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ABSTRACT

An agent’s strategy can be considered as a subset of action spaces, special-
ized in certain goals. This paper introduces a coordinated Strategy Identifica-
tion Multi-Agent reinforcement learning (MARL) with episodic memory, called
SIMA. SIMA derives a new temporal difference (TD) target to increase the sample
efficiency. The efficiency is achived by keeping the best returns and corresponding
to the best joint strategies for given states. This TD target with an additive strategy
mixer automatically switches between an episodic control and a conventional Q-
learning according to the existence of similar memories. In addition, each agent
needs to behave similarly according to its strategy trajectory for coordinated be-
haviors among agents and coherent evaluation of a group’s joint strategies. To this
end, SIMA introduces a theoretical regularization for action policies to maximize
the mutual information between an agent’s trajectory and its specified strategy.
We demonstrate its significant performance improvement on the StarCraft Multi-
Agent Challenge benchmark.

1 INTRODUCTION

Recently, cooperative multi-agent reinforcement learning (MARL) has drawn increasing interest,
and cooperative MARL has been adopted to many applications including traffic control (Wiering
et al., 2000), resource allocation (Dandanov et al., 2017), robot path planning (Wang et al., 2020a),
and production systems (Dittrich & Fohlmeister, 2020), etc. In spite of these successful applications,
cooperative MARL still has challenges in learning proper coordination among multiple agents.

The framework of centralized training and decentralized execution (CTDE) (Oliehoek et al., 2008;
Gupta et al., 2017) is proposed to overcome the partial observability and non-stationarity due to
simultaneous learning of other agents in MARL. CTDE enables a decentralized execution while
fully utilizing a global information during a centralized training, so that the agents learn their policies
efficiently by accessing the global information at the training stage. Especially, value factorization
approaches (Sunehag et al., 2017; Rashid et al., 2018; Son et al., 2019; Wang et al., 2020b) assume
the consistency between the greedy selection of individual agent and the joint greedy action selection
as a group, and these assumption is generally accepted by achieving the state-of-the-art performance
on difficulty multi-agent tasks, such as StarCraft II Multi-agent Challenge (SMAC) (Samvelyan
et al., 2019). However, this assumption on consistent greedy selection tends to limit exploration
during training, and subsequently, the trained models fall into local optima particularly in hard tasks.
This limitation on exploration becomes detrimental when agents need to search through a large joint
action-observation space.Hence, researchers provided committed exploration mechanism under this
CTDE training practice (Mahajan et al., 2019; Wang et al., 2019; Liu et al., 2021).

Independent to devising mechanisms for explorations, another approach resolves the problem by
decomposing the task into sub-tasks (Ghosh et al., 2018; Wang et al., 2021; Sun et al., 2020), so the
large search space can be limited in the training. The task decomposition is effective in cooperative
setting with clear separations of strategies among agents because the learning can be separated, i.e.
across the strategy selection and the action policy learning in a hierarchical setting. Here, Strategy 1

can be viewed as a subset of action spaces, where each strategy is specialized in a certain function-
ality for an agent’s performance. To dynamically determine a proper strategy of each agent, (Wang

1A strategy can be identically considered as a decomposed action space, a sub-task or a role. In our context,
we use strategy as a representative terminology.
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et al., 2021) adopts a hierarchical framework, where an upper-tier network selects an agent’s strat-
egy; and where a lower-tier network chooses agent’s actions conditioned on a designated strategy.
This hierarchical separation of learning objectives creates a learning hurdle because such separa-
tion will interacting two convergence trajectories, not a unified one(Mahajan et al., 2019). This
hurdle becomes materialized as either longer convergence time or limited performances via imma-
ture parameter inference. Moreover, the learning of dual objectives becomes more complex if the
cooperative MARL does not provide a clear agent-wise credit assignment.

To solve the inefficient hierarchical learning problem in cooperative MARL, we propose an efficient
sample utilization method, a.k.a. coordinated Strategy Identification Multi-Agent reinforcement
learning (SIMA). SIMA adopts episodic control (Lin et al., 2018; Zheng et al., 2021) to expedite
the learning by increasing sample efficiency of key episodes with the best return. SIMA utilizes the
episodic memory 1) for regularizing the joint Q-learning, and 2) for explicitly evaluating agent’s
strategy selection. To this end, we decompose a common reward into individual rewards by com-
paring with the best joint strategies in the episodic memory. Then, a new temporal difference (TD)
target structure is designed to determine whether to utilize episodic control or a conventional Q-
learning, according to the existence of similar memories in the episodic buffer. In conjunction to the
new TD target, SIMA regularizes the action selection of the lower-tier network to strengthen the co-
herent behavior across agents with the same strategy. Subsequently, the problem of dual objectives
can be limited because the action policy learning becomes conditional to the strategy selection.

We evaluate SIMA on StrarCraft II micromanagement tasks (Samvelyan et al., 2019). Empirical
results demonstrate that the proposed method show the improved or comparable performance com-
pared to the state-of-the-art baseline methods. Ablation studies and qualitative analysis provide the
enablers of this strategy selection mechanism in the performance enhancement.

