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Abstract

Multi-label classification (MLC) allows complex dependencies among labels, mak-
ing it more suitable to model many real-world problems. However, data anno-
tation for training MLC models becomes much more labor-intensive due to the
correlated (hence non-exclusive) labels and a potentially large and sparse label
space. We propose to conduct multi-label active learning (ML-AL) through a
novel integrated Gaussian Process-Bayesian Bernoulli Mixture model (GP-B2M)
to accurately quantify a data sample’s overall contribution to a correlated label
space and choose the most informative samples for cost-effective annotation. In
particular, the B2M encodes label correlations using a Bayesian Bernoulli mixture
of label clusters, where each mixture component corresponds to a global pattern
of label correlations. To tackle highly sparse labels under AL, the B2M is further
integrated with a predictive GP to connect data features as an effective inductive
bias and achieve a feature-component-label mapping. The GP predicts coefficients
of mixture components that help to recover the final set of labels of a data sample.
A novel auxiliary variable based variational inference algorithm is developed to
tackle the non-conjugacy introduced along with the mapping process for efficient
end-to-end posterior inference. The model also outputs a predictive distribution
that provides both the label prediction and their correlations in the form of a label
covariance matrix. A principled sampling function is designed accordingly to
naturally capture both the feature uncertainty (through GP) and label covariance
(through B2M) for effective data sampling. Experiments on real-world multi-label
datasets demonstrate the state-of-the-art AL performance of the proposed model.

1 Introduction
In multi-label classification (MLC), each data instance may be associated with more than one label.
Such a rich representation of labels can encode more complex data-label distributions that arise in
many real-world problems [1, 2, 3, 4]. As a simple yet powerful tool, binary relevance machines
(BRMs) transform an MLC problem into multiple binary problems and train independent binary
classifiers for each label [5]. Such a transformation gives BRMs the flexibility to leverage state-of-art
binary classifiers (e.g., deep neural networks and SVMs). However, applying BRMs to a correlated
and potentially large label space poses key challenges. First, many real-world multi-label datasets
contain a large number of labels. Training one predictor per label incurs a prohibitive cost. Second,
despite an overall large label space, each data instance is usually assigned limited labels. Many labels
are relatively rare and their appearances depend not only on the features but also the occurrence
of other labels. Predicting these “complex” labels directly using independent binary classifiers is
fundamentally difficult due to the limited positive data instances and weaker direct dependency on the
features. Correlations among labels provide important auxiliary information to enhance multi-label
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Figure 1: (a) Labels with geometric correlation (G1-G8); (b) Labels with cardinality (C1,C2),
overlapping (O1-O4), and exclusive (and hierarchical) dependencies (E1-E4); (c) Definition of label
correlation and learned mixture components.

prediction [6, 7, 8]. However, these models heavily rely on the training data that exhibit these
important label correlations. Considering the high cost in annotating a multi-label dataset, it is critical
to choose the most informative data samples for cost-effective data annotation.

In this paper, we propose a novel Gaussian Process-Bayesian Bernoulli Mixture (GP-B2M) model
to achieve cost-effective sampling for multi-label active learning (ML-AL). In ML-AL, since labels
are not mutually exclusive as in the single label setting, all the labels should be considered collectively
when designing an active sampling function so that a data sample’s overall contribution to the entire
label space can be accurately measured. However, since only limited training data instances are
available for an ML-AL model, how to accurately model label correlations and hence quantify a data
sample’s overall informativeness using very sparse labels under AL poses a grand challenge. Existing
efforts that explicitly model label correlations usually focus on limited types of correlations such as
pairwise [3, 9], conditional [10, 11], or full correlation in a subset of labels [12, 13]. Consequently,
those methods may miss some important label correlations. Label correlations can also be captured
through a latent embedding [7, 8]. While these methods can scale to a large label space, they usually
require a decent number of training labels to compute an accurate embedding, making them less
suitable for ML-AL. Furthermore, the learned embedding has no semantic meanings, which cannot
be used to interpret the discovered label dependencies 2.

