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ABSTRACT

The human genome contains over 25,000 genes, yet most do not operate inde-
pendently. Instead, they interact within complex networks that drive biological
processes and influence intricate diseases. Understanding these gene-gene inter-
actions is crucial but remains challenging despite advancements in experimental
and computational techniques. Single-cell sequencing, which profiles millions
of cells at the transcriptional level, combined with cutting-edge AI methods like
Transformer-based deep neural networks, provides new opportunities to uncover
subtle but critical interactions. However, Transformers’ high parameter demands
often hinder data efficiency, limiting their potential in large datasets. This work
introduces a novel approach leveraging an advanced Transformer model to identify
key gene-gene interactions. To address data efficiency challenges, we developed a
weighted diversified sampling algorithm that calculates diversity scores in just two
passes of the dataset. This enables efficient subset selection, allowing us to analyze
only 1% of the single-cell data while maintaining performance comparable to
using the full dataset. Our results highlight the power of integrating state-of-the-art
AI with innovative and cost-effective sampling strategies to advance gene-gene
interaction discovery, offering a scalable and efficient pathway to deeper biological
insights from large-scale single-cell sequencing data.

1 INTRODUCTION

In the human genome, most genes function cooperatively within biological networks to execute
essential processes. Within these networks, gene-gene interactions play a pivotal role in the de-
velopment of complex diseases, including multiple sclerosis (Brassat et al., 2006; Motsinger et al.,
2007; Slim et al., 2022), pre-eclampsia (Li et al., 2022; Diab et al., 2021; Williams & Pipkin, 2011;
Oudejans & Van Dijk, 2008), and Alzheimer’s Disease (Ghebranious et al., 2011; Hohman et al.,
2016). Computational tools equipped with machine learning (ML) prove effective in uncovering
these significant gene interactions (McKinney et al., 2006; Cui et al., 2022; Yuan & Bar-Joseph,
2021b; Wei et al., 2024; Upstill-Goddard et al., 2013). By applying ML models to large single-cell
transcriptomic datasets, it is possible to uncover gene-gene interactions associated with complex,
common diseases. However, many existing models depend on prior knowledge, such as transcription
factors (TFs) and gene regulatory networks (Wang et al., 2019; Yuan & Bar-Joseph, 2021a; Chen
et al., 2021a; Shu et al., 2021) or existing gene-gene interaction (GGI) networks (Ata et al., 2020;
Yuan & Bar-Joseph, 2019a), to infer new relationships. While GGI networks and TFs are invaluable
for mapping biological processes, many gene-gene relationships fall outside these frameworks. More-
over, these approaches are often susceptible to high false-positive rates and biases, particularly in
large-scale in vitro experiments (Mahdavi & Lin, 2007; Rasmussen & et al., 2021). To address these
limitations, we propose a purely data-driven approach to uncover gene-gene interactions, eliminating
reliance on prior knowledge and mitigating associated biases.

The Rise of Transformers on Single-Cell Transcriptomic Data. Recent advances in natural
language processing, particularly the development of Transformer models (Vaswani et al., 2017),
have demonstrated significant potential in biological data analysis (Hao et al., 2023; Theodoris
et al., 2023; Bian et al., 2024; Cui et al., 2024). Transformer models are known for their ability to
capture the dependencies between gene expressions. The information fused through the self-attention

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

mechanism (Vaswani et al., 2017) is particularly suited for analyzing the gene-gene relationships in
single-cell transcriptomic data when modeling genes as features of a single cell. On the other hand,
Transformer models also demonstrated superior performance when we scaled up their parameter
size (Hao et al., 2023). This scaling capacity raises the researcher’s interest in training and deploying
parameter-intensive Transformer models, denoted as single-cell foundation models (Cui et al., 2024).
We would like to take this advantage for better gene-gene interaction discovery by identifying feature
interactions within Transformer models.

Data-Driven Gene-Gene Interaction via Attention. In this work, we would like to advance the gene-
gene interaction discovery with the Transformer models that have demonstrated superior performance
on single-cell transcriptomic data. We see the self-attention mechanism (Vaswani et al., 2017) as a
pathway to facilitate the modeling of gene-gene interactions. In single-cell foundation models, the
input to the model is a bag of m gene expressions for a single cell. Next, in each layer and each head
of the Transformer, there will be an attention map with shape m×m generated for this cell. Each
entry of this attention map represents the interaction between two genes in this layer and this head.
Assuming that we have a perfect Transformer that takes a cell’s gene expression profile and correctly
predicts if it is from a diseased tissue, we view the attention map of this cell as a strong indicator of
disease-oriented gene-gene interactions.

Efficiency Challenge in Data Ingestion. Despite the transformative capabilities of Transformer
models, one significant challenge remains: the efficient ingestion and processing of massive volumes
of single-cell transcriptomic data. We are utilizing Transformer models with parameter sizes that
exceed the hardware capacity, particularly that of the graphics processing unit (GPU). As a result,
given a pre-trained Transformer, we have to perform batch-size computation on a massive single-cell
transcriptomic dataset for computing gene-gene interactions through attention maps. This batch-
size computation significantly enlarges the total execution time for scientific discovery. Moreover,
the hardware in the real-world deployment environment for gene-gene interaction detection may
have even more limited resources. Therefore, the current computational framework cannot support
gene-gene interaction discovery on real-world single-cell transcriptomic datasets.

Our Proposal: Two-Pass Weighted Diversified Sampling. In this paper, we introduce a novel
weighted diversified sampling algorithm. This randomized algorithm computes the diversity score of
each data sample in just two passes of the dataset. The proposed algorithm is highly memory-efficient
and requires constant memory that is independent of the cell dataset size. Our theoretical analysis
suggests that this diversity score estimates the density of the Min-Max kernel defined on the cell-level
gene expressions, which provides the foundation and justification of the proposed strategy. Through
extensive experiments, we demonstrate how the proposed sampling algorithm facilitates efficient
subset generation for interaction discovery. The results show that by sampling a mere 1% of the
single-cell dataset, we can achieve performance comparable to that of utilizing the entire dataset.