2 RELATED WORKS

Multi-agent Exploration Balancing exploration and exploitation in policy learning is a paramount
issue in reinforcement learning. To encourage exploration, modified count-based methods (Belle-
mare et al., 2016; Ostrovski et al., 2017; Tang et al., 2017), prediction error-based methods (Stadie
et al., 2015; Pathak et al., 2017; Burda et al., 2018; Kim et al., 2018), and information gain-based
methods (Mohamed & Jimenez Rezende, 2015; Houthooft et al., 2016) have been proposed for a
single agent reinforcement learning. In most cases, an incentive for exploration is introduced as an
intrinsic reward of a TD target in Q-learning; or such incentive is added as a regularizer for over-
all loss functions. Recently, various aforementioned methods to encourage exploration have been
adopted to the multi-agent setting (Mahajan et al., 2019; Wang et al., 2019; Jaques et al., 2019;
Mguni et al., 2021), and still the past methods have shown their effectiveness. Mahajan et al. (2019)
introduce a regularizer maximizing the mutual information between trajectories and latent variables
to learn a diverse set of behaviors. LIIR (Du et al., 2019) learns a parameterized individual in-
trinsic reward function by maximizing a centralized critic. Chenghao et al. (2021) propose a novel
information-theoretical objective to maximize the mutual information between agents’ identities and
trajectories to encourage diverse individualized behaviors. Our model, SIMA, proposes a theoretic
regularization maximizing the mutual information between an agent’s trajectory and its designated
strategy as an incentive to encourage coordinated behavior.

Episodic Control Episodic control stores the best return of either given state or state-action pair to
efficiently estimate its values or Q-values. This estimation on true values requires sample efficiency,
given that the sample generation is often limited by simulation executions or real-world observa-
tions, (Blundell et al., 2016; Pritzel et al., 2017; Lin et al., 2018). NEC (Pritzel et al., 2017) uses a
differentiable neural dictionary as an episodic memory to estimate the action value by the weighted
sum of the values in the memory. EMDQN (Lin et al., 2018) utilizes a fixed random matrix to gen-
erate a state representation, which is used as a key to link between the state representation and the
highest return of the state in the episodic memory. EMC (Zheng et al., 2021) extends the approach of
EMDQN to a deep MARL with curiosity-driven exploration incentives. EMC shows performance
improvement via episodic control in MARL tasks, but EMC requires a hyperparameter tuning to
determine the level of importance of the episodic memory based-target during training, according to
the difficulties of the tasks. The proposed model, SIMA, relaxes this hyperparameter selection by
adaptively switching TD targets from either conventional Q-learning or episodic control.
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Hierarchical MARL Hierarchical reinforcement learning is a long-standing subject in reinforce-
ment learning to address the sparse reward problem (Sutton & Barto, 2018). The hierarchical RL
has been also widely applied to MARL problems (Lee et al., 2019; Yang et al., 2019; Jin & Ma,
2018). Tang et al. (2018) propose a temporal abstraction to decompose the problem into a hier-
archy of different time scales, encouraging agents to learn high-level coordination based on the
independent skills learned at the low level. Mahajan et al. (2019) present a hierarchical structure,
which creates a mixture of value and policy-based methods by introducing a latent space. Vezhn-
evets et al. (2020) presents a framework in which a top-level policy chooses strategy responses to
opponents, yielding an efficient exploration of the strategy space. RODE (Wang et al., 2021) has a
hierarchical structure 1) a role selector assigns a role to each agent every specific timestep, and 2)
an agent explores to learn the policy conditioned on an assigned role. In these line of hierarchical
RL, we have observed learning inefficiency originating from a differentiated RL components. Thus,
SIMA presents a sample efficient method to the hierarchical framework. In addition, we observed
another problem of learning instability due to differentiated RL components. To resolve this insta-
bility, SIMA presents a novel theoretic regularization to encourage correlation between strategy and
action.

3 PRELIMINARY

Before detailed explanation on SIMA, we present the formulation on the multi-agent reinforcement
learning, and the definition on Strategy in our context.

Decentralized POMDP A fully cooperative multi-agent task can be formalized by following the
Decentralized Partially Observable Markov Decision Process (Dec-POMDP) Oliehoek & Amato
(2016), G = ⟨I, S,A, P,R,Ω, O, n, γ⟩, where I is the finite set of n agents; s ∈ S is the true
state of environment; ai ∈ A is the i-th agent’s action forming the joint action a ∈ An; P (s′|s,a)
is the state transition function; R is a reward function r = R(s,a, s′) ∈ R; Ω is the observation
space; O is the observation function generating an observation for each agent oi ∈ Ω; and finally,
γ ∈ [0, 1) is a discount factor. At each timestep, an agent has its own local observation oi, and the
agent selects an action ai ∈ A. The current state s and the joint action of all agents a lead to a next
state s′ according to P (s′|s,a). The joint variable of s, a, and s′ will determine the identical reward
r across the multi-agent group. To overcome the partial observability in CTDE, each agent utilizes
a local action-observation history τi ∈ T ≡ (Ω × A) for its policy πi(a|τi) (Hausknecht & Stone,
2015). Also, we define the group trajectory as τ =< τ1, ..., τn >.

Strategy and Strategy Selector The fundamental gain of SIMA originates from the utilization of
episodic memory in selecting an agent’s strategy. Hence, SIMA requires a formal definition on
Strategy to formulate the concept and its gain from selections.

Definition 1 (Strategy) Given a fully cooperative multi-agent task specified as Dec-POMDP, let
z ∈ Z be a strategy in a set of strategies Z. The strategy specifies a strategy-action space Az ⊂ A
limiting available actions from the agent’s policy, πz : T × Az → [0, 1], where ∪zAz = A. It is
feasible to have overlaps in action spaces across strategies, such as |Azj ∩Azk | ≥ 0 for zj ̸= zk.

