaluating the
model’s consistency across paraphrases within a
single language.

For the knowledge editing experiments, we ran-
domly selected 500 known facts in each language
to modify. We assessed the effectiveness of these
edits using three standard metrics: Reliability, Gen-
eralization, and Locality. Reliability measures the
accuracy of the model on the edited prompt itself.
Generalization, denoted with SR(I1,12), evaluates
the mean score across all paraphrases of the edited
fact in all languages, including the language in
which the edit was made (11). This quantifies how
well the edit transfers across both languages and
paraphrases variations of the fact. For Locality test-
ing, we randomly sampled known facts for each
language and evaluated the model’s mean accuracy
to answer these unrelated queries correctly. This
ensured that the edits did not negatively impact
other knowledge in different languages.

4 Results

Before presenting our main findings, we first val-
idate the methodology’s performance. We found
a strong correlation (0.87) between the results ob-
tained from different knowledge editing methods.
This consistency across various editing techniques
suggests that our findings are robust and not re-
liant on a specific method. Given this consistency,
we primarily present results using MEMIT, with
other methods’ results available in Appendix C.
Additionally, all knowledge editing methods main-
tained high locality scores (averaging above 70%),
indicating that edits were specific and preserved
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Figure 2: Cross-lingual performance variability: the
accuracy of factual knowledge retrieval across different
languages for several LLMs supporting different lan-
guage sets. “Any Language’ (green) — facts known in at
least one language, 'Best Language’ (orange) — accuracy
in the best-performing language, and ’Cross-lingual Av-
erage’ — mean accuracy across all 13 languages in the
CLIKE dataset, with error bars indicating standard devi-
ation.

broader model knowledge. Furthermore, all mod-
els exhibit some variation in performance across
paraphrases even within the same language, align-
ing with findings from Mizrahi et al. (2024) and
further justifying our approach of assessing knowl-
edge using multiple paraphrases.

4.1 The Issue of Knowledge Variability

Large language models (LLMs) exhibit signifi-
cant variability in their factual knowledge retrieval
across different languages, as illustrated in Fig. 2.
Our analysis of four 7B-parameter LL.Ms reveals
a striking disparity: while models demonstrate
knowledge of 42.5% of the facts on average in at
least one language, their best-performing language
achieves only 27.6% accuracy, and their average
performance across all 13 languages in the CLIKE
dataset is merely 11.8%.

If models could share knowledge across all lan-
guages, the best-performing language could poten-
tially increase its accuracy by up to 53%. Moreover,
models could then potentially more than triple their
current cross-lingual average accuracy. This ob-
servation motivates our subsequent investigations
into CKR, as we seek to understand and potentially
leverage these untapped reservoirs of knowledge.

4.2 Consistency Does Not Imply
Representation Sharing

We decouple CKC and CKR between languages,
examining both general measures across languages

(Fig. 3) and pairwise language relationships ad-
dressing their specific identities (Fig. 4). Our anal-
ysis reveals that high CKC does not necessarily
imply high CKR, and in some cases, we observe
inverse patterns.

At the general level, we observe for all models
that E[NCL] is consistently higher than E[NT'L],
indicating that models tend to exhibit CKC across
more languages than they share representations be-
tween. Interestingly, while E[NCL] values show
considerable variation across models, E[NT L] val-
ues are more uniform. The persistent gap between
E[NCL] and E[NT L] across all models highlights
that consistent answers do not necessarily translate
to shared internal representations. Moreover, we
find that models with a lower proportion of facts
known in only one language (NCL = 1) tend to
have a higher proportion of facts represented in
only one language (NT'L = 1) as shown in Fig. 3.

At the pairwise language level, we find differ-
ences between CKC and CKR patterns. For in-
stance, most models (except Qwen) exhibit a high
degree of CKC among low-resource languages with
different scripts (Chinese, Japanese, Hebrew, Ara-
bic). However, when examining CKR, we find
limited evidence of shared encoding between these
languages. Conversely, we observe a higher de-
gree of shared representation among Cyrillic lan-
guages compared to the shared representation be-
tween Cyrillic and Latin languages. This is despite
the fact that CKC scores show an opposite trend,
with higher CKC between Cyrillic and Latin lan-
guages than among Cyrillic languages themselves.

4.3 The Key Role of the Language Script

Our analysis provides quantifiable measures of
CKR in LLMs. Following previous work (Qi et al.,
2023a; Beniwal et al., 2024), our study highlights
the importance of the script of a language for mul-
tilingual knowledge. We observe that the pairwise
S R measure is relatively consistent across models,
despite their varying language support.