Our Contributions. We summarize our contributions as fellows.

• We present a computational framework designed to advance the data-driven discovery of significant
gene-gene interactions. At its core is CelluFormer, a Transformer-based model trained on single-
cell transcriptomic data. By leveraging the Transformer’s attention mechanism, CelluFormer
captures complex gene-gene interactions, offering novel insights into Alzheimer’s Disease.

• We pinpoint the challenge in data ingestion for the data-driven gene-gene interaction. Moreover, we
argue that we should perform diversified sampling that selects a representative subset of single-cell
transcriptomics data to fulfill the objective.

• We develop a diversity score for every cell in the dataset based on the Min-Max kernel density.
Moreover, we perform a randomized algorithm that efficiently estimates the Min-Max kernel
density for each cell. Furthermore, we use the estimated density to generate an effective subset for
gene-gene interaction.

2 DATA-DRIVEN SINGLE-CELL GENE-GENE INTERACTION DISCOVERY

In this section, we propose a computing framework to perform gene-gene interaction discovery on
single-cell transcriptomic data. We start by introducing the format of single-cell transcriptomic data.
Next, we propose the formulation of our CelluFormer model tailored to single-cell data. Next, we
present our multi-cell-type training to build an effective transformer model on single-cell data. Finally,
given a pre-trained transformer, we showcase how to perform gene-gene interaction discovery by
analyzing the attention maps.
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2.1 SINGLE-CELL TRANSCRIPTOMIC DATA

Single-cell transcriptomic is a technology that profiles gene expression at the individual cell level.
The profiled results, namely single-cell transcriptomic data, provide a unique landscape of gene
expressions. In contrast to traditional bulk RNA-seq analysis, single-cell transcriptomic data allows
for cell-level sequencing, which captures the variability between individual cells (Ata et al., 2020).
Leveraging this high-resolution data allows scientists to gain insights into developmental processes,
disease mechanisms, and cellular responses to environmental changes. The single-cell transcriptomic
data can be formulated as a dataset with each sample as a set of gene expressions. We denote a single-
cell transcriptomic dataset as X , where each cell x ∈ X is a set {(i1, v1), (i2, v2), · · · , (ik, vk)}. In
this set, every tuple (i, v) represents the expression of gene i ∈ [V ] with expression level v ∈ R, where
V denotes the number of genes expressed at least one time in a cell x ∈ X . In this data formulation,
single-cell transcriptomic data for each cell is represented as a set of gene expressions, with different
cells expressing varying genes. Additionally, even when two cells express the same set of genes, their
expression levels may differ. Our research objective is to identify gene-gene interactions within the
vocabulary V that drive complex biological processes and disease mechanisms.

2.2 CELLUFORMER: A SINGLE-CELL TRANSFORMER

Here, we propose our Transformer architecture, CelluFormer, to learn gene-gene interactions within
single-cell transcriptomic data. Based on the set formulation of single-cell transcriptomic data, we
believe that the order of genes is arbitrary and biologically meaningless. Similar to scGPT (Cui et al.,
2024), GeneFormer (Theodoris et al., 2023), and scFoundation (Hao et al., 2024), our method adopts
a permutation-invariant design. We define our permutation-invariant condition as follows.
Condition 2.1. Let X denote a single-cell transcriptomic dataset. Given a single-cell data of cell
x ∈ X , denoted as a set {(i1, v1), (i2, v2), · · · , (ik, vk)}, a function f : X → R should satisfy that,
for any permutation π, f(x) = f(π(x)).

Table 1: Performance comparison of models on neuronal cell
dataset.

Model Training Dataset F1 Score Accuracy

MLP

Pax6 78.91 82.71
L5_ET 62.02 73.31
L6_CT 91.14 92.01

L6_IT_Car3 95.34 95.51
L6b 86.01 88.76

Chandelier 81.66 84.56
L5_6_NP 89.33 90.42

All Neuronal Cell Types 97.23 97.25

CelluFormer All Neuronal Cell Types 98.12 98.12

We see Condition 2.1 as a fundamen-
tal difference between the proposed
Transformer and the sequence Trans-
formers (Vaswani et al., 2017) widely
used in natural language processing.
For sequence Transformers, we have
to ingest sequential masks during the
training to ensure that the current to-
ken does not interact with the future
token. Additionally, during the in-
ference, the sequence Transformer
should perform a step-by-step gener-
ation for each token. As a result, the
sequence Transformer does not satisfy Condition 2.1. Moreover, the difference between CelluFormer
and a vision Transformer (Dosovitskiy et al., 2020) is that the vision Transformer has a fixed sequence
length for every input data sample. However, the number of genes expressed in each cell can vary
a lot. The number of genes whose expression value can be detected by current single cell RNA
sequencing technologies can vary from 2000 to 5000 in a cell. Thus, we utilize a padding mask for
the downstream classification task. Additional details regarding the implementation of CelluFormer
are provided in Appendix C.1.

2.3 MULTI-CELL-TYPE TRAINING OF CELLUFORMER

We observe that there is a significant performance difference between Transformer models if we
feed them with different styles of single-cell transcriptomic data. It is known that cells can be
categorized into different types based on their gene expression profile and functionality. For instance,
neuronal cells represent the cell types that fire electric signals called action potentials across a
neural network (Levitan & Kaczmarek, 2015). Our study suggests that Transformers should be
trained on single-cell transcriptomic data from various cell types to achieve better performance. We
showcase an example in Table 1. We train a Transformer model to classify whether a cell is from an
Alzheimer’s Disease patient or a healthy individual. According to our study, CelluFormer proposed
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in Section 2.2 trained on neuronal cells outperforms traditional multilayer perceptron (MLP) with
downstream training on a single cell type. However, we do not see this gap when we perform training
of CelluFormer on a single cell type. As a result, we see that the Transformers generally prefer
massive exposure to the single-cell transcriptomic data.

2.4 GENE-GENE INTERACTION DISCOVERY VIA ATTENTION MAPS

In this paper, we would like to accomplish the following objective.

