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ABSTRACT

Multivariate long-term time-series forecasting task is a very challenging task in
real-world application areas, such as electricity consumption and influenza-like
illness forecasting. At present, researchers are focusing on designing robust and
effective models, and have achieved good results. However, there are several is-
sues with existing models that need to be overcome to ensure they provide opti-
mal performance. First, the lack of a relationship structure between multivariate
variables needs to be addressed. Second, most models only have a weak ability
to capture local dynamic changes across the entire long-term time-series. And,
third, the current models suffer from high computational complexity and unsat-
isfactory accuracy. To address these issues, we propose a novel method called
Multi-view Time-series Graph Structure Representation (MTGSR) for multivari-
ate long-term time-series forecasting tasks. MTGSR uses graph convolutional net-
works (GCNs) to construct topological relationships in the multivariate long-term
time-series from three different perspectives: time, dimension, and crossing seg-
ments. Variation trends in the different dimensions of the multivariate long-term
time-series are extracted through a difference operation so as to construct a topo-
logical map that reflects the correlations between the different dimensions. Then,
to capture the dynamically changing characteristics of the fluctuation correlations
between adjacent local sequences, MTGSR constructs a cross graph by calculat-
ing the correlation coefficients between adjacent local sequences. Extensive ex-
periments on five different datasets show that MTGSR reduces errors by 20.41%
over the state-of-the-art while maintaining linear complexity. Additionally, mem-
ory use is decreased by 66.52% and running time is reduced by 78.09%.

1 INTRODUCTION

In reality, a large amount of time-series data is produced in various fields, such as weather forecast-
ing (Hewage et al., 2021; Rasp et al., 2020), electricity power planning (Qader et al., 2022; Ore-
shkin et al., 2021), disease propagation prejudgment (Li et al., 2021; Zimmer & Yaesoubi, 2020),
and more. Although challenging to model the long-term relationships and multivariate correlations
within these real-world time-series are important elements of most practical forecasting tasks in-
volving these data. Thus, in this paper, we focus on multivariate long-term time-series forecasting
task, which has higher requirements for models than ordinary time-series forecasting tasks. In recent
years, deep learning models have been thoroughly investigated for their power at multivariate long-
series forecasting tasks with many achieving good results (Liu et al., 2021; Torres et al., 2021; Lim &
Zohren, 2021). For example, Transformer-based models, the mainstream framework for multivariate
long-term time-series forecasting tasks, relies on multi-head self-attention as a core mechanism for
extracting powerful characteristics from historical data (Nikita et al., 2020; Zhou et al., 2021; Xu
et al., 2021; Zhou et al., 2022). These characteristics are then analyzed to predict long sequences
containing data from farther in the future.

However, there are still several extremely challenging issues in multivariate long-term time-series
forecasting tasks that need to be addressed. First, existing models do not construct relationships
between multivariate variables. Rather, they pay more attention to capturing the temporal features
of the series, which means they simply use dimensional mappings to extract blurry relationships
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between multivariate variables. Topologies between different variables cannot effectively be con-
structed using this approach. Second, in addition to the relationship between tokens, the character-
istics of dynamically changing fluctuations between local sequences in long-term time-series are
also important. Yet most existing models process sequences from a global view such that the fea-
tures of the local fluctuations are entangled with the overall features. Third, the current models still
have room to improve accuracy. And, further, most of the models that perform well have a high
computational complexity caused by complex structures.

To construct a relationship graph of multivariate variables, we turned to graph convolutional net-
works (GCNs) (Welling & Kipf, 2016). GCNs are typical graph neural networks used to extract
the features of vertices connected by edges in a graph. One advantage of GCNs is that they can
generate a more representative topology and richer node properties by passing information between
neighboring nodes. Hence, we attempted to build a model by treating the multivariate variables in
a multivariate long-term time-series as the nodes of a graph and using the correlations between dif-
ferent variables fluctuating over time as the weights of the graph’s edges. Through experiments,
we found that these operations could generate dimensional graphs with rich spatial features. More-
over, the GCNs could be used to extract more appropriate topological features between multivariate
variables from the obtained dimensional graphs. Additionally, we subsequently found that the pro-
cess of generating graphs from the time-series and the GCNs was also good for extracting several
other graph characteristics-including the temporal characteristics of the long-term time-series and
the characteristics of the local sub-sequences with dynamically changing fluctuations.