Agents adopting the same strategy z share the policy πz with a reduced action space, and such agents
share their experience during training, leading to a faster policy learning. To determine a proper
strategy-action space, Az; we start from a framework, RODE, presented in Wang et al. (2021), which
clusters actions according to an action’s influence toward rewards and observation changes. First,
each action, ai, is embedded through an action encoder; so the corresponding representation vector
is learned as hai . Second, the representation vectors are clustered by K-means algorithm. Appendix
D provides details on strategy-action space learning, corresponding strategy representation hz

2 in
our setting, and the structure of strategy selector. We denote a strategy selector as Qs shared by all
agents, and we simplify a i-th agent’s result value of Eq.25 as Qs

i . Let zi,t be the agent i’s strategy
at timestep t, then the joint strategy zjt,t is defined as zjt,t = [zi,t]

n
i=1.

2We abuse the notation of hz without indicating the index of zi ∈ Z, and we only utilize the subscript of z
to emphasize the agent’s strategy selection, i.e., zi means an instance of z being selected as a strategy of agent
i.
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4 METHODOLOGY

This section presents SIMA (see Figure 1), a novel framework that finds coordinated strategies
among agents with episodic memory. SIMA adopts a hierarchical learning framework for a strategy
selector and an action policy. This hierarchical learning framework requires following innovations
in the learning formulation.

Figure 1: Overview of SIMA framework

First, we need a new learning objective because our structure consists of the strategy selection and
the action policy. Potentially, we are increasing the model complexity with introduced structure,
so the sample efficiency needs to be improved. Therefore, for learning of a strategy selector, we
derive a new temporal difference (TD) target for individual agents by utilizing episodic memory
to boost the sample efficiency on multi-agent Q-learning. This TD target with a strategy mixer
automatically switches between an episodic control and a conventional Q-learning according to
the existence of similar memories. In addition, SIMA adopts a prediction-based intrinsic reward
to encourage exploration on strategy selection to have a better trade-off between exploration and
exploitation.

Second, SIMA designs a regularization to emphasize the hierarchical coordination. Once an agent
selects a strategy, SIMA asks the agent to behave given the strategy boundary by limiting the action
policy exploration. Meanwhile, SIMA promotes the strategy exploration by agents, so the explo-
ration could be delegated to the strategy selector. Theoretic regularization is activated only after
strategy is well defined via learning of strategy action representation as illustrated in Fig. 1.

4.1 STRATEGY LEARNING WITH EPISODIC MEMORY

The hierarchical framework simultaneously trains the strategy selector Qs, being shared across
agents; and an individual agent’s action policy Qi, being shared by the agents with the same strategy.
This interaction between the agent group and the individual agents will require a long convergence
time to find a proper joint strategy and an individual policy of agents.

Construction of Episodic Buffer To expedite learning by improving sample efficiency, SIMA
memorizes H(st), which is the highest return of a given global state st in episodic buffer DE in
Fig. 1. Besides of H , SIMA stores a joint strategy, z∗jt,t = [z∗i,t]

n
i=1, by paring it with H .
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With a state embedding function fϕ(s) : S → Rk utilizing a fixed random matrix as a representa-
tion function to project states into a k-dimensional vector, a representation of global state st becomes
xt = fϕ(st). Here, xt is used as a key to the highest return, H(xt), instead of st; and the corre-
sponding best joint strategy z∗jt,t. Similar to the episodic control in Lin et al. (2018), we update
H(xt) with the following rules.

H(xt) =

{
max{H(fϕ(ŝt)), Rt(st, zjt,t)}, if ||x̂t − xt|| < δ

Rt(st, zjt,t), otherwise (1)

where Rt(st, zjt,t) is the return of a given (st, zjt,t); and x̂t = fϕ(ŝt) is xt = fϕ(st)’s nearest
neighbor in DE . Note that our episodic memory keeps the joint strategies instead of joint actions. If
there is no similar projected state x̂t, such that ||x̂t − xt|| < δ in the memory; then H(xt) keeps the
current Rt(st, zjt,t).

Converting Group Reward into Individual Reward From the similar memories in the episodic
memory between the current and next states, the corresponding best reward can be computed as

rs(ŝt, z
∗
jt,t) = H(fϕ(ŝt))− γH(fϕ(ŝt+c)). (2)

Here, rst = Σc−1
t′=0rt+t′ is a reward for a given strategy choice when an assigned strategy is main-

tained for c timesteps; and rt is a common external reward from the environment without distinctions
on either groups or agents. By comparing the current strategy [zi,t]

n
i=1 and the best strategy [z∗i,t]

n
i=1

in DE for a given st, we can distinguish which agent’s strategy results in a better or worse reward.