We find that languages within the same script
family exhibit the highest degree of CKR across all
models. As shown in Fig. 4, we observe a script-
based grouping in both CKC and CKR likely high-
lighting a tokenization induced bias (Singh et al.,
2019). Notably, we observe strong CKR between
languages with Latin scripts (English, French, Ital-
ian, Spanish) and between languages with Cyrillic
scripts (Russian, Ukrainian, Bulgarian). For De-
vanagari script languages (Hindi, Bengali) we ob-
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relationship between knowledge CKC and CKR.

serve relatively high CKR for models that perform
well on these languages (Bloom, Mistral).

While most CKR occurs among languages that
use the same script, there is still some knowledge
transfer between languages with different scripts.
This cross-script transfer is particularly evident be-
tween Cyrillic and Latin script languages across
various models. Additionally, in specific cases,
such as with the BLOOM model, we observe a
moderate degree of CKR between seemingly un-
related language pairs, e.g., 28% from Italian to
Hindi.

Notably, these relations between language
scripts are sometimes asymmetrical. For exam-
ple, knowledge in Cyrillic script languages implies
a higher probability (approximately 40-60%) of
knowing the same facts in Latin script languages.
However, the reverse relation is weaker, with only
about 10-20% probability of Cyrillic knowledge
given Latin script knowledge. A similar asymmet-
rical relation appears across models suggesting a
stronger transfer of knowledge from Cyrillic to
Latin. We hypothesize that the dominance of Latin
script languages, especially English, in the train-
ing data leads to more robust fact representations
in Latin scripts, facilitating easier transfer from
Cyrillic to Latin than vice versa.

4.4 Impact of Model Design Languages

How does a model’s designed language support
affect its CKR and CKC patterns? Although the
patterns of CKR are relatively similar across mod-
els supporting different language sets, our analysis
reveals some nuanced differences.

The multilingual BLOOM model demonstrates

the highest pairwise average of language pairwise
CKC (36%) and CKR (8.4%) across different script
pairs. As shown in Fig. 4, BLOOM exhibits no-
table transfer between seemingly unrelated lan-
guage pairs. These cross-script patterns validate
BLOOM’s design as a multilingual model, empha-
sizing its cross-lingual relationships rather than its
overall low accuracy performance.

We find that the bilingual English-Chinese Qwen
model is showing relatively high overall accuracy
in Chinese. However, this Chinese knowledge re-
mains largely distinct from English both in terms
of language pairwise CKC and CKR Fig. 4. This
pattern validates Qwen’s design as a bilingual
model, emphasizing its language-specific capabil-
ities rather than cross-script knowledge sharing.
Surprisingly, when examining the global shared
representation, Qwen exhibits a higher number of
4-lingual representations sharing (NTL = 4) from
uniquely represented facts. Although Qwen lacks
cross-script knowledge sharing, it developed some
degree of multilingual representation, particularly
within script families.

Monolingual English models (Mistral, LLaMA)
exhibit a unique pattern. We discover an anoma-
lous peak in the results for facts known and rep-
resented in exactly four languages (Fig. 3), cor-
responding primarily to the four Latin script lan-
guages in our dataset. This highlights the strong
association between script similarity and knowl-
edge sharing even in ostensibly monolingual mod-
els. Surprisingly, Mistral demonstrates the highest
E[NCL], E[NTL] and average of language pair-
wise CKC (54.7%) and CKR (37.6%) within script
families, despite being designed as a monolingual
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Figure 4: The pairwise relationships of factual knowledge across languages for four language models, with all
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Languages are color-coded by script family.

English model. This result highlights how Mis-
tral’s strong English foundation naturally extends
to other Latin script languages, underscoring the
impact of script similarity on cross-lingual knowl-
edge representation even in monolingual models.

4.5 Language Extended LMs

How does additional pretraining on both English
and an extended language (EL) impact cross-
lingual CKC and shared representation in initially
monolingual models? Analysis of chinese-llama-
2-7b and he-mistral-7b reveals a similar trade-off:



[ [Model[EL Acc/Rel[En Acc/Rel] EL —en [ en — EL |

C [zhEL[I0( Y 5 (29%]) | 12 (80%1) |22 ( )
C [he EL|18¢( Y10 (32%)) | 13 (37%1) |18 ( )
SR[zh EL |96 ( Y 8T (96%1) ] 2 ( Y140 )
SR[he EL |90 ( Y[ 83 (90%1) |10 ( 6 )

Table 1: CKC and CKR in extended LLMs compared
to their base models. EL: Extended Language, Acc:
Accuracy, and Rel: Reliability.

while gaining substantial knowledge in EL, models
sacrifice much of their original English expertise.
These extensions reshape cross-lingual knowledge
distribution but fall short of fully bridging the gap
between disparate writing systems.