The proposed GP-B2M model addresses the limitations of existing methods to fundamentally advance
ML-AL. In particular, the B2M encodes label correlations using a Bayesian Bernoulli mixture of
label clusters. Since labels are highly sparse in ML-AL, a predictive GP is further integrated to learn
a distribution of mixture coefficients that connect data features with the label clusters. Thus, the label
clusters can be regarded as a global pattern of label co-occurrences discovered from both the training
labels and data features to address label sparsity. In this novel feature-component-label mapping,
data features serve as an inductive bias to learn accurate mixture components of labels, where data
samples with similar features should be mapped to similar mixture components, which in turn lead to
a similar set of labels. Such an inductive bias allows the discovery of label relationships from limited
labels with the support of feature relationships, which is essential for a sparse label space in ML-AL.

Figure 1 shows three mixture components learned from synthetic data designed with complex
label correlations, including geometric, cardinality, overlapping, and hierarchical (see Figure 1 (c)
for definitions). For example, the hierarchical labels (E1 − E4) show some interesting but quite
complicated correlations that may exist in many real-world data. If E1 represents a common disease
and E2, E3 represent some less common ones that may co-occur with E1 (30% of the time), then
E4 corresponds to a rather rare disease that only co-occurs with E3 but not E2. In Figure 1 (c),
both components 1and 2 show a high chance of E4. It is also clear that while both E1 and E3
are very likely to appear in these components, the chance of seeing E2 is much lower, reflecting
its exclusive relationship with E3. Interestingly, while both components 1 and 2 cover E4, they
also show complementary information. In component 1, E4 mostly appears in the non-overlapping
regions, which is indicated by smaller O1 and O4; whereas in component 2, it’s more likely to

2Correlation sometimes refers to the degree to which a pair of random variables are linearly related. However,
in the broadest sense, both correlation and dependence refer to any statistical relationship between two random
variables, so they are used exchangeably in the rest of the paper.
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occur in overlapping regions O1 and O4. Finally, in component 3, it is less likely to observe E4.
Consequently, the chance to see E2 is significantly higher.

The above example demonstrates that the learned mixture components accurately capture complex
label correlations that are critical for active data sampling. They are also interpretable, which can
help to unveil important relationships among labels. Our key contribution is threefold: (i) We
propose a novel GP-Bayesian Bernoulli mixture model to discover meaningful label correlations from
limited labels by encoding the inductive bias from data features as Bayesian priors to learn from both
labels and features while ensuring consistency. (ii) We introduce a set of auxiliary latent variables to
achieve a fully conjugate feature-component-label mapping in the Bayesian model to support efficient
end-to-end posterior inference. The number of mixture components is also dynamically adjusted
during Bayesian inference so that the model complexity is automatically calibrated according to the
size of training data, which is critical for AL. (iii) The model outputs the predictive distribution that
provides both the label prediction and their correlations in the form of a label covariance matrix. We
design a novel active sampling function that integrates both feature uncertainty and label covariance
to quantify a data sample’s overall contribution to a correlated label space. Extensive experiments on
both synthetic and real-world multi-label data and comparison with competitive models demonstrate
that the proposed GP-B2M achieves the state-of-the-art active learning performance.

2 Related Work

Due to the wide adoption of BRMs for MLC, a number of AL models have been developed based upon
BRMs. For example, the estimated reduction of a BRM loss function has been used as an uncertainty
criterion for data sampling [14]. Uncertainty from individual SVMs in BRMs has also been integrated
to compute a sampling score, where label correlation is used to reduce the complexity of the active
query rather than improve active sampling [15]. Label inconsistency provides an alternative way
to incorporate label correlation into BRMs [16] for data sampling. This has been further extended
through label ranking [17]. As discussed earlier, AL models built upon BRMs do not systematically
capture label correlations, which may lead to inaccurate uncertainty measures for ML-AL.

A few existing models capture label correlations explicitly or through a latent embedding to support
active multi-label sampling. For example, the approximate entropy of the predicted labels from
a Bernoulli Mixtures model (CBM) is used for data sampling [18]. However, the quality of the
uncertainty estimation relies on an external multi-class classifier used to predict the component
coefficients. Both model selection and parameter tuning for the classifier make it difficult for AL. One
fundamental limitation is that CBM was originally designed for MLC (instead of AL) by predicting a
distinct set of label clusters for each data sample [6]. Thus, different from the proposed GP-B2M
model, no global label clusters are discovered to capture the label correlations, making it unsuitable
for multi-label AL. Gao et.al propose a correlation aware active sampling method for transfer learning
task [19]. However, the method uses a kernel function to measure the label similarity between
two data instances which cannot work well for a large and sparse label space. Compressed sensing
(CS) has been employed to learn a latent embedding of the label space to capture potential label
correlations, which can then be used to design a sampling function. However, since the latent space
is continuous, the labels are further assumed to be drawn from a Gaussian distribution to ensure
conjugacy, which violates the binary nature of the labels [20]. Furthermore, CS requires an additional
step to recover the predicted label from the latent code, which is less efficient for AL. Active sampling
is also sensitive to the recovery process and the recovery quality is usually low at the beginning of
AL due to the lack of training data [21].