Additionally, rt needs to be decomposed for group strategy. Therefore, SIMA generates r̂si for
an individual agent. If the current strategic reward is rs(st, zjt,t) = Σc−1

t′=0r(st+t′ , zjt,t), then we
can derive the reward difference compared to the best reward of the current state from the episodic
memory as

∆rs(st, zjt,t) = rs(st, zjt,t)− rs(ŝt, z
∗
jt,t). (3)

Here, computing rs(ŝt, z
∗
jt,t) is possible only if both ŝt and ŝt+c exist. After that, the credit or the

penalty of ∆rs(st, zjt,t) is only given to agents whose current strategy zi,t is different from the best
one z∗i,t. To do so, we define a coefficient vi to check whether an agent i’s strategy has changed or
not, by representing the change detection via the Dirac delta function, δ.

vi = 1− δ (zi,t, ẑi,t) (4)

With this coefficient for the explicit credit assignment, we can derive an individual reward r̂si as
follows:

r̂si (st, zjt,t) =


rs(ŝt,z

∗
jt,t)

n + vi∑
ivi

∆rs(st, zjt,t), if
∑

ivi ≥ 1 and ηt = 1
rs(ŝt,z

∗
jt,t)

n , elif
∑

ivi = 0 and ηt = 1
rs(st,zjt,t)

n , otherwise

(5)

where η = 1 if both ŝt and ŝt+c exist, η = 0 otherwise.

Formulating TD-Target with Individual Reward With the individual reward function r̂si (st, zjt,t),
we can derive a TD-target as yi = r̂si (st, zjt,t)+γmaxz′Q̄s

i (τi,t+1, z
′). Here, Q̄s is a target network

of the shared strategy selector. By applying VDN mixer (Sunehag et al., 2017) for individual TD-
targets, we can derive a following TD-target for a joint strategy Qs

tot function.

ytot =

n∑
i

r̂si (st, zjt,t) + γmax

(
n∑
i

maxz′Q̄s
i (τi,t+c, z

′), Q∗
EC

)
(6)

Note that we set Q∗
EC = H(fϕ(ŝt+c)) only if there exists ŝt+c for a given st+c in the episodic

memory and zjt,t = z∗jt,t. Otherwise, we set Q∗
EC = Σn

i maxz′Q̄s
i (τi,t+c, z

′) by default. With the
above TD target structure, Eq. 7 is the derived TD target for the strategy selector in SIMA.

ytot =

 rs(st, zjt,t) + γ
n∑
i

maxz′Q̄s
i (τi,t+c, z

′), if zjt,t ̸= z∗jt,t

rs(ŝt, z
∗
jt,t) + γH(fϕ(ŝt+c)), otherwise

(7)
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Here, ytot becomes identical to a conventional TD target of Q-learning with VDN mixer when
zjt,t ̸= z∗jt,t. On the other hand, when Σn

i maxz′Q̄s
i (τi,t+c, z

′) ≤ H(ϕ(ŝt+c)) and zjt,t = z∗jt,t,
ytot becomes the TD-target of episodic control. The proposed TD-target structure (ytot) stabilizes
the learning of a strategy selector by maintaining its TD target value while action policy is being
explored in the sample episode. In addition, with this target structure, we can automatically utilize
an episodic control without introducing an additional hyperparameter to balance between sample and
episodic TD errors. The final form of a loss function Ls for learning the strategy selector becomes

Ls(θτ , θemb) = Eτ,a,z,r,τ ′∈D

(ytot − N∑
i

Qs
i (τi,t, zi,t)

)2
 . (8)

The TD-target presented in Eq.6, SIMA expedites and stabilizes the learning of a strategy selector
when it is necessary as we show in Proposition 1. Appendix B presents the proof of Proposition 1.

Proposition 1. Let ∇θsL̃s be the optimal gradient of the loss in the entire training experience,
toward true strategy value Qs

tot(st, z
∗
jt) with given st. Additionally, θs is a set of parameters from

the strategy selector. Assuming 1) zjt,t = z∗jt,t; and 2) ∃ŝt and ∃ŝt+1 given st and st+1; the
proposed TD-target results in ∇θsLs = ∇θsL̃s regardless of action policy π. On the other hand, a
conventional TD-target deviates from optimal gradient, ∇θsLs ̸= ∇θsL̃s.

In addition, we implements a curiosity-driven incentive rexp to balance between exploitation and
exploration of the training on strategy selector. Appendix E provides the implementation details of
rexp.

4.2 ENCOURAGING A COORDINATED BEHAVIOR

Figure 2: Coordinated trajecto-
ries with designated strategies

The previous section derives a learning method for a strategy se-
lector Qs, which only utilizes a local information when selecting
its strategy. During the learning of Qs, the value of an individual
strategy Qs

i is evaluated assuming that other agents may behave
in coordination according to their designated strategies. In other
words, the evaluation of strategies becomes more accurate when
agents act coherently with their given strategy trajectory z0:T . To
enforce this coherent agent behaviors with the same strategy, we
introduce a novel theoretic regularization on policy learning to
maximize the mutual information between the agent’s trajectory
and its designated strategy. We illustrate the concept of coordi-
nated trajectory in Fig. 2, which depicts two agents’ trajectories
(τi,0:T , τj,0:T ) with given strategy trajectories (zi,0:T , zj,0:T ).

Let us consider the case of the agent i3. The mutual information of the agent’s trajectory and its
strategy trajectory can be expressed as

Iπ
s/π(τT ; z0:T ) = Ez0:T∼πs,τT∼π[log

p(τT |z0:T )
p(τT )

]

=

T−1∑
t=0

Ezt∼πs,τt∼π

[
log

p(at|τt, zt)
p(at|τt)

]
,

(9)

where p(τT ) = p(o0)
∏T−1

t=0 p(at|τt)p(ot+1|τt, at); πs is a policy on strategy selection; and π is a
joint action policy across all agents. Details of derivation are deferred to Appendix A.

