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Abstract

Deep learning methods have shown remarkable success in medical image classification, aid-
ing in early disease detection and treatment. Many of these tasks, such as cancer staging
or risk stratification, exhibit an inherent ordinal structure; however, existing solutions of-
ten reduce them to binary or purely nominal classifications, ignoring the valuable ordering
information. Simultaneously, privacy and regulatory concerns have spurred the adoption of
Federated Learning (FL), enabling collaborative model training without centralising sensi-
tive patient data. Yet, FL in real-world medical scenarios faces significant challenges arising
from heterogeneous client data, particularly when institutions differ widely in case severity
or label distribution. In this work, we conduct the first in-depth study of Federated Ordinal
Learning (FOL), introducing ordinal classification paradigms into FL pipelines and sys-
tematically evaluating their performance under increasing levels of data heterogeneity. We
assess the benefits of ordinal classification within four FL frameworks: standard Federated
Averaging (FedAvg) and three heterogeneity-focused approaches (FedProx, MOON, and
FedALA). Our experiments reveal that ordinal methods can effectively maintain class or-
dering information even when institutional data exhibit severe imbalance or missing classes,
offering valuable insights for developing robust, privacy-preserving AI systems in medical
imaging. However, ordinal approaches still suffer from performance degradation in highly
heterogeneous FL settings, underscoring the need for dedicated research on FL methods
that explicitly account for ordinality.
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1. Introduction

In recent years, Deep Learning (DL) models have significantly advanced automatic medical
image classification, particularly aiding in early detection and treatment of diseases like
cancer, which is crucial for reducing mortality rates (Cai et al., 2020; Duffy et al., 2021;
Murtaza et al., 2020). Many of these classification tasks are multi-class problems with an
inherent ordinal structure, where classes follow a natural order of severity. However, much of

Code is available at: https://github.com/Trustworthy-AI-UU-NKI/Federated_Ordinal_Learning/

© 2025 CC-BY 4.0, V. Corbetta, R. Beets-Tan, J.S. Cardoso & W. Silva.

https://orcid.org/0000-0002-3445-3011
https://orcid.org/0000-0002-8533-5090
https://orcid.org/0000-0002-3760-2473
https://orcid.org/0000-0002-4080-9328
https://github.com/Trustworthy-AI-UU-NKI/Federated_Ordinal_Learning/
https://creativecommons.org/licenses/by/4.0/


Corbetta Beets-Tan Cardoso Silva

the existing literature on medical image classification often approaches these tasks as binary
classifications or as multi-class nominal classifications (Lei et al., 2020; Arvaniti et al., 2018).
Binary approaches tend to overlook indeterminate or ambiguous classes, essentially ignoring
cases that fall between the extremes (e.g. dubious cases between benign and malignant,
healthy and pathological) and that are deemed uncertain by clinicians. Nominal methods,
instead, fail to consider the natural order between classes, making results less reflective
of label progression and leading to a loss of information. Ordinal classification blurs the
lines between classification and regression tasks. Unlike nominal classification, where labels
are distinct and unrelated, ordinal classification involves labels that possess an inherent
order, similar to regression scenarios (Frank and Hall, 2001). Although the emphasis on
ordinal classification within medical imaging remains relatively limited, there is noteworthy
work in this area. Albuquerque et al. (2021) proposed an ordinal loss that promotes the
probabilities of output to follow a unimodal distribution for the classification of cancer
risk. In (Lei et al., 2022), a novel meta-ordinal regression forest method is proposed for
medical image classification with ordinal labels, which combines neural networks (NNs) with
a differential forest to capture the ordinal relationship. Le Vuong et al. (2021) combined an
ordinal loss with a nominal classification loss to improve cancer classification.