Objective 2.2 (Gene-gene interaction discovery). Let X denote a single-cell transcriptomic dataset.
Let V denote the genes expressed in at least one x ∈ X . Let f : X → R denote a permutation
invariant (see Condition 2.1) CelluFormer. f can successfully predict whether any x ∈ X belongs
to disease D. We would like to find a gene-gene pair (v1, v2) that contributes the most to f ’s
performance in X . Here v1, v2 ∈ V .

Figure 1: Gene-gene interaction modeling with attention maps.

Figure 2: Accumulating multiple cells’ average attention maps.

We see the self-attention mechanism of Transformers on a cell’s set style gene expressions as a
pathway to model gene-gene interactions. CelluFormer takes a cell x’s gene expressions and produces
an attention map Ai,j ∈ Rm×m at encoder block i and attention head j. Here m represents the
number of genes expressed in cell x. Since Transformer architecture uses the Softmax function to
produce Ai,j , we can view the pth row of Ai,j as the interaction between gene p and all other genes in
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x. As a result, an attention map is a natural indicator of gene-gene interactions. Moreover, if we have
a perfect Transformer that takes a cell x gene expressions and correctly predicts if it is in a disease
state, we view the attention map of this cell as an indicator of disease-oriented gene-gene interactions.
Following this path, we propose a gene-gene interaction modeling approach as illustrated in Figure 1.
For each cell x, we represent it as a set and generate a bag of embeddings from the gene embedding
table. Next, we use the expression levels of each gene as a scaling factor for each gene’s embedding.
Next, we take the average attention maps of all layers and all heads to obtain a gene-gene interaction
map in this cell.

In Objective 2.2, we would like to see not only the gene-gene interactions just for cell x but also the
statistical evidence of how two genes interact in the dataset X . As a result, we propose to accumulate
multiple cells’ averaged attention maps as illustrated in Figure 2. For X , we initialize Z0 ∈ 0V×V

matrix as the overall attention map before aggregation and M0 ∈ 0V×V as the overall frequency
dictionary before aggregation. Next, for each cell x in the dataset, we remove its diagonal value in its
averaged attention map as it represents self-interaction. Next, we perform scatter addition operations
that merge x’s averaged attention map back to Z0. We let Zij add the interaction value of gene vi
and vj in the average attention map of cell x obtained in the Transformer model. Simultaneously, to
eliminate the dataset bias of expressed genes, we count the number of appearances for each gene pair
in the dataset. Once again, we perform scatter addition to record the counts back to M0. This is done
by updating M0 through scatter addition, where Mij = Mij + 1 for every occurrence of the gene
pair (vi, vj) in the dataset. Finally, we rank the off-diagonal values in Z where Zij ← Zij

Mij
to retrieve

the top gene-gene interaction. We note that this pipeline can be utilized with pre-trained Transformer
models that have been fine-tuned on task-specific datasets, as outlined in Objective 2.2.

3 WEIGHTED DIVERSIFIED SAMPLING

In this section, we start by showcasing the data-efficiency problem when we use the trained Cellu-
Former for gene-gene interaction discovery. Following this, we define a diversity score for each cell
in the dataset and propose a two-pass randomized algorithm to efficiently compute it. Lastly, we
propose a weighted diversified sampling strategy on massive single-cell data.

3.1 DATA-INTENSIVE COMPUTATION FOR GENE-GENE INTERACTION DISCOVERY

As illustrated in Section 2.4, once we have a pre-trained CelluFormer that can successfully predict
whether a cell is in a disease state or not with its gene expressions, we can perform gene-gene
interaction discovery by passing massive cells into this model and get the accumulated attention map
as Figure 2. However, this process requires data-intensive computation. For every cell in the dataset,
we first need to compute the average attention map as illustrated in Figure 1. Next, we perform
aggregations as shown in Figure 2. It is known that CelluFormer uses plenty of trainable parameters
to achieve good performance in disease state classification. As a result, the computation complexity
for generating a cell’s averaged attention map is expensive. Moreover, since the attention map for
cell x is m ×m, where m is the number of genes expressed in x. Since m ranges from 2000 to
5000, these giant attention maps consume the limited high bandwidth memory (HBM) in the graphics
processing unit. Therefore, we have to perform batch-wise computation on a massive cell dataset for
computing gene-gene interactions. Moreover, given the scale of the dataset, any sampling algorithm
with a runtime that grows exponentially with the dataset size is impractical.

3.2 TWO-PASS RANDOMIZED ALGORITHM FOR COMPUTING Min-Max DENSITY

In this work, we would like to address this data-efficiency challenge by raising and asking the
following research question: Can we find a representative and small subset from the large cell dataset
and still perform successful gene-gene interaction discovery? Moreover, we would like the procedure
for finding this small subset as efficient as possible.

We would like to answer this question by proposing a diversity score of a cell in the dataset. To begin
with, we would like to define a kernel density on top of the Min-Max similarity between two cell’s
gene expressions.
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Algorithm 1 Two-Pass Algorithm for Estimating Min-Max Density

Input: Cell dataset X , 0-bit CWS function familyH (see Definition 3.2), Hash range B, Rows R
Output: Min-Max density set w for every x ∈ X .
Initialize: A← 0R×B

Generated R independent 0-bit CWS functions h1, . . . , hR fromH with range B at Random.
{We set R = O(log |X|) following the theoretical analysis of Definition 3.2}
W ← ∅
for x ∈ X do

for r = 1→ R do
Ar,hr(x)+ = 1

end for
end for
for x ∈ X do

for r = 1→ R do
wx ← wx +Ar,hr(x)

end for
wx ← wx/R {wx is the estimated Min-Max density for x.}
W ← {wx}

end for
return W

Definition 3.1 (Min-Max Density). Given a cell dataset X ⊂ RV , for every q ∈ X , we define its
Min-Max density as: K(q) =

∑
x∈X φ(q, x), where φ(q, x) : R → R is a monotonic increasing

function along with Min-Max(q, x) similarity Min-Max(q, x) =
∑V

i min(qi,xi)∑V
i max(qi,xi)

.