Here p(at|τt, zt) is the distribution determined by ε-greedy policy, and thus we adopt Boltzmann
softmax of local value Q(·; zt) to replace p(at|τt, zt). Then, the lower bound of the summand of
Eq.9 is derived as follows:

Ezt∼πs,τt∼π[log
p(at|τt, zt)
p(at|τt)

] ≥ Ezt∼πs,τt∼π[log
softmax( 1

β1
Q(at|τt, zt))

p(at|τt)
], (10)

3We will remove the subscript i for simplicity in apparent local variables of agent i.
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where β1 is a control parameter. Note that since DKL(p(at|τt, zt)||softmax( 1
β1
Q(at|τt, zt))) ≥ 0,

the inequality holds. Hence, an introduced intrinsic reward at each step can be written as:

rI = Ezt∼πs,τt∼π[DKL(softmax(
1

β1
Q(at|τt, zt))||p(at|τt))]. (11)

We can compute softmax( 1
β1
Q(at|τt, zt)) via local Q function, but p(at|τt) needs to be computed,

as well. Similar to local Q, we can approximate p(z′|τt) via the strategy selector Qs. Thus, the
denominator of Eq.11 can be further expanded as

p(at|τt) =
∑
z′∈Z

p(z′|τt)p(at|τt, z′) ≃
∑
z′∈Z

softmax(
1

β2
Qs(z′|τt))p(at|τt, z′), (12)

where β2 is an additional control parameter. Again, since p(at|τt, z′) can be approximated by
softmax( 1

β1
Q(at|τt, z′)), p(at|τt) can be expressed as

p(at|τt) =
∑
z′∈Z

p(z′|τt)p(at|τt, z′)

≃
∑
z′∈Z

softmax(
1

β2
Qs(z′|τt)) · softmax(

1

β1
Q(at|τt, z′)).

(13)

Hence, for a given trajectory τt, the intrinsic reward is determined as follows:

rI = Ezt∼πs

[
DKL

(
softmax(

1

β1
Q(·|τt, zt))||

∑
z′∈Z

softmax(
1

β2
Qs(z′|τt)) · softmax(

1

β1
Q(·|τt, z′)

)]
.

(14)

For the action policy Q, again we use a GRU to encode a local action-observation history τ into a
vector hτ . The local Qi of the agent i is computed similar to Eq.25 in Appendix D with actions
instead of a strategy. Subsequently, when generating the joint action-value function Qtot, we adopt
the mixer presented in QPLEX (Wang et al., 2020b), which guarantees a complete IGM condition.
The final loss function for the action policy learning is determined as

LTD(θ) =
(
r + βI r̄

I + γmaxa′Q̄tot(s
′,a′)−Qtot(s,a)

)2
, (15)

where βI is a scale factor for the intrinsic reward encouraging a coordinated behavior; θ denotes
parameters of networks related to action policy Qi and the corresponding mixer network to generate
Qtot; Q̄tot represents a target network; and r̄I = 1/n

∑n
i=1 r

I
i .

5 EXPERIMENTS

This section provides experimental results on SMAC (Samvelyan et al., 2019). The experiments
compare SIMA against notable baselines, such as, value-based MARL methods (Rashid et al., 2018;
Wang et al., 2020b), EMC adopting episodic control (Zheng et al., 2021), CDS encouraging individ-
ual diversity (Chenghao et al., 2021), and RODE, a role-based hierarchical approach, (Wang et al.,
2021). We follow the practices of RODE in learning strategy action spaces with samples obtained
during the first 50K timesteps.

5.1 PERFORMANCE ON STARCRAFT II

For a general performance evaluation, we test our methods on various maps, which require a dif-
ferent level of coordination according to the map difficulties. Winning rate is computed with 160
samples: 32 episodes for each training random seed, and 5 different random seeds. The median per-
formance with the 25-75% percentiles are presented for all figures. Especially for a fair comparison,
we set ncircle, the number of trainings per a sampled batch of 32 episodes during training, as 1 for all
baselines since some of baselines increase ncircle = 2 as a default setting in their codes. Appendix C
provides the further details of experiment settings.

Fig. 3 and Fig. 4 enumerate the performance on 1) easy and hard SMAC maps; and 2) super hard
maps, respectively. This map categorization follows the practice of (Samvelyan et al., 2019). The
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proposed model reduces the performance variance and expedites the learning in easy and hard maps
as in Fig. 3 compared to the previous hierarchical model (Wang et al., 2021). For super hard SMAC
maps presented in Fig. 4, SIMA shows best or comparable performances against baseline methods.
Moreover, SIMA achieves the best or the best-equivalent performances in all SMAC maps from the
final convergence perspective.

Figure 3: Performance comparison of SIMA against baseline algorithms on two easy SMAC maps:
1c3s5z and 2s3z, and two hard SMAC maps: 3s vs 5z and 2c vs 64zg.

Figure 4: Performance comparison of SIMA against baseline algorithms on super hard SMAC
maps.

5.2 ABLATION STUDY AND QUALITATIVE ANALYSIS

Ablation Study To understand the mechanism of SIMA by its components, we carried out ablation
studies as illustrated in Fig. 5. SIMA(Raw) is the base structure by only utilizing 1) VND for
strategy selector learning and 2) QPLEX for action policy learning. SIMA(MI) adopts a coordination
incentive presented in Eq.14 for action policy learning. SIMA(EM+MI) additionally utilizes the
loss function in Eq.8 for training on the strategy selector. SIMA(ours) contains all the proposed
components including a curiosity incentive rexp.