As privacy concerns grow, the field of medical image analysis is increasingly adopting a
Federated Learning (FL) paradigm (Van Panhuis et al., 2014; Rieke et al., 2020). FL allows
multiple institutions to collaboratively train models without sharing sensitive patient data,
making it an attractive approach in healthcare (Zhang et al., 2021). However, integrating
FL with DL tasks presents challenges, especially due to data heterogeneity between in-
stitutions. For example, some hospitals may predominantly handle less severe cases, while
specialised centres see more critical ones. This imbalance can hinder the global model’s per-
formance, as it may not receive a balanced representation of all classes. Various FL methods
have been proposed to tackle the heterogeneity of clients from different angles. Parameter
regularisation approaches (e.g., FedProx, (Li et al., 2020)) modify the local objective to
include a proximal term, preventing local models from drifting too far from the global pa-
rameters and mitigating instability arising from skewed distributions. Representation-based
solutions (e.g., MOON, (Li et al., 2021)) introduce contrastive objectives to align local and
global feature spaces, reducing overfitting to domain-specific biases. Meanwhile, adaptive
local training strategies (e.g. FedALA, (Zhang et al., 2023)) adjust aggregation weights or
learning rates to accommodate varying client data distributions.

Although the issues of class imbalance and data heterogeneity at the client level have
been investigated in general DL tasks, including nominal classification, it has not been
studied in the context of ordinal classification, where the use of ad hoc ordinal paradigms
is essential for accurately learning the ordered relationships between classes.

Our aim is to analyse the impact of client heterogeneity in Federated Ordinal Learning
(FOL). We hypothesise that, despite the presence of missing or under-represented classes
at the client level, ordinal losses can still effectively capture and learn ordinal relationships.

Our contributions in this analysis are as follows: (1) Novelty of ordinal FL: to the
best of our knowledge, this is the first study to introduce ordinal classification in federated
learning settings for medical image analysis. (2) Systematic heterogeneity assessment: we
rigorously assess the performance of FOL under varying, increasingly heterogeneous data
partitions, providing insights into how ordinal methods behave across diverse institutional
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settings. (3) Evaluation of state-of-the-art FL approaches with ordinality: we integrate
two ordinal learning paradigms, one parametric and a non-parametric one, into four FL
algorithms—standard Federated Averaging (FedAvg) (McMahan et al., 2017) and three
heterogeneity-oriented frameworks (FedProx, MOON, and FedALA)—to highlight their ef-
fectiveness in non-IID, real-world conditions. (4) We perform extensive experiments on the
CSAW-M dataset (a benchmark for ordinal classification) (Sorkhei et al., 2021), simulating
different degrees of heterogeneity via a Bernoulli-Dirichlet sampling strategy.

2. Materials and Methods

2.1. Ordinal Classification

In ordinal learning literature, a vast amount of research focuses on encouraging a unimodal
distribution in the posterior probability q(y|x), where y represents the target class labels
and x represents the input features. This is typically achieved through two types of learning
paradigms: parametric and non-parametric (Niu et al., 2016; Frank and Hall, 2001). Para-
metric approaches typically enforce unimodality on the posterior distributions by applying a
single penalty across all labels. In contrast, non-parametric methods avoid constraining the
learnt representation to a single parametric family, offering greater flexibility. We evaluate
one approach from each category: the Binomial unimodal regularised cross entropy loss,
from now on referred to as Binomial Cross-Entropy (BCE) (parametric) (Liu et al., 2020),
and Ordinal Encoding (OE) (non-parametric) (Frank and Hall, 2001).

Binomial Cross-Entropy (BCE) In the standard one-hot setting, the label distribution
for class l is given by q(i) = δi,l, where i ∈ 0, ..., N − 1 (with N the total number of classes),
and δi,l is a Dirac delta that equals 1 only if i = l and 0 otherwise. Traditional label
smoothing replaces this delta distribution in the Cross-Entropy (CE) loss with a convex
combination of δi,l and a uniform distribution over all classes i (Zou et al., 2019). Formally,

q′(i) = (1− η)δi,l + η
1

N
(1)

where η ∈ [0, 1] controls the smoothing intensity. As uniform smoothing does not
explicitly account for the ordinal nature of the labels, BCE instead replaces the uniform
distribution with a binomial distribution p(i), unimodally centred on the ground-truth class
l, thus acting as an ordinal-aware regularisation. The final target distribution becomes

q′(i) = (1− η)δi,l + ηp(i), (2)

where p(i) =

(
N − 1

i

)
pi(1− p)(N−1)−i. (3)

This softens the one-hot label while encouraging adjacent classes to receive higher prob-
abilities than distant ones.