According to the definition, Min-Max(x, y) ∈ [0, 1]. Higher Min-Max means that two cell’s gene
expressions are closer to each other. Min-Max is widely viewed as a kernel (Li, 2015b; Li et al.,
2021; Li & Li, 2021) in statistical machine learning. We view K(q) density as an indicator of how
diverse q is in X . Smaller K(q) means that all other x ∈ X may be less similar to q, making q a
unique cell. On the other hand, higher K(q) means that X has some cells that have similar gene
expressions with q, making q less unique. However, to compute K(q) for every q ∈ X following
Definition 3.1, we have to compute all pairwise Min-Max(x, y) for any x, y ∈ X , which results
in an unaffordable O(n2NNZ(X)) time complexity, where n is the size of X and NNZ(X) is the
maximum possible number of genes expressed in a cell x ∈ X . To reduce this n2 computation,
we propose a randomized algorithm that takes advantage of 0-bit consistent weighted sampling
(CWS) (Li, 2015a) hash functions.
Definition 3.2 (0-bit Consistent Weighted Sampling Hash Functions (Li, 2015a; Li et al., 2021)).
Let H denote a randomized hash function family. If we pick a h ∈ H at random, for any two cell
expressions x, y ∈ RV , we have Pr[h(x) = h(y)] = Min-Max(x, y) + o(1). Here every h ∈ H is a
hash function that maps any x ∈ X to an integer in [0, B). We denote B as the hash range.

Here the o(1) is a minor additive term with complex form. For simplicity, we refer the readers to (Li
et al., 2021), Theorem 4.4 for more details.

This work presents an efficient randomized algorithm that estimates Min-Max density K(q) (see
Definition 3.1) for every q ∈ X . As showcased in Algorithm 1, we initialize an array A with all
values as zeros. Next, we conduct a pass over X . In this pass, for every x ∈ X , we compute its hash
values after R independent hash functions. Next, we increment Ar,hr(x) with 1. After this pass, we
take another pass at the dataset, for every x ∈ X , we take an average over the Ar,hr(x) and build
a density score wx. We would like to highlight that Algorithm 1 requires only two linear scans of
the dataset. The time complexity for this algorithm is O(nNNZ(X)), which is linear to the dataset.
Moreover, we show that Algorithm 1 produces an estimator to Min-Max density.
Theorem 3.3 (Min-Max Density Estimator, informal version of Theorem B.1). Given a cell
dataset X , for every q ∈ X , we compute wq following Algorithm 1. Next, we have E[wq] =∑

x∈X(Min-Max(x, q) + o(1)), where Min-Max is the Min-Max similarity defined in Defini-
tion 3.1. As a result, wq is an estimator for Min-Max density K(q) defined in Definition 3.1 with
φ(q, x) = Min-Max(x, q) + o(1).
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We provide the proof of Theorem 3.3 in the supplementary materials.

3.3 WEIGHTED DIVERSIFIED SAMPLING WITH INVERSE Min-Max DENSITY

We propose to use the inverse form of Min-Max density in Definition 3.1 as a score for diversity. We
define it as normalized inverse Min-Max density as below.

Definition 3.4 (Inverse Min-Max Density (IMD)). Given a cell dataset X , for every q ∈ X , we define
its normalized inverse Min-Max density as I(q) = Softmax(1/K(q)), where K(q) is the Min-Max
diversity for q in Definition 3.1, Softmax is the softmax function that takes over all cells in X .

We view the IMD I(q) ∈ [0, 1] as a monotonic increasing function for the diversity of q. Higher I(q)
means that all other x ∈ X may be less similar to q, making q a unique cell. Moreover, IMD can
be directly used as a sample probability to generate a representative subset of X for Objective 2.2.
Given X , we perform sampling without replacement to generate a subset Xsub ⊂ X , where x ∈ X
has the sampling probability I(x). The advantages of sampling with IMD (see Definition 3.4) can be
summarized as follows.

• The IMD I(q) can be an effective indicator for how diverse q is in dataset X .
• Computing IMD is an efficient one-shot preprocessing process with just two linear scans of X with

time complexity O(nNNZ(X)), where n and NNZ(X) is defined in Section 3.2.
• The memory complexity of computing IMD is O(RB), which can be viewed as constant since it is

independent of n and NNZ(X).

In the following definition, we would like to estimate the interaction score with WDS. Moreover, we
show that WDS serves an unbiased estimator of the interaction score obtained from the whole dataset.
This unbiased estimator builds on the theoretical analysis of local density estimation Wu et al. (2018).
We suggest the ideal sample size to estimate the target interaction score with a multiplicative error
of ε and failure probability δ bounded by O(log2(n) · log(1/δ)/ε2), where n represents the total
number of elements in the dataset.

Definition 3.5 (Estimated Interaction Score with WDS). Let Zx(vi, vj) denote the interaction value
of gene vi and vj in the average attention map of cell x obtained in the CelluFormer. For dataset X ,
we perform a sampling where each cell x ∈ X is sampled with probability I(x) (see Definition 3.4)
and get a subset Xs. Next, we define the estimated interaction score between gene vi and vj learned
from X as:

Z̃(vi, vj) =

∑
x∈Xs

Zx(vi, vj) · I(x)∑
x∈Xs

I(x)
,

where Z̃(vi, vj) is an unbiased estimator for the expectation of Z(vi, vj) in distribution with density
I(x). Formally,

E[Z̃(vi, vj)] = Ex∼I(x)[Zx(vi, vj)],

Var[Z̃(vi, vj)] =

∑
x∈Xs

I(x)2

(
∑

x∈Xs
I(x))2

Varx∼I(x)[Zx(vi, vj)].

4 EXPERIMENT

In this section, we want to validate the effectiveness of our gene-gene interaction pipeline as well as
the two-pass diversified sampling algorithm 1. There are a few research questions we want to answer:

• RQ1: How does the proposed Transformer-based computing framework introduced in Section 2
perform in gene-gene interaction discovery?