We identified different effects from components within SIMA through ablation studies. When strat-
egy action spaces are not distinctively decomposed, such as a task in Fig. 5.(a), the learning of
strategy selector via episodic memory becomes ineffective. On the other hand, training on the strat-
egy selector with episodic memory shows its merit for the tasks with clear decomposition of strategy
action spaces, such as a task in Fig. 5.(b).

(a) 6h vs 8z (b) 3s5z vs 3s6z

Figure 5: Ablation studies on super hard SMAC maps

Qualitative Analysis Figure 6 describes the agents’ behaviors with their designated strategies. At
timestep 7, all Zealots were assigned to a strategy including attacking enemy Zealots, while all
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Figure 6: Visualization of assigned strategy on 3s5z vs 3s6z super hard SMAC map

Figure 7: SIMA(MI): how does coordination incentive affect the performance on 3s5z vs 3s6z
super hard SMAC map. All values except for winning rate are normalized with their final values
for visibility.

Stalkers were ordered to fight against enemy Stalkers. At timestep 20, according to the strategy
change, agent #1 and agent #3 moved toward enemy Zealots to prepare the engagement with them, as
the ally Zealot attracting all enemy Zealots was about to die. As shown in right side of Fig. 6, agents
with the same strategy trajectories show almost the same action trajectories, due to the coordination
incentive. We measure the correlation coefficient between strategy trajectories zt=0:T and action
trajectories at=0:T of all agents from the 32 test samples on the 3s5z vs 3s6z super hard SMAC
map with three different fully trained models of SIMA(Raw), SIMA(MI), and SIMA(ours). The
correlation coefficient of each model is computed as rRaw = −0.15, rMI = 0.61, and rours = 0.55.
Although all of them find their own winning strategies, models with a coordination incentive show
much coordinated behaviors, according to their designated strategies.

Figure 7 illustrates the effect of coordination incentive towards the training performance. Until
training timestep 2.5mil, no winning strategy were found. However, after a coordination incentive
is given, some coordinated strategies are found, and the mean values of Qs and Q start increasing.
Finally, RL agents begin to find a winning strategy guided by the coordination incentive. This
result suggests that the coordination incentive, rI , proceeds learning under weak reward signal,
consequently leading to find a better joint policy.

6 CONCLUSION

Hierarchical framework for MARL has drawn the attention because the real-world tasks has vast
action space that should be regulated by roles and strategies. Given this hierarchical setting, SIMA
provides an efficient sample utilization in training the strategy selector and the action policy since
its structural characteristic yields instability and a decline in speed during training. Hence, we
propose a new TD learning function to reduce the reward variance on strategy selector learning
regardless of the exploration of the action policy. Finally, we introduce a new coordination incentive
by regulating the agent’s action policy to be coherent to the actions under the same strategy. Such
an incentive helps agents to find coordinated behaviors with their designated strategies and the
better joint policy as a result. We believe the proposed method can provide more insights about the
coordination in multi-agent systems.
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A INTRINSIC REWARD FOR COORDINATION

As τ0:t is not dependent on the future strategy zt+1:T , p(τT |z0:T ) can be further expanded as

p(τT |z0:T ) = p(o0|z0)
∏T−1

t=0
p(at|τt, zt)p(ot+1|τt, at, zt)

= p(o0)
∏T−1

t=0
p(at|τt, zt)p(ot+1|τt, at).

(16)

The second equality comes from the fact that for a given action at, a strategy zt at timestep t does not
affect the probability of the observation transition since the transition function of the environment
depends on at not on zt itself. Then we can write Eq.9 as follows:

Iπ
s/π(τT ; z0:T ) = Ez0:T∼πs,τT∼π[log

p(o0)
∏T−1

t=0 p(at|τt, zt)p(ot+1|τt, at)
p(o0)

∏T−1
t=0 p(at|τt)p(ot+1|τt, at)

]

= Ez0:T∼πs,τT∼π[log

∏T−1
t=0 p(at|τt, zt)∏T−1
t=0 p(at|τt)

]

= Ez0:T∼πs,τT∼π[

T−1∑
t=0

log
p(at|τt, zt)
p(at|τt)

] =

T−1∑
t=0

Ezt∼πs,τt∼π

[
log

p(at|τt, zt)
p(at|τt)

]
.

(17)

B MATHEMATICAL PROOF

In this section, we provide the omitted proof of Proposition 1. Let us begin with the definition of
some terminologies for the proof.
- Qs

tot(st, z
∗
jt,t): the optimal joint strategy-value of a given st.

- Q̃s
tot(st, z

∗
jt,t): the closest strategy-value compared to Qs

tot(st, z
∗
jt,t) within the entire training

experience.
- Q̂s

tot(st, z
∗
jt,t): the estimated strategy-value via the strategy selector.

- Q̄s
tot(st, z

∗
jt,t): the estimated strategy-value via the target network of a strategy selector.

