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Abstract

Black swan events are statistically rare occurrences that carry extremely high risks.
A typical view of defining black swan events is heavily assumed to originate from an
unpredictable time-varying environments; however, the community lacks a comprehensive
definition of black swan events. To this end, this paper challenges that the standard view is
incomplete and claims that high-risk, statistically rare events can also occur in unchanging
environments due to human misperception of their value and likelihood, which we call as
spatial black swan event. We first carefully categorize black swan events, focusing on spatial
black swan events, and mathematically formalize the definition of black swan events. We
hope these definitions can pave the way for the development of algorithms to prevent such
events by rationally correcting human perception.
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1 Introduction

Life is the cumulative effect of a handful of significant shocks.

The Black Swan: The Impact of the Highly Improbable, Nassim Nicholas Taleb

The reason behind the Lehman Brothers bankruptcy, an unexpected event with ex-
tremely negative impacts on the world economy, remains controversial. However, a
strong explanation points to the irrationality of human decision-making. The firm declared
bankruptcy within 72 hours without any precursor (McDonald and Robinson (2009)), and
the only factor that changed during those three days was investors’ faith in the company
(Housel (2023); Mawutor (2014); Fleming and Sarkar (2014)). Faith was intrinsically
believed by investors as an axiom. They made optimal decisions (being rational) based on
this faith, which turned out to be suboptimal (being irrational) once the faith was revealed
to be false during those 72 hours . Referring to the unexpected bankruptcy event men-
tioned previously, we call such a rare and high-risk event, often rationalized retrospectively
with the benefit of hindsight, a black swan (Taleb (2010)).

Black swan events remain one of the unsolved problems in machine learning safety
(Hendrycks et al. (2021)) , and this work focuses on the origin of black swan events from
the perspective of human perception, our main messages being Hypothesis 2 and Definition
7, rather than on how to design robust algorithms against them . We expect that providing
a novel perspective to understand black swan events can offer new insights for designing
safe machine learning algorithms . Supported by extensive documentation of black swan
events, such as the dissolution of the Soviet Union , the terrorist attacks of September
11, 2001, and the Brexit vote (Taleb (2010)), we focus on specific types of black swans
that occur even in a stationary environment . We refer to these as spatial black swans.
Based on the above example , we deduce that certain types of black swan occur due to
misperception in the way humans perceive the world (Hypothesis 2). Executing an optimal
policy based on misperception inevitably causes the agent to encounter unavoidable risks,
which we define as spatial black swans (Definition 7) . From a broad perspective, our
work proposes the following informal hypothesis regarding the origin of black swan events
and provides an informal definition of spatial black swans built upon this hypothesis as
follows.

Hypothesis 1 (Black swan origin (informal)). Black swan events occur due to tem-
poral and spatial misperception, and spatial black swans occur due to human misper-
ception of the real world.
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Definition 1 (Spatial black swan (informal)). A spatial black swan event is a state
and action pair that humans perceive as an infeasible event and assess its reward in
a pessimistic manner.

Paper structure. Starting from the informal hypothesis and definition of spatial
black swans as mentioned above (Hypothesis 1, Definition 1), we structure the paper to
provide concrete foundations for our main message: Hypothesis 2, and Definition 7 as fol-
lows. First, in Section 2, we define spatial and temporal black swans, then focus on spatial
black swans for the rest of the paper. Section 3 provides evidence for the soundness of
Hypothesis 1. Specifically, in Subsection 3.1, we emphasize the necessity of a novel per-
spective to understand black swans by demonstrating that the existing decision-making
frameworks under risk are insufficient, and in Subsection 3.2, we explain how mispercep-
tion can be related to black swans. Section 4 introduces Cumulative Prospect Theorem
(CPT), a well-known theorem for explaining irrational human behavior in the real world,
to mathematically formalize the term misperception in Hypothesis 1 and Definition 1. In
Section 5, we introduce three types of Markov Decision Processes: Universe MDP, Human
MDP, and Human-Estimation MDP, which we denote as M, M†, and M̂†, respectively.
Before presenting the concrete definition and hypothesis of spatial black swans, we provide
case studies in Section 6 to illustrate how human misperception can lead to suboptimal
policy (Theorems 1, 2, and 3). Subsequently, in Section 7, we present our main message,
proposing the spatial black swan hypothesis (Hypothesis 2) and a definition of spatial black
swan events (Definition 7) utilizingM, M†, M̂†, and CPT. It is worth noting that Defi-
nition 7 employs notations fromM,M†, and M̂† and is mathematically characterized by
concepts from CPT. Finally, in Section 8, we explore the properties of spatial black swan
events, particularly how their presence establishes a lower bound on achieving true policy
performance (Theorem 4) and affects the timing of black swan event occurrences (Theorem
5).

Notations. The sets of natural, real, nonnegative, and nonpositive real numbers are
denoted by N, R, R≥0, and R≤0 respectively. For a finite set Z, the notation ∣Z ∣ represents
its cardinality, and ∆(Z) denotes the probability simplex on Z. Given X,Y ∈ N with
X < Y , we define [X] ∶= {1,2, . . . ,X}, the closed interval [X,Y ] ∶= {X,X + 1, . . . , Y }. For
x ∈ R+, the floor function ⌊x⌋ is defined as max{n ∈ N ∪ {0} ∣ n ≤ x}.

Markov Decision Process. We consider a finite horizon non-stationary Markov
Decision Process (MDP) denoted as M = ⟨S,A,{Pt}Tt=0,{Rt}Tt=0, γ⟩, where S represents
the state space, A denotes the action space, Pt ∶ S ×A→∆(S) is the transition probability
function at time t, Rt ∶ S ×A → R is a reward function as time t, γ is the discount factor,
and T ∈ N is the horizon length. We denote a policy as π ∈ Π, where Π ∶ S →∆(A) is a set
of policies, and its performance as J(π) = Eπ,M[G] where G = ∑T−1

t=0 Rt(st, at) is a scalar
return. We denote T length trajectory fromM with policy π as {s0, a0, r0, s1, a1, r1,⋯, sT }.
Note that based on the non-stationary finite horizon MDP , we restrict our analysis to a
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stationary MDP to elaborate on spatial black swans in Sections 4, 5, 7, and 8, but fully
utilized non-stationarity for the case study in Section 6, and black swan clarification in
Section 2.

Problem setting. Our problem setting is that humans perceive the worldM asM†

and collect misperceived trajectory data {s†
0, a0, r

†
0, s

†
1, a1, r

†
1,⋯, s

†
T }, where misperception

occurs on the state and reward through a function g ∶ S → S and a function u ∶ R → R,
respectively. This means that the state and reward are distorted as s†

t = g(st) and r†
t = u(rt)

for all t ∈ [T ]. Humans then estimate the reward and visitation probability (or transition
probability) ofM† from the misperceived trajectory data to form their estimation model
M̂†.

Main message and supporting evidence. Our main message (Hypothesis 2, Defi-
nition 7) starts with the observation that even though humans can decrease the estimation
gap to make M̂† converge toM† by rolling out a longer horizon T or better learning algo-
rithms to reconstruct visitation probability and reward function. However, the uncertainty
of estimatingM has a lower bound due to the perception gap betweenM andM†. In this
sense, we convey that spatial black swans can occur due to the perception gap, even if the
agent has zero estimation error and computes its optimal policy from M̂†.

Our main message is supported by our primary theorem, Theorem 4, which provides
two key insights. First, it demonstrates that the policy performance gap between M
and M̂† has a lower bound due to the perception gap between M and M†, even though
the estimation error betweenM† and M̂† asymptotically converges to zero as the horizon
length T increases. Second, Theorem 4 quantifies this lower bound in terms of three factors:
the number of spatial black swans, the minimum probability of spatial black swans, and
the magnitude of misperception betweenM andM†. It also highlights that the effective
number of spatial black swans (number × probability) is more significant than considering
sole probability or the number of occurrences for future algorithm design. Additionally,
Theorem 5 provides a hitting time of spatial black swans.

Contributions. This work offers three pivotal contributions:

• A novel perspective on black swan events: We propose that these events arise from
human misperception of space and time. This idea, introduced as Hypothesis 1, is
further developed into Hypothesis 2 in Section 7, building on foundations laid in
Sections 3, 4, and 5.

• A novel definition of spatial black swans: We introduce and define a specific type of
black swan event (initially presented in Definition 1 and later formalized as Definition
7 in Section 7). This definition builds upon our core hypothesis 2, providing a new
framework for understanding these rare but impactful events.

• Theoretical analysis of spatial black swans: We conduct a rigorous examination of
how these events affect optimal policy performance (Theorem 4) and their occur-
rence probability over time (Theorem 5). This analysis is supported by case stud-

4



Black Swan Hypothesis

ies (Theorems 1, 2, and 3) demonstrating the impact of human misperception on
decision-making in various scenarios.

2 Spatial and temporal blackswans

Based on Hypothesis 1, this prompts us to investigate the concept of misperception. Ini-
tially, we must clearly define what constitutes perception. According to the definition of
an agent by Barandiaran et al. (2009) and Orseau and Ring (2012), an agent views its
environment through the lens of so-called spatio-temporal dimensions. Consequently, if a
black swan event arises from misperception, the conceptual framework of perception leads
us to question whether the misperception originates from spatial or temporal dimensions.
This first leads us to define the black swan event dimension as follows.

Definition 2 (Black swan dimension). In a Markov Decision Process, a dimension of
a black swan event is defined on S × A × [T ] with S representing the state space and A
representing the action space and T is time (horizon length). We collect black swan events
as a set B (B will be more elaborated on Hypothesis 2).

In Definition 2, unit time refers to any variable that represents its time heterogeneity
such as discrete step or discrete episode (Lee et al. (2024) or discrete real-time (Abel et al.
(2024); Dong et al. (2022)) in general Markov Decision Process setting.

Assumption 1. For fixed time t′ ∈ [T ], black swan events at time t′, i.e., the set {(s, a)∣(s, a, t =
t′) ∈ B} is invariant set under static agent’s perception of MDP at time t′.

Assumption 1 ensures that if the environment and the agent’s perception of the environ-
ment are fixed at time t, then the black swan events are fully determined. This assumption
is also used to classify black swans in Proposition 1, Example 1, and Remark 1.

The definition 2 leads us to first classify whether the black swan comes from a mis-
conception within the space (s, a), termed spatial mispercpetion, or a misperception along
the unit time (t), termed temporal misperception. We define temporal misperception as
the inherent inaccuracies in time-series data prediction algorithms from agent, exempli-
fied by black swans such as COVID-19 or earthquakes, and define temporal black swans
as those originating from temporal misperception. This type of misperception inevitably
results from the non-stationarity of the environment, which impacts the algorithms’ abil-
ity to predict future events accurately. In contrast, we define spatial misperception as a
misperception that occurs in a stationary environment, often due to incorrect assessments
or misunderstandings of the spatial aspects of the data. We define spatial black swans as
those originating from spatial misperception, such as the Russia-Ukraine war, the Lehman
Brothers bankruptcy, the Brexit vote or the September 11, 2001 terrorist attacks. Intu-
itively, temporal black swans occur due to the non-stationarity of the environment, while
spatial black swans occur even in stationary environments. Based on the above description,
we provide a definition of spatial and temporal black swans as follows.
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Definition 3 (Spatial black swans). For a given MDPM for a time interval [T ], suppose
(s, a, tbs) is a black swan where tbs ∈ [T ]. If (s, a, t) is a black swan event for ∀t ∈ [T ], then
we define (s, a, tbs) as a spatial black swan.

Definition 4 (Temporal black swans). For a given MDP M for a time interval [T ],
suppose (s, a, tbs) is a black swan where tbs ∈ [T ]. If there exists t ∈ [T ] such that (s, a, t)
is not a black swan event, then we define (s, a, tbs) as a temporal black swan.

Based on Definitions 3, 4 and Assumption 1, we can always identify a unit time interval
that classifies any black swan events as a spatial black swan as following Proposition 1 and
Example 1.

Proposition 1. If (s, a, tbs) is a black swan event, then there exists a time interval [t′1, t′2] ⊆
[T ] that classifies (s, a, tbs) as a spatial black swan within [t1, t2].

We provide an intuitive interpretation for Proposition 1 as the following example.

