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ABSTRACT

Accurate machine-learned property prediction enables data-driven design and dis-
covery of a wide range of materials. While prediction of scalar quantum me-
chanical properties like energies have recently reached unprecedented levels of
accuracy, prediction of higher-order polar tensors remains relatively difficult and
uncommon, despite their ubiquity in fields such as nonlinear optics. The ability to
perform accurate ML-based predictions of optical tensors could greatly expedite
the discovery of nonlinear optical media. Here, we present a study on the perfor-
mance of a simple equivariant message-passing neural network for the prediction
of molecular hyperpolarizability tensors. Our key findings demonstrate the ability
for a modest architecture to perform highly accurate, direct prediction of the full
27-element hyperpolarizability tensor, which we attribute to the network respect-
ing the natural transformation properties of polar tensors, and also the ability of
the network to recognize the global symmetries of the input molecules. To provide
a mechanistic understanding of these results, we employ dimensionality reduction
techniques on the learned equivariant representations to visualize and reason about
their latent structure.

1 INTRODUCTION

Neural network architectures which are equivariant under the group of 3D rotations, translations,
and reflections, E(3),(Geiger & Smidt, 2022) have shown impressive performance in the prediction
of quantum mechanical scalar properties (Liao & Smidt, 2023)and interatomic potentials (Batzner
et al., 2022; Batatia et al., 2022). It remains to be seen how these networks perform in the direct pre-
diction of nonscalar properties, such as those ubiquitously encountered in the context of nonlinear
optics (NLO), a field that has contributed immensely to our understanding and control of micro-
scopic dynamics in physics, chemistry, and biology. These tensors, called optical susceptibilities,
determine the complete response of a molecule or crystal subject to an external electric field, E⃗
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(Bloembergen, 1982):
P⃗ = χ(1)E⃗ + χ(2)︸︷︷︸

Rank=3

(E⃗ ⊗ E⃗)︸ ︷︷ ︸
Rank=2︸ ︷︷ ︸

Rank=3−2

+ . . . (1)

Where P⃗ is the polarization, and χ(n) is the order-n susceptibility. The progress in our understand-
ing of NLO processes, however, has historically been limited to the rate of discovery of efficient
nonlinear optical media, which is often slow and founded on trial-and-error workflows. Although
conventional computational chemistry such as density functional theory has been a supplementary
source of data (Valdivia-Berroeta et al., 2022), the time complexity of these methods makes it diffi-
cult to compute these properties with sufficient accuracy and coverage over chemical space. Intel-
ligent algorithms may help greatly expedite the discovery of NLO media but has remained largely
unexplored to date due to a lack of available data and the difficulty in predicting these properties.
Since NLO processes in gases are generally weak, these effects are primarily observed experimen-
tally in the solid-state, meaning anisotropic effects can be dramatic. Thus, it is essential to know the
full susceptibility tensor, rather than the rotationally-averaged scalar value. The full susceptibility
tensors are always subject to two strict symmetry constraints: the first is equivariance, expressed as:

χl
m

(n)
(Rr) =

∑
m′

χl
m

(n)
T l
m′(r) (2)

Where χl
m

(n) is the order-n optical susceptibility tensor in the spherical basis with degree l and
order m, Dmm′ is a Wigner-D matrix, and R is an arbitrary 3-dimensional rotation matrix. The
second constraint is stated by Neumann’s principle, which enforces that the symmetry group of the
molecule GCrys is a subset of the group of symmetries of the property tensor GT (Neumann, 1885;
Alejo-Molina et al., 2014)

GCrys ⊆ GT (3)
And thus all symmetry elements of the global molecular point group leave the property tensor un-
changed, further reducing the number of independent values in the tensor. Depending on the optical
frequencies and materials, there may be additional symmetry constraints (e.g. Kleinman Kleinman
(1962)) which can also be enforced in these networks.

The second-order tensor, χ(2), often called hyperpolarizability, is the lowest-order nonlinear suscep-
tibility. It describes common three-wave mixing processes such as sum and difference frequency
generation, second harmonic generation, and optical rectification, all of which form the bases of
numerous important spectroscopic techniques (Boyd, 2008). Previous attempts to predict this prop-
erty using machine-learning have been limited to very narrow-classes of materials and prediction of
the scalar rotational average (Munn et al., 1994; Tuan-Anh & Zaleśny, 2020; Öberg et al., 2001;
Ivonina et al., 2021).