Ordinal Encoding (OE) Classes are encoded as a cumulative distribution. Let l be the
ground-truth class for the nth sample. We define
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yn,i =

{
1, if i < l,

0, otherwise,
i ∈ {0, . . . , N − 2}. (4)

As a result, the model’s output is expected to increase monotonically with i, reflecting
the cumulative nature of ordinal labels. One key advantage is its independence from the
particular training objective: the encoding alone promotes ordinality. At inference time, to
obtain the standard probability qi of class i, we perform the following

q(i) =


1− σ(g1), if i = 0,

σ(gi−1)− σ(gi), if 1 ≤ i ≤ N − 2,

σ(gN−2), if i = N − 1,

(5)

where σ(x) = 1
1+e−x is the sigmoid function and gi are the logits in output of the

classification model.
We use CE as our baseline method to evaluate the performance of the ordinal strategies.

Although CE is the standard choice for multi-class classification, it only maximises the
probability of the correct class, while ignoring relative probabilities among other classes, a
limitation in ordinal problems where inter-class relationships carry important information.

2.2. Federated Learning Methodologies

We integrate BCE and OE into multiple FL methods, which are designed without ordinality
in mind and thus trained with CE. We adopt FedAvg as our baseline FL algorithm, which
computes a weighted average (by sample count) of locally trained parameters for each
client. While FedAvg is straightforward and widely used, it can struggle when data are
heterogeneous across clients. To address this limitation, we evaluate three heterogeneity-
aware approaches:

1. FedProx, which introduces a proximal term in the local objectives to reduce client
drift and stabilise global convergence;

2. MOON, which leverages contrastive learning to align local and global representations,
thus mitigating the effects of non-i.i.d data;

3. FedALA, which adaptively aggregates the global and local models before each train-
ing round. Instead of fully replacing the local model with the global one, FedALA
learns element-wise adaptive weights that selectively integrate only the most relevant
information from the global model.

2.3. Dataset and experimental setup

In our study we use the CSAW-M dataset, comprising 10,020 mammography images, of
which 9,523 are used for training and 497 for testing. The goal is to classify the degree
of masking, i.e., how much a tumour is obscured by surrounding breast tissue, potentially
hindering its detection via standard mammography. Masking levels range from 0 to 7. We
selected this dataset because it was specifically designed to benchmark ordinal classification
methods. Moreover, since all images originate from the same hospital, it allows us to
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Figure 1: Bubble plots showing the distribution of class samples across five clients. Larger
bubbles indicate more samples, with increasing data heterogeneity as α and p
decrease, generated for the train/validation split with seed = 0.

simulate a controlled level of heterogeneity in which the only source of variation is the
label distribution among clients, rather than differences in patient population, acquisition
protocol, or scanner type. To simulate data heterogeneity, we distribute the data unevenly
across K = 5 clients, following the approach of Wu et al. (2023). A binary matrix Φ ∈
0, 1K×N is generated. Each element Φk,i is sampled from a Bernoulli distribution with
probability p, indicating whether client k has samples of class i (1 for yes, 0 for no). For each
class c, a Dirichlet distribution with parameter α is used to determine how the class samples
are distributed among the clients that possess the class. We conduct five experiments,
progressively lowering α and p to increase the degree of heterogeneity. Bubbleplots showing
the different sample distributions are depicted in Figure 1.