Example 1. Suppose (s, a, tbs) is a black swan event.

case 1. M is a non-stationary MDP where Pt,Rt changes for every unit time, i.e.
Pt ≠ Pt+1,Rt ≠ Rt+1. If t1 = t2 = tbs, then (s, a, tbs) is a spatial black swan. If
t1 ≠ t2 where tbs ∈ [t1, t2], then (s, a, tbs) could not be identified as spatial black
swan or temporal black swan.

case 2. M is a piecewise non-stationary MDP where Pt,Rt changes for ⌊T /k⌋ times,
i.e. Pt = Pt+1,Rt = Rt+1 for t ∈ [kj, kj + (k − 1)], j = 0,1,⋯, ⌊T /k⌋. If tbs ∈
[kjbs, kjbs + (k − 1)], then (s, a, tbs) is a spatial black swans when t1 = kjbs, t2 =
kjbs + (k − 1).

case 3. M is stationary MDP where Pt = Pt+1,Rt = Rt+1 for ∀t ∈ [T −1], then (s, a, tbs)
is a spatial black swan regardless of interval [t1, t2].

We formulate case 3 of Example 1 as the following Remark.

Remark 1. IfM is stationary, then any black swan events (s, a, t) are spatial black swans,
denoted as (s, a).

This work investigates Remark 1. For the remainder of the paper, we focus on spa-
tial black swans by concretizing Hypothesis 1 and Definition 1 in the context of spatial
black swans. Based on Definition 3 and Remark 1 within the framework of Markov Deci-
sion Processes, we provide an informal proposition of spatial black swans by adapting the
preliminary definition proposed by Taleb (2010).

Proposition 2 (Spatial black swan (informal)). For given MDP M = ⟨S,A, P,R, γ⟩. We
define an event σ as a state and action (s, a) ∈ S ×A. If σ is a spatial black swan event,
then it satisfies that
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1. σ is a high-risk event.

2. σ is a rare event.

3. After σ is first observed at time t, it is rationalized by hindsight, as if it could have
been expected.

Note that the first and second properties of Proposition 2 characterize the appearance
and nature of such events, while the third property elucidates strategies for avoiding black
swans, specifically addressing their post-event properties. Therefore, we elaborate on the
first and second properties of Proposition 2 through three different MDPs (M,M†, M̂†)
introduced in Section 5 and CPT, which will be introduced in Section 4, then complete it
as Definition 7.

3 Necessity of a new perspective to understand black swans and
evidence for Hypothesis 1

In this section, we focus not only on addressing the necessity of a new perspective to un-
derstand black swan events but also on providing evidence for the proposed perspective
of black swan origin (Hypothesis 1). This is concretized by examining the following two
questions. First, in Subsection 3.1, we discuss the insufficiency of existing decision-making
rules under risk by exploring related works, which support the need for a new perspective
to understand black swans. Specifically, we address why existing safe reinforcement learn-
ing strategies for solving Markov Decision Processes are insufficient to handle black swan
events?. If this premise is validated, then in Subsection 3.2, we elaborate on the motivation
and related works that support our informal hypothesis of black swan origin (Hypothesis
1). Specifically, we explore how irrationality relates to misperception and how irrationality
could bring about black swan events.

3.1 Decision Making Under Risk

Based on the comprehensive survey on safe reinforcement learning in Garcıa and Fernández
(2015), the algorithms can be classified into threefold: worst case criterion, risk-sensitive
criterion and constraint criterion. We elaborate on why the existence of black swans in the
environment renders these three approaches insufficient.

Worst case criterion. Learning algorithms of the worst case criterion focus on devis-
ing a control policy that maximizes policy performance under the least favorable scenario
encountered during the learning process, defined as maxπ∈Πminw∈W J(π;w), whereW rep-
resents the set of uncertainties. This criterion can be categorized based on whether W
is defined in the environment or in the estimation of the model. The presence of black
swan events in the worst case, where W represents aleatoric uncertainty of the environ-
ment (Heger (1994); Coraluppi (1997); Coraluppi and Marcus (1999, 2000)), results in
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overly conservative, and thus potentially ineffective, policies. This occurs because the sig-
nificant impact of black swan events inflates the size of W, even though such events are
rare. In practical terms, this could manifest itself as abstaining from any economic activ-
ity (π), such as not investing in stocks or not depositing a check against future potential
bankruptcies (minw∈W J(π;w)) in order to maximize its income (maxπ∈Π(⋅)), or maintain-
ing constant health precautions such as wearing mask or maintaining distance with groups
(π) to prepare for a possible pandemic (⋅ =minw∈W J(π;w)) in order to maintain its health
(maxπ∈Π). Similarly, whenW encompasses the uncertainty of the model parameter Bagnell
et al. (2001); Iyengar (2005); Nilim and El Ghaoui (2005); Wiesemann et al. (2013); Xu and
Mannor (2010) - as seen in robust MDP or distributionally robust MDP - this aligns closely
with our black swan hypothesis, where misperception of the world model is similar to uncer-
tainty in model estimation. However, the need to accommodate black swan events requires
enlarging the possible set of models (∣W ∣), leading to extremely conservative policies. This
can be likened to performing an overly pessimistic portfolio optimization (π), where every
bank is assumed to have a minimal but possible risk of bankruptcy (minwinW J(π;w)),
thus influencing asset allocation strategies (maxπ∈Πminw∈W J(π;w)) to be extremely con-
servative in asset investing.

Risk sensitive criterion. Risk-sensitive algorithms strike a balance between maxi-
mizing reinforcement and mitigating risk events by incorporating a sensitivity factor β < 0
(Howard and Matheson (1972); Chung and Sobel (1987); Patek (2001)). These algorithms
optimize an alternative value function J(π) = β−1 logEπ[expβG], where β controls the de-
sired level of risk. However, it is recognized that associating risk with the variance of the
return is practical, as in J(π) = β−1 logEπ[expβG] = maxπ∈ΠEπ[G] + β

2var(G) + O(β
2),

and the existence of black swan events does not significantly affect the returns of variance
(var(G)) due to their rare nature. It should be noted that risk-sensitive approaches are
not well suited for handling black swan events, as the same policy performance with small
variance can entail substantial risks (Geibel and Wysotzki (2005)). More generally, the ob-
jective of the exponential utility function is one example of risk-sensitive learning based on a
trade-off between return and risk, i.e., maxπ∈Π(Eπ[G]−βw) (Zhang et al. (2018)), where w is
replaced by Var(G). This approach is known in the literature as the variance-penalized cri-
terion (Gosavi (2009)), the expected value-variance criterion (Taha (2007); Heger (1994)),
and the expected-value-minus-variance criterion (Geibel and Wysotzki (2005)). However,
a fundamental limitation of using return variance as a risk measure is that it does not ac-
count for the fat tails of the distribution (Huisman et al. (1998); Bradley and Taqqu (2003);
Bubeck et al. (2013); Agrawal et al. (2021)). Consequently, risk can be underestimated
due to the oversight of low probability but highly severe events (black swans).

Furthermore, a critical question arises regarding whether the log-exponential function
belongs to appropriate utility function class for defining real-world risk. Risk-sensitive
MDPs have been shown to be equivalent to robust MDPs that focus on maximizing the
worst-case criterion, indicating that the log-exponential utility function may not be bene-
ficial in the presence of black swans (Osogami (2012); Moldovan and Abbeel (2012); Leqi
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et al. (2019)). This issue was first raised by Leqi et al. (2019) and led to the proposal of
a more realistic risk definition called ‘Human-aligned risk’, which also incorporates human
misperception akin to our informal black swan hypothesis (Hypothesis 1).

Constrained Criterion. The constrained criterion is applied in the literature to
constrained Markov processes where the goal is to maximize the expected return while
maintaining other types of expected utilities below certain thresholds. This can be formu-
lated as maxπ∈ΠEπ[G] subject to N multiple constraints hi(G) ≤ αi, for i ∈ [N], where
hi ∶ R → R is a function of return G (Geibel (2006)). Typical constraints include ensuring
the expectation of return exceeds a specific minimum threshold (α), such as E[G] ≥ α, or
softening these hard constraints by allowing a permissible probability of violation (ϵ), such
as P(E[G] ≥ α) ≥ 1−ϵ, known as chance-constraint (Delage and Mannor (2010); Ponda et al.
(2013)). Constraints might also limit the return variance, such as Var(G) ≤ α (Di Cas-
tro et al. (2012)). However, the presence of black swans highlights one of the challenges
with the Constrained Criterion, specifically the appropriate selection of α. The presence
of black swans necessitates a lower α, which in turn leads to more conservative policies.
Furthermore, a black swan event is determined at least by the environment’s state and its
action, rather than its full return. Therefore, constraints should be redefined over more
fine-grained inputs—not merely returns, but in terms of state and action—which leads to
our definition of black swan dimensions (Definition 2).

3.2 How irrationality relates with spatial black swans.

Before starting Subsection 3.2, we clarify that the term irrationality is used here to denote
rational behavior based on a false belief. In this subsection, we first review existing work
on the four rational axioms and then claim how two of these axioms should be modified to
account for irrationality in human decision-making.

Rationality in decision making. In the foundation of decision theory, rationality
is understood as internal consistency (Sugden (1991); Savage (1972)). A prerequisite for
achieving rationality in decision making is the ability to compare outcomes, denoted as set
O, through a preference relation in a rational manner. In Neummann and Morgenstern
(1944), it is demonstrated that preferences, combined with rationality axioms and proba-
bilities for possible outcomes, denoted as pi which is a probability of outcome oi ∈ O, imply
the existence of utility values for those outcomes that express a preference relation as the
expectation of a scalar-valued function of outcomes. Define the choice (or lotteries) as set
C, which is a combination of selecting total n outcomes, that is, ∑n

i=1 pioi. The essential
rationality axioms are as follows.

1. Completeness: Given two choices, either one is preferred over the other or they are
considered equally preferable.

2. Transitivity: If A is preferred to B and B is preferred to C, then A must be preferred
to C.
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3. Independence: If A is preferred to B, and a event probability p ∈ [0,1], then pA +
(1 − p)C should be preferred to pB + (1 − p)C.

4. Continuity: If A is preferred to B and B is preferred to C, there exists a event
probability p ∈ [0,1] such that B is considered equally preferable to pA + (1 − p)C.

Expanding on these axioms, Sunehag and Hutter (2015) extends rational choice theory
to encompass the full reinforcement learning problem, further axiomatizing the concept
in Sunehag and Hutter (2011) to establish a rational reinforcement learning framework
that facilitates optimism, crucial for systematic explorative behavior. Subsequent studies
focusing on defining rationality in reinforcement learning, such as Shakerinava and Ravan-
bakhsh (2022); Bowling et al. (2023), concentrate on the axioms of assigning utilities to
all finite trajectories of a Markov Decision Process. Specifically, Shakerinava and Ravan-
bakhsh (2022); Bowling et al. (2023) clarify the reward hypothesis Sutton that underpins
the design of rational agents by introducing an additional axiom to existing rationality
axioms. Furthermore, Pitis (2024) explores the design of multi-objective rational agents,
and Carr et al. (2024) explores and defines rational feedback in Large Language Models
(LLMs) by investigating the existence of optimal policies within a framework of learning
from rational preference feedback (LRPF).

Irrationality due to subjective probability. The definition of irrationality and
its origins has been extensively investigated through case studies in various fields such
as psychology, education, and particularly economics. Simon (1993) defined irrational-
ity as being poorly adapted to human goals, diverging from the norm of human’s object,
influenced by emotional or psychological factors in decision-making. Subsequently, Mar-
tino et al. (2006); Gilovich et al. (2002) further concretized what exactly these emotional
or psychological factors entail by describing them as information loss during human per-
ception of the real-world. More specifically, Martino et al. (2006) pointed out that in a
world filled with symbolic artifacts, where optimal decision-making often requires skills
of abstraction and decontextualization, such mechanisms may render human choices ir-
rational. Further studies, such as Opaluch and Segerson (1989), scrutinize more deeply
and classify the irrationality of human behavior into five factors: subjective probability,
regret/disappointment, reference points, complexity, and ambivalence.