• RQ2: How does the Min-Max density estimated by two-pass diversified sampling Algorithm 1
characterize the diversity of a cell in the whole dataset? Is this estimated Min-Max density useful?

• RQ3: How does the estimated Min-Max density perform in improving data-efficiency of gene-
gene interaction discovery? How is the quality of the subset sampled according to the estimated
Min-Max density?

7
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4.1 SETTINGS

Dataset: For the training dataset, we employ the Seattle Alzheimer’s Disease Brain Cell Atlas (SEA-
AD) (Gabitto et al., 2023), which includes single nucleus RNA sequencing data of 36,601 genes
(as 36,601 features) from 84 senior brain donors exhibiting varying degrees of Alzheimer’s Disease
(AD) neuropathological changes as well as healthy control. By providing extensive cellular and
genetic data, SEA-AD enables in-depth exploration of the cellular heterogeneity and gene expression
profiles associated with AD. To facilitate a comparative analysis between AD-affected and non-AD
brains, we select cells from 42 donors classified within the high-AD category and 9 donors from the
non-AD category, based on their neuropathological profiles. This selection criterion ensures a robust
comparison, aiding in the identification of gene-gene interactions linked to AD progression (Gabitto
et al., 2023). The dataset is comprehensively annotated, covering 1,240,908 cells across 24 distinct
cell types. The labels of the cell types are provided by the data generator. Our analysis focused on
several types of neuron cells as they are most relevant to AD – a neural degenerative disease. We
selected 18 neuronal cell types as our final training dataset since we believe neuronal cells are more
likely to reveal explainable gene-gene interactions that are related to Alzheimer’s Disease compared
to non-neuronal cells. To better detect expression relationships among genes, we apply the Seurat
Transformation Function (Stuart et al., 2019) to eliminate the problem of sequence depth difference.

Model: For the SEA-AD dataset, we designed a CelluFormer model as explained in 2.2 to predict
labels indicative of AD conditions. Further details can be found in the Appendix C.1.

Baselines: Our proposed algorithm leverages the attention maps of the Transformer models. As a
result, we can apply this algorithm to existing pre-trained single-cell Transformers, e.g. scGPT Cui
et al. (2024) and scFoundation Hao et al. (2024) to perform gene-gene interaction. Additionally, we
compare our method with three statistical methods, Pearson Correlation, CS-CORE, and Spearman’s
Correlation (Freedman et al., 2007; Su et al., 2023; De Smet & Marchal, 2010). While these methods
are widely adopted by biologists for gene co-expression analysis, gene co-expression values alone
do not provide information about the relationship between gene pairs and Alzheimer’s Disease. To
identify gene-gene interactions relevant to Alzheimer’s Disease, we apply these methods to subsets
containing disease and non-disease cells respectively, and calculate their gene co-expression values.
The difference in co-expression values between disease and non-disease cells is then used as a final
score to rank the gene pairs. We also present more experiments in Appendix D.1 that demonstrate
how Transformers aggregate data with varying labels.

Our baseline includes NID (Tsang et al., 2017), a traditional feature interpretation technique that
extracts learned interactions from trained MLPs. NID identifies interacting features by detecting
strongly weighted connections to a standard hidden unit in MLPs after training. We evaluated our
CelluFormer model against the MLP model, with performance results presented in Table 1.

Additionally, to comprehensively evaluate RQ1, we utilized two existing single-cell large foundation
models to assess our algorithm. Specifically, we fine-tuned two foundation models, scFoundation (Hao
et al., 2024) and scGPT (Cui et al., 2023), to classify whether a cell is AD or non-AD (performance
results are provided in Table 4). We then applied our gene-gene interaction discovery pipeline using
the attention maps of these foundation models. In the sampling experiments, we compare WDS with
uniform sampling since none of them requires preprocessing time exponential to the dataset size.

Evaluation Metric: For a comprehensive evaluation encompassing the entire ranked list of gene-gene
interactions, we utilized the Kolmogorov-Smirnov test, which was facilitated by the GSEApy package
(Fang et al., 2023) in Python. We select normalized enrichment score (NES) (Subramanian et al.,
2005) as our evaluation metric. The ground truth dataset is sourced from BioGRID and DisGenet
(Oughtred et al., 2019; Piñero et al., 2016). For our experiments, we extract a subset of DisGenet that
includes genes associated with Alzheimer’s Disease. We then filter out genes in BioGRID that are
not present in this DisGenet subset. Finally, we obtain a filtered BioGRID dataset containing only
genes relevant to Alzheimer’s Disease. We provide more explanations about our evaluation metrics in
Appendix C.2.

4.2 THE EFFECTIVENESS OF TRANSFORMERS IN GENE-GENE INTERACTION DISCOVERY
(RQ1)

We evaluate our gene-gene interaction discovery framework across seven distinct cell types to
assess its performance comprehensively. The results, summarized in Table 2, compare the proposed
framework applied to Transformer-based models, including Celluformer, scGPT, and scFoundation.
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For comparison, Table 2 also presents results from non-Transformer deep neural network baselines,
such as NID, and traditional non-deep learning methods, including Pearson, CS-CORE, and Spearman.
The findings demonstrate that the proposed Transformer-based framework significantly improves the
effectiveness and stability of gene-gene interaction extraction. Moreover, among the Transformer-
based models, Celluformer consistently achieves superior performance compared to scGPT and
scFoundation. The performance of foundation models like scGPT and scFoundation may stem
from various factors. For instance, the data handling approaches of foundation models, such as
using rank instead of absolute expression values in scGPT, combined with the vast datasets used for
training, make it challenging to isolate all factors contributing to the observed lower performance.
We hypothesize that the potential influences may include differences in gene vocabulary and model
training dynamics. To better understand these factors and their influence on model performance,
particularly in identifying gene-gene interactions, future research should include a thorough evaluation.