2.4. Ordinal Metrics

To assess model performance, we use three ordinal metrics: Mean Absolute Error (MAE),
Uniform Ordinal Classification Index (Auoc) Silva et al. (2018), and Kendall’s τb. For a
detailed explanation of these metrics, we refer the reader to Appendix A. Additionally, we
report Balanced Accuracy, a common metric in standard nominal classification, though we
recognise it is not ideally suited for ordinal classification.
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Figure 2: Performance trends in terms of Uniform Ordinal Classification Index (Auoc) for
the Federated Learning methods (FedAvg, FedProx, MOON, FedALA) with in-
creasing data heterogeneity (x-axis: α and p values), comparing: Cross-Entropy
(CE), Binomial Cross-Entropy (BCE), and Ordinal Encoding (OE). Results are
averaged and reported with the standard deviation across three runs.

2.5. Model Architecture and Training Settings

We train ResNet-34 (He et al., 2016) with ImageNet (Deng et al., 2009) pre-trained weights.
Regarding pre-processing, we rely on the authors’ pre-processed images, applying additional
horizontal/vertical flips (each with probability 0.5), plus random rotations and colour jitter
(each with probability 0.3). Models are trained with a batch size of 16. Regarding the
hyperparameters, we fine-tune each FL method separately; detailed results of this tuning
process, along with the final parameters, are presented in Appendix C. For each combination
of learning paradigm, FL method, and heterogeneity configuration, we train three separate
models, each using a unique train/validation split, and then average their performance on
the global test set. The optimal model for each run was chosen by minimising Auoc, the
most complete of the ordinal metrics.

3. Results

Figure 2 illustrates the performance trends for the four FL methods and three learning
approaches under increasing heterogeneity, evaluated using Auoc. Overall, BCE and OE
consistently outperform CE across all levels of heterogeneity. Interestingly, performance
tends to decline most in intermediate heterogeneity. However, the drop in performance for
the highest heterogeneity scenario might be mitigated by the fact that model hyperparame-
ters are fine-tuned for this setting. Additionally, BCE and OE exhibit smaller performance
gaps across heterogeneity levels compared to CE. OE demonstrates the lowest standard
deviation across runs, showcasing the stability of its performance gap over CE.

When comparing FL methods, heterogeneity-aware approaches generally outperform
FedAvg across all learning paradigms, except for FedProx. Notably, the effect of FedProx
heavily depends on the hyperparameter µ, which controls the contribution of the proximal
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Figure 3: Confusion matrices for the (α, p) = (2.00, 0.90) train/validation split (seed = 0)
for the Federated Learning methods (FedAvg, FedProx, MOON, FedALA) with
Cross-Entropy (CE), Binomial Cross-Entropy (BCE), and Ordinal Encoding.
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term in the local objective function. Since µ is fine-tuned exclusively for the highest het-
erogeneity setting due to computational constraints, it might not be optimal for the other
heterogeneity levels. For FL methods integrated with the ordinal approaches, performance
gains appear to stem primarily from the ordinal paradigms, as the performances of these
FL strategies yield more similar results than CE, which is more sensitive to the choice of FL
method. Equivalent plots for MAE, Kendall’s τb, and Balanced Accuracy are provided in
Appendix D, Figure 4. MAE and Kendall’s τb show trends consistent with those observed
previously, although the differences are less pronounced for Kendall’s τb. In contrast, Bal-
anced Accuracy does not clearly differentiate between CE and ordinal methods, as all three
approaches yield similar performances. This indicates that ordinal methods maintain com-
parable overall classification accuracy while providing improvements specifically in terms
of preserving ordinal relationships, as highlighted by the ordinality-informed metrics. The
numerical results for all the metrics are reported in Tables in Appendix D.

To gain deeper insight into classification performance, we analyse the confusion matrices
for the intermediate heterogeneity setting, which exhibits the worst performance (Figure 3).

Overall, we observe that CE struggles to maintain continuity along the diagonal, break-
ing ordinality. BCE consistently preserves diagonal continuity, ensuring better ordinal re-
lationships between classes. Additionally, FedALA outperformes FedAvg on class 7, which
is missing in four out of five centres.