In this paper, we focus on the subjective probability factor to elucidate the relation-
ship between irrationality and spatial black swans. Opaluch and Segerson (1989) explores
subjective probabilities as an early modification to the expected utility model from Neum-
mann and Morgenstern (1944), focusing on decision makers who rely on personal beliefs
about probabilities rather than objective truths. This minor conceptual shift can lead to
significant behavioral changes due to the imperfect information and processing abilities
of individuals. Especially, Opaluch and Segerson (1989) highlights the difficulty in accu-
rately estimating the probability of rare events - such as black swans - which often leads
to critical errors in judgment. These errors occur because rare events provide insufficient
data for accurate probability estimation or are misunderstood due to their infrequency,
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leading to perceptions that such events are either less likely or virtually impossible. This
misperception is exemplified in various scenarios, such as:

1. An individual working in a dangerous job who has never personally observed an
accident may underestimate the probability of an accident occurring Drakopoulos
and Theodossiou (2016); Pandit et al. (2019).

2. Media coverage of events such as plane crashes may cause an overestimation of the
probability of a crash, since the public is aware of all crashes but not of all safe trips
Wahlberg and Sjoberg (2000); Vasterman et al. (2005); van der Meer et al. (2022).

3. The popularity of purchasing lottery tickets may be explainable in terms of people’s
inability to comprehend the true probability of winning, influenced instead by news
accounts of ‘real’ people who win multi-million dollar prizes (Rogers (1998); Wheeler
and Wheeler (2007); BetterUp (2022)).

Therefore, in this work, we mathematically define spatial black swan events by subjective
probability in Sections 5 and 7. We further assert that among the four rational axioms,
independence and continuity should be modified with a subjective probability function
w ∶ [0,1] → [0,1] to fully address human-decision making, which will be elaborated as
human MDP in Subsection 5.2. The function w could be interpreted as humans’ implicit
probability belief (Simon (1993)). We specify the property of function w at Assumption 3
in Section 5 inspired by some case studies of human behavior from Kahneman and Tversky
(2013).

1. Subjective independence: If A is preferred to B and an event probability p ∈ [0,1],
then humans perceive that w(p)A+ (1−w(p))C should be preferred to w(p)B + (1−
w(p))C, while in real-world, pA + (1 − p)C should be preferred to pB + (1 − p)C.

2. Subjective continuity: If A is preferred to B and B is preferred to C, there exists an
event probability p ∈ [0,1] such that B is considered equally preferable to pA+(1−p)C
in the real-world. However, humans perceive that there exists B′ ≠ B that is equally
preferable to w(p)A + (1 −w(p))C.

We elaborate on how subjective independence and subjective continuity could yield differ-
ent optimal policies in the human-perceived world (which will be termed as Human MDP)
and in the real-world (which will be termed as Universe MDP), as demonstrated through
Examples 2 and 3, respectively. In particular, we further describe the emergence of spatial
black swan events due to subjective probability in Example 2. First, Example 2 shows an
example of modified 3rd rational axiom.

Example 2 (Spatial black swan due to underestimation of low event probability). Suppose
that humans can access the true utility function. The utilities of the outcomes a, b, c ∈ O
are given as u(a) = −1, u(b) = −1000, u(c) = 1000, where b is an extremely risky outcome.

11
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Suppose that the choices A,B, and C return outcomes a, b, and c with 100% certainty,
respectively. Then, humans choose two compound choices L and M where L returns 0.001%
of A and 99.999% of C, and compound choice M returns 0.001% of B and 99.999% of C.
Through several trials, due to the extreme rarity of occurrence of choices A or B, regardless
of choosing L or M , humans perceive that L and M return the same utility value of 1000,
which can be interpreted as w(0.001%) = 0% and w(99.999%) = 100%, and decide their
optimal policy is random sampling among choices {L,M}. However, over time, humans
have a probability of encountering choice B with a probability of 0.0005%, which is a black
swan.

The modified 4th rational axiom, irrational continuity, does not intuitively have a direct
relationship with the emergence of black swans, but it provides how preference could be
reversed and leads to an irrational decision.

Example 3 (How subjective probability leads to irrational risky decision). Continuing
from Example 2, suppose that the compound choice N returns B with 50.05% and C with
49.95%. Then, in the real world, choice N and choice A return the same utility as u(b) ⋅
p(b) + u(c) ⋅ p(c) = −1000 ⋅ 0.5005 + 1000 ⋅ 0.4995 = −1. However, if humans perceive that
choice N returns B with 50.01% and C with 49.99%, they consider choice N to return the
value u(b) ⋅p(b)+u(c) ⋅p(c) = −1000 ⋅0.5001+1000 ⋅0.4999 = −0.2, and thus determine their
optimal policy as choosing the choice N .

In reality, choosing between choice N and A does not matter since both provide the
same utility value, but choosing choice N is actually more risky than choice A since choice
N contains the high-risk outcome B.

Note that the result B in Example 3 is not a black swan event, since it is not a rare
event. However, through these examples 2 and 3, it is clear that human misperception
(subjective probabilities) could yield different optimal policies in the real-world.

4 Cumulative prospect theorem

In this section, we provide a preliminary overview of Cumulative Prospect Theory (CPT),
which offers a framework for understanding human decision making under risk and uncer-
tainty. We utilize the principles of CPT to elaborate the concept of misperception and
incorporate it into the MDP (Section 5) and further to define spatial black swan events
(Section 7).

For a random variable X, let pi where i = 1, . . . ,K denote the indices for the prob-
ability of incurring a gain or loss xi for each i = 1, . . . ,K. Given a utility function
u and a weighting function w, the Prospect Theory (PT) value is defined as V (X) =
∑K

i=1 u(xi)w(pi), and the Cumulative Prospect Theory (CPT) value is defined as V (X) =
∑K

i=1 u(xi) (w(∑i
j=1 pj) −w(∑i−1

j=1 pj)). Contrary to expected utility theory, which models

decisions that perfectly rational agents would make (Rabin (2013)), i.e. V (x) = ∑K
i=1 xipi,

12
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PT seeks to describe the actual behavior of humans, attempting to encompass their ir-
rational decision-making processes. Specifically, PT introduces the concept of probability
distortion, where individuals overestimate the likelihood of rare events and underestimate
the likelihood of moderate to highly probable events (Figure 1b). Value distortion refers to
the way individuals assess gains and losses (x-axis of Figure 1a), often valuing losses more
heavily than equivalent gains, which reflects a behavior known as loss aversion (Figure 1a)
Kahneman and Tversky (2013); Fennema and Wakker (1997). How PT explains human
decision-making is well-described in the following example.

Example 4 (Insurance policies). Consider an example where the probability of an insured
risk is 1%, the potential loss is 1,000, and the insurance premium is 15. According to CPT,
most would opt to pay the 15 premium to avoid the larger loss.

Example 4 illustrates how a seemingly straightforward decision can be analyzed as a
sequential decision-making problem within a two-step Markov Decision Process framework,
where S = {sbase, spremium, srisk} and A = {ap, anp}. The states sbase, spremium, and srisk
represent receiving a loss of 0,−15, and −1000, respectively. The actions ap and anp denote
paying and not paying the premium, respectively. At time t = 0, humans make a choice
between ap and anp based on a policy π ∶ S → ∆(A) stating at initial state s0 = sbase.
Choosing ap results in a guaranteed transition to state s1 = spreimium. Otherwise, choosing
anp potentially leads to state sbase with a reward of 0 with a 0.99 probability, or to state
srisk with a reward of −1000 with a 0.01 probability. According to the expected utility
theorem, which assumes rationality, the estimated value of choosing ap is calculated as
V (sbase) = 1 × r(spremium) = 1 × (−15) = −15, and the value of choosing anp as V (sbase) =
0.99×r(sbase)+0.01×r(srisk) = 0.99×0+0.01×(−1000) = −10. Rationality would lead humans
to prefer anp since its expected cost is lower than that of ap, i.e. anp = argmaxa∈A V (sbase).
However, this choice is counterintuitive and often does not align with real-world human
decision making.

CPT uses a similar measure as PT, except that the w is a function of cumulative
probabilities. The concept involves using an S-shaped utility function, which adheres to
the diminishing sensitivity property. If we set the weighting function w or utility function
u to be the identity function, then we retrieve the classical expected utility mode (Rabin
(2013)).

5 Agent-Environment intersects as perception

Thus far, we have informally introduced the black swan hypothesis (Hypothesis 1) and
spatial black swan definition (Definition 1) in Section 1 and elaborated on its necessity
(Subsection 3.1) and supporting evidence (Subsection 3.2) in Section 3. Then, we introduce
one existing work to concretize misperception, CPT, in Section 4. In Section 5, we utilize
CPT to elaborate the Hypothesis 1 by introducing universe, human, and human-estimation
MDP.

13
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5.1 Misperception is information loss

Based on Hypothesis 1, this prompts us to investigate the concept of misperception. Ini-
tially, we must clearly define what constitutes perception. In The Quest for a Common
Model of the Intelligent Decision Maker, Sutton defines perception as one of four princi-
pal components of agents, stating: “The perception component processes the stream of
observations and actions to produce the subjective state, a summary of the agent-world
interaction so far that is useful for selecting action (the reactive policy), for predicting fu-
ture reward (the value function), and for predicting future subjective states (the transition
model)” Sutton (2022). This definition leads us to consider misperception as the informa-
tion loss occurring when processing observations into the subjective state, such that the
reward and transition model are not equivalent to those from the environment. The inter-
pretation of misperception as information loss during processing is somewhat ambiguous,
depending on how the boundary between the agent and the environment is defined. The
concept of a boundary between the agent and environment was first proposed by Turing as
a ‘skin of an onion’ Turing (2009), and later, Jiang (2019) suggested that algorithms are
not boundary-invariant.

Therefore, we propose a new agent-environment framework that incorporates the notion
that misperception is the information loss from an agent’s processing. This framework
positions perception at the intersection between the agent and the environment. We provide
a detailed description of our agent-environment framework in Figure 2 and further elaborate
in the following subsection.

5.2 Universe, Human, and Human-Estimation MDP

Restricting the Markov Decision Process introduced in Section 3 in a stationary envi-
ronment, we consider a single episode finite horizon stationary Markov Decision Process
(MDP) denoted as M = ⟨S,A, P,R, γ, T ⟩, where S represents the state space, A denotes
the action space, P ∶ S ×A→∆(S) is the transition probability function, R ∶ S ×A→ R is
a reward function, γ is the discount factor, and T ≥ 0 is a Horizon. We define M as the
universe MDP and operate under the assumption that the abstraction from the universe
to the modelM is lossless, preserving all relevant information. Given a policy π, the agent
collects data {s0, a0, r0, s1,⋯} as it interacts with the environment at discrete time steps t.
The process starts from a fixed initial state s0, and we define the value function as follows:

V (s0) ∶= E [
T−1

∑
t=0

R(st, at) ∣ π,P] (1)

To fully leverage Hypothesis 1, and ‘perception as information loss from agent’s process-
ing’ from subsection 5.1, we define the human MDPM† = ⟨S†,A†, P †,R†, γ⟩ where the
agent experiences distortions in cumulative distribution of normalized visitation probabil-

ity P π(s, a) ∶= 1−γT

1−γ ∑
T−1
t=0 γtP((st, at) = (s, a)∣s0, π,P ) and reward function R by functions
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w+,w−, u+,w− (function characteristics are explained in Assumptions 2 and 3). Note that
P(s, a∣s0, π,P ) is the probability of visiting (s, a) at time t by policy π starting from s0.

One internal assumption in the human MDP is that its state and action spaces are the
same as those of the universe MDP, i.e. S† = S and A† = A. This assumption is significant,
as insufficient exploration might result in a limited understanding of the entire state space
by the human (agent), and the discrepancy between the human MDP and the universe
MDP could be considerable, especially in a large discrete state and action space. However,
we can augment the human MDP to match with universe MDP by using the following
method.

Remark 2. If humans cannot perceive some state s ∈ S, we can augment the human state
space with (S†)′ = S† ∪ {s}, define R†(s, a) = R(s, a), and set P † (s′ ∣ s, a) = P (s′ ∣ s, a)
while P (s ∣ s′, a) = 0 for all s ∈ S†, a ∈ A†. Thus, the new state s does not affect decision-
making in a human MDP since the probability that the trajectory visits the state s is zero.