Inspired by these preliminary studies, we developed a novel and effective model named Multi-view
time-series Graph Structure Representation (MTGSR) for multivariate long-term time-series fore-
casting tasks. MTGSR extracts disentangled information from the input time-series to dynamically
generate graph structures from three perspectives: the time-view, the dimension-view, and a cross-
view. In terms of the time-view, MTGSR builds a time graph using Time Graph Generator by cal-
culating the correlations for all the dimensional information between different timestamps. Unlike
the normal process of generating a time graph, MTGSR adds a differential operation to process
the inputs when generating dimensional graphs so as to extract valid information from the relative
fluctuations of the time-series across different dimensions. The cross-view takes into account the
correlations of all the fluctuations that dynamically change over time between two adjacent local
sequences in the long-term time-series. Because extracting features directly from the entire length
of the time-series would result in too many redundant information and probably cause the model to
overfit, the objects MTGSR’s three graph generators use are local sequences split from the intact
multivariate long-term time-series. Benefiting from this design, the scale of the parameters is greatly
reduced to the point that the model has a linear complexity. Further, Inspired by Transformer’s multi-
head attention mechanism, a multi-head mechanism is used at MTGSR’s input stage to improve its
ability to capture different features from the input sequence. This strategy proves to increase the
prediction accuracy of the model. In fact, MTGSR outperforms the state-of-the-art model on five
data benchmarks in terms of accuracy, memory use, and running times. The contributions of this
paper are summarized as follows:

• We propose a novel model named Multi-view Time-series Graph Structure Representation
(MTGSR) for multivariate long-term time-series forecasting tasks. MTGSR uses GCNs to
learn the complex disentangled characteristics in multivariate long-term time-series from
three perspectives: the time view, the dimension view, and the cross-segment view.

• To construct topologies between multivariate variables, MTGSR uses a GCN-based Dimen-
sion Graph Generator to dynamically learn the structural relationships in the multivariate
long-term time-series after differencing operations.

• To capture the dynamically changing characteristics of the fluctuation correlations between
adjacent local sequences in the whole long-term time-series, MTGSR construct a cross-
segment graph by calculating the correlation coefficients between adjacent local sequences
through the Cross-segments Graph Generator.

• Extensive experiments with five datasets show that MTGSR reduces errors by 20.41%
while maintaining a linear complexity compared to the state-of-the-art framework FED-
former. Additionally, MTGSR reduces memory use by 66.52% and running time by
78.09%.
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2 RELATED WORK

2.1 DEEP LEARNING MODELS FOR MULTIVARIATE LONG-TERM TIME-SERIES
FORECASTING

Multivariate long-term time-series forecasting is an important research direction in the field of time
prediction (Liu et al., 2021; Torres et al., 2021). In the original field of time-series forecasting,
recurrent neural networks (RNNs) (Stankeviciute et al., 2021; Qin et al., 2017; Madan & Mangipudi,
2018) are one of the more widely used deep learning models. As the requirements for the forecasting
task increase, the length of the time-series that models need to predict is growing longer. For this
reason, an enhanced version of the RNN, LSTM, has been used to model long-term time-series
prediction tasks. However, LSTM-based models (Smyl, 2020; Sagheer & Kotb, 2019; Shen et al.,
2020), which iteratively generate prediction sequences, produce cumulative errors and the errors
affect the models’ prediction accuracy. As a way to address this problem, temporal convolution
networks (TCNs) have emerged (Wan et al., 2019; Shen et al., 2020). These frameworks directly
generate all prediction sequences by imitating the principles of a convolution neural network (CNN).

In recent years, Transformer (Vaswani et al., 2017), a model with stronger theoretical advantages, has
shown great power over tasks such as audio processing (Gong et al., 2022; Sajid et al., 2021), natural
language processing (Wolf et al., 2020; Guo et al., 2019; Zhang & Zhang, 2020), and time-series
forecasting (Wu et al., 2020; Li et al., 2019; 2021). However, limited by the high computational
complexity O(L2) of self-attention mechanisms that sits at their core, Transformer-based models
cannot be used directly to handle long-term time-series. Some Transformer variants do focus on
reducing the computational complexity of the self-attention mechanism. For instance, LogTrans (Li
et al., 2019)incorporate a sparse attention mechanism named LogSparse attention, which reduces
the model’s computational complexity to O(LlogL). Reformer (Nikita et al., 2020) presents a novel
local-sensitive hashing (LSH) attention based on a hash algorithm, which also has O(LlogL) com-
plexity. In addition, Informer (Zhou et al., 2021) introduces a query sparsity measurement with a
distilling mechanism that yields low computational complexity. However, these variant models do
not perform well enough in terms of prediction accuracy. Compared with the above models, Auto-
former (Xu et al., 2021) is much more accurate. Autoformer includes a time-series decomposition
module and an AutoCorrelation mechanism in place of self-attention. However, with the advent of
FEDformer (Zhou et al., 2022), the prediction accuracy of the Transformer variants has risen again.
FEDformer combines a time-series decomposition module and frequency enhanced blocks to greatly
improve prediction accuracy. Moreover, it reduces computational complexity to O(L).