In this work, we construct a simple equivariant message-passing neural network designed to directly
predict the full second-order hyperpolarizability tensor. This model, even when randomly initial-
ized, respects both the equivariant and Neumann symmetry constraints, leading to highly efficient
training on a diverse molecular dataset and ultimately accurate predictions of full hyperpolarizabil-
ity tensors. In addition, a recent work by Lee et al. (2024) used dimensionality reduction to show
that many of the higher-degree internal representations do not form a structured representation space
which correlates with lower prediction accuracy. While this was demonstrated for scalar property
prediction, it remains an open question whether the same is true in the direct prediction of higher-
order tensorial properties, where one might intuitively expect higher-order components to contribute
significantly. Building on this work, we employ PHATE analysis (Moon et al., 2019) to visualize the
learned internal representations at both the nodal and graph level. We find that while higher-order
components exhibit detailed structure at the node level and partial organization at the graph level.
We additionally discuss the implications and applications of our findings.

2 RESULTS

Atomic coordinates of ∼12,000 molecules from the QM9 molecular dataset (Blum & Reymond,
2009; Rupp et al., 2012) were sampled, and used as input for density functional theory (DFT) calcu-
lations of hyperpolarizablity tensors in the zero-frequency/D.C. limit, at the B3LYP/6-31G(d) level
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Figure 1: Toy model comparing the prediction symmetries of an untrained model of the full 27
element hyperpolarizability tensor in the Cartesian basis on the eclipsed (LEFT) and staggered
(RIGHT) configurations of ethane.

of theory. In the D.C. limit, the hyperpolarizability tensor is fully symmetric with respect to permu-
tations of its indices, which reduces the tensor from 27 to 10 independent values Kleinman (1962).
In the spherical basis, three of these values come from the l = 1 (dipole) component, and the re-
maining seven from the l = 3 (octopole) component. This dataset is available at Ref.(Miedaner,
2025)

We implement a simplified equivariant message-passing architecture based on the NequIP convo-
lutional layers, truncating the internal representations to order lmax = 4. The primary architecture
difference is in the output step: rather than projecting to a scalar (l = 0) value, we implement an
output head that reduces the full equivariant feature set to l = 1 and l = 3 components, which
are then used to reconstruct the full hyperpolarizability tensor in the spherical or Cartesian bases.
Figure 1 visualizes the power of this equivariant model architecture using ethane in both its eclipsed
and staggered configurations as examples. While indistinguishable by their chemical composition,
the conformations belong to two different point groups, namely D3h and D3d for the eclipsed and
staggered configurations, respectively. The presence of an inversion center in D3d requires all tensor
elements to be vanishing, while group theory predicts four non-vanishing elements for the D3h point
group (Boyd, 2008). When the full hyperpolarizability tensors are reconstructed from an untrained,
randomly initialized model, as shown in Figure 1, the output retains the correct symmetry of the
tensor predicted from a group theoretical treatment, including identifying vanishing elements and
preserving the relative signs and relationships of the nonvanishing elements. This places strong con-
straints on the space of learnable functions as a form of physical inductive bias, thereby eliminating
the need for augmentation or many training samples.
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Figure 2: Prediction results for the training (black) and test (colored) data set for individual tensor
elements in the spherical basis, and their corresponding R2-values. The first three plots correspond
to the 3 components from l = 1, and the last seven from the l = 3 component.
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For model training, we split the ∼12,000 molecules uniformly into 80:10:10 training, testing, and
validation ratios—data distributions with respect to hyperpolarizability values are shown in Ap-
pendix A, Figure 4. Model hyperparameters and loss functions are detailed in Table 1 of the ap-
pendix. The results for the ten hyperpolarizability elements in the spherical harmonic basis are
shown in Figure 2. After just 30 training epochs, each component in the training split has near unity
R2 values. Similarly, prediction on the∼1000 test molecules showed R2 > 0.9 for all 10 elements.
The reserved validation set of ∼1000 molecules also has R2 > 0.9 for all 10 elements, shown in
Appendix B, Figure 6. The high R2 values between training and test/validation sets demonstrates
good generalization performance, and suggests the model is not overfitting to the training set.