From now on, we denote human MDP M† = ⟨S,A, P †,R†, γ⟩ For a finite state and
action space, we can define the order statistics of P π(s, a) for ∀(s, a) and define the cu-
mulative distribution. For short notation, we use ∫ P π(s, a) as its cumulative distribution.
These distortions are defined by the relationships:

∫ P †,π(s, a) =
⎧⎪⎪⎨⎪⎪⎩

w+(∫ P π(s, a)) if R(s, a) ≥ 0
w−(∫ P π(s, a)) if R(s, a) < 0

,∀(s, a) ∈ S ×A (2)

R†(s, a) =
⎧⎪⎪⎨⎪⎪⎩

u+(R(s, a)) if R(s, a) ≥ 0
u−(R(s, a)) if R(s, a) < 0

,∀(s, a) ∈ S ×A (3)

We also define the value function of human MDP as follows.

V †(s0) ∶= E [
T−1

∑
t=0

R†(st, at) ∣ π,P †] (4)

In Equation (2), note that misperceptions are applied to the visitation probability P π rather
than the transition probability P itself. This approach is more reasonable, as humans
distort the probability of events, and we have defined the dimension of spatial black swan
events as (s, a) (Definition 2). We explore case studies where humans misperceive P itself
in Section 6. However, we address the following definition and lemma to bridge the gap
between these two types of misperceptions, implying that theoretical analyses on one are
also interchangeably applicable to the other.

Definition 5 (Biased and perceived reward and visitation). For given constant κr, κd ∈
R+, if max(s,a) ∣R†(s, a) − R̂†(s, a)∣ ≤ κr holds, then R̂†(s, a) is κr-biased reward. Also, if

max(s,a) ∣P π,†(s, a)−P̂ π,†(s, a)∣ ≤ κd holds, then P̂ π,†(s, a) is κd-biased visitation probability.
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Also, for given constant ϵr, ϵd ∈ R+, if max(s,a) ∣R(s, a) −R†(s, a)∣ < ϵr holds, then R†(s, a)
is ϵr-perceived reward. Also, if max(s,a) ∣P π(s, a) − P π,†(s, a)∣ < ϵd holds, then P †,π(s, a) is
ϵd-perceived visitation probability.

Lemma 1. If maxs,a ∣∣P (⋅∣s, a) − P †(⋅∣s, a)∣∣1 ≤ (1−γ)2

γ ϵd where ϵd > 0, then the agent

can guarantee ϵd-perceived visitation probability (See Definition 5 for the definition of ϵd-
perceived).

Then, the human MDPM† is fully characterized by the utility functions u+, u− and the
weight functions w+,w− derived from the universe MDPM. We proceed to delineate the
properties of these utility and weight functions as described by (Kahneman and Tversky
(2013)), under the following assumptions:

Assumption 2 (Utility function). A function u+ ∶ R≥0 → R≥0 is a non-decreasing con-
cave function that satisfies limh→0+(u+)′(h) ≤ 1. A function u− ∶ R≤0 → R≤0 is a nonde-
creasing convex function that satisfies limh→0−(u−)′(h) > 1.

Assumption 3 (Weight function). Let w+,w− ∶ [0,1] → [0,1] be a differentiable func-
tion, then those satisfy

1. w+(0) = 0,w+(1) = 1 and w−(0) = 0,w−(1) = 1.

2. There exists a, b ∈ (0,1) such that w+(a) = a,w−(b) = b.

3. (w+)′(x) is monotonically decreasing on x ∈ [0, a) and monotonically increasing on
x ∈ (a,1]. Meanwhile, (w−)′(x) is monotonically increasing on x ∈ [0, b) and mono-
tonically decreasing on x ∈ (b,1].

Figure 1 illustrates the geometric properties of the utility and weight functions, as
defined under Assumptions 2 and 3. Note that the assumptions concerning the weight
functions (Assumption 3) stipulate that w+ and w− are Lipschitz continuous, with constants
(w+)′(a) and (w−)′(b), as derived from the mean value theorem. We denote these constants
as L+ and L−, respectively.

Based on the perceptions of the agent, it executes a trajectory using the policy π
within the human MDP, M†, and estimates the perceived reward R†(s, a) and visitation
probability P †,π(s, a) as R̂†(s, a) and P̂ †,π(s, a), respectively, from its trajectory. The
estimation error bounds are influenced by the complexity of the MDP, including tabular
MDPs, linear MDPs, and low-rank MDPs. This configuration is defined as the human-
estimation MDP M̂† = ⟨S,A, P̂ †, R̂†, γ⟩. In a similar way of value function definition in
universe MDP as follows.

V̂ †(s0) ∶= E [
T−1

∑
t=0

R̂†(st, at) ∣ π, P̂ †] .
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(a) Utility function u (b) Weight function w

Figure 1: Utility and weight functions. A line with a gray color denotes y = x.
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Figure 2: Agent-environment intersects with perception
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Based on the definition of Universe MDP, Human MDP, and Human-Estimation MDP,
we define their gap as follows, and its relationship could be described as Figure 2.

Since CPT models irrational decision-making, our work begins by defining modified
value functions in an infinite-horizon Markov Decision Process (MDP) inspired by CPT.
As a preliminary step, we start by defining the CPT-value function in a discrete state and
action space.

First, in a discrete state and action space, the value function (Equation (1)) could be
expressed as an inner product of reward function R and normalized occupancy measure
P π as follows,

V (s0) =
1 − γH
1 − γ ∑

s,a∈S×A

R(s, a)P π(s, a) (5)

Based on Definition 5, the CPT distorts the reward and its visitation probability as follows,

V †(s0) =
1 − γH
1 − γ ∑

s,a∈S×A

u(R(s, a)) d

dsda
w (∫ P π(s, a)) . (6)

where † denotes the value was distorted due to misperception. As one property of CPT is
that human perception exhibits distinct distortions of events based on whether the associ-
ated rewards are positive or negative, we divide the functions u(R(s, a)) and w(P π(s, a))
into u−(R(s, a)),w−(P π(s, a)) where R(s, a) < 0, and u+(R(s, a)),w+(P π(s, a)) where
R(s, a) ≥ 0. Assume that the rewards from all state-action pairs R(s, a) are ordered as
R[1] ≤ ⋅ ⋅ ⋅ ≤ R[l] ≤ 0 ≤ R[l+1] ≤ ⋯ ≤ R[∣S ∣∣A∣], and the visitation probability as P π

[1] ≤ P
π
[2] ≤

⋯ ≤ P π
[∣S ∣∣A∣]

. Then, CPT-value function is defined as follows:

V †(s0) =
∣S ∣∣A∣

∑
i=1

u(R[i])
⎛
⎝
w
⎛
⎝

i

∑
j=1

P π
[j]

⎞
⎠
−w
⎛
⎝
i−1

∑
j=1

P π
[j]

⎞
⎠
⎞
⎠

=
l

∑
i=1

u−(R[i])
⎛
⎝
w−
⎛
⎝

i

∑
j=1

P π
[j]

⎞
⎠
−w−

⎛
⎝
i−1

∑
j=1

P π
[j]

⎞
⎠
⎞
⎠

+
∣S ∣∣A∣

∑
i=l+1

u+(R[i])
⎛
⎝
w+
⎛
⎝

∣S ∣∣A∣

∑
j=i

P π
[j]

⎞
⎠
−w+

⎛
⎝

∣S ∣∣A∣

∑
j=i+1

P π
[j]

⎞
⎠
⎞
⎠

(7)

If we define the reward as the random variable X, then we can regard its instance
as R[i] and its probability as P π

[i] where the probability is dependent on the policy π.
Suppose that reward function R ∶ S ×A → R is one to one function. Then the probability
R−1 ○P π ∶ R→ [0,1] denotes the probability of reward and we denote it as Pr. Then, for a
reward random variable R ∼ Pr, expanding the how CPT- applied value function look like
in Equation (4), we can define the value function based on continuous state and actions
space as follows.

V †(s0) = ∫
∞

0
w+ (Pr(u+(R) > r))dr − ∫

∞

0
w− (Pr(u−(R) > r))dr (8)
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We use the fact that for real-value function g, it holds that E[g(R)] = ∫ ∞0 Pr(g(R) > r))dr.
In this sense, we define the black swan event in the continuous state and action space.

5.3 Problem setting

Based on three different MDPs, M,M†,M̂†, we consider the following problem setting.
The agent rolls out in a single episode with a finite horizon T . If the agent has an un-
biased perception, then the agent collects a trajectory {s0, a0, r0, s1, a1,⋯, sT−1, aT−1, sT }.
However, the agent perceives M as M† and now observe distorted state and reward as
{g(s0), a0, u(r0), g(s1), a1,⋯, g(sT−1), aT−1, g(sT )} where function g ∶ S → S distorts the
state. Now, we can claim the following

Lemma 2. Suppose theM is given. Then, for any function w that satisfies the Assumption
3, one can always find the function g ∶ S → S that satisfies the following equation.

w(∫ P π(s, a)) = ∫ P π(g(s), a)

Note that Lemma 2 allows us to design the problem such that the agent distorts the
visitation probability by receiving a distorted state induced by the function g. Lemma 2
justifies how the agent distorts the visitation probability from the trajectory data.

5.4 Utilizing CPT for black swan

We note that existing work on incorporating cumulative prospect theory (CPT) into rein-
forcement learning, such as (Prashanth et al. (2016); Jie et al. (2018); Danis et al. (2023)),
primarily focus on estimating the CPT-based value function and optimizing it to derive
an optimal policy. Specifically, (Prashanth et al. (2016); Jie et al. (2018)) demonstrate
how to estimate the CPT value function using the Simultaneous Perturbation Stochastic
Approximation method and how to compute its gradient for policy optimization algo-
rithms. Additionally, (Shen et al. (2014); Ratliff and Mazumdar (2019)) proposed a novel
Q-learning algorithm that applies a utility function to Temporal Difference (TD) errors
and demonstrated its convergence. However, these studies (Prashanth et al. (2016); Jie
et al. (2018); Danis et al. (2023); Shen et al. (2014); Ratliff and Mazumdar (2019)) do not
focus on learning the utility and weight functions, u and w, but rather assume these as
simple functions and focus on how to estimate these functions.

However, this study aims to elucidate the mechanisms by which black swan events arise
from the discrepancies between M† and M, despite the agent having perfect estimation,
i.e., κr = 0, κp = 0. As future work, concentrating on devising strategies to reweight the
functions u+, u−, and w to mitigate the divergence between the Human MDPM† and the
universe MDPM is suggested as a way to achieve antifragility.
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6 Case study: how optimal decision deviates under irrationality

So far, we have informally introduced the black swan hypothesis (Hypothesis 1) and spatial
black swans (Definition 1) in Section 1, then elaborated on its necessity (Subsection 3.1) and
provided evidence (Subsection 3.2) in Section 3. Subsequently, in Section 4, we introduced
the Cumulative Prospect Theorem (CPT) to model human irrationality. In Section 5,
we incorporated CPT into the Markov Decision Process (Subsection 5.2), viewed through
the lens of existing work on defining perception (Subsection 5.1) by introducing universe,
human, and human-estimation MDPs (Figure 2).

Given our main hypothesis that black swan events occur due to human misperception
of the real world, we further investigate whether optimal policy also deviates due to mis-
perceptions of value or probability. This is critical as overestimating or underestimating all
values of probability does not necessarily lead to changes in optimal policy. For example,
revisiting Example 4, overestimating or underestimating {r(sbase), r(spremium), r(srisk)}
to the same magnitude does not alter the optimal policy for a human to choose ap. More
fundamentally, a crucial question that this paper addresses is how misperception influ-
ences the deviation of optimal policy. Therefore, in Section 6, we first present some case
studies in MDPs with small complexity to demonstrate how optimal policy varies under
misperception.

Before proceeding, we need to establish the core event of subjective probability. For
example, while agents (humans) might distort transition probabilities and perceive them
subjectively at a low level which is an intuitive way to model misperception. It is essential
to recall that in the Markov Decision Process, the quality of an event is revealed through
rewards defined over specific states and actions. This suggests that it is more reasonable
to define the minimal object (event) as the state and action, and conduct modeling as
distortion on the visitation probability of state and action rather than on the transition
probability itself. Since this approach has not been investigated in existing work, we
examine both cases in Section 6 and Section 7. Specifically, in Section 6, we assume
distortion of transition probability within a non-stationary Markov decision process and
investigate how optimal policy deviates due to misperception of transition probability.
Then, in Section 7, we explore the distortion of the visitation probability within a stationary
Markov decision process.