As shown in Table 1, both models exhibit in-
creased accuracy in the extended language (EL)
coupled with decreased English accuracy. CKC
measures paint a nuanced picture: models acquire
extensive new knowledge in EL, largely unknown
in English, yet this new EL knowledge covers more
of English knowledge. Shared representation met-
rics underscore this asymmetry. Despite increased
bidirectional knowledge transfer between English
and EL, transfer remains stubbornly low. This
suggests that even with targeted pretraining, mod-
els struggle to forge robust representations sharing
across linguistically distant languages.

For analysis of how different relation types affect
CKR, see Appendix D.

5 Related Work

Cross-lingual Knowledge Consistency. While
monolingual knowledge consistency has been stud-
ied often in LMs (Elazar et al., 2021; Mizrahi et al.,
2024), limited work has been done on cross-lingual
knowledge consistency. Qi et al. (2023b) proposed
a cross-lingual consistency metric named RankC
to measure similarity across multiple candidate an-
swers, whether correct or incorrect. Our focus
on correct answers allows a simpler assessment
without being limited to pairwise language compar-
isons.

Cross-lingual Knowledge Representation Shar-
ing. Previous studies explored this angle through
different approaches. Some works studied param-
eter sharing across languages by analyzing neu-
ron activation/deactivation when evaluating knowl-
edge in different languages (Libovicky et al., 2020;
Zhao et al., 2024b; Chen et al., 2024; Tang et al.,
2024; Kojima et al., 2024). Enhancing language-
independent neurons resulted in better multilingual

abilities in a specific language without compromis-
ing others. Other works investigated the knowledge
related to the training data and identified the lan-
guage source of the acquired data (Choenni et al.,
2023; Zhao et al., 2024a), providing evidence that
knowledge from training data in one language can
benefit the model in other languages. Another line
of work analyzed how inputs in different languages
affect the activation patterns, showing that seman-
tically equivalent content in different languages
tends to produce similar activation patterns (Singh
et al., 2019; Libovicky et al., 2020; Chang et al.,
2022).

These works pointed to a connection between
knowledge in different languages. However, they
do not yield an assessment of the amount of shared
knowledge. While passive analysis can take as
far as measuring the similarity between languages,
active modification tools can also suggest a clear
causal relation between the knowledge representa-
tion in different languages.

Multilingual Knowledge Editing. Previous
work on multilingual knowledge editing (Si et al.,
2024; Xu et al., 2022; Wei et al., 2024; Wang et al.,
2023a) primarily focused on comparing and im-
proving editing methods’ performance in multilin-
gual settings. Our approach is different. We use
these editing tools as analytical tools to understand
representation sharing across languages and across
models with different multilingual configurations.

6 Conclusion

This work investigated the relationship between
cross-lingual knowledge consistency and represen-
tation sharing in LLMs. Our findings reveal that
high consistency across languages does not neces-
sarily imply shared internal representations, par-
ticularly for languages with different scripts. We
introduced a novel methodology and dataset for
quantifying these phenomena, providing a more nu-
anced understanding of how LLMs represent and
retrieve factual knowledge. The significant dis-
parity we observed in factual knowledge retrieval
across languages, coupled with the potential for
substantial performance improvements if knowl-
edge could be fully shared, underscores the im-
portance of developing more effective multilingual
knowledge representations. We expect that our in-
sights will guide the development of more efficient
and equitable multilingual models, ultimately en-
hancing their performance across all languages.



Limitations

Our main limitation lies in the constraints imposed
by our chosen editing methods and their focus on
specific model components. By primarily target-
ing middle layers associated with factual knowl-
edge storage, our analysis may have overlooked
important cross-lingual interactions occurring else-
where in the model architecture. Our reliance on
specific editing techniques (ROME, MEMIT, and
Finetuning) may not capture the full spectrum of
knowledge representation and modification within
the model. There might be multiple pathways to
change the output in a specific language, poten-
tially exhibiting different cross-lingual generaliza-
tion patterns than those we observed.

Our analysis focused exclusively on decoder-
only language models with 7B parameters, lim-
iting the generalizability of our findings across
different architectures and sizes. Similarly, while
our CLIKE dataset covers a diverse range of lan-
guages and relations, it may not fully represent the
breadth of factual knowledge or linguistic phenom-
ena. These constraints in both model selection and
dataset composition could influence the observed
patterns of cross-lingual representation.
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A Native Speaker Instruction

Dear <Native Speaker>,

We are reaching out to you for assistance in an important project that aims to improve the abil-
ity of Artificial Intelligence (Al) to understand and generate text in your native language. Your skills and
knowledge as a native speaker are crucial to the success of this project.