Comparing the two ordinal approaches, OE is particularly affected by missing classes.
Since OE learns the boundaries between classes, the heterogeneous scenario exacerbates
its limitations: not only is class 7 absent in most centres, but either class 6 or class 5 is
also missing, reducing the available information needed to define class boundaries. FedALA
stands out as the only FL approach capable of mitigating this issue.

While both FedALA and MOON operate at the client level to align local models with the
global one, FedALA employs learnable weights that dynamically scale the difference between
the two models. This adaptability gives FedALA a distinct advantage over MOON’s more
static contrastive learning approach, where the closeness between global and local models
is strictly controlled by the hyperparameters µ and τ , which determine the contrastive loss
contribution in the local objective function.

FedProx, on the other hand, performs poorly, likely due to its strong dependence on the
hyperparameter µ. When µ is not optimally fine-tuned, it hinders the learning process. It
can be seen that for the highest heterogeneity scenario (Figure 5 in Appendix D) on which
µ was fine-tuned, these effects are mitigated. Conversely, in the lowest heterogeneity setting
(Figure 6 in Appendix D), where no classes are missing, ordinality remains intact across
all methods, except for FedProx, which suffers from the aforementioned sensitivity to µ. A
more detailed analysis of hyperparameter tuning is provided in Appendix C.

For a direct comparison with centralized training, we provide baseline results trained
on the lowest heterogeneity setting in Appendix D (Table 2), demonstrating that FedAvg
achieves comparable or better performance. Moreover, a detailed assessment of computa-
tional runtimes (epoch and aggregation times) is reported in Appendix D, Tables 3 and 4,
highlighting trade-offs between computational efficiency and methodological complexity.
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4. Conclusions

This study is the first to explore Federated Ordinal Learning (FOL), integrating ordinal
classification into FL for medical imaging. Our finding show that ordinal approaches (BCE,
OE) improve robustness to missing classes and class imbalance, outperforming standard
nominal classification (CE). However, despite their advantages, ordinal methods still suf-
fer from performance degradation under high heterogeneity, highlighting the need for FL
strategies that explicitly account for ordinality.

Our experiments highlight that current heterogeneity-aware FL strategies—such as Fed-
Prox, MOON, and FedALA—require careful hyperparameter tuning. Notably, hyperparam-
eters optimized for the highest heterogeneity scenario might not be optimal for lower hetero-
geneity levels. Future research should thus prioritize adaptive strategies that dynamically
adjust hyperparameters based on varying heterogeneity, preserving ordinal relationships
across diverse scenarios.

Moreover, our study leveraged the CSAW-M dataset, a carefully curated ordinal bench-
mark with consistent annotation protocols and minimal confounders. This choice facilitated
a rigorous and controlled initial evaluation. However, extending our analysis to additional
real-world datasets would further validate the generalizability of our findings. As part of
future work, we plan to investigate other datasets, which would include different imaging
modalities, diverse patient populations, and varied annotation practices, providing addi-
tional insights into FOL in practical clinical environments.

Lastly, while our experiments considered five clients, a number consistent with many
recent federated learning studies in medical imaging literature, scaling to a larger federation
could further strengthen the robustness of our conclusions.

Future work will therefore focus on: (1) exploring adaptive hyperparameter strategies
that dynamically adjust based on heterogeneity, (2) integrating and adapting more advanced
FL methods (e.g., FedSAM (Qu et al., 2022), FedSoup (Chen et al., 2023), FedRep (Collins
et al., 2021), FedBABU (Oh et al., 2021)) to effectively leverage ordinal structures, and (3)
expanding our evaluations to larger federations and multiple diverse datasets to robustly
assess the scalability and generalizability of federated ordinal approaches.
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Appendix A. Ordinal Metrics

The Mean Absolute Error (MAE) reflects higher numerical differences between the actual
and predicted labels, resulting in higher penalisation of bigger mistakes over smaller mis-
takes. The error sum is then averaged over all M observations.