6.1 Problem setup for Section 6

In this section, we consider discrete state and action stationary Markov Decision Process.
Build upon value function (Equation 4), we define value function and state value function
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of time t as

V π,†
t (s) ∶= E [

T−1

∑
t′=t

γT−1−t
′
u(R(st′ , at′)) ∣ P †, π, st = s]

Qπ,†
t (s, a) ∶= E [

T−1

∑
t′=t

γT−1−t
′
u(R(st′ , at′)) ∣ P †, π, st = s, at = a]

(9)

and define the optimal policy as time t as π⋆,†t = argmaxπ V
π,†
t . Then the following bellman

equation holds,

V π,†
t (s) = ∑

a∈A

π(a∣s)Qπ,†
t (s, a)

Qπ,†
t (s, a) = u(R(s, a)) + ∑

i∈∣S ∣

γ
⎛
⎝
w
⎛
⎝

i

∑
j=1

P (s′[i] ∣ s, a)
⎞
⎠
−w
⎛
⎝
i−1

∑
j=1

P (s′[i] ∣ s, a)
⎞
⎠
⎞
⎠
Vt+1(s[i])

where P (s[1]∣s, a) ≤ P (s[2]∣s, a) ≤ ⋯ ≤ P (s[∣S∣]∣s, a) holds. In addition, we assume that
∀t ∈ [T − 1],∀s ∈ S and ∀a ∈ A,R(st, at) = 0. We only consider the reward function at
the final stage R(sT , aT ). Although this assumption may appear unconventional, it aligns
with standard practices in reinforcement learning, especially when focusing on terminal
rewards. Especially, for each trajectory τ ∈ S ′, where τ = (s0, a0, . . . , sH , aH) represents a
T -step decision sequence, set the terminal reward as r′T (τ) ∶= ∑t∈[T ] rt (st, at), and r′t(τ) = 0
for all t ∈ [T − 1]

6.2 Case 1. Contextual bandit (T = 1)
We begin with a simple case where the decision horizon is T = 1, commonly referred to
as a contextual bandit (Lattimore and Szepesvári (2020)). Surprisingly, in this setting,
the human optimal policy coincides with the real-world optimal policy. This is somewhat
counterintuitive, as several significant examples (Examples 2, 3, and 4) suggest that human
decision-making often exhibits irrationality.

Theorem 1 (One-step Human Optimal Policy). If T = 1, then the optimal policy from the
universe MDP aligns with the optimal policy of the human MDP, i.e. π⋆ = π⋆,†.

An important insight from Theorem 1 is that when decisions are not sequential, the
typical distortions in human perception do not affect the alignment with the optimal policy
of the real-world, suggesting that human irrationality is less influential in a single-step
decision-making setting. This is further explained in the following remark.

Remark 3. Continuing from Example 4, the order of perceived rewards does not change as
u−(r(sloss)) < u−(r(spremium)) < u−(r(sbase)) since u− is a nondecreasing convex function.
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6.3 Case 2. ∣S ∣ = 2 when T > 1
Now, let us consider the simplest case where H > 1 where ∣S ∣ = 2. Surprisingly, we find
results similar to those presented in Section

Theorem 2 (Multi-step human optimal policy). If ∣S ∣ = 2, then the optimal policy from
the universe MDP also aligns with the optimal policy of the human MDP, that is, π⋆,†t = π⋆t
for ∀t ∈ [T ].

The proof of Theorem 2 is based mainly on the assumption that ∣S ∣ = 2, notably
using the property that w(1) = 1. However, this technique cannot be applied directly
if ∣S ∣ ≥ 3. For example, in Example 4, where ∣S ∣ = 3, it is demonstrated that human
decision making results in a suboptimal policy in the real-world. This outcome may seem
counterintuitive. However, a heuristic analysis suggests that having only two states in the
state space indicates that the actions do not introduce a varied randomness. Essentially, if
randomness is introduced by any action, it would likely affect both states s0 and s1 if the
action provides a nondeterministic next state. Thus, every action provides the same next-
state set, which makes a mere comparison between two states. This observation implies
that in scenarios with a smaller state space, being irrational (believing on false belief)
does not affect to deviate from optimal policy. We can also interpret this result as if ∣S ∣
is small, sequential decision-making problems are easy so that humans can always provide
the optimal action in the real world.

6.4 Case 3: ∣S∣ = 3 with unbiased reward perception

We consider the hypothetical scenario where u(r) = r, indicating that humans have an
unbiased perception of their reward.

Theorem 3 (Two step optimal decision when ∣S ∣ = 3). Given any state space S where
∣S ∣ = 3 and a decision horizon T = 2, there exists a transition probability P and reward R
of the real world such that the optimal policy of human MDP differs from that of universe
MDP.

Theorems 1, 2, and 3 illustrate that the discrepancy between human and optimal deci-
sion making increases as the complexity of the environment increases (S) or as the decision
sequence (T ) lengthens for any w function.

7 A definition of spatial black swans

Now, we introduce the definition of black swan inspired by CPT.

7.1 Black swan hypothesis

First, based on the newly proposed human modelM†, we concretize the informal hypothesis
1 as follows.
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Hypothesis 2 (Spatial black swan origin). For a given universe MDPM, the agent
initially perceives the universe asM†. Then it estimatesM† as M̂†. Subsequently,
the agent rolls out trajectories in M̂† to learn its optimal policy, π̂†,⋆. Then, all
spatial black swan events (s, a) are functions ofM,M†, and π†,⋆.

We define all spatial black swan events as a set B(M,M†, π†,⋆). It is important to
note that B is a function of the agent’s perception M†, rather than its estimation M̂†,
since estimation is what the agent can improve over time. Specifically, all state and action
events from B(M,M̂†, π̂†,⋆) can be regarded as broad ‘risks’ that encompass spatial black
swan events. Among these risks, there are some that the agent can ‘be averse to’ and
others that it ‘cannot be averse to’ in the process of improving model estimation M̂† to
the human modelM†. The crux of spatial black swan events lies in their unexpectedness,
which occurs even when the agent has prepared the optimal policy with zero estimation
error. The model estimation process discussed in this paper aligns with existing work on
imperfect model-based reinforcement learning (Jiang (2018); Gheshlaghi Azar et al. (2013);
Fard and Pineau (2010); Agarwal et al. (2020); Lecarpentier and Rachelson (2019)). For
future work, we leave room to define the ‘risks’ due to irrational human behavior that goes
beyond spatial black swans. Specifically, events from B(M,M̂†, π̂†,⋆) ∖ B(M,M†, π†,⋆)
are risk events that can be avoided as time goes by, and events from B(M,M†, π†,⋆) are
non-avoidable risk, i.e. spatial black swans. This conceptual framework can be outlined
by the following equation:

lim
κr,κd→0

B(M,M̂†, π̂†,⋆)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Risks

= B(M,M†, π†,⋆)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Spatial black swans

. (10)

Equation (10) is supported by Definition 5, where κr, κd → 0 leads to ∣R(s, a)−R̂†(s, a)∣→ 0
and ∣P π(s, a) − P̂ π,†(s, a)∣ → 0. This implies that M̂† converges to M† by the definitions
of the Human MDP and the Human-Estimation MDP, and consequently, π̂†,⋆ converges to
π†,⋆.

7.2 A definition of spatial black swans

As a preliminary step, we define spatial black swan events within a discrete state and action
space. Note that we continue the problem setting that is discussed in deriving Equation
(7) in Subsection 5.2.

Definition 6 (Spatial black swan - discrete state and action space). Among the
indices of order statistics, if index i < l meets the following criteria:

1. R[i] − u−(R[i]) < −Cbs.

2. w− (∑i
j=1 P

π
[j]) = w

− (∑i−1
j=1 P

π
[j]), yet 0 < P

π
[i] < ϵbs.
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where Cbs ≫ 0 and ϵbs > 0 is given a constant, we define i as a spatial black swan event.

The 1st property of Definition 6 identifies a ‘high-risk event’ through the function
gap between the universe reward R from M and the perceived reward u−(R) from M†.
Specifically, if the agent perceives R in a pessimistic way such that R≪ u−(R) < 0, this is
considered a high-risk event resulting from misperception. The 2nd property of Definition
6 also characterizes a ‘rare event’ through a lens of misperception. Technically, it describes
that a spatial black swan event feasibly occurs in the universe (0 < P π

[i]), but the agent

perceives it as nonoccurring (w− (∑i
j=1 P

π
[j]) = w

− (∑i−1
j=1 P

π
[j])), i.e. an infeasible event.

In addition, we denote two parameters, Cbs and ϵbs, to represent the extent of distortion
in the reward and the cumulative probability of visitation. Intuitively, the magnitude of
Cbs and ϵbs is related to the extent of the misperception gap betweenM andM†,i.e. ϵr, ϵp.
We elaborate on this conjecture in Theorem 4 of Section 8. We now extend the definition
of black swan events from discrete state and action spaces to continuous spaces as follows.

Definition 7 (Spatial black swan). Given w−, u−, if the state-action pair (s, a) satisfies
the following conditions:

1. R(s, a) − u−(R(s, a)) < −Cbs.

2.
d(w−(F (r)))

dr

RRRRRRRRRRRr=R(s,a)
= 0 but 0 < dF (r)

dr

RRRRRRRRRRRr=R(s,a)
< ϵbs.

where F (r) ∶= ∫ r
−∞

dPr represents the cumulative distribution function of Pr, then we define
that state and action pair as a black swan event.

If the weight function w−(x) is differentiable, then the 2nd property of spatial black

swan events can be further elaborated as follows: The derivative
dw−(x)

dx
∣
x=F (R(s,a))

⋅ Pr(r =
R(s, a)) = 0, yet the probability density distribution remains non-zero and bounded, specif-

ically 0 < Pr(r = R(s, a)) < ϵbs. Consequently, this implies
dw−(x)

dx
∣
x=F (R(s,a))

= 0. This

refined second property will be utilized to extend the definition of spatial black swan
events to Proposition 3 in Section 8, facilitating further analysis (see Figure 3b).

Also, for all functions w−, u− that prevent the existence of spatial black swan events, i.e.,
B = ∅, we refer to such environments as safe perception, denoted by w−⋆ , u

−
⋆. In contrast,

environments characterized by w−, u− that inherently encompass spatial black swan events,
B ≠ ∅, are termed risk perception environments. Specifically, if an agent perceives the world
through w−⋆ , u

−
⋆, then spatial black swan events are absent; however, it is crucial to recognize

that w−⋆ , u
−
⋆ are not unique functions (see Figure 3b).

8 Theoretical analysis of spatial black swans

Thus far, we have elaborated on the definition of spatial black swan events (Definition 7)
from its informal definition (Definition 1) through the lens of our black swan hypothesis
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(Hypothesis 2). In this section, we provide theoretical analysis that quantifies the impact
of spatial black swan events. Specifically, we demonstrate how the existence of spatial
black swans establishes a lower bound on policy performance (Theorem 4), and assesses
the probability of encountering spatial black swan events over time (Theorem 5). It is
important to note that Theorem 5 serves as a critical precursor to characterizing the third
property of the informal proposition (Proposition 2), since the timing of learning to improve
agent’s perception is triggered by the statement ‘after a black swan is first observed’.
Subsequently, we posit that perception improvement learning exhibits antifragile behavior
in agents.

8.1 Problem setting

As a preliminary step, we first establish the agent learning setting and provide some as-
sumptions for the theoretical analysis. We utilize the problem setting elaborated in Sub-
section 5.3. For the theoretical analysis, we assume the following assumptions:

Assumption 4 (Bounded reward). The R is bounded as R ∈ [−Rmax,Rmax] where
Rmax > 0

Assumption 5 (Relatively strong convexity). With Assumption 2, u−⋆(r) ≤ u−(r)
holds for r < 0.

Before starting the theoretical analysis, the formal definition of spatial black swan
events based on state and action pairs (Definition 7) imposes restrictions on further analysis
due to the openness of (s, a) ∈ B. Specifically, Definition 7 regarding the support of S ×A
does not ensure the existence of a closed subset C ⊆ S × A such that ∀(s, a) ∈ C Ô⇒
(s, a) ∈ B. Therefore, we propose modifications to the support of the spatial black swan
event definition concerning the reward. To this end, we further assume that the reward
function R ∶ S ×A → R is bijective. Consequently, we introduce the following proposition
of a spatial black swan event, an alternative to Definition 7, which is defined over reward
values in closed intervals.