However, when extracting temporal features from long-term time-series, none of these models con-
sider the relationships between multiple variables from a dimensional perspective. Yet there are
meaningful relationships between different variables in most real-world datasets, and extracting
these relationships is an important part of studying multivariate long-term time-series prediction.

2.2 GRAPH CONVOLUTIONAL NETWORKS

Graph convolutional networks (GCNs) (Welling & Kipf, 2016) are representative graph neural net-
works that have been widely used in link prediction (Yun et al., 2021; Yan et al., 2021), social net-
works(Tong, 2020; Tian et al., 2021b) and graph anomaly detection (Tian et al., 2021a; Markovitz
et al., 2020). GCNs can aggregate the information from adjacent nodes and filter out interference in
a graph. Thus, GCNs have an advantage when processing graph structure data. Today, researchers
can dynamically generate graphs from time-series data by building graph structure learning models
(Zhao et al., 2021b; Fatemi et al., 2021), where GCNs are used to extract the characteristics of the
processed data and the generated graph structures. This has expanded the applicability of GCNs to
a wider range of tasks, such as traffic forecasting (Guo et al., 2021; Sofianos et al., 2021; Lan et al.,
2022), health data processing (Zhao et al., 2021a; Ntemi et al., 2022; Zhang et al., 2022), and so on.
Particularly in short-term forecasting tasks, such as traffic forecasting, GCNs have performed very
well as mainstream model frameworks. But, to the best of our knowledge, no GCN-based model has
currently been designed for multivariate long-term time-series forecasting tasks given multi-domain
datasets.

In multivariate long-term time-series forecasting tasks, existing models lack the ability to extract
dependencies between multivariate variables from multivariate long-term time-series. Most of these
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Figure 1: Multi-view Time-series Graph Structure Representation architecture. The multi-head
mechanism provides stable and informative hidden features to the Multi-view Graph Generator mod-
ule. The Multi-view Graph Generator module extracts the disentangled characteristics of the time
stamps, the multivariate variables, and the crossing segments.

models focus their attention on extracting features in the time and frequency domains of the time-
series. By contrast, our framework is designed to use GCNs from a dimensional perspective to
construct the complex relationships between the multivariate variables in multivariate long-time
time-series.

3 METHODOLOGY

The task with multivariate long-term time-series forecasting is to predict long-term future sequences
P ∈ RLp×din with minimal errors based on historical time-series data X ∈ RLx×din . As men-
tioned, several problems currently exist in multivariate long-term time-series forecasting-these be-
ing: 1) the lack of a relationship structure between multivariate variables; 2) weak ability to capture
local dynamic changes across the full long-term time-series; and 3) high computational complexity
and unsatisfactory accuracy. To address these problems, our framework incorporates GCNs that pro-
cess dynamically-constructed graphs with topological information from three different perspectives:
the time view, the dimension view, and the cross-segments view. Inspired by multi-head attention,
we designed a multi-head mechanism to improve the model’s ability to capture different features.
Within this mechanism, RevIN (Kim et al., 2021) improves the model’s prediction accuracy with
datasets of different distributions. Lastly, we propose Multi-view Time-series Graph Structure Rep-
resentation (MTGSR), a model with high-precision and low complexity. The overall architecture of
our framework is shown in Figure 1.

3.1 MULTI-HEAD MECHANISM

The multi-head mechanism consists of two modules: RevIN and a parallel linear layer group. This
mechanism is designed to provide stable and informative features for subsequent graph generators,
with the detailed structure shown in Figure 1.

In a real world dataset, the distributions of the overall data differ over time. Hence, the RevIN
module (Kim et al., 2021) dynamically normalizes the input sequence. This process means that input
sequences normalized by RevIN all conform to the same distribution each time, which improves the
effectiveness of the features extracted by the model. The formulation is:

Xn = RevIN(X) (1)

where X = {x1, . . . ,xLx |xi ∈ Rdin} denotes the input sequence, RevIN(·) denotes the function
of RevIN module and Xn denotes the hidden layer sequence normalized by the RevIN module.

To extract informative features, a parallel linear layer group replaces a single linear layer, with ref-
erence to the principle of the multi-head attention mechanism in Transformer (Vaswani et al., 2017).
This mechanism enhances the model’s ability to discover the information in Xn from different rep-
resentation subspaces at different positions. Formally, it is expressed as:

Hi = XnWi + bi (2)

4



Under review as a conference paper at ICLR 2023

where Hi ∈ RLx×d denotes the hidden features, and Wi ∈ Rdin×d represents the learnable param-
eter matrix of the i-th head in hidden layer. bi is the corresponding learnable bias.

3.2 MULTI-VIEW GRAPH GENERATOR

The multi-view graph generator module extracts the characteristics of the multivariate long-term
time-series from multiple perspectives. It contains three graph generators: including Crosssegments
Graph Generator, Dimension Graph Generator and Time Graph Generator. The module relies on
GCNs to process the graphs generated by the three graph generators so as to obtain the features that
contain different subspace information from the input sequence.