MAE =
1

M

M∑
i=1

|yi − ŷi| (6)

The first disadvantage presented by MAE is its dependence on the number arbitrarily
assigned to each class. This can be fixed by defining the classes by their indexes on a

12



Ordinal Classification in Federated Medical Image Analysis

confusion matrix, but MAE will still equally penalised ”forwards” and ”backwards” errors.
In ordinal classification problems, where ranking plays a major role, this lack of distinction
between errors is a significant flaw.

Kendall’s τb (Kendall, 1938) takes into account ranking in the measurement of classifi-
cation performance, and it is baed on two rank vector p and q:

τb =

∑
qijpij√∑
q2ij

∑
p2ij

, (7)

where qij behaves as follows: 
qij = 1, if qi > qj ,

qij = 0, if qi = qj ,

qij = −1, if qi < qj ,

(8)

and the same is true for pij . Therefore, the value of τb varies between -1 and 1. However,
in this metric the only thing that matters is the relation between classes, causing critical
loss of information on absolute classification error.

The Uniform Ordinal Classification Index (Auoc) (Silva et al., 2018) address the afore-
mentioned shortcomings by combining aspects of classification accuracy and ranking error.
It also takes into consideration imbalanced classes and unobserved categories. The Auoc is
derived by tracing paths through the confusion matrix from the top-left to the bottom-right
(diagonal). Paths are evaluated based on:

• Benefit: rewards large values (correct predictions) along the path.

• Penalty: penalizes deviations from the diagonal based on the distance between the
predicted and true classes.

The metric is computed as

Auoc =

∫ 1

0
UOC1

βdβ (9)

where

UOC1
β = min

1−
∑

y,ŷ∈path
N +

∑
∀(y,ŷ) p(ŷ|y)|y − ŷ|

+
β

N

∑
(y,ŷ)∈path

p(ŷ|y)|y − ŷ|

 (10)

with N equal to the number of classes and y and ŷ respectively the true and predicted
label.

Appendix B. Federated Learning Methodologies

In FL methods multiple devices collect data and a central server coordinates the global
learning objective across the network. In particular, the aim is to minimise:

13



Corbetta Beets-Tan Cardoso Silva

min
w

f(w) =
K∑
i=1

piFi(ω) (11)

where K is the number of devices, pi ≥ 0, and
∑

i pi = 1. FedAvg (McMahan et al.,
2017) sets pi = ni

n , where ni the number of samples available at each device i, and n =
∑

i ni

is the total number of data points.

FedProx (Li et al., 2020) adds a proximal term to the local subproblem to limit the
impact of variable local updates. Therefore, the local objective becomes:

min
w

h(wt
i ;w

t) = F (wt
i) +

µ

2
||wt

i − wt||2 (12)

where wt
i are the weights of the local model of device i and wt are the weights of the

global model at communication round t.

MOON (Li et al., 2021) aims to reduce the distance between the representation learnt by
the local model and the representation learnt by the global model, and increase the distance
between the representation learnt by the local model and the representation learnt by the
previous local model. The network has three components: a base encoder, a projection
head, and an output layer. The local loss consists of two parts, the standard loss term for
the classification task (e.g., Cross-Entropy), lsup, and a model-contrastive loss term, lcon:

lcon = − log
exp(sim(z, zglob)/τ)

exp(sim(z, zglob)/τ) + exp(sim(z, zprev)/τ)
(13)

where z, zglob, and zprev are the representations extracted by the projection head for the
local model, the global model and the local model at the previous communication round,
and τ is a temperature parameter.

Therefore, the loss of an input (x, y) is computed by

l = lsup(w
t
i ; (x, y)) + µlcon(w

t
i ;w

t−1
i ;wt;x) (14)

where µ is a hyperparameter that controls the weight of the model-contrastive loss.

FedALA (Zhang et al., 2023) exploits the Adaptive Local Aggregation (ALA) module
that element-wisely aggregates the global model and local model to adapt to the local
objective, instead of overwriting it:

ŵt
i = wt−1

i + (wt−1 − wt−1
i )⊙Wi (15)

whereWi represents the aggregating weights. To reduce computation overhead, FedALA
can be re-written with the hyperparameter p to control the range of ALA by applying it on
p higher layers and overwriting the parameters in the lower layers in FedAvg fashion:

ŵt
i = wt−1

i + (wt−1 − wt−1
i )⊙ [⊮|wi|−p;W p

i ] (16)

where |wi| is the number of layers in wt−1
i and ⊮|wi|−p has the same shape of the lower

layers in wt−1
i . The elements in ⊮|wi|−p are ones. The values in W p

i are initialised to ones
and then W p

i is learnt based on the old W p
i in each iteration. To reduce computation
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overhead, s% of ni in communication round t is randomly sampled and denoted as ns,t
i .

Device i trains W p
i through the gradient-based learning method:

W p
i ←W p

i − η∇W p
i
L(ŵt

i , n
s,t
i ;wt−1) (17)

where η is the learning rate for weight learning, which we set to 1.

Appendix C. Hyperparameters Fine-tuning

To determine the hyperparameters for the various approaches, we conduct a grid-search
over different values for each hyperparameter, using the train/validation split defined by
(α, p) = (0.90, 0.80) with seed = 0. All Federated Learning (FL) methods are trained with
Cross-Entropy (CE) loss. The grid-search values and the final selected hyperparameter
values are summarized below:

• Communication rounds and local updates: [(100, 1), (20, 5)].

• Learning rate: [1e− 4, 1e− 5].

FedAvg and FedALA are trained for 20 communication rounds with 5 local updates,
while FedProx and MOON are trained for 100 with 1 local update. All methods use a
learning rate of 1e− 5, except FedProx, which uses a learning rate of 1e− 4.

For FL-method-specific hyperparameters, the following ranges were explored (notation
is consistent with the original implementation papers):

• FedProx: µ = [0.001, 0.01, 0.1, 0.5, 1.0], with the final selection µ = 0.5.

• MOON: µ = [0.1, 5.0, 10.0] and τ = [0.5, 1.0], with the final selection µ = 5.0, τ = 0.5.

• FedALA: p = 2 and s = [80, 100], with the final selection s = 80.

The hyperparameter η of the Binomial Cross-Entropy (BCE), discussed in Subsec-
tion 2.1, is set to 1, which is the default value provided by the dlordinal library (Bérchez-
Moreno et al., 2024), used in the implementation.

Notably, the optimal values in the highest heterogeneity setting may not be ideal for
lower heterogeneity scenarios. In lower heterogeneity settings, client data are more balanced
and the degree of divergence between local models is reduced, which can change the sen-
sitivity to these hyperparameters. In the following paragraphs, we analyse more in depth
how this might have affected each FL approach.

• FedAvg: the hyperparameters tuned include standard training parameters such as
the number of communication rounds, local updates, and learning rate. Although
FedAvg does not explicitly incorporate regularization or adaptation mechanisms tar-
geting heterogeneity, the optimal number of local updates could still depend on the
heterogeneity setting. For instance, under extreme heterogeneity, where clients might
contain predominantly outer classes that are easier to separate, fewer local updates
might suffice to avoid client drift. However, this choice might be suboptimal in more
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homogeneous scenarios, where a greater number of local updates could enhance learn-
ing without substantially increasing drift. Therefore, while FedAvg’s hyperparameters
may be relatively less sensitive to heterogeneity compared to other approaches, the
optimal configuration of local updates could still vary depending on the level of data
heterogeneity.

• FedProx: the µ parameter is critical for controlling the penalty on the deviation of
local models from the global model. In the highest heterogeneity setting, a higher
µ can effectively limit client drift. However, when applied to lower heterogeneity
scenarios where local models are inherently closer in distribution, the same high values
of µ can overly constrain local updates. This may slow convergence or limit the
capacity of local models to learn effectively, leading