Proposition 3 (Spatial black swan). Under Assumptions 1,2, and 3, if w−, u− satisfies
spatial black swan definition (Definition 7), then ∀r ∈ [−Rmax,−Rbs] satisfies

1. r − u−(r) < −Cbs

2. w−(F (r)) = 0 but 0 < F (r) < ϵbs

where Rbs − u−(Rbs) = −Cbs holds.

The Proposition 3 is well elaborated in Figure 3. Proposition 3 facilitates the Definition
7 within the closed set [−Rmax,−Rbs]. This approach to defining spatial black swan events
based on the support of the reward is more intuitive to understand the black swan origin
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hypothesis (Hypothesis 2). That is, Proposition 3 shows how decreasing the misperception
gap (M† →M) relates to reducing ∣B∣. This is because a reduction in the misperception
gap, where u−(r) → u−⋆(r), leads to a decrease in the range of spatial black swan rewards,
moving from −Rbs to −Rmax, thus reducing the frequency of spatial black swan occurrences
(see Figure 3).

Within the above problem setting, the agent’s goal is to estimate the value function
under safe perceptionM as follows:

V (s0) = ∫
∞

0
w+ (Pr(u+(X) > r))dr − ∫

∞

0
w−⋆ (Pr(u−⋆(X) > r))dr (11)

However, the agent possesses its own perceptions M†, for which we assume the risk per-
ception is represented as:

V †(s0) = ∫
∞

0
w+ (Pr(u+(X) > r))dr − ∫

∞

0
w− (Pr(u−(X) > r))dr (12)

As time goes by, the agent’s goal is learning the weight functions and utility functions
such as w− → w−⋆ and u− → u−⋆. Then, by the single trajectory data up to time t, i.e.
{si, ai, u(ri), si+1}ti=0 where the reward value itself and its sampling distribution are dis-
torted due to the functions u and w, respectively. Let ri, i = 1, .., t denote n samples of the
reward random variable X. We define the empirical distribution function for u+(X) and
u−(X) as follows

F̂+t (r) =
1

t

n

∑
i=1

1(u+(ri)≤r), and F̂ −t (r) =
1

t

n

∑
i=1

1(u−(ri)≤r)

. using the EDFs, the CPT value up to time t can be estimated as follows,

V̂ †
t (s0) = ∫

∞

0
w+ (1 − F̂+t (r))dr − ∫

∞

0
w− (1 − F̂−t (r))dr (13)

Again, we note that the gap betweenM andM† is defined over a gap between (u−,w−)
and (u−⋆,w−⋆) that is proportional to the existence of spatial black swan events.

8.2 Theortical analysis

Based on the perspective of the blackswan event as a reward (Proposition 3), the natural
question would be how does the perception gap create a gap between the value function?

Theorem 4 (Convergence of estimation value but lower bound on perceived
value gap). Under Assumptions 2, 3, and 4, the asymptotic convergence of the value
function estimation holds as follows,

V̂ †
t (s0)→ V †

t (s0) a.s. as t→∞. (14)
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Figure 3: Utility and weight functions with spatial black swans.

where upper bound of the estimation error (sample complexity) holds as:

P (∣V̂ †
t − V

†
t ∣ < ϵ) ≤ 1 − 4e

−t ϵ2

2c2 . (15)

where c =max{∣L+u+(Rmax)∣, ∣L−u−(−Rmax)∣}.
However, under specific conditions on ϵbs, ϵ

min
bs ,Rbs, the lower bound of human value

function gap is expressed as:

∣V †
t (s0) − Vt(s0)∣ = Ω

⎛
⎝
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

⎞
⎠

(16)

due to misperception.

Insights of Theorem 4. The message of Theorem 4 establishes a support for our
hypothesis 2 and Defintion 7. Firstly, Equation (15) establishes that the estimation error
converges to zero as the agent rolls out a longer trajectory. However, Equation (16) offers
the insight that the value function gap betweenM andM† has a lower bound, regardless
of the trajectory length. It is straightforward to verify in Equation (16) that if u−(x) →
u−⋆(x) and w−(x) → w−⋆(x), which implies Rbs → Rmax and ϵbs → 0, then the lower bound
also converges to zero. Furthermore, Equation (16) supports our intuition that a higher
distortion in reward perception (a large Cbs value) and a greater number of spatial black
swan events (large (Rmax −Rbs)) and a large minimum probability of spatial black swan
event occurrence (large ϵmin

bs ) lead to a higher lower bound. It is important to note that the
gap Rmax−Rbs is associated with the number of spatial black swans, since we have assumed
that the reward function maps uniquely, therefore there exists a unique (s, a) such that
R(s, a) = r, where r is in the range [−Rmax,Rmax+Rbs]. Therefore, through Theorem 4, we
conclude that even though the agent has a perfect estimation of what it has perceived, there
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still exists a lower bound to obtaining the value function of the universe, which increases
as the parameter effect of spatial black swan events becomes more dominant.

Now, based on Theorem 4, the next natural question is how to decrease the lower bound,
that is, how the agent learns to nudge u−⋆ → u−⋆ and w−⋆ → w−⋆ . Before we ask when the
agent encounters the black swan, so the perception correction would happen. Since black
swan events are defined over probability, this question could be more concretized as If the
agent takes a step h > hbs, the probability of encountering black swan events are at least δbs.
This question also further enables to naturally learn how to obtain antifragile behavior,
which makes δbs to decrease as every time the agent updates its perception. We first start
our analysis based on the non-zero one-step reachability assumption.

Theorem 5 (Spatial black swan hitting time). Assume Pπ⋆(s′∣s) > 0 for any two
states s, s′ ∈ S, signifying that the one-step state reachability is non-zero, and consider that
one step corresponds to a unit time. Then, if the agent takes t steps such that

t ≥
log ( δ

pmin
)

log(1 − pmax)
+ 1,

where pmin = Rmax−Rbs

2Rmax
ϵmin
bs and pmax = Rmax−Rbs

2Rmax
ϵbs, it will encounter spatial black swan

events at least with probability δ ∈ [0,1].

9 Conclusion

In this paper, we propose a new perspective to understand the black swan events by utilizing
human misperception and CPT. We have divided black swans into temporal and spatial
black swans and focus on spatial black swans, where misperception occurs in the state and
action space. To define spatial black swans, we propose three different MDPs: universe
MDP (M), human MDP (M†), and human-estimation MDP (M̂†) and also introduce the
well-known irrational human behavior theorem, CPT. The main message is Hypothesis 2
and Definition 7. They highlight that despite humans being able to reduce the estimation
gap, leading M̂† to converge to M† through longer horizons or better algorithms, there
remains an inherent uncertainty due to the perception gap between M and M†. This
implies that spatial black swans can still occur because of this perception gap, even when
the agent has zero estimation error and computes its optimal policy from M̂†.
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Appendix A. Proofs

We first start from the following Lemma 3 to prove Lemma 1.

Lemma 3 (Bounding visitation probability of step h when well-perceived transition holds).
If for all (s, a) holds ϵd-perceived transition probability, then we have

max
π

⎛
⎝ ∑
(s,a)∈S×A

∣Pπ
h(s, a) − P

π,†
h (s, a)∣

⎞
⎠
≤ hϵp

that holds for all h ∈ N

Proof of Lemma 3. Proof by induction. We use short notation for P (sh = s ∣ sh−1 =
s′, ah−1 = a′) as Ph(s ∣ s′, a′) and P †(sh = s ∣ sh−1 = s′, ah−1 = a′) as P †

h(s ∣ s
′, a′). By

the definition of rational transition probability the statement holds at h = 1 for any policy
π. Now, suppose the statement holds for h − 1 for any policy π. Then, we have

∑
(s,a)∈S×A

∣Pπ
h(s, a) − P

π,†
h (s, a)∣

= ∑
(s,a)∈S×A

∣π(ah = a ∣ sh = s) ∑
s′,a′
(Ph(s ∣ s′, a′)Pπ

h−1(s′, a′))

− π(ah = a ∣ sh = s) ∑
s′,a′
(P †

h(s ∣ s
′, a′)Pπ,†

h−1(s
′, a′)) ∣

≤ ∑
(s,a)∈S×A

π(ah = a ∣ sh = s)∣ ∑
s′,a′
(Ph(s ∣ s′, a′)Pπ

h−1(s′, a′)) − ∑
s′,a′
(P †

h(s ∣ s
′, a′)Pπ,†

h−1(s
′, a′)) ∣

=∑
s∈S

∣ ∑
s′,a′
(Ph(s ∣ s′, a′)Pπ

h−1(s′, a′)) − ∑
s′,a′
(P †

h(s ∣ s
′, a′)Pπ,†

h−1(s
′, a′)) ∣

=∑
s∈S

∣ ∑
s′,a′
(Ph − P †

h)P
π
h−1(s′, a′) + ∑

s′,a′
P †
h(s ∣ s

′, a′) (Pπ
h−1(s′, a′) − P

π,†
h−1(s

′, a′)) ∣

≤ ∑
s′,a′
∣∑
s∈S

(Ph − P †
h)P

π
h−1(s′, a′)∣ + ∑

s′,a′
∣∑
s∈S

P †
h(s ∣ s

′, a′) (Pπ
h−1(s′, a′) − P

π,†
h−1(s

′, a′)) ∣

≤ϵp ∑
s′,a′

Pπ
h−1(s′, a′) + 1 ⋅ (h − 1)ϵp

=ϵp ⋅ 1 + (h − 1)ϵp
≤hϵp

The all of above inequalities holds for all π. Therefore, the statement holds for all h ∈ N.

Now, we state the proof of Lemma 1.
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Proof of Lemma 1. Lemma 1 is almost a corollary that stems from Lemma 3. By the
definition of visitation probability, we have

∑
(s,a)∈S×A

∣P π(s, a) − P π,†(s, a)∣ = ∑
(s,a)∈S×A

∣
∞

∑
h=0

γh (Pπ
h(s, a) − P

†,π
h (s, a))∣

≤ ∑
(s,a)∈S×A

∞

∑
h=0

γh ∣(Pπ
h(s, a) − P

†,π
h (s, a))∣

=
∞

∑
h=0

γh ∑
(s,a)∈S×A

∣(Pπ
h(s, a) − P

†,π
h (s, a))∣

≤
∞

∑
h=0

γhh
(1 − γ)2

γ
ϵp

Let S = ∑∞h=0 γhh, then γS = ∑∞h=0 γh+1h = ∑∞h=1 γh(h − 1). Then by subtracing those two
equations, we have (1 − γ)S = ∑∞h=1 γh =

γ
1−γ . Therefore we have S = γ

(1−γ)2
. Finally, we

have the following inequality

∑
(s,a)∈S×A

∣P π(s, a) − P π,†(s, a)∣ ≤ γ

(1 − γ)2 ⋅
(1 − γ)2

γ
ϵp = ϵp

Proof of Lemma 2. First, note that we have assumed the image of the function R is closed
and dense as [−Rmax,Rmax]. Then, in the progress of projecting all (s, a) into the reward,
we define the probability of reward as P(R = r) = ∑∀(s,a)∈S×A dπ(s, a)1[R(s, a) = r]. we
use short notation for P(R = r) as PR. Now, since dπ(s, a) is the visitation probability of
visiting (s, a), then this could be converted to P(R = r) by dπ(R = R−1(s, a)) where R−1

is many to one function.
Now, since R is the many to one function, we can define independent block the S,A as

the set Z(r) ∶= {(s, a) ∈ S ×A∣R(s, a) = r}. Note that if r1 ≠ r2, then Z(r1) ∩ Z(r2) = 0.
Then, if g satisfies the set Z to in be permutation- invariant. Namely, if R(s1, a) = R(s2, a),
then R(g(s1)) = R(g(s2), a) holds then there exists a one-to-one mapping function h ∶
[−Rmax,Rmax]→ [−Rmax,Rmax] such that

R(s, a) = h(R(g(s), a))

holds. The proof can be divided into two folds. The existence of such function and its a one-
to-one mapping function is exists. We first prove the existence of such function h. This is
because for any state and action s, a, suppose its reward value as r. Then suppose g(s) = s′.
Then since image of function R is closed and dense, there exists r′ ∈ [−Rmax,Rmax] such
that R(s′, a) = r′ holds. Then, one can say the function r = h(r′) exists. Now, we prove the
one-to-one mapping property. suppose for two state and action pair (s1, a1) and (s2, a2)
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and let s′1 = g(s′1) and s′2 = g(s′2). Now, suppose R(s′1, a) ≠ R(s′2, a) holds. Then, due to
the property of g, then it should also satisfies R(s1, a) ≠ R(s2, a). Therefore, this concludes
that h is the one-to-one mapping, and the following holds

dπ(R(g(s), a) = r) = dπ(h(R(g(s), a)) = h(r))
= dπ(R(s, a) = h(r))
= P (R = h(r))

holds. we denote P (R = h(r)) as Ph(R). Then, let’s define two different functions h+ and
h− such that we want to claim that

w− (∫
r

−Rmax

dPR) = ∫
r

−Rmax

dPh−(R), and w+ (∫
r

−Rmax

dPR) = ∫
r

−Rmax

dPh+(R) (17)

holds for any w−,w+. Since the proof for either is similar, we prove the case for the existence
of h− under w− distortion.