From experiments, we found that learning the relationship between each pair of tokens across the
entire multivariate long-term time-series resulted in an oversized and overfit model. So, to overcome
this problem, we split the input sequence into several cross segments of the same size l, where
adjacent segments partially cover each other. The process is formulated as:

S1,S2, . . . ,Sn = Split(Hi) (3)

where Sj ∈ Rl×d represents the j-th segment and Split(·) represents the splitting function. The
overall architecture of Multi-view Graph Generator module is shown in Figure 1. Details of the
three generators are provided in the following sections and the architectures of them are shown in
Appendix A.

3.2.1 CROSS-SEGMENTS GRAPH GENERATOR

To learn the variations in the fluctuations of the local sub-sequences, we designed the Cross-
segments Graph Generator to dynamically generate a relationship graph between two sub-sequences.
This generator first projects two adjacent segments onto the feature space through a linear mapping
function. Then, the features are normalized. The formulation is:

Fj = Norm(Wc1Sj + bc1)

Fj+1 = Norm(Wc2Sj+1 + bc2)
(4)

where Wc1,Wc2 ∈ Rl×l are two learnable weight matrices, and bc1 and bc2 are two learnable bias.
Norm(·) represents the normalization function. All the learnable parameters are shared in each
Cross-segments Graph Generator. The generator then calculates the correlation value of the two
feature sequences Fj and Fj+1 to construct a relationship graph, which is formulated as:

Gcross = Softmax2d(FjF
T
j+1) (5)

where Gcross ∈ RL×L is the relationship graph of the feature sequences Fj and Fj+1. To further
extract the information on the graph Gcross and update the information of the corresponding ele-
ments in the feature sequence Fj , a GCN is used to process the graph Gcross and feature sequence
Fj . The formulation is:

F ′
j = D̃− 1

2 G̃crossD̃
− 1

2FjWcross (6)

where F ′
j is the updated feature sequence, D̃− 1

2 G̃crossD̃
− 1

2 is the normalized adjacency matrix of
Gcross and Wcross is a learnable matrix. In our experiment, we simplify Equation 6 to Equation 7
to get more efficient with almost no effect loss of accuracy.

F ′
j = GcrossFjWcross (7)

F ′
j is then feature-mapped by a nonlinear layer using a residual connection (He et al., 2016) followed

by another nonlinear layer. This formulated as:

Fcross = F ′
j + σ(F ′

jWnlc + bnlc) (8)

where Fcross ∈ Rl×d is the updated feature sequence, σ is a activation function, Wnlc ∈ Rd×d and
bnlc are the learnable parameters of the nonlinear layer.
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3.2.2 DIMENSION GRAPH GENERATOR

The Dimension Graph Generator dynamically generates a dimension graph that represents the cor-
relation coefficients of each pair of multivariate variables. This generator takes the resulting feature
sequence Fcross (Section 3.2.1) as its input. The next step is to perform a differential operation on
Fcross to establish the trend of fluctuations in the series. The formulation is:

Fd = Diff(Fcross) (9)

where Fd ∈ R(l−1)×d is the output of the differential operation Diff(·). Then, through a linear
mapping and normalization operation, the feature sequence Fd is updated to Fn, formulated as:

Fn = Norm(WdFd + bd) (10)

where Wd ∈ R(l−1)×(l−1) and bd are two learnable parameters. Next, the correlation coefficients of
each dimension are calculated in the feature sequence Fn, and a dimension graph is constructed.

Gdim = Softmax2d(F T
n Fn) (11)

where Gdim ∈ Rd×d is the dimension graph and Softmax2d is a normalization function. Finally, a
GCN is used to extract information from the dimension graph Gdim to update the feature sequence
Fcross. The formulation is:

F ′
d = GdimFcrossWdim

Fdim = F ′
d + σ(F ′

dWnld + bnld)
(12)

where Fdim ∈ Rl×d is the updated feature sequence, Wdim,Wnld ∈ Rd×d and bnld are the learn-
able parameters.

3.2.3 TIME GRAPH GENERATOR

The Time Graph Generator is a structure that extracts the relationship between each timestamp from
the perspective of time. We contend that the values for each timestamp have an important relationship
in this perspective, so, unlike the Dimension Graph Generator, the Time Graph Generator does not
calculate the difference. The formulation is:

Ft = Norm(WtFdim + bt)

Gtime = Softmax2d(FtF
T
t )

(13)

where Gtime ∈ Rl×l is the obtained time graph, and Wt ∈ Rl×l and bt are the learnable parameters.
A GCN is then used to update the feature sequence, which is formulated as:

F ′
t = GtimeFdimWtime

Ftime = Wo(F
′
t + σ(F ′

tWnlt + bnlt)) + bo
(14)

where Ftime ∈ Rl×d is the updated feature sequence, and Wtime,Wnlt ∈ Rd×d,Wo ∈ Rl×l, bo
and bnlt are the learnable parameters.