Table 2: Performance comparison of models on neuronal cell data. To evaluate different models
on datasets with varying sizes, we further select 7 neuronal cell types from all neuronal cell types.
CelluFormer, scGPT, scFoundation, MLP, Pearson Correlation, Spearman’s Correlation, and CS-
CORE were tested on 8 different datasets to obtain their gene pair rankings.

Dataset CelluFormer scFoundation scGPT NID Pearson CS-CORE Spearman
L5_ET 1.15 1.04 1.23 0.90 0.50 1.11 0.91
L6_CT 1.18 1.03 1.17 1.54 -0.21 1.06 0.72
Pax6 1.25 0.82 1.01 1.04 0.93 0.95 1.15
L5_6_NP 1.21 1.06 1.50 1.49 0.87 0.92 0.95
L6b 1.13 0.99 1.23 0.62 0.75 0.62 1.08
Chandelier 1.17 1.16 1.09 1.07 0.94 1.06 0.96
L6_IT_Car3 1.22 0.90 0.66 1.19 0.59 1.08 0.86
All neuron data 1.17 1.02 0.99 0.86 1.01 1.06 1.04

4.3 ABLATION STUDIES (RQ2 & RQ3)

We addressed these questions by comparing our weighted diversified sampling (WDS) method with
uniform sampling across various sample sizes, ranging from 1% to 10% of the original dataset.
We generated data subsets for each cell type using WDS and uniform sampling. We then applied
our Transformer-based framework for feature selection at each sample size. Since CelluFormer
consistently outperformed other baselines, we selected it as our base model. We repeated each
experiment five times and recorded the NES scores as the results. To evaluate the sampling methods,
we calculated the average NES score across the five experiments. We also computed the Mean Square
Error (MSE) between the NES scores from the sampling experiments and the ground truth derived
from the entire dataset, as shown in Table 2. The evaluation results are presented in Table 3. We note
that WDS consistently produced higher NES scores compared to uniform sampling. As the sample
size increased, the NES scores from uniform sampling began to converge with the ground truth. In
contrast, the NES scores from WDS consistently remained close to the ground truth, even at smaller
sample sizes. The result indicates that while WDS offers a significant advantage in small samples
by enabling the Transformer to capture a broader range of genetic interactions, its benefits diminish
as more data becomes available. We also provide a detailed study on the choice of parameter R in
Algorithm 1 in Appendix D.2.

5 RELATED WORK

Single-Cell Transformer Models. Single-cell RNA sequencing (scRNA-seq), or single-cell tran-
scriptomics, enables high-throughput insights into cellular systems, amassing extensive databases of
transcriptional profiles across various cell types for the construction of foundational cellular models
(Hao et al., 2023). Recently, there has emerged a large number of transformer models pre-trained
for single-cell RNA sequencing tasks, including scFoundation (Hao et al., 2023), Geneformer
(Theodoris et al., 2023), scMulan (Bian et al., 2024), scGPT (Cui et al., 2024). These foundation
models have gained a progressive understanding of gene expressions and can build meaningful gene
encodings over limited transcriptomic data. Yet, the previous work did not pay attention to pairwise
gene-gene interactions. In our work, we would like to highlight a fundamental functionality of
single-cell foundation models: we must use these models to perform data-driven scientific discovery.

9
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Table 3: Evaluation Results for the transformer over sample data. For each cell type, we performed
8 groups of down-sampling regarding 4 different sample sizes and 2 sampling methods. We let the
transformer conduct inferences over the sample data and generate results.

Mean of NES MSE of NESDataset Sample Size Uniform WDS Uniform WDS

L5_ET

1% 0.90 0.95 0.0127 0.0082
2% 0.89 1.17 0.0131 0.0001
5% 1.02 1.19 0.0036 0.0003
10% 0.87 1.07 0.0158 0.0012

L6_CT

1% 0.85 1.19 0.0207 0.0000
2% 1.05 1.18 0.0030 4.30e-05
5% 0.93 1.23 0.0122 0.0006
10% 0.91 1.21 0.0136 0.0002

Pax6

1% 0.94 1.08 0.0184 0.0053
2% 1.03 1.18 0.0098 0.0009
5% 0.98 1.20 0.0139 0.0004
10% 1.06 1.17 0.0072 0.0012

L5_6_NP

1% 0.90 1.13 0.0192 0.0016
2% 1.15 1.11 0.0009 0.0021
5% 1.02 1.20 0.0076 4.54e-06
10% 1.01 1.17 0.0080 0.0004

L6b

1% 0.79 1.17 0.0226 0.0004
2% 0.76 1.14 0.0266 0.0000
5% 0.88 1.20 0.0121 0.0009
10% 1.20 1.21 0.0010 0.0014

L6_IT_Car3

1% 0.78 1.20 0.0384 0.0001
2% 0.87 1.15 0.0242 0.0011
5% 0.97 1.17 0.0123 0.0006
10% 0.97 1.18 0.0123 0.0003

Randomized Algorithms for Efficient Kernel Density Estimation. Kernel density estimation
(KDE) is a fundamental task in both machine learning and statistics. It finds extensive use in real-
world applications such as outlier detection (Luo & Shrivastava, 2018; Coleman et al., 2020) and
genetic abundance analysis (Coleman et al., 2022). Recently, there has been a growing interest
in applying hash-based estimators (HBE)(Charikar & Siminelakis, 2017; Backurs et al., 2019;
Siminelakis et al., 2019; Coleman et al., 2020; Spring & Shrivastava, 2021) for KDE. HBEs leverage
Locality Sensitive Hashing (LSH)(Indyk & Motwani, 1998; Datar et al., 2004; Li et al., 2019)
functions, where the collision probability of two vectors under an LSH function is monotonic relative
to their distance measure. This property allows HBE to perform efficient importance sampling using
LSH functions and hash table-type data structures. Furthermore, (Liu et al., 2024) extend KDE
algorithms as a sketch for the distribution. However, previous works have not considered LSH for
weighted similarity. In this work, we focus on designing a new HBE that incorporates the Min-Max
similarity (Li, 2015b), a weighted similarity measure.