The proposed GP-B2M model systematically addresses the key limitations of existing methods
through a well integrated Bayesian framework that supports a fully conjugate feature-component-
label mapping and end-to-end posterior inference for cost-effective ML-AL.

3 GP-B2M for Multi-Label Active Learning

In this section, we first describe the proposed GP-B2M model by introducing key latent variables
along with their conditional dependencies. We then present a novel posterior inference process by
augmenting the original model using a set of auxiliary variables to resolve the non-conjugate prior
and likelihood. A principled sampling function is introduced in the end for cost-effective ML-AL.

3



1

L

2 3 4C
1

C
2

C
K

Compress

Generate (Phase II)Predict (Phase I)

K Label clusters L Correlated LabelsN Data Samples

G
P

B
2 M

1 2

3 4

L

(a)

f(k)

Σk

mk

znkxn ynl

θkl

akl

bkl

K

L

N

K L

(b)
Figure 2: (a) The GP-B2M framework for ML-AL; (b) Graphical model of GP-B2M.

3.1 The Bayesian Bernoulli Mixture Model
Let X = {x1, ...,xN} denote a training set with N data samples and Y = {y1, ...,yN} denote the
labels, where yn ∈ {0, 1}L. The proposed GP-B2M model assumes there are K mixture components,
Θ = {θk}Kk=1, shared by all the data samples and the label vector of each sample is generated from
a mixture process. Mixture component k is a result of L Bernoulli experiments governed by two
parameters akl and bkl: θk ∼

∏L
l=1 Beta(akl, bkl), where θkl denotes the probability of assigning

label l to component k. The indicator variable znk denotes whether component k is assigned to
sample xn, where znk ∼ Cat(πn), πnk = h(k)(fn), h(k) is a mapping function that outputs the
probability of assigning xn to mixture component k, and fn = (f

(1)
n , ..., f

(K)
n )T are GP latent

functions for sample xn with f (k)n = f (k)(xn). The final label vector associated with xn is drawn
from the mixture distribution given by p(yn|Θ) =

∑K
k=1 πnkθk. Figure 2(b) shows the graphical

model of this generative process.

The GP-B2M model essentially adopts a two-phase learning process, where these two phases
are seamlessly integrated (see Figure 2(a)). In phase I, it predicts the probabilistic assignment
of the mixture components by learning a distribution of latent functions: F = {f (k)}Kk=1, where
f (k) = (f

(k)
1 , ..., f

(k)
N )T . In phase II, these predicted mixture assignments are used to refine the

parameters of the beta distributions so that updated mixture components can best recover the true
label vectors. One key innovation lies in using the latent indicator variables Z = {zn}Nn=1 to link the
feature space with the label mixture components as a way to encode the feature related inductive bias.
This is achieved through a mapping function hn = (h

(1)
n , ..., h

(K)
n )T , with h(k)n = h(k)(fn):

p(znk = 1|fn) = πnk = h(k)n , h(k)n ∈ [0, 1],

K∑
k=1

h(k)n = 1, p(f (k)) = N (f (k)|mk,Σk) (1)

where Σk = [K(xn,xm)] is a covariance matrix and K(·, ·) is a kernel function, and we set mk = 0
with out losing generality. From the Bayesian perspective, this is equivalent to placing a Dirac delta
prior over πnk : πnk ∼ δ(πnk − h

(k)
n )), where the inductive bias is encoded by the prior distribution.

By introducing h(k)(fn), we essentially convert a multi-label problem into a multi-class problem as
πn encodes the probability of assigning xn to each of the K components. Specifically, given the
learned mixture components θk’s, for a test data sample x∗, we predict the component assignments
π∗ using the trained GP. The final labels are obtained as p(y∗|Θ) =

∑K
k=1 π∗kθk.