Finally, the feature sequences produced in parallel by the multi-head mechanism are combined to
give the final prediction sequence. The formulation is:

S′
j = WjF

time
j

P = RevIN(Concat(S′
1,S

′
2, . . . ,S

′
n′))

(15)

where P ∈ RLp×din is the prediction sequence, F time
j represents the updated feature sequence of

j-th head, Wj is the learnable matrix of j-th head, and Concat(·) are the concatenation function.

4 EXPERIMENTS

To evaluate MTGSR’s performance, we performed extensive experiments on five publicly available
datasets covering different fields. Additionally, we selected five baselines for comparison.
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Methods MTGSR FEDformer Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.349 0.385 0.379 0.419 0.505 0.475 0.672 0.571 0.600 0.546 0.538 0.528
ETTm1 192 0.380 0.402 0.426 0.441 0.553 0.496 0.795 0.669 0.837 0.700 0.658 0.592

336 0.416 0.425 0.445 0.459 0.621 0.537 1.212 0.871 1.124 0.832 0.898 0.721
720 0.472 0.458 0.543 0.490 0.671 0.561 1.166 0.823 1.153 0.820 1.102 0.841
96 0.095 0.218 0.139 0.276 0.134 0.270 0.847 0.752 0.968 0.812 1.065 0.829

Exchange 192 0.178 0.302 0.256 0.369 0.272 0.374 1.204 0.895 1.04 0.851 1.188 0.960
336 0.331 0.416 0.426 0.464 0.488 0.510 1.672 1.036 1.659 1.081 1.357 0.976
720 0.936 0.693 1.090 0.800 1.367 0.901 2.478 1.310 1.941 1.127 1.510 1.016
96 0.158 0.208 0.217 0.296 0.231 0.312 0.300 0.384 0.458 0.490 0.689 0.596

Weather 192 0.205 0.254 0.276 0.336 0.278 0.343 0.598 0.544 0.658 0.589 0.752 0.638
336 0.263 0.309 0.339 0.380 0.335 0.378 0.578 0.523 0.797 0.652 0.639 0.596
720 0.345 0.341 0.403 0.428 0.429 0.436 1.059 0.741 0.869 0.675 1.130 0.792
96 0.170 0.249 0.193 0.308 0.197 0.312 0.274 0.368 0.258 0.357 0.312 0.402

Electricity 192 0.178 0.282 0.201 0.315 0.208 0.321 0.296 0.386 0.266 0.368 0.348 0.433
336 0.187 0.293 0.214 0.329 0.213 0.328 0.300 0.394 0.280 0.380 0.350 0.433
720 0.217 0.317 0.246 0.355 0.245 0.352 0.373 0.439 0.283 0.376 0.340 0.420
24 1.516 0.765 2.203 0.963 3.825 1.345 4.388 1.360 4.322 1.381 4.400 1.382

Illness 36 1.402 0.757 2.272 0.976 3.319 1.216 4.651 1.391 4.186 1.332 4.783 1.448
48 1.455 0.778 2.209 0.981 2.854 1.122 4.581 1.419 4.476 1.411 4.832 1.465
60 1.740 0.875 2.545 1.061 3.227 1.232 4.583 1.432 4.766 1.477 4.882 1.483

Table 1: Multivariate long-term time-series forecasting results on five datasets with an input length
of I = 96 and a prediction length of O ∈ {96, 192, 336, 720}. Note that with the ILI dataset, we used
a prediction length of O ∈ {24, 36, 48, 60}). A lower MSE indicates better performance; the best
results are highlighted in bold.

4.1 DATASETS

In this section, we show the description of the five datasets: 1) ETT , which contains seven attributes,
such as load and oil temperature, collected every 15 minutes from electricity transformers between
July 2016 and July 2018. 2) Exchange , with eight attributes, which records the daily exchange rate
from eight countries between 1990 to 2016. 3) Weather , containing 21 weather-related attributes
collected every 10 minutes for the whole of 2020. 4) Electricity , which consists of 321 customers
and records their hourly electricity consumption between 2012 and 2014. 5) ILI , containing seven
patient attributes, collected by the Centers for Disease Control and Prevention of the United States
between 2002 and 2021. These datasets were split into training, validation, and testing sets for
experimentation according to a 7:1:2 ratio.