Then, the optimal gradient of the loss is defined as

∇θsL̃s = ∇θs

(
Q̃s

tot(st, z
∗
jt,t)− Q̂s

tot(st, z
∗
jt,t)

)2
. (18)

In this proof, we denote a state-strategy value as Qs
tot(st, zjt,t) instead of Qs

tot(τt, zjt,t) for sim-
plicity, and VDN mixer is assumed for a mixer to generate Qs

tot from individual Qs
i , such that

Qs
tot =

∑n
i=1 Q

s
i .
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Proof. Let us assume that trajectory samples of c strategy interval timesteps, τt:t+c−1 =
(st, ajt,t, zjt,t, st+1, · · · , st+c−1, ajt,t+c−1, zjt,t+c−1, st+c) are attained from replay buffer D and
the corresponding samples of (ŝt, z∗jt,t, H(fϕ(st)), ŝt+c, z

∗
jt,t+c, H(fϕ(st+c)) are found in episodic

buffer DE . Q̃s
tot(st, z

∗
jt,t) can also be computed as

Q̃s
tot(st, z

∗
jt,t) = rs∗ + γQ̃s

tot(st+c, z
∗
jt,t+c). (19)

We also assume that there exists sub-optimal joint actions within the trajectory samples, i.e.,
∃ajt,t′ ∈ τt:t+c−1 such that ajt,t′ ̸= a∗jt,t′ , due to the exploration of action policy, where a∗jt,t′

is the optimal joint actions such that Q̂tot(st, a
∗
jt,t) ≥ Q̂tot(st, a

′

jt,t) for
∀a

′

jt,t ∈ Ajt. The summed

reward within the strategy interval is defined as rst
∆
=
∑c−1

t′=0 r(st+t′ , ajt,t+t′).

(1) conventional TD-loss of Q-learning
Here, we denote the gradient of loss derived from the conventional TD-target of Q-learning as ∇θsL

c
s

and corresponding TD-target as yctot. The conventional TD-target of Q-learning is derived as

yctot = rst + γmax
z
′
jt

Q̄s
tot(st+c, z

′

jt). (20)

(i) when maxz′
jt
Q̄s

tot(st+c, z
′

jt) < H(fϕ(ŝt+c))

This would be the most case of the samples from D. When the target network of a strategy selector
is smaller than H(fϕ(ŝt+c)), then maxz′

jt
Q̄s

tot(st+c, z
′

jt) ̸= Q̃s
tot(st+c, z

∗
jt,t+c) by the definition

since H(fϕ(ŝt+c)) = Q̃s
tot(st+c, z

∗
jt,t+c). This yields ∇θsL

c
s ̸= ∇θsL̃s.

(ii) when maxz′
jt
Q̄s

tot(st+c, z
′

jt) = H(fϕ(ŝt+c))

In this case, maxz′
jt
Q̄s

tot(st+c, z
′

jt) becomes Q̃s
tot(st+c, z

∗
jt,t+c). However, due to the sub-optimal

joint action a
′

jt,t ∈ τt:t+c−1, rs is less than (rs)∗, which yields ∇θsL
c
s ̸= ∇θsL̃s as a result.

(2) the proposed TD-loss of Q-learning
The proposed TD-target is defined as

ytot = rs∗ + γmax
(
maxz′

jt
Q̄s

tot(st+c, z
′

jt), H(fϕ(ŝt+c))
)
. (21)

When zjt,t = z∗jt,t, maxz′
jt
Q̄s

tot(st+c, z
′

jt) ≤ H(fϕ(ŝt+c)) is always satisfied by the update rule

of H(fϕ(ŝt+c)). In addition,
∑n

i r̂
s
i becomes rs(ŝt, z

∗
jt,t) by the definition of Eq.5. As a result,∑n

i r̂
s
i = rs∗, since rs∗ = H(fϕ(ŝt))− γH(fϕ(ŝt+c)). Then, the the proposed TD-target becomes

ytot =
n∑
i

r̂si + γmax
(
maxz′

jt
Q̄s

tot(st+c, z
′

jt), H(fϕ(ŝt+c))
)

= rs∗ + γH(fϕ(ŝt+c)) = rs∗ + γQ̃tot(st+c, z
∗
jt,t+c)

= Q̃tot(st, z
∗
jt),

(22)

which yields ∇θsLs = ∇θsL̃s.

When adopting episodic control for TD-target generation, it needs to be cautious whether the link
between ŝt and ŝt+c is valid or not. For example, the value of Rt+c(st+c, z

∗
jt,t+c) = H(fϕ(ŝt+c))

is used for all ŝt+c satisfying ||fϕ(ŝt+c) − fϕ(st+c)||2 < δ. Invalid link can refer the case of
H(fϕ(ŝt+c)) > H(fϕ(ŝt)), which implies minus rewards within [t, t + c]. Thus, we discard the
an obvious-invalid link by checking rs∗ < 0 in practice, when only a positive reward is obtainable
from the environment.

In SIMA, a different strategy allows different action spaces on action policy. Thus, when zjt,t ̸= z∗jt,t
and ∃ŝt, ŝt+c, referring to the episodic memory can sample an invalid link. For example, ajt,t with a
given zjt,t cannot generate a reward due to decomposed action spaces while z∗jt,t can, or a transition
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from st to ŝt+c can be infeasible at all. Then, Q̂tot(st, zjt,t) → rs∗ + γH(fϕ(ŝt+c)) is invalid and
may cause learning instability.

Alternative approach of EMC (Zheng et al., 2021) where rs(st, zjt,t) + γH(fϕ(ŝt+c)) is used for
a TD-target can also be vulnerable to this invalid link especially when it is adopted to hierarchical
structure. Even though it refers to a valid link, its TD-target can result in a sub-optimal gradient
∇θsLs when zjt,t = z∗jt,t as shown in Proposition 1.