Posterior inference of latent variables in the two phases are jointly performed by maximizing the log
marginal likelihood of the observed multiple labels for all training samples:

ln p(Y|X) = ln

∫ ∫ ∑
Z

∏
n

∏
l

∏
k

p(f(k))p(θkl)p(znk|fn)p(ynl|znk, θkl)dFdΘ (2)

Directly maximizing this likelihood is intractable due to the interplay of the latent variables.
So we turn to optimizing the evidence lower bound (ELBO) of the log marginal: L(q) =∫
q(Θ, Z, F ) ln p(Y,Z,F,Θ|X)

q(Θ,Z,F ) dΘdZdF , where q(Θ, Z, F ) is the variational distribution. However, a
key challenge that prevents us from using the standard mean field variational inference (MF-VI) is the
term p(znk|fn), defined by the mapping function h(k)n in (1). As the most typical forms of h(k)n (e.g.,
softmax) are non-conjugate with the prior distribution p(f (k)), which is a Gaussian, the variational
posterior q(f (k)) cannot be derived analytically.
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3.2 Auxiliary Variables based Variational Inference
We propose to resolve the non-conjugate mapping function in the complete data likelihood by
introducing a number of auxiliary latent variables such that the augmented complete data likelihood
becomes conjugate. Auxiliary variables have been used in MCMC based inference, such as slice
sampling [22] and Hamiltonian MCMC [23], with improved sampling efficiency. The basic idea
of auxiliary variables based variational inference (AV-VI) is to apply the following transformation:
p(x) =

∫
y
p(x|y)p(y)dy, where p(x) is a target function that is difficult to compute (e.g., non-

conjugate) during VI. If the conditional likelihood p(x|y) is still non-conjugate, this process will
continue until a conjugate conditional is achieved.

A key identity that we leverage to achieve a conditional likelihood conjugate to a Gaussian prior
p(f (k)) is to convert a logistic sigmoid function as a scale mixture of Gaussian’s [24] where the
mixture is defined by a Pólya-Gamma distribution p(ω) = PG(ω|b, 0),

(ef )a

(1 + ef )b
= 2−beκf

∫ ∞

0

e
−ωf2

2 p(ω)dω (3)

where b ≥ 0, κ = a − b
2 . However, a sigmoid function is only suitable for binary classification,

making it infeasible for a mapping function that outputs the assignments for K > 2 components.
Thus, we adopt the logistic-softmax function [25] as our mapping function:

h(k)n = p(znk = 1|fn) =
σ(f

(k)
n )∑K

j=1 σ(f
(j)
n )

(4)

To handle the summation in (4), we introduce random variables λ1:N and use identity 1
x =∫∞

0
e−λxdλ so that

p(znk = 1|fn, λn) = σ(f (k)n )

K∏
j=1

e−λnσ(f
(j)
n ) (5)

where p(λn) ∝ 1(0,∞),∀n ∈ [1, N ]. By leveraging the moment generation function of the Poisson
distribution Po(λ), we introduce random variables Υ = {υ1, ...,υN}, where υn = (υn1, ..., υnK)T ,
to convert the exponential term in (5), which leads to

p(znk = 1|fn,υn) = σ(f (k)n )

K∏
j=1

(σ(−f (j)n ))υnj (6)

where υnk ∼ Po(υnk|λn). Finally, using (3) and introducing the Pólya-Gamma random variables
Ω = {ω1, ...,ωN}, where ωn = (ωn1, ..., ωnK)T , leads to

p(znk = 1|fn, υnk, ωnk) =

K∏
k=1

2−(znk+υnk) exp

{
(znk − υnk)f

(k)
n

2
− (f

(k)
n )2

2
ωnk

}
(7)

where ωnk ∼ PG(ωnk|υnk, 0). Figure 3 shows the graphical model with the auxiliary variables (xn’s
are omitted from the graph to keep the notation uncluttered).

We proceed by defining a variational distribution with auxiliary variables:

q(Θ, Z, F,λ,Υ,Ω) = q(Θ)q(Z)q(F )q(λ)q(Υ,Ω) (8)

The optimal variational distribution can be obtained by computing the moments of component
variational distributions using some important properties of the main and auxiliary variables and
iterating until convergence. The optimal variational distributions of the main latent variables are
summarized in the following theorem.
Theorem 1. With the auxiliary random variables and the transformed complete conditional likelihood
given in (6), the optimal components of the variational distribution as specified by (8) are given by