4.2 IMPLEMENTATION DETAILS

We chose L2 as the loss function to train the model and selected mean square error (MSE) and mean
absolute error (MAE) as the evaluation metrics. We used the ADAM optimizer with an initial learn-
ing rate of 0.001. The batch size was set to 64. The number of heads in the multi-head mechanism
was set to 8, and the hidden dimension in each head of the multi-head mechanism was set to 64.
All experiments were repeated three times, and their average values were recorded as the result. The
size of segments in MTGSR were set to 12 for the ETT, Electricity, and Illness datasets, and to 24
for the Exchange and Weather datasets. A hyperparameter sensitivity analysis is provided in Section
4.5.1. All experiments were run on a single Nvidia RTX3090 24GB GPU.

4.3 BASELINE

We selected five of the latest state-of-the-art methods as baselines to compare with MTGSR, in-
cluding FEDformer Zhou et al. (2022), Autoformer Xu et al. (2021), Informer Zhou et al. (2021),
LogTrans Li et al. (2019) and Reformer Nikita et al. (2020).

4.4 MAIN RESULTS

We set the input sequence to a fixed length and evaluated the performance of the proposed MT-
GSR and baselines over four prediction lengths with the ETTm1, Exchange, Weather and Electricity
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Size of Segments Metric Exchange Electricity
96 192 336 720 96 192 336 720

12 MSE 0.103 0.195 0.360 1.106 0.170 0.178 0.187 0.217
MAE 0.220 0.316 0.429 0.798 0.246 0.282 0.293 0.317

24 MSE 0.095 0.178 0.331 0.936 0.171 0.184 0.192 0.223
MAE 0.218 0.302 0.416 0.693 0.279 0.290 0.299 0.321

48 MSE 0.096 0.187 0.350 1.051 0.175 0.185 0.193 0.227
MAE 0.219 0.309 0.430 0.767 0.286 0.294 0.301 0.323

Table 2: The experimental results of MTGSR with segment sizes of 12, 24, and 48 on the Exchange
and Electricity datasets.

datasets: 96, 192, 336, and 720 and to 24, 36, 48, and 60 with the Illness dataset. Table 1 shows
the results of the experiments. MTGSR yielded better results than the state-of-the-arts in all bench-
marks and all prediction length settings. MTGSR’s improvements were particularly pronounced
on the datasets with strong correlations between multivatiate attributions, such as the Exchange,
Weather and ILI datasets, at 24.54%, 26.41%, and 31.78%, respectively. On the other two datasets
ETTm1 and Electricity datasets, MTGSR also showed good performance with a respective 9.58%
and 11.94% reduction in MSE. Overall, MTGSR reduced errors by an average of 20.41% across all
experiments. These results demonstrate that no matter whether the prediction is short-term (at a pre-
diction length of 96) or long-term (a prediction length of 720), MTGSR’s performance is relatively
stable. At the same time, MTGSR maintains high precision while remaining low in computational
complexity and in terms of model scale, making it easier to migrate MTGSR to edge devices for
deployment. Section 4.5.3 next contains details of the hyperparameter sensitivity, the complexity
analysis, and the model scale.

4.5 MODEL ANALYSIS

In this section, we show the hyperparameter sensitivity analysis, an ablation study of each graph gen-
erator and the efficiency analysis. The prediction sequences and heatmaps of each view of MTGSR
are visualized in Appendix B. Results of some expanded experiments on the ETT series datasets are
shown in Appendix C.

4.5.1 HYPERPARAMETER SENSITIVITY

Head Metric Exchange
96 192 336 720

1 MSE 0.097 0.188 0.373 1.037
MAE 0.221 0.312 0.442 0.772

4 MSE 0.098 0.183 0.359 1.005
MAE 0.218 0.310 0.432 0.754

8 MSE 0.095 0.178 0.331 0.936
MAE 0.218 0.302 0.416 0.693

16 MSE 0.103 0.198 0.363 0.973
MAE 0.225 0.316 0.435 0.744

Table 3: The experimental results of
MTGSR with head number of 1, 4, 8,
16 on Exchange datasets.

We performed extended experiments to study MTGSR’s
hyperparameters, including the size of the segments for
the Multi-view Graph Generator and the number of heads
in the multi-head mechanism. In terms of the segment size,
we selected three values - 12, 24 and 48 - and performed
experiments with the Exchange and Electricity datasets.
The results are shown in Table 2. With the Exchange
dataset, the best-performing hyperparameter setting was
24. With the Electricity dataset, the optimal segment sizeb
was 12. Hence, from these experiments, we determined
that segment size needs to be selected depending of the
datasets. With the remaining datasets, the optimal segment
size was 12 for the ETTand Illness datasets, and 24 for the
Weather dataset. In terms of the number of heads in the
multi-head mechanism, we performed experiments with
the Exchange dataset, setting the number of heads to 1,4,8, and 16. Table 3 shows the results, indi-
cating that MTGSR performed best with 8 heads.