Now, recall that for 0 < x < b, w−(x) < x holds and for b < x < 1, w−(x) > x holds and
w−(x) is monotically increasing function. Define rb ∈ [−Rmax,0] such that b ∶= ∫ rb

−Rmax
dPR

holds, and for notation simplicity we deonte F−(r) = ∫ rb
−Rmax

dPR. Then, one can say
−Rmax < r < rb, w(F (r)) < F (r) holds and. Then we can always find a unique ratio

0 < γ(r) < 1 that depends on r such that w−(F (r)) = ∫
γ(r)r
−Rmax

dPr holds where

γ(r) = w−(F (r))
r

.

This leads to set h(r) = γ(r)r = w−(F (r)) that satisfies (17) and also one-to-one
mapping. In the same manner, we can also identify h(r) = γ(r)r = w−(F (r)) where
rb < r < 0 holds for γ(r) > 1. Then, this completes that the function h ∶ r → w−(F (r))
satisfies a one-to-one function and Equation (17). This completes the proof.

Proof of Theorem 1. By the definition of optimal policy and the value function definition
at the time T = 1, we have the optimal policy at time 0 as follows.

π⋆ = argmax
π

V0(s)

= argmax
a∈A

Q0(s, a)

= argmax
a∈A

R(s, a)

π⋆,† = argmax
a∈A

V †
0 (s)

= argmax
a∈A

Q†
0(s, a)

= argmax
a∈A

u(R(s, a))
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for any fixed s ∈ S, let’s assume a∗ is the argument that maximizes the R(s, a). Since u
is the non-decreasing convex function, a⋆ is still the same argument that maximizes the
u(R(s, a)). Therefore, π⋆ = π⋆,† holds.

Proof of Theorem 2. We prove by backward induction. First by theorem 1, π⋆T = π⋆,†T

holds. Now suppose that π⋆t′+1 = π⋆,†t′+1 holds for all t′ = t + 1,⋯, T . Now, we prove the

statement holds for t. To prove π⋆t = π
⋆,†
t , it is sufficient to show if Qπ⋆

t (s, a) ≥ Qπ
t (s, a′),

then Q†,π⋆
t (s, a) ≥ Q†,π⋆

t (s, a′) also holds for any actions a, a′ ∈ A. First, the gap Qπ⋆
t (s, a)−

Qπ⋆
t (s, a) could be expressed as

Qπ
t (s, a) −Qπ

t (s, a) = Rt(s, a) −Rt(s, a′) + {(P (s1∣s, a) − P (s2∣s, a′)) (V π⋆
t+1(s1) − V π⋆

t+1(s2))}

= (P (s1∣s, a) − P (s2∣s, a′)) (V π⋆
t+1(s1) − V π⋆

t+1(s2))

and Q†,π⋆
t (s, a) −Q†,π⋆

t (s, a) as

Q†,π⋆
t (s, a) −Q†,π⋆

t (s, a) = R†
t(s, a) −R

†
t(s, a′) + {(P †(s1∣s, a) − P †(s2∣s, a′)) (V π⋆

t+1(s1) − V π⋆
t+1(s2))}

= (P †(s1∣s, a) − P †(s2∣s, a′)) (V †,π⋆
t+1 (s1) − V

†,π⋆
t+1 (s2))

= (w(P †(s1∣s, a)) −w(P †(s2∣s, a′))) (V †,π⋆
t+1 (s1) − V

†,π⋆
t+1 (s2))

the reward during t ∈ [1, T − 1] is zero by our problem formulation assumption in section
6.1. Now, without loss of generality, we assume V π⋆

t+1(s1) > V π⋆
t+1(s2). Then, due to our

assumption that π⋆t′ = π⋆,†t′ holds for t′ = t + 1,⋯, T , we also have V †,π⋆
t+1 (s1) > V †,π⋆

t+1 (s2).
Also, noticing that weight function w is also increasing function, then P (s1∣s, a) > P (s2∣s, a)
also guarantees w(P (s1∣s, a)) > w(P (s2∣s, a)) holds. Therefore, we can claim if Qπ

t (s, a) −
Qπ

t (s, a) > 0 holds, then Q†,π⋆
t (s, a) −Q†,π⋆

t (s, a) > 0 also holds. Then, this leads to claim

that argmaxQπ
t (s, a) = argmaxQ†π

t (s, a), which implies π⋆t = π⋆,†t . This completes the
proof.

Proof of Theorem 3. Assume that Theorem 3 does not hold. Given T = 2, we have V π
2 (s) =

maxa∈AR2(s, a) = R2(s) for each state s. At time t = 1, assume R2 (s1) ≤ R2 (s2) ≤ R2 (s3).
The condition Q†,π

1 (s, a1) ≥ Q†,π
1 (s, a2) is then expressed as:

w (P (s1 ∣ s, a1)) r2 (s1) + (w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a1)))R2 (s2)
+ (1 −w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)))R3 (s3)
≥ w (P (s1 ∣ s, a2))R2 (s1) + (w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)) −w (P (s1 ∣ s, a2)))R2 (s2)
+ (1 −w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)))R3 (s3)

which simplifies to:
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(w (P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a2))) (R2 (s1) −R3 (s3))
+ ((w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a1)))
− (w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)) −w (P (s1 ∣ s, a2)))) (R2 (s2) −R3 (s3)) ≥ 0

For the non-distorted case, the analogous expression is:

(P (s1 ∣ s, a1) − P (s1 ∣ s, a2)) (R2 (s1) −R3 (s3))
+ (P (s2 ∣ s, a1) − P (s2 ∣ s, a2)) (R2 (s2) −R3 (s3)) ≥ 0

For arbitrary reward functions, R2, the equality of the two cases under any weighting
function w leads to:

w (P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a2))
w (P (s2 ∣ s, a1) + P (s1 ∣ s, a1)) −w (P (s1 ∣ s, a1)) − (w (P (s2 ∣ s, a2) + P (s1 ∣ s, a2)) −w (P (s1 ∣ s, a2))

=P (s1 ∣ s, a1) − P (s1 ∣ s, a2)
P (s2 ∣ s, a1) − P (s2 ∣ s, a2)

where w(p) = p is the only solution, contradicting the distortion required by Assumption
3.

Proof of Theorem 4. The proof of Theorem 4 is divided into three-fold.

1. Proof of asymptotic convergence

We first prove asymptotic convergence (Equation (14)), then we prove Equation (15) in
part 3 of this proof. Note that the empirical distribution function F̂n(r) generate Stielgies
measure which takes mass 1

t each of the sample points on U+(Ri).
or equivalently, show that

lim
n→+∞

n−1

∑
i=1

u+(R[i])(w+(
n − i + 1

n
) −w+(n − i

n
)) n→∞ÐÐÐ→ ∫

+∞

0
w+(P (U > t))dt,w.p. 1 (18)

where n denotes the number of positive reward among ∣S ∣∣A∣. Let ξ+i
n

and ξ−i
n

denote the

i
nth quantile of u+(X) and u−(X), respectively.

For the convergence proof, we first concentrate on finding the following probability,

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n

⋅ (w+(n − i
n
) −w+(n − i − 1

n
))∣ > ϵ),

(19)
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for any given ϵ > 0. It is easy to check that

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n

⋅ (w+(n − i
n
) −w+(n − i − 1

n
))∣ > ϵ)

≤ P (
n−1

⋃
i=1

{∣u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) − ξ+i

n

⋅ (w+(n − i
n
) −w+(n − i − 1

n
))∣ > ϵ

n
})

≤
n−1

∑
i=1

P (∣u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) − ξ+i

n

⋅ (w+(
n − i
n
) −w+(

n − i − 1
n

))∣ > ϵ

n
)

(20)

=
n−1

∑
i=1

P (∣(u+(R[i]) − ξ+i
n

) ⋅ (w+(n − i
n
) −w+(n − i − 1

n
))∣ > ϵ

n
)

≤
n−1

∑
i=1

P (∣(u+(R[i]) − ξ+i
n

) ⋅ ⋅( 1
n
)α∣ > ϵ

n
)

=
n−1

∑
i=1

P (∣(u+(R[i]) − ξ+i
n

)∣ > ϵ

⋅n1−α
). (21)

The Right hand side of Inequality (21) could be expressed as follows.

P (∣u+(R[i]) − ξ+i
n

∣ > ϵ

n(1−α)
)

= P (u+(R[i]) − ξ+i
n

> ϵ

n(1−α)
) + P (u+(R[i]) − ξ+i

n

< − ϵ

n(1−α)
).

We focus on the term P (u+(R[i])−ξ+i
n

> ϵ
n1−α ). Now, let us define an eventAt = I(u+(Xt)>ξ+i

n

+ ϵ

n(1−α) )

where t = 1, . . . , n. Since the Cumulative distribution is non-decrasing function, we have
the following,

P (u+(R[i]) − ξ+i
n

> ϵ

1 − α) = P (
n

∑
t=1

At > n ⋅ (1 −
i

n(1−α)
))

= P (
n

∑
t=1

At − n ⋅ [1 − F +(ξ+i
n

+ ϵ

n(1−α)
)] > n ⋅ [F+(ξ+i

n

+ ϵ

n(1−α)
) − i

n
]).

Using the fact that EAt = 1−F+(ξ+i
n

+ ϵ
n(1−α) ) in conjunction with Hoeffding’s inequality,

we obtain

P (
n

∑
i=1

At − n ⋅ [1 − F +(ξ+i
n

+ ϵ

n(1−α)
)] > n ⋅ [F+(ξ+i

n

+ ϵ

n(1−α)
) − i

n
]) < e−2n⋅δ

′
t , (22)

where δ
′
i = F+(ξ+i

n

+ ϵ
n(1−α) ) −

i
n . Since F+(x) is Lipschitz, we have that δ

′
i ≤ LF+ ⋅ ( ϵ

1−α).
Hence, we obtain

P (u+(R[i]) − ξ+i
n

> ϵ

1 − α) < e
−2n⋅LF+

ϵ
1−α = e−2nα⋅L+ϵ (23)

34



Black Swan Hypothesis

In a similar fashion, one can show that

P (u+(R[i]) − ξ+i
n

< − ϵ

1 − α) ≤ e
−2nα⋅LF+ϵ (24)

Combining (23) and (24), we obtain

P (∣u+(R[i]) − ξ+i
n

∣ > ϵ

1 − α) ≤ 2 ⋅ e
−2nα⋅LF+ϵ, ∀i ∈ N ∩ (0,1)

Plugging the above in (21), we obtain

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n

⋅ (w+(n − i
n
) −w+(n − i − 1

n
))∣ > ϵ)

≤ 2n ⋅ e−2nα⋅LF+ . (25)

Notice that ∑+∞n=1 2n ⋅e−2n
α⋅LF+ϵ <∞ since the sequence 2n ⋅e−2nα⋅LF+ will decrease more

rapidly than the sequence 1
nk , ∀k > 1.

By applying the Borel Cantelli lemma, we have that ∀ϵ > 0

P (∣
n−1

∑
i=1

u+(R[i]) ⋅ (w+(
n − i
n
) −w+(n − i − 1

n
)) −

n−1

∑
i=1

ξ+i
n

⋅ (w+(n − i
n
) −w+(n − i − 1

n
))∣ > ϵ) = 0,

which implies

n−1

∑
i=1

u+(R[i])⋅(w+(
n − i
n
)−w+(n − i − 1

n
))−

n−1

∑
i=1

ξ+i
n

⋅(w+(n − i
n
)−w+(n − i − 1

n
)) n→+∞ÐÐÐ→ 0 w.p 1,

which proves (18).