• Component assignments q̂(Z) =
∏

n

∏
k q̂(znk):

q̂(znk) = Cat(znk|ϕ̂nk); ϕ̂nk ∝ exp

{
L∑

l=1

[ynl(ψ(âkl)− ψ(âkl + b̂kl))] +
m̂nk

2

}
(9)

where ψ(·) is the digamma function and m̂nk is n-th element of mean of q̂(f (k)) defined in q̂(F ).
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• Bernoulli mixture components q̂(Θ) =
∏

k

∏
l q̂(θkl)

q̂(θkl) = Beta(θkl|âkl, b̂kl); âkl = akl +

N∑
n=1

ϕ̂nkynl, b̂kl = bkl +

N∑
n=1

ϕ̂nk(1− ynl) (10)

• GP latent functions q̂(F ) =
∏

k q̂(f
(k)):

q̂(f (k)) = N (fk|m̂k, Σ̂k); m̂k =
1

2
Σ̂k(ϕ̂k − Eq̂(υk)[υk]), Σ̂k = (Σ−1

k + diag(Eq̂(ωk,υk)[ωk]))
−1

(11)
where υk = (υ1k, ..., υNk)

T , ωk = (ω1k, ..., ωNk)
T , and q̂(ωk,υk) = q̂(ωk|υk)q̂(υk) is the

optimal variational distribution for these auxiliary variables.

The specific forms of the auxiliary variational distributions q(λ) and q(Υ,Ω) are provided in Ap-
pendix B as part of the detailed proof of the theorem.

Model interpretation. The optimal variational distributions are fairly intuitive. Interpreting these
distributions can reveal some key insights on how the proposed GP-B2M model leverages the data
features as an effective inductive bias to discover semantically coherent components from a sparse
label space. First, from (9), the component assignment of data sample (xn,yn) is determined by two
terms: the first term indicates how all its labels yn are correlated with the component and the second
term reflects how likely to categorize the features xn into to the component. Second, from (10),
since the component assignments are further utilized to compute the Bernoulli mixture components,
the optimal components naturally aggregate both label and feature information to ensure semantic
consistency as a result of using data features as the inductive bias. Last, from (11), the GP latent
function value on a component increases with a positive component assignment and decreases with a
‘negative’ assignment, captured by the Poisson auxiliary variables υk.

Time complexity. According to (11), posterior inference of GP-B2M has the computational com-
plexity of O(N3K) which is identical to training K GPs. Since each component can be updated
independently, we can parallelize the computation to further reduce the complexity to O(N3). We
can further leverage sparse kernel machines (e.g., Sparse GP) to reduce the complexity if N is large.

3.3 Multi-Label Active Sampling
Being a Bayesian model, GP-B2M outputs the predictive distribution that provides both the label
prediction and a label covariance matrix. As the covariance matrix captures both the uncertainty of
individual labels and correlation of each pair of labels , it provides essential information to design a
principled measure to quantify a data sample’s overall contribution to a correlated label space.

For each testing sample x∗, the predictive mean can be computed using the variational distributions:

E[y∗|x∗] ≈
∑
k

Ep(f∗|X,Y,x∗)[π∗k]Eq(Θ)[θk]

p(f∗|X,Y,x∗) ≈
∫
p(f∗|X, F,x∗)q(F )dF, Eq(θk)[θkl] = âkl/(âkl + b̂kl)

(12)

where π∗k = p(z∗k = 1|f∗) is defined as a logistic-softmax function given in (4). Theorem 1 shows
that q(F ), which approximates the true posterior p(F |X,Y), is a Gaussian. Hence, p(f∗|X,Y,x∗)
is also a Gaussian. However, the logistic-softmax transformation makes predictive mean intractable

6



Ground Truth (E4=1)

(a)

Ground Truth (E4=1)
BRMs Prediction
True Positive Prediction

(b)

Ground Truth (E4=1)
Component1
Component2

(c)

Ground Truth (E4=1)
B 2M Prediction
True Positive Prediction

(d)

Figure 4: (a) Distribution of E4 samples; (b) Prediction by BRMs; (c) Mixture component assign-
ments by B2M; (d) Prediction by B2M.

to compute. We propose to conduct Monte Carlo (MC) integration by drawing samples from
p(f∗|X,Y,x∗), perform logistic-softmax transformation, and then average.