4.5.2 THE EFFECT OF DIMENSION GRAPH AND CROSS-SEGMENTS GRAPH

To verify the effectiveness of the dimension graph and the cross-segments graph, we conducted abla-
tion experiments. We removed the Dimension Graph Generator and the Cross-segments Graph Gen-
erator to get two variants: MTGSR† and MTGSR‡. Compared to MTGSR, MTGSR† and MTGSR‡

decreased prediction accuracy by 8.86% and 8.56%, respectively, and the results are shown in Table
4. After removing the dimension graph, there was a large decline with the Exchange and Weather

8
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Methods Metric Exchange Weather Electricity ILI
96 192 336 720 96 192 336 720 96 192 336 720 24 36 48 60

MTGSR MSE 0.095 0.178 0.331 0.936 0.158 0.209 0.263 0.345 0.170 0.178 0.187 0.217 1.516 1.402 1.455 1.740
MAE 0.218 0.302 0.416 0.693 0.208 0.254 0.309 0.341 0.246 0.282 0.293 0.317 0.765 0.757 0.778 0.875

MTGSR† MSE 0.110 0.191 0.407 1.179 0.179 0.232 0.286 0.369 0.175 0.189 0.199 0.235 1.627 1.444 1.610 1.850
MAE 0.236 0.315 0.461 0.819 0.217 0.264 0.305 0.351 0.284 0.295 0.305 0.334 0.765 0.764 0.800 0.871

MTGSR‡ MSE 0.098 0.182 0.398 1.128 0.178 0.227 0.284 0.366 0.177 0.181 0.202 0.226 1.768 1.615 1.615 1.920
MAE 0.220 0.304 0.457 0.793 0.213 0.262 0.303 0.354 0.287 0.286 0.309 0.327 0.796 0.800 0.809 0.911

1 MTGSR†: MTGSR removes Dimension Graph Generator.

2 MTGSR‡: MTGSR removes Cross-segments Graph Generator.

Table 4: Ablation experiments with MTGSR, MTGSR† and MTGSR‡ on four dataset: Exchange,
Weather, Electricity and ILI. The best results appear in bold; suboptimal results are underlined.

datasets, with decreases in accuracy of 14.47% and 9.05%, respectively. This is because, there is a
strong relationship between the multivariate variables on both the Exchange and Weather datasets.
With the ILI dataset, there is a strong relationship between the fluctuations of local adjacent seg-
ments; hence, MTGSR‡’s prediction accuracy without the cross-segment graph was greatly reduced,
decreasing by 11.68%. Through the experimental results, the dimension graph and cross-segments
graph have different degrees of improvement depending on the characteristics of the dataset.

4.5.3 EFFICIENCY ANALYSIS

To prove the efficiency of MTGSR, we performed extensive experiments comparing the model size
and runtime of MTGSR to the baselines Informer, Autoformer, and FEDformer. Figure 2a shows
that MTGSR is a linear model with a greatly reduced model size, compared to FEDformer and the
other models. In the case of a prediction length of 1800, MTGSR reduced memory use by 66.52%
over FEDformer. Figure 2b shows the comparison between the runtimes of the four models for one
iteration. Compared to FEDformer, MTGSR ran 78.09% faster at a prediction length of 1800.
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(a) Memory Efficieny Analysis
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(b) Running Time Efficiency Analysis

Figure 2: Efficiency Analysis. In both analyses, we perform the experiments at seven prediction
lengths. The results show that MTGSR used significantly less memory and has a faster running time
than the current state-of-the-arts.

5 CONCLUSION

In this paper, we proposed a novel and efficient model named Multi-view Time-series Graph Struc-
ture Representation (MTGSR) with a linear computational complexity for multivariate long-term
time-series forecasting problems. To more comprehensively extract disentangled characteristics
from multivariate long-term time-series, MTGSR uses GCNs to learn the characteristics from three
perspectives. MTGSR generates dimension graphs and cross-segment graphs to learn the structural
relationships between multivariate variables as well as the dynamically changing characteristics of
the fluctuation correlations between adjacent local sequences. In a comprehensive series of exper-
iments, MTGSR outperforms the current state-of-the-art models and exhibits lower memory usage
and faster running speeds than the state-of-the-art models. In the future, we will continue to study
applications for graph neural networks that pertain to multi-view graph construction problems and
multivariate long-term time-series.
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A THE ARCHITECTURES OF THREE PERSPECTIVE GRAPH GENERATORS

In Figures 3a-3c, we show the detail architectures of three perspective graph generators: Cross-
segments Graph Generator, Dimension Graph Generator and Time Graph Generator. All graph gen-
erators build topology graphs based on correlation coefficients and obtain the final generated graph
through a 2D-Softmax(·) normalization module.