6 CONCLUSION

Gene-gene interactions are pivotal in the development of complex human diseases, yet identifying
these interactions remains a formidable challenge. In response, we have developed a pioneering
approach that utilizes an advanced Transformer model to effectively reveal significant gene-gene
interactions. Although the Transformer models are highly effective, their extensive parameter
requirements often impede efficient data processing. To overcome this limitation, we have introduced
a weighted diversified sampling algorithm. This innovative algorithm efficiently calculates the
diversity score of each data sample across just two passes of the dataset. With this method, we
enable the rapid generation of optimized data subsets for interaction analysis. Our comprehensive
experiments illustrate that by leveraging this method to sample a mere 1% of the single-cell dataset,
we can achieve results that rival those obtained using the full dataset, significantly enhancing both
efficiency and scalability.
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APPENDIX

A MORE RELATED WORK ON GENE-GENE INTERACTION DISCOVERY

In this section, we provide a more detailed review of the existing work on gene-gene interaction
discovery. There exists a series of machine learning approaches for gene-gene interaction. However,
we argue that these existing works do not directly identify gene-gene relationships from the single-cell
RNA data. Instead, they frame the gene-gene relationships into prior biological concepts. For instance,
the goal of SCENIC (Aibar et al., 2017), GRNBoost2 (Moerman et al., 2018), SCODE(Matsumoto
et al., 2017), and SCRIBE(Qiu et al., 2020) is to discover gene regulatory network (GGI) (Vanunu
et al., 2010; Erten et al., 2011; Chen et al., 2021b; Yuan & Bar-Joseph, 2019b), with the explicit
intension of using transcription factor-target gene concept framework to model the data for gene
regulation discovery. VGAE (Singh & Lio’, 2019) and GCAS (Rao et al., 2018) explore the potential
to incorporate GNN and auto-encoder structure in the GGI network. Additionally, multiple existing
works utilize machine learning models such as SVMs for gene-gene interaction discovery Shen
et al. (2010); Matchenko-Shimko & Dube (2007); Chen et al. (2008). However, these methods
are studying single nucleotide polymorphisms (SNPs) data instead of targeting single-cell RNA
data (Uffelmann et al., 2021) In contrast, our method takes a data-driven approach to identify gene-
gene relationships without framing such relationships into any biological concepts like GGIs. Even
though gene regulation is an important gene-gene relationship from the transcription profile, there
could be other subtle signals of gene-gene interaction beyond gene regulation. Therefore, the scope
and conceptual framework of our work are different from those works.

B PROOFS OF THEOREM 3.3

Theorem B.1 (Min-Max Density Estimator, formal version of Theorem 3.3). Given a cell dataset X ,
for every q ∈ X , we compute wq following Algorithm 1. Next, we have

E[wq] =
∑
x∈X

(Min-Max(x, q) + o(1)),

where Min-Max is the Min-Max similarity defined in Definition 3.1. As a result, wq is an estimator
for Min-Max density K(q) defined in Definition 3.1 with φ(q, x) = Min-Max(x, q) + o(1).

Proof. According to Theorem 2 in (Coleman et al., 2019), the expectation of wq should be:

E[wq] =
∑
x∈X

Pr
h∼H

[h(q) = h(x)]

According to Definition 3.2, we have

Pr
h∼H

[h(q) = h(x)] = Min-Max(x, q) + o(1)

.

As a result,

E[wq] =
∑
x∈X

(Min-Max(x, q) + o(1))

Moreover, since Min-Max(x, q) + o(1) is a monotonic increasing function of Min-Max(x, q). We
say that wq is an estimator for Min-Max density K(q) defined in Definition 3.1 with φ(q, x) =
Min-Max(x, q) + o(1).

C EXPERIMENT DETAILS

C.1 MODEL IMPLEMENTATIONS

Transformer Configurations: In this work, we used the standard multi-head self-attention introduced
in (Vaswani et al., 2017). We do not see the potential of the proposed blocks in (Lee et al., 2019) in
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our setting. Moreover, we perform padding on each batch of training and inference of single-cell
data. Accordingly, we introduce a padding mask in the attention mechanism to avoid computation on
the padded position. For each input sequence, we represent them as embedding by a lookup table
that maps a vocabulary of 36,601 genes to 128-dimensional vectors. Subsequently, the embedded
data passes through 4 transformer encoder blocks. Each encoder block features 8 attention heads, to
capture complex, non-linear relationships within the data. Finally, the output is fed into a linear layer
that classifies the data labels. Here the label for the cell can be disease-oriented, such as whether this
cell is from an Alzheimer’s disease patient. We represent each input sequence by employing a lookup
table that transforms a comprehensive vocabulary of 36,601 genes into 128-dimensional embedding
vectors. These vectors are subsequently processed through a series of 4 Transformer encoder blocks.
Each encoder block is equipped with 8 attention heads, a 512-dimensional feedforward layer, and a
dropout layer in a ratio of 0.1. The processed outputs are then directed to a linear classification layer,
which is tasked with predicting labels indicative of Alzheimer’s Disease conditions. We adopted the
Adam Optimization Algorithm to minimize the loss function Kingma & Ba (2017). The model is
trained under a learning rate of 1e-5 and the batch size of our data-loader is set as 128. The testing
results for the transformer after 3 epochs of training are given in Table 1.

MLP Configurations: The MLP consists of 2 hidden layers, with 128 and 256 hidden units
respectively. Each hidden layer is followed by a dropout and a Softplus module. The MLP is trained
under a learning rate of 1e-4 and the batch size of our data-loader is set as 128. We adopted the Adam
Optimization Algorithm to minimize the loss function Kingma & Ba (2017). The testing results for
the MLP after 80 epochs of training are given in Table 1.

Table 4: Complete Performance comparison of models on neuronal cell data.