The GP-B2M model also allows us to compute the predicted label covariance,

cov[y∗|x∗] =
∑
k

E[π∗k]{E[Λk] + E[θk]E[θk]T } − E[y∗|x∗]E[y∗|x∗]
T

(13)

where Λk = diag{E[θkl](1− E[θkl])}. The predicted label covariance captures both individual label
uncertainty (diagonal entries of the matrix) and label correlations (off-diagonal entries), which is
instrumental to quantify the total uncertainty of a test sample with respect to its predicted labels.
Since directly computing the entropy of a mixture distribution is challenging, we instead choose to
use the log determinant of covariance matrix: ln|cov[y∗|x∗]|, as a proxy for uncertainty evaluation.
Intuitively, this is equivalent to approximating p(y∗|x∗) using a multivariate Gaussian, whose entropy
is the log determinant of its covariance matrix plus a constant.

The label covariance is computed using a point estimate of π∗ = (π∗1, ..., π∗K)T (one π∗k for each
class) to quantify the total uncertainty on the label side. As a Bayesian model, the proposed GP-B2M
allows us to quantify the variation of each πk using its predictive variance. Through MC integration
as described above, we compute the predictive variance Var[π∗k] of sample x∗ for each of the K
class. According to the property of the GP posterior, we can easily show that the model would assign
a low variance to data samples near to the training data and a high variance to faraway samples. As a
result, the predictive variance effectively captures the feature uncertainty that complements the label
covariance. It allows the proposed sampling function to differentiate data samples based on their
distinct contributions to model training and sample them accordingly. Our final sampling function is
given by: x̂∗ = argmaxx∗ ln|cov[y∗|x∗]|+η

∑
k Var[π∗k]/K, where η is used to balance between

label covariance and predictive variance of data features. It can be dynamically updated to give
a higher weight in the early stage of AL to the feature variance term for better exploration of the
data space and then shift the focus to the label covariance term for effective fine-tuning of decision
boundaries with a correct shape obtained through effective exploration.

4 Experiments
We conduct extensive experiments on both synthetic and real-world multi-label data to demonstrate:
(1) important properties of GP-B2M to capture complex label correlations and how they contribute to
predict complex labels, (2) state-of-the-art ML-AL performance by comparing with existing competi-
tive models, (3) impact of key model parameters through an ablation study, and (4) effectiveness of
active sampling by examining sampled data instances.

4.1 Synthetic Data
We design a synthetic dataset with 18 labels that exhibit 4 distinct types of dependencies as defined
in Figure 1 (c). In the introduction, we show that three discovered mixture components precisely
capture some rather complex label dependencies (e.g., hierarchical and exclusive) while being highly
interpretable. For this dataset, the model discovers 10 components in total and we show some
other components in Appendix D along with their interpretations. We further demonstrate how the
discovered components contribute to the prediction of more complex and less frequent labels. We use
E4 as an example, which is located deep in the hierarchy and appears much less than other labels.

Figure 4 (a) shows the distribution of data samples whose labels contain E4. It can be seen that these
samples are distributed across the entire E1 region (roughly corresponds to the shaded area in purple).
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Note that, in addition to E1, E4 also depends on the exclusive relationship: E3 AND NOT E2
(E2, E3 are not shown in the figure to keep the distribution of E4 clear). Figure 4 (b) shows the
prediction result from BRMs, which has very high false positive and negative rates. The poor
performance is also reflected by a low ROC-AUC (area under the receiver operating characteristic
curve) score at 0.58 (slightly better than random guessing). It appears that BRMs only predict
correctly samples in an area where E4 samples are relatively dense while missing most others. This
is because BRMs try to directly learn the feature-label mapping (by training independent binary
predictors), which is usually weak for complex and less frequent labels, like E4.

Figure 5: AUC on different types of labels
Label G1-G8 C1,C2 O1-O4 E1-E4

BRMs 0.79 0.68 0.72 0.58
GP-B2M 0.83 0.70 0.86 0.82

Different from BRMs, the proposed GP-B2M
learns mixture components that correctly capture
the label correlations and the final labels can be
recovered by combining the mixture components
through their predicted coefficients. As discussed
earlier, E4 has a high chance to appear in either
Component 1 or 2. Figure 4 (c) shows the predicted component assignments and the top component is
highlighted. As can be seen, most E4 samples are assigned Component 1 or 2 as their top component.
Also, samples assigned to Component 1 (shown in blue) are mostly distributed in the non-overlapping
geometric regions and those assigned to Component 2 (shown in yellow) are mostly in overlapping
regions. By leveraging these components, GP-B2M achieves much better prediction results as shown
Figure 4 (d). Table 5 summarizes the AUC scores from BRMs and GP-B2M on different types of
labels. While both models achieve similar performance on some common labels (e.g., G), GP-B2M
significantly outperforms BRMs for more complex labels, where it is essential to capture important
label correlations.