Our research team has created a collection of fill-in-the-blank sentences and templates in multiple
languages, including yours. These sentences will be used to evaluate the knowledge and understanding of
Al language models. To ensure the accuracy and effectiveness of our collection, we need your help in
verifying the grammatical correctness of the sentences and templates we have created.

Attached, you will find a list of approximately 60 simple sentences and sentence templates and templates
that cover various relationships between subjects and objects in your native language. The task should
take no more than 15-20 minutes to complete. Your task is to review each sentence and template and
determine whether they are grammatically correct. If you find any grammatical errors, please provide a
corrected version of the template. Additionally, if you wish, you may provide an optional explanation in
English of what was wrong with the original template.

Example:

Relation: Birth City, Subject: Wolfgang Amadeus Mozart, and Object: Salzburg

Original template:

"[subj] birthplace the city [obj]" -> "Wolfgang Amadeus Mozart birthplace the city Salzburg"

Fixed template:

"[subj]’s birthplace is the city of [obj]" -> "Wolfgang Amadeus Mozart’s birthplace is the city of Salzburg"
Explanation:

The original template is missing the verb "is" and the preposition "of" to form a grammatically correct
sentence.

When fixing the templates, please keep in mind the following guidelines:

1. Be explicit about the relationship to avoid ambiguity. For example, given the information (Bach,
Birth Year, 1685) and the template "[subj] born in [obj]", the AI might complete the prompt "Bach
was born in" with the object "Leipzig" (his birth city) or "31 March" (his birth date) rather than the
year "1685". Therefore, a good template should contain words that explicitly describe the relationship.
The template "Bach was born in the year [obj]" will likely output "1685" since the word "year"
appeared in the sentence.

2. For each relationship, we have provided three different prompt paraphrases that are supposed to be
different from one another.

3. The subject must always appear before the object.
4. The last word of the prompt template should be the object.

Please note that the sentences do not necessarily need to sound natural or be well-written. Our primary
focus is on ensuring that they are grammatically correct. However, if you have suggestions on how to
make the sentences sound more natural without changing the core structure, feel free to include them in
your feedback.

Your contribution to this project is valuable and will help us create a reliable collection of sentences for
advancing Al’s ability to understand and generate text in your language. If you have any questions or
concerns about the project or your role in it, please don’t hesitate to reach out to us.

Thank you for your participation in this project. We look forward to receiving your feedback.

Best regards,
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Figure 5: Left: histogram of number of examples for
each language, right: histogram of number of examples
for each relation type.

{tid': 11",
"subj': {'label': {'it': 'Manto Mavrogenous', 'ar': 'wsisss;,ils si5le', 'PU': 'MaHTo MaBporeHyc', 'bn': 'WIB! Sre@GIA!
'gid': 'Q269970',
'origin': 'it',
'gender': 'f'},
‘rel': {'label': 'birth_city',
'qid': 'P19'},
'obj_true': {'gid': 'Q546',
"label': {'it': 'Trieste', 'ar': ' i...,3', 'ru': 'Tpuect', 'bn': 'famm', 'uk': 'Tpiect', 'he': 'nuox'au’
"prompt': {'it': 'Manto Mavrogenous & nata nella site di [obj]', 'ar': '[obj] Liois .3 weiszs ile sisls ouls', 'Pu':s !
'paraphrase_prompts': {'it': ['La cittd natale di Manto Mavrogenous & [obj]', 'Il luogo di nascita di Manto Mavrogenou
"target_true': {'en': 'Beijing', 'he': "ai1"'i--2", 'fr': 'Pékin', 'ar': ',u<.', 'ru': 'MexkunH', 'it': 'Pechino’, 'es':

Figure 6: A Dataset Sample Example
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D On CKR Features
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Figure 7: Distribution of shared representation facts
across different relation types.

Figure 7 illustrates that relations with fewer pos-
sible categories generally exhibit higher CKR. This
trend is evident for relations such as countries, in-
struments, continents, and company developers,
with sports type and religion as notable exceptions.
Numerical relations like birth year and death year
also demonstrate strong transfer capabilities. In
contrast, relations involving names (e.g., book au-
thors, movie directors, discoverers) and those with
numerous categories (e.g., cities) show lower trans-
fer rates.
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