Model Training Dataset F1 Score Accuracy

MLP

Pax6 78.91 82.71
L5_ET 62.02 73.31
L6_CT 91.14 92.01

L6_IT_Car3 95.34 95.51
L6b 86.01 88.76

Chandelier 81.66 84.56
L5_6_NP 89.33 90.42

All Neuronal Cell Types 97.23 97.25

CelluFormer All Neuronal Cell Types 98.12 98.12
scGPT All Neuronal Cell Types 93.85 94.32

scFoundation All Neuronal Cell Types 97.38 97.39

Fine-tuning configurations for scFoundatoin and scGPT: For fine-tuning scGPT, we use an LR
of 1e-4 and a batch size of 64. We utilize a step scheduler down to 90% of the original learning
rate every 10 steps. The training process converges after 6 epochs. For scFoundation, we use an
LR of 1e-4 and a batch size of 32. We fine-tune scFoundation for 10 epochs. The performances of
scFoundation and scGPT on classifying disease cells are shown in Table 4.

Implementation and Computation Resources: Our codebase and workflow are implemented in
PyTorch Paszke et al. (2017). We trained and tested our workflow on a server with 8 Nvidia Tesla
V100 GPU and a 44-core/88-thread processor (Intel(R) Xeon(R) CPU E5-2699A v4 @ 2.40GHz).

C.2 EVALUATION METRICS

The normalized enrichment score (NES) is the main metric used to analyze gene set enrichment
outcomes Subramanian et al. (2005). This score quantifies the extent of over-representation of a
ground truth dataset at the top of the ranked list of gene-gene interactions. That is, the higher the
better. We can calculate NES by starting at the top of the ranked list and moving through it, adjusting
a running tally by increasing the score for each gene-gene interaction in the ground truth dataset and
decreasing it for others based on each gene-gene interaction’s rank. This process continues until we
evaluate the entire ranked list to identify the peak score, which is the enrichment score. The BioGRID
Dataset provides human protein/genetic interactions. Specifically, BioGRID contributes 204, 831
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protein/genetic interactions that help verify the enrichment of genuine biological interactions in a
ranked list of gene-gene interactions. DisGenet contains 429,036 gene-disease associations (GDAs),
connecting 17,381 genes to 15,093 diseases, disorders, and abnormal human phenotypes Oughtred
et al. (2019); Piñero et al. (2016).

D MORE EXPERMENTS

D.1 CONTRASTIVE RANKING

Here, we also explore alternative strategies for aggregating attention maps. While Pearson Correlation,
Spearman’s Correlation, and CS-CORE themselves cannot capture the information between gene
pairs the the target disease, we believe Transformers learn the difference among data with varying
labels. Hence, we do not need to calculate the difference between attention maps aggregated on
data with varying labels. However, given that the Transformer is trained to classify disease cells, we
hypothesize that it likely assigns significant attention to specific gene pairs within disease cells. To
evaluate this, we applied our pipeline to three distinct datasets. The experimental results summarized
in Table 5 show that our pipeline achieves improved NES when both disease and non-disease cells
are used as inputs. These findings suggest that the Transformer benefits from data both positive and
negative labels to provide a more comprehensive understanding of features.

Table 5: This experiment involves three groups. In the first group, the Transformer only takes the
disease cells for inference. We directly evaluate the ranked list given by aggregated attention map
across disease cells. In the second group, we calculate the aggregated attention maps on the disease
cells and the non-disease cells respectively. The final attention map is obtained by subtracting these
two attention maps. The third group is to aggregate attention maps across the whole dataset.

Strategy L5_ET L6_CT Pax6 L5_6_NP L6b Chandelier L6_IT_Car3

AD cells 1.09 1.09 0.98 0.78 1.13 0.90 0.89
AD cells - Non-AD cells 1.08 0.89 1.05 0.76 0.82 0.65 1.39

All cells 1.15 1.18 1.25 1.21 1.13 1.17 1.22

D.2 EMPIRICAL STUDY ON PARAMETER R IN ALGORITHM 1

Table 6: The Mean value of NES results across 5 experiments on L5_ET, L6_CT, and Pax6 cell type
datasets.

Dataset Sample Size Mean of NES
Uniform WDS with R=100 WDS with R=200 WDS with R=500

L5_ET

1% 0.90 1.02 0.95 0.93
2% 0.89 1.17 1.17 0.97
5% 1.02 0.97 1.19 1.11
10% 0.87 1.01 1.07 1.07

L6_CT

1% 0.85 1.19 1.19 1.11
2% 1.05 1.21 1.18 1.09
5% 0.93 1.13 1.23 1.21
10% 0.91 1.23 1.21 1.20

Pax6

1% 0.94 1.13 1.08 1.17
2% 1.03 1.22 1.18 1.19
5% 0.98 1.21 1.20 1.19
10% 1.06 1.19 1.17 1.22

During our experiments on WDS, we observed that the value of R (see Algorithm 1) has a noticeable
impact on NES performance. In Table 6 and Table 7, we evaluate three different R values ranging
from 100 to 500. The results demonstrate that increasing R leads to a significant decline in NES.
Although WDS with smaller R values yields relatively higher NES, it tends to diverge from the NES
calculated on the entire dataset.
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Table 7: The MSE of NES results across 5 experiments on L5_ET, L6_CT, and Pax6 cell type datasets.
The MSE values are calculated according to the results in Table 2.

Dataset Sample Size MSE of NES
Uniform WDS with R=100 WDS with R=200 WDS with R=500

L5_ET

1% 0.0636 0.0408 0.0178 0.0477
2% 0.0653 0.0005 0.0004 0.0339
5% 0.0181 0.0014 0.0310 0.0018
10% 0.0790 0.0062 0.0192 0.0064

L6_CT

1% 0.1033 0.0002 0.0002 0.0046
2% 0.0151 0.0001 0.0014 0.0070
5% 0.0610 0.0028 0.0025 0.0013
10% 0.0681 0.0011 0.0031 0.0007

Pax6

1% 0.0920 0.0264 0.0135 0.0057
2% 0.0488 0.0047 0.0006 0.0027
5% 0.0695 0.0022 0.0015 0.0027
10% 0.0362 0.0058 0.0028 0.0008
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