Also, the remaining part, conducting the proof of convergence of w− and u−,i.e.

lim
n→+∞

n−1

∑
i=1

u−(R[i])(w−(
n − i + 1

n
) −w−(n − i

n
)) n→∞ÐÐÐ→ ∫

+∞

0
w−(P (U > t))dt,w.p. 1 (26)

also follows simliar manner. we omit the proof for this.

2. Proof of value function lower bound

By the definition, we have the following
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∣V (s0) − V †(s0)∣ = ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

∞
w−(Pr(u−(R > r)))dr∣

= ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

∞
w−⋆(Pr(u−(R > r)))dr

− (∫
0

∞
w−(Pr(u−(R > r)))dr − ∫

0

∞
w−⋆(Pr(u−(R > r)))dr) ∣

≥ ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

−∞
w−⋆(Pr(u−(R > r)))dr∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term (I)

− ∣∫
0

−∞
w−⋆(Pr(u−⋆(R > r)))dr − ∫

0

∞
w−⋆(Pr(u−(R > r)))dr∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term (II)

We first under bound the term (I). For notation simplicity, we let g(r) = Pr(u−(R > r)))
and g⋆(r) = Pr(u−⋆(R > r))). Then we have the following

Term (I) = ∣∫
0

−Rmax

w−⋆(g⋆(r)) −w−⋆(g(r))∣

Now, since w−⋆(x) is monotonically increasing in x ∈ [0, a] and monotonically decreasing in
x ∈ [a,1], we could say for any x, y ∈ [0,1], x ≠ y that

w−∗(x) −w−∗(y)
x − y = (w−⋆)′(z) ≥ min

z∈[0,1]
(w−⋆)′(z) =min{(w−⋆)′(0), (w−⋆)′(1)} ,

where z ∈ (x, y). The first equality holds due to the mean value theorem. Therfore it holds
that

Term (I) = ∣∫
0

−Rmax

w−⋆(g⋆(r)) −w−⋆(g(r))∣

≥ ∣∫
0

−Rmax

min{(w−⋆)′(0), (w−⋆)′(1)} (g⋆(r) − g(r))∣

=min{(w−⋆)′(0), (w−⋆)′(1)} ∣∫
0

−Rmax

(g⋆(r) − g(r))∣

Now, recall the definition of g⋆(r) and g(r), then we have the following

∣∫
0

−Rmax

(g⋆(r) − g(r))dr∣ = ∣ER∼Pπ [u−⋆(R) − u−(R)]∣
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Now, let us denote the intersection of u−(R) and y = R +Cbs as R = −Rbs. We can say if
the blackswan happens, then its reward is bounded between [−Rmax,−Rbs]. Then we have
the following,

∣∫
0

−Rmax

(g⋆(r) − g(r))∣ = ∣ER∼Pπ [u−⋆(R) − u−(R)]∣

= ∣ER∼Pπ [1 [R < −Rbs] (u−⋆(R) − u−(R))]

−ER∼Pπ [1 [R ≥ −Rbs] (−u−⋆(R) + u−(R))] ∣

≥ ∣ER∼Pπ [1 [R < −Rbs] (u−⋆(R) − u−(R))] ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I-1

− ∣ER∼Pπ [1 [R ≥ −Rbs] (−u−⋆(R) + u−(R))] ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term I-2

≥ ∣ER∼Pπ [1 [R < −Rbs] (u−⋆(R) − u−(R))] ∣

To lower bound the Term I-1, let’s denote the minimum reachability of blackswan events
as ϵmin

bs ≠ 0. Then we have

Term I-1 ≥ Rmax −Rbs

Rmax
ϵmin
bs min

R∈[−Rmax,−Rbs]
∣u−(R) − u−⋆(R)∣

≥ Rmax −Rbs

Rmax
ϵmin
bs ∣u−(−Rbs) − u−⋆(−Rbs)∣ (27)

Term I-2 ≤ Rbs

Rmax
ϵbs max

R∈[−Rbs,0]
∣u−(R) − u−⋆(R)∣

≤ Rbs

Rmax
ϵbs ∣u−(−Rbs) − u−⋆(−Rbs)∣ (28)

Therefore, we have the following equation,

Term I ≥ (Rmax −Rbs) ϵmin
bs −Rbsϵbs

Rmax
∣u−(−Rbs) − u−⋆(−Rbs)∣

Also, since the function u−⋆(r) is convex, and u−⋆(−Rmax) < −Rmax+Cbs holds. Therefore, we
could say u−⋆(r) < Rmax−Cbs

Rmax
r. This leads us to come up with u−⋆(−Rbs) < Rmax−Cbs

Rmax
(−Rbs).
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Therefore, we have a gap lowerbound as

∣u−(−Rbs) − u−⋆(−Rbs)∣ ≥ (Rmax −Cbs)
Rbs

Rmax
− (Rbs −Cbs)

= (Rmax −Rbs)Cbs

Rmax

The above inequality could be minimized as

Term I ≥ (Rmax −Rbs) ϵmin
bs −Rbsϵbs

Rmax
((Rmax −Rbs)Cbs

Rmax
)

=
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

Now, let’s upper bound Term 2. Before, recall that the definition of g(r) = Pr(u−(R) >
r)) and note that by the definition of black swans, we have u−(R) >R +Cbs holds for R ∈
[−Rmax,−Rbs). Therefore, we can say for all r ∈ [−Rmax,−Rbs), g(r) = 1 holds. Therefore,
for all r ∈ [−Rmax,−Rbs], we have w−⋆(g(r)) −w−(g(r)) = w−⋆(1) −w−(1) = 1 − 1 = 0

∣∫
0

−Rmax

w−⋆(g(r)) −w−(g(r))dr∣ = ∣∫
0

−Rmax+Cbs

w−⋆(g(r)) −w−(g(r))dr∣

= ∣∫
0

−Rmax+Cbs

w−(g(r)) −w−⋆(g(r))dr∣

≤ ∣∫
0

−Rmax+Cbs

L−g(r) − g(r)dr∣

= (L− − 1) ∣∫
0

−Rmax+Cbs

g(r)dr∣

≤ (L− − 1) ⋅ Rmax −Cbs

2Rmax
ϵbs

= (L− − 1) ∣∫
0

−Rmax+Cbs

1 − Pr(U−(R) < r)dr∣

= (L− − 1) ∣∫
0

−Rmax+Cbs

1 − Pr(U−(R) < r)dr∣

= (L− − 1) ∣((Rmax −Cbs) − ∫
0

−Rmax+Cbs

Pr(u−(R) < r)dr)∣

= (L− − 1) ∣((Rmax −Cbs) −ER∼Pr [u−(R)1[−Rmax +Cbs <R < 0]])∣
(29)

Note that if −Rmax +Cbs < −Rbs, then

1[−Rmax+Cbs <R < 0]⋅ER∼Pr [u−(R)] ≥ (
Rmax −Cbs −Rbs

2Rmax
ϵmin
bs +

Rbs

2Rmax
ϵbs)u−(−Rmax+Cbs)

(30)
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and if −Rmax +Cbs < −Rbs, then

1[−Rmax +Cbs <R < 0] ⋅ER∼Pr [u−(R)] ≥ (
Rmax −Cbs

2Rmax
ϵbs)u−(−Rmax +Cbs) (31)

Therefore, combining the Equations (29), (30), (31), we conclude that

Term II ≤ C ⋅
((Rmax −Rbs) ϵmin

bs −Rbsϵbs) (Rmax −Rbs)Cbs

R2
max

where C ∈ [0,1] is a constant. This completes the proof.
3. Value function upper bound

For the proof of Equation (15) of Theorem 4, we utilized the following Lemma 4 which
provides a concentration inequality on the distance between empirical distribution and true
distribution.

Since u+(R) is bounded above by u+(Rmax) and w+(p) is Lipschitz with constant
L+(= (w+)′(a)), we have the following inequality,

∣∫
∞

0
w+(P (u+(X)) > x)dx − ∫

∞

0
w+(1 − F̂ +t (x))dx∣

= ∣∫
u+(Rmax)

0
w+(P (u+(X)) > x)dx − ∫

u+(Rmax)

0
w+(1 − F̂+t (x))dx∣

≤ ∣∫
u+(Rmax)

0
L+ ⋅ ∣P (u+(X) < x) − F̂ +t (x)∣dx∣

≤L+u+(Rmax) sup
x∈R
∣P (u+(X) < x) − F̂+t (x)∣ .

Now, plugging in the DKW inequality, we obtain

P (∣∫
∞

0
w+(P (u+(X)) > x)dx − ∫

∞

0
w+(1 − F̂ +t (x))dx∣ > ϵ/2)

≤ P (L+u+(Rmax) sup
x∈R
∣(P (u+(X) < x) − F̂+t (x)∣ > ϵ/2) ≤ 2e

−t ϵ2

2(L+u+(Rmax))2 . (32)

Along similar manner, we have

P (∣∫
∞

0
w−(P (u−(X)) > x)dx − ∫

∞

0
w−(1 − F̂−t (x))dx∣ > ϵ/2) ≤ 2e

−t ϵ2

2(L−u−(−Rmax))2) . (33)

Combining (32) and (33), we obtain

P (∣V̂ †
t − V

†
t ∣ > ϵ) ≤ P (∣∫

∞

0
w+(P (u+(X)) > x)dx − ∫

∞

0
w+(1 − F̂ +t (x))dx∣ > ϵ/2)

+ P (∣∫
∞

0
w−(P (u−(X)) > x)dx − ∫

∞

0
w−(1 − F̂ −t (x))dx∣ > ϵ/2)

≤ 4e−t
ϵ2

2c2 .
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where c =max{∣L+u+(Rmax)∣, ∣L−u−(−Rmax)∣}

Proof of Theorem 5. For a given optimal policy π⋆, define the normalized occupancy mea-
sure as dπ⋆ = (1 − γ)∑∞t=0 γtPπ((st, at) = (s, a)). Note that dπ⋆ represents the stationary
distribution. Additionally, given the assumption that the reward function R ∶ S ×A → R
is a bijection, it follows that the distribution dπ⋆(R−1(s, a)) and Pr are identical. This
indicates that the occurrence of black swan events can be entirely characterized by the
reward values, rather than the specific state-action pairs.

Now, we define the event Ebs ∶= {R ∈ [−Rmax,−Rbs]} where R ∼ Pr. The probability of
event Ebs happens is bounded as follows

P(Ebs) = F (−Rbs) − F (−Rmax)
= F (−Rbs)

∈ ((Rmax −Rbs

2Rmax
)ϵmin

bs , (Rmax −Rbs

2Rmax
)ϵmax

bs )

∶= [pmin
bs , pmax

bs ]

Note that we have assumed the 0 < Pr(r = R(s, a)) < ϵbs and its minimum reachable
probability as ϵmin

bs for all reward. now, for given trajectory, the reward instance is given
as (r1, r2, ...rh, ...) where rh ∼ Pr, the probability that the agent first visit the black swan
event at step h would be defined as

P (r1,⋯, rh−1 ∉ Ebs, rh ∈ Ebs) = (1 − P(Ebs))h−1P(Ebs)
≤ (1 − pmin)h−1pmax

Therefore, its probability is bounded as follows,

(1 − pmax)h−1pmin ≤ P (r1,⋯, rh−1 ∉ Ebs, rh ∈ Ebs) ≤ (1 − pmin)h−1pmax

Now, to ensure that the blackswan probability to be lower bounded than δ, we need the
following conditions,

δ ≤ (1 − pmax)h−1pmin

log δ ≤ (h − 1) log (1 − pmax) + log pmin

Therefore, we have
h ≥ log (δ/pmin)/ log(1 − pmax) + 1.

Therefore, we can conclude that if h = Ω(log (δ/pmin)/ log(1 − pmax)), then the agent’s
probability to meet the black swan is at least δ.
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Appendix B. Helpful Lemmas

Lemma 4. (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality)
Let F̂n(u) = 1

n ∑
n
i=1 1((u(Xi))≤u) denote the empirical distribution of a r.v. U , with u(X1), . . . , u(Xn)

being sampled from the r.v u(X). The, for any n and ϵ > 0, we have

P (sup
x∈R
∣F̂n(x) − F (x)∣ > ϵ) ≤ 2e−2nϵ

2

.
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