C EXPERIMENT DETAILS

For action policy learning, we utilize a QPLEX mixing network with its default hyperparemeters
from the original paper. Also, we set episodic memory capacity as 1M and episodic latent dimension
as 4 by following the hyperparameters suggestion by EMC (Zheng et al., 2021). We adopt a usual
ϵ-greedy setting with ϵ annealed linearly from its maximum value 1.0 to minimum value 0.05 over
timestep Tϵ presented in Table 1. For performance comparison with baseline methods, we use their
own codes with fine-tuned algorithm configuration for hyperparameter settings if available. For
hyperparameters related to a coordination incentive rI , fixed common values of βI = 0.1, β1 = 1.0,
and β2 = 1.0 were used for all experiments.

For experiments on SMAC, we use the same version of starcraft.py for SMAC environment, which
is based on the version used in RODE (Wang et al., 2021) adopting some modification for compat-
ibility of QPLEX. All SMAC experiments were conducted on StraCraft II version 4.10.0 in Linux
environment. Table 1 shows the hyperparameters regarding ϵ annealing time Tϵ and a scale factor
βexp for a curiosity incentive rexp.

Table 1: SIMA Hyperparameters.

category map Tϵ βexp

easy/hard maps all maps 70K 0.05

super hard maps

6h vs 8z 500K 0.1
MMM2 500K 0.001
corridor 100K 0.2

3s5z vs 3s6z 500K 0.1

D DETERMINING STRATEGY ACTION SPACES AND STRATEGY SELECTION

Figure 8 illustrates a forward predictive model for training an action encoder, which makes one-
hot action from a |A| dimensional vector into a d-dimensional vector, fa,e(·; θe) : R|A| → Rd.
This predictive model is to learn an action representation ha for a given action a that minimizes
the prediction error of observation transition o′ and a reward r. The loss function of the predictive
model is defined as follows:

Le(θe, ξe) = ED[

n∑
i

||po(hai
, oi,a−i)− o′i||2 + λe

n∑
i

(pr(hai
, oi,a−i)− r)2] (23)

where λe is a scaling factor; po and pr are prediction model parameterized with ξe for ô
′

i and r̂
as presented in Fig. 8. At the beginning, the action spaces of all strategies are initialized with the
full action space. After training the predictive model for predetermined te timesteps, strategy action
spaces are updated based on the similarity in action representation generated by fa,e(·; θe). There
can be a variety of choices in clustering methods, we adopt a simple but effective K-means algorithm
based on Euclidean distances between strategy action representations as in the original paper (Wang
et al., 2021).

Since the representation vector of actions become similar if actions show similar reward and obser-
vation in the next timestep, a cluster of representation vectors will mean a coherent set of actions
conveying a similar semantic meaning in observations and reward. In RODE, the strategy represen-
tation hz of strategy z is defined as its mean value of strategy-action embedding ha· as follows:

hz =
1

|Az|
∑

a′∈Az

ha′ (24)
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Figure 8: Strategy action representation learning

To select the strategy z for an agent i, the agent’s action-observation history τi is encoded into hτi
by the GRU unit with parameters θτ , which is shared across all τs. Afterwards, a strategy selection
is made by 1) turning τi to an embedding vector through h̄τi = femb(hτi ; θemb), and 2) finding the
most linearly aligned strategy representation hz with the action-observation representation of h̄τi as
the below.

Qs(τi, z) = femb(hτi ; θemb)
Thz = h̄T

τihz (25)

Figure 9 illustrates how strategy selector works with strategy representations hz .

Figure 9: Strategy selector, Qs

E BALANCING EXPLOITATION AND EXPLORATION

The learning method leveraging episodic control increases a sample efficiency (Lin et al., 2018;
Zheng et al., 2021), as it references a TD target with the best return in the episodic memory. There-
fore, this TD learning with best return encourages a greedy strategy selection in accordance with
good memories that were found in an early learning phase. Whereas this might expedites learning,
this can also result in a premature convergence to local optima, leading to a failure of finding a
optimal policy in hard tasks.

Especially in a hierarchy structure, the premature convergence of a strategy selector Qs on local
optima can severely degrade learning performance, as it discards chance to find a better action
a ∼ πz′ that can be derived from a currently sub-optimal strategy z′. To resolve this issue, we
adopt a curiosity-driven exploration method, which uses prediction error as a curiosity; and SIMA
provides incentive to the state with bigger prediction errors (Burda et al., 2018; Pathak et al., 2017).

As most MARL problems contain a large joint state space, we compute a prediction error based
on the projected state space xt = fϕ(st) that were used for episodic control. With a randomly
initialized predictor network, Vϕ(xt), we can compute a prediction error as follows:

rexp = |H(x̂t)− Vϕ(xt)| (26)
With the intrinsic reward presented rexp in Eq.26, the state of a new best return H(x̂t) can still have
an incentive to visit st even after the learning of Vϕ(xt). The final form of a loss function for the
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strategy selector Ls is developed from Eq.27 by including rexp as follows:

Ls(θτ , θemb) = Eτ,a,z,r,τ ′∈D

(ytot + βexpr
exp −

N∑
i

Qs
i (τi,t, zi,t)

)2
 (27)

where βexp is a scale factor for the intrinsic reward. With this intrinsic reward, we can achieve the
balance between exploration and exploitation for strategy selector learning.
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