4.2 Real Data
Datasets and experiment settings. We choose five representative real-world multi-label datasets, in-
cluding Delicious, Enron, Bibtex, Corel5K, and NUS-WIDE, from different application domains [26].
All datasets have a relatively large label space and high label sparsity (2−6%). Table 2 in Appendix D
summarizes key properties of the pre-processed datasets. We randomly shuffle each dataset and
partition them into three parts: training, testing, and candidate pool. We keep a minimum of one
positive instance per label in the initial training partition as required by BRMs based AL models. To
make sure each label is well represented in each partition, we remove extremely rare labels with label
frequency less than 20. Since the remaining labels are still highly imbalanced, we use the ROC-AUC
score to evaluate the model performance. All the baseline models share the same copy of the initial
training set to make a fair comparison. Active learning stops after each model selects 500 samples.

Performance comparison. We include five competitive baselines for AL performance comparison:

• MMC samples instances that introduce the greatest change of the expected loss. During label
prediction, it uses logistic regression to predict the number of labels for a new instance [14].

• Adaptive considers both the separation margin of an SVM and the label cardinality inconsistency
and combines these two parts for data sampling [16].

• AUDI uses a label ranking mechanism, where a dummy label is used to separate the positive and
negative labels. Its sampling function is based on a modified cardinality inconsistency measure [27].

• CVIRS combines the ranking on the magnitude of the difference margin in predictions and the
label vector inconsistency for active sampling [17].

• CS-GP conducts active sampling in a compressed label space using a multi-output GP [21].

Figure 6 reports the AUC scores of all the models. For each curve, we present the average result along
with the error bar from 3 trials of randomly initialized AL experiments. The proposed B2M model
achieves better AL performance consistently on all the datasets. For multiple datasets, GP-B2M
establishes a clear advantage in the early to middle stages of AL. While a few baselines eventually
converge to a similar AUC score, they usually take more iterations (by consuming more labels) to
reach a comparable performance as GP-B2M. In addition, by comparing with random sampling with
the proposed sampling function, we clearly demonstrate that the superior AL performance attributes
to both the Bayesian mixture model and the effective active sampling. Note that the AUDI model
runs much slower for Bibtex and Corel5K when both the number of features and candidate pool size
become very large so we omit the results.

Analysis on label-wise improvement. To further justify why the proposed GP-B2M outperforms
the baselines, we offer a fine-grained analysis on the label-wise performance, which helps to achieve
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Figure 6: AL performance comparison (a)-(e); Ablation study on one example dataset (Enron): (f)
shows the impact of η and (g) shows the impact of effective components.
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Figure 7: The label-wise average precision improvement over BRMs models.

a deeper insight on the performance gain. In fact, we reach a similar conclusion as the synthetic data
experiments: while all models perform reasonably well on the most frequent labels, GP-B2M clearly
outperforms other baselines on less frequent labels, where considering the correlations with other
labels can help to improve their predictions. Thus, in our fine-grained analysis, we first exclude the
few most frequent labels and compute the Average Precision Improvement (API) of the i-th label,

API(i) =
AP

(i)
B2M −AP

(i)
BRMs

AP
(i)
BRMs

× 100% (14)

where AP (i)
B2M and AP (i)

BRMs denote the average precision of label i provided by GP-B2M and
BRMs, respectively. Figure 7 demonstrates the label-wise API on the NUS-WIDE and Delicious
datasets as two illustrative examples. We observe that GP-B2M performs significantly better than
BRMs on labels with a moderate or low frequency. This is because those labels usually do not
have sufficient positive instances for BRMs to learn independently. Furthermore, they may have a
complex correlation with other labels. GP-B2M effectively leverages label correlations to make better
predictions on these labels. This further confirms the overall good performance of GP-B2M.