 

(a) Cross-segments Graph Generator. By calculating the cross-correlation value of two adjacent
crossed sub-sequences, the Cross-segments Graph Generator generates asymmetrical graphs to rep-
resent the dynamically changing characteristics of the sub-sequences’ fluctuations.

 

(b) Dimension Graph Generator. The Dimension Graph Generator dynamically generates a dimen-
sion graph that represents the correlation coefficients of each pair of multivariate variables. Differ-
ential operator is used to establish the trend of fluctuations in the series.

 

(c) Time Graph Generator. The Time Graph Generator extracts the relationship between each times-
tamp from the perspective of time.

Figure 3: The architectures of three perspective graph generators: Cross-segments Graph Generator.

B VISUALIZATION

B.1 WAVEFORM VISUALIZATION

This section illustrates MTGSR’s predictions with the Weather and Electricity datasets alongside
those of the state-of-the-art FEDformer. Figures 4a-4h show the eight selected dimension sequences
for MTGSR, while Figures 5a-5h show those of FEDformer. Comparing the prediction sequences
for each corresponding dimension, MTGSR yields better predictions than FEDformer across all
dimensions. Further, because MTGSR benefits from the cross-segment graph characteristics, the
local trends have a better fit than with FEDformer, as shown in Figures 4c and Figure 5c.

B.2 HEATMAP VISUALIZATION

The heat maps from three perspectives for MTGSR with the Weather, Exchange, and ETTm1
datasets appear below. The darker the color of the pixel blocks, the higher the correlation between
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Figure 4: Visualization of MTGSR on eight selected dimensions of Weather dataset.
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Figure 5: Visualization of FEDformer on eight selected dimensions of Weather dataset.

the two points. Figure 6 shows the different kinds of heat maps of each dataset. Heat maps of differ-
ent datasets exhibit different characteristics. In Figures 6c 6f and 6i, the ETTm1 dataset has richer
periodic variables, so it has richer timing characteristics than the other two trend component-rich
datasets. Figures 6b 6e and 6h show the different relationships of each variables in each dataset. For
example, the relationships between the first several multivariate variables in the weather dataset are
more close. Unlike the other two kinds of graphs, the cross-segments graphs are asymmetrical be-
cause they calculate the mutual correlation between two local crossing segments. Figures 6a 6d and
6g show the fluctuation relationship between adjacent local segments of three datasets with different
local trends and cyclical variations.

C EXTEND EXPERIMENTS ON ETT SERIES DATASETS

We performed extensive experiments on the ETT series datasets, including ETTh1, ETTh2, ETTm1
and ETTm2. The results are shown in Table 5. On the ETTh2, ETTm1 and ETTm2 datasets, MTGSR
respectively reduced the error rate by 8.47%, 3.33%, and 9.58% compared to the state-of-the-art
FEDformer.
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(g) ETTm1 cross-segments graph
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Figure 6: Heatmap Visualization.

Methods ACDN FEDformer Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

96 0.390 0.408 0.376 0.419 0.449 0.459 0.865 0.713 0.878 0.740 0.837 0.728
ETTh1 192 0.465 0.452 0.420 0.448 0.500 0.482 1.008 0.792 1.037 0.824 0.923 0.766

336 0.496 0.468 0.459 0.465 0.521 0.496 1.107 0.809 1.238 0.932 1.097 0.835
720 0.552 0.514 0.506 0.507 0.514 0.512 1.181 0.865 1.135 0.852 1.257 0.889
96 0.314 0.358 0.346 0.388 0.358 0.397 3.755 1.525 2.116 1.197 2.626 1.317

ETTh2 192 0.398 0.409 0.429 0.439 0.456 0.452 5.602 1.931 4.315 1.635 11.12 2.979
336 0.422 0.432 0.496 0.487 0.482 0.486 4.721 1.835 1.124 1.604 9.323 2.769
720 0.440 0.447 0.463 0.474 0.515 0.511 3.647 1.625 3.188 1.540 3.874 1.697
96 0.349 0.385 0.378 0.418 0.505 0.475 0.672 0.571 0.600 0.546 0.538 0.528

ETTm1 192 0.380 0.402 0.426 0.441 0.553 0.496 0.795 0.669 0.837 0.700 0.658 0.592
336 0.416 0.425 0.445 0.459 0.621 0.537 1.212 0.871 1.124 0.832 0.898 0.721
720 0.472 0.458 0.543 0.490 0.671 0.561 1.166 0.823 1.153 0.820 1.102 0.841
96 0.185 0.265 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619

ETTm2 192 0.256 0.310 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827
336 0.327 0.356 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972
720 0.420 0.408 0.421 0.415 0.422 0.419 3.379 1.338 3.048 1.328 2.631 1.242

Table 5: Multivariate long sequence time-series forecasting results on the ETT series datasets. The
best results are highlighted in bold.
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