To visualize the learned representations in the test dataset, we employ potential of heat diffusion
for affinity-based transition embedding (PHATE) (Moon et al., 2019) Briefly, PHATE works by
measuring local similarities and diffusing through the similarity distribution to identify long-range
relationships. Unlike other popular data reduction techniques such as PCA(Greenacre et al., 2022),
t-SNE(van der Maaten & Hinton, 2008), and UMAP (McInnes et al., 2018), PHATE is capable
of preserving both local and global structure from the original manifold at lower dimensions; this
allows us to reason about the latent structure based on absolute distances and the distribution of data
points. We perform the analysis at node (atomic) and graph (molecular) levels (i.e. a pooled sum
over the nodes in a graph) of the test split. We adopt the notation used in e3nn Geiger et al. (2022),
and denote spherical harmonic degree and parity using notation l = Lp where L ∈ {0, 1, 2, 3, 4} for
the spherical harmonic order and p ∈ {o, e} for the parity.

The left panel in Figure 3 shows the PHATE projections for the l = {0e, 1o, 3o} components at the
node level before and after the interaction layers. The high degree of complexity in the structure and
ordering of the node embeddings suggests that the higher-degree spherical harmonic components
contribute significantly to the learned representation at the node/atomic level. The right panel in
Figure 3 shows the PHATE analysis results at the graph level, after a summation of all the nodes. In
all three components, the distributions show a degree of organization based on hyperpolarizability
values, suggesting that all components are contributing at least weakly to the learned representation.
Interestingly, the degree of fine structure for the nonscalar components, which was present at the
node level, appear to be strongly washed out at the graph level. The scalar distribution, however,
retains most of the fine structures that were present at the node level. While the results are shown
for a small subset of steps and components, the trend was observed for all steps in the model and
components with l > 0.

Initial 

Final 
convolution

Node level PHATE embedding Graph level PHATE embedding ||χ(2)|| (e.s.u)

l=0e l=1o l=3o l=0e l=1o l=3o 3x10-30

0

Figure 3: PHATE analysis results for the l = {0e, 1o, 3o} components at the node (LEFT PANEL)
and graph levels (RIGHT PANEL). Embeddings are shown before and after the interaction layers

To gain further insights, we perform a simple ablation experiment and train a model whose internal
representations consist only of the internal representations of the hyperpolarizability tensor plus
a scalar component (i.e. l = {0e, 1o, 3o}), which still respects the equivariance and Neumann
symmetry constraints. The results, shown in the Appendix Figure 7, show a marked decrease in the
prediction performance for all 10 components, but which is interestingly pronounced for components
in the l = 3 representation.
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3 DISCUSSION AND CONCLUSIONS

We have shown that using a simple equivariant network can lead to highly accurate prediction
of hyperpolarizabilities on a diverse set of molecules. It was recently demonstrated that high-
throughput DFT calculations of molecular hyperpolarizability can be an effective way to discovery
novel sources of terahertz radiation(Valdivia-Berroeta et al., 2022). Replacing the computationally
expensive DFT calculations with this machine learned predictor would greatly expand the accessible
search space of THz generating molecules, and also open the possibility of inverse-designing molec-
ular structures which would have high hyperpolarizabilities with a specified symmetry. While THz
generating molecules is one area of interest, fast and accurate hyperpolarizability predictions can
be used in the discovery and design of all second-order nonlinear media such as second harmonic
generation and sum/difference frequency generation. While the results here demonstrate accurate
prediction of molecular hyperpolarizability, the architecture of the neural network is agnostic to the
phase of the material and could also be used to predict hyperpolarizabilities on crystals.

We also gained mechanistic insights into what aspects of the architecture lead to improved perfor-
mance. Specifically, the PHATE analysis and ablation study suggest that higher degree spherical
harmonic components are contributing to the graph level prediction, contrary to what is observed
in the case of scalar prediction (Lee et al., 2024). In the ablation study, we find that some of the
orders in the degree-3 component are affected much more strongly than others, which is a question
of ongoing research. Most of the graph-level fine structure in the learned representation is localized
in the scalar component. We speculate that this indicates higher-degree information is retained in
the scalar component. Additionally, it suggests that a simple summation over the nodes may not be
effective for high-degree components.

To summarize, we have provided a diverse dataset of molecular hyperpolarizability tensors, which
we used to train a simple equivariant neural network. These networks produce highly accurate pre-
dictions of hyperpolarizability tensors. Our analysis suggests this prediction performance is largely
related to the symmetry constraints which enforces the output tensor to reflect the equivariance and
global symmetry of the input molecular structure, in addition to contributions of high-degree com-
ponents to the learned representation. This work introduces a valuable tool in the discovery of the
next generation of nonlinear optical media, which will be built upon in future works.
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Atomic coordinates for ∼12,000 molecules were randomly sampled from the QM9 database, and
used as input for DFT calculations at the B3LYP/6-31G(d) level of theory. These calculations were
performed using the Polar subroutine of the Gaussian 09 suite of electronic structure programs.
This dataset offers a diverse range of small organic molecules and their hyperpolarizability tensors
(Miedaner, 2025).
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B MODEL

B.1 ARCHITECTURE AND TRAINING

Our simplified message-passing network was implemented with e3nn (Geiger et al., 2022), and
closely resembles that used in Lee et al. (2024) which in turn was heavily inspired by NequIP (Bata-
tia et al., 2022). An overview of the network architecture is given in Figure 5. The input to the

Figure 5: Number of dimensions for each irreducible representation present in the input and internal
layers of the network used in this work.

network is a molecular graph containing nodes that correspond to atomic species and 3D coordi-
nates; atomic numbers are mapped to scalar (l = 0e) vectors through an embedding table. Edges
are formed between nodes via a radial cutoff value (see Table 1), and are subsequently used to com-
pute pairwise distances that are projected onto a basis of radial Bessel functions and passed through
a multi-layer perceptron comprising learnable weights. The internal layers consist of equivariant
graph convolutions, which consists of fully connected tensor products between atomic and radial
features. Features are truncated up to a cutoff of lmax = 4, i.e. the internal representations belong
to the set l = {0e, 1o, 2e, 3o, 4e}. The final output step is a projection of the output from the final
interaction layer to l = 1o and 3o components.

The loss was computed individually for the l = 1 and l = 3 components, and the net loss function,
L was defined as the average of the two values:

L =

∑
MSEl=1 +

∑
MSEl=3

2
(4)

Where MSE is mean-squared error. The model and training were implemented using PyTorch
(Paszke et al., 2019), PyTorch Geometric (Fey & Lenssen, 2019), and PyTorch Lightning (Falcon,
2019) libraries. Training was performed using 2 GPUs and 30 total epochs. The hyperparameters
used for model in this paper are given in Table 1.

B.2 VALIDATION DATASET RESULTS

Figure 6 shows the prediction results for the 10% of molecules in the validation split. An R2 of
> 0.9 is obtained for all elements of the tensor. The results are shown in the spherical basis, as
described in the main text.
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Table 1: Model hyperparameters

Hyperparameter Value

Optimizer AdamW
Learning rate 1e− 3
Batch size 8
Internal l-values {0e, 1o, 2e, 3o, 4e}
Degree normalization 3
Initial atom embedding dim. 32
Hidden dimensions 64
# of Bessel functions 10
Radial cutoff 4.0
# of interaction blocks 3

Target        (10-30 e.s.u.) χ(2)
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Figure 6: Prediction accuracy of trained model on validation split.

B.3 ABLATION EXPERIMENT

In order to further assess the contribution of higher degree spherical harmonic components to
the learned representation, we perform a simple ablation experiment. We train a model with
l = {0e, 1o, 3o}, which is the simplest model that will still enforce equivariance and Neumann’s
principle for a rank-3 tensor. Additionally, we increase the number of internal dimensions to keep
the total number of trainable parameters approximately equal to the model used in the main text. The
hyperparameters for the model used in the ablation experiment are shown in Table 2 The training
and testing predictions are shown in Figure 7. There is a clear drop in the prediction performance
for all ten components. Interestingly, the 3o components are affected much more strongly by the ab-
lation as compared to the 1o components. These results further suggest the higher degree spherical
harmonics contribute in the prediction of the hyperpolarizability tensor.
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Table 2: Model hyperparameters

Hyperparameter Value

Optimizer AdamW
Learning rate 1e− 3
Batch size 8
Internal l-values {0e, 1o, 3o}
Degree normalization 3
Initial atom embedding dim. 64
Hidden dimensions 128
# of Bessel functions 10
Radial cutoff 4.0
# of interaction blocks 3

l1
-1 l1

0 l1
1 l3

-3 l3
-2

l3
-1 l3

0 l3
1 l3

2 l3
3

Target        (10-30 e.s.u.) χ(2)
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)
 χ
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)

Figure 7: Prediction results for ablation experiment. A model trained on the same data in the main
text but with l = {0e, 1o, 3o}.
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