Ablation study. We further investigate the impact of two tunable parameters of the model: (1) η,
which balances label covariance and feature uncertainty for data sampling and (2) ρ, which controls
the effective number of mixture components. Limited by space, we use the Enron dataset as an
example and report other results in Appendix D. Figure 6 (f) compares the performance under
different η values. In early iterations, the label covariance guided sampling (η is small) slightly falls
behind the feature uncertainty guided sampling (η is large) as the latter is more useful to explore
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(a) [‘clouds’, ..., ‘grass’, ‘hills’, ...,
‘plants’, ‘sky’, ‘valley’]

(b) [‘clouds’, ‘landscape’,
‘plants’, ‘sky’]

(c) [‘clouds’, ‘farm’, ‘landscape’,
‘nature’, ‘plants’, ‘sky’, ‘sun’]

(d) [‘house’, ‘landscape’,
‘plants’, ‘sky’]

(e) [‘architecture’, ‘buildings’,
‘clouds’, ‘plants’, ‘sky’]

(f) [‘farm’, ‘field’, ‘grass’,
‘plants’]

(g) [‘clouds’, ‘farm’, ‘flowers’,
‘grass’, ‘plants’, ‘sky’]

(h) [‘art’, ‘clouds’, ‘grass’, ‘na-
ture’, ‘plants’, ‘sky’, ‘tree’]

Figure 8: (a)-(c) Training images; (d)-(f) Images with a large feature uncertainty; (g)-(h) Images with
a high label variance.

the feature space. Label covariance guided sampling gradually catches up and finally surpasses
the feature uncertainty guided sampling. As shown next by the sampled instances, both criteria
select informative instances that play complementary roles to improve the AL model. Figure 6 (g)
shows how the AL performance is affected by the effective number of mixture components that is
automatically determined by an upper bound K and component strength ratio ρ. For component
k, we compute its total ‘effective posterior observations’ [28] g(θk) =

∑L
l=1 âkl + b̂kl and define

a threshold as ḡ = (ρ/K)
∑
g(θk). The effective components only include those with g(θk) ≥ ḡ.

When the size of the training set is still small (early stage in AL), fewer components (large ρ) yield
better results than more components (small ρ) by avoiding over-fitting. When more training labels are
acquired, a more flexible model can better explain the label correlations thus has better performance.

Examples of actively sampled instances. To demonstrate the effectiveness of the proposed sampling
function, we show images sampled by GP-B2M from the NUS-WIDE dataset. To explain the distinct
nature of these sampled images and how they contribute to the model training, we also show some
representative images from the initial training pool for comparison. These correspond to images in
Figure 8 (a)-(c) with common labels: ‘plants’ and ‘sky’. First, for sampled images with a large feature
uncertainty, while ‘plants’ and/or ‘sky’ are predicted for those images, they look very different from
the training images. In particular, although the labels of the image in Figure 8 (e) contain both ‘plants’
and ‘sky’, there are no visible plants. For the image in Figure 8 (f), the label ‘person’ is not present
even though a person is visible in the image. These types of samples are significantly dissimilar to
the initial training set, thus considered valuable to explore the feature space for effective sampling.
Images in Figure 8 (g)-(h) are samples based on a high label covariance. These images look similar to
the training examples but their corresponding labels are somewhat different. Sampling these images
can further improve the prediction of these labels and correlations there of, such as ‘plants’, ‘grass’,
and ‘nature’. As these images bring in additional labels, they may also help the model discover more
possible correlations, such as that between ‘plants’ and ‘flowers’ or ‘tree’.

5 Conclusion

We present a novel Gaussian Process-Bayesian Bernoulli Mixture (GP-B2M) model for cost-effective
multi-label active learning. GP-B2M extracts global patterns of label correlations by learning from
both (limited) training labels and data features. The mixture components, which are accurately learned
from end-to-end and fully conjugate posterior inference, are capable of encoding complex label
correlations while being highly interpretable. A novel sampling function is designed by combining
feature uncertainty and label covariance, both of which can be obtained from the predictive distribution
of the GP-B2M model. Experiments conducted on both synthetic and real data justify the important
properties of the model and its state-of-the-art AL performance.
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we tried to include all the representative baselines based on our best knowledge.
However, certain baselines may be designed for a specific purpose. As a result, some
baseline cannot run properly for the datasets used in our experiments to generate
reasonable results. We have made this clear in the performance comparison section
of our experiments. Another potential limitation is that all the labels collected are
assumed to be accurate, like most other active learning models. Dealing with imperfect
labels is an important direction that is out of the scope of this paper.

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We
provided references of real-world applications (e.g., bioinformatics and medicine) with
positive societal impacts. One potential negative impact is that the active learning
model could be leveraged by malicious attackers as a tool to manipulate the supervised
learning model. Since the model will be trained using much less data, if certain data
samples are compromised, the impact may be larger than a typically trained supervised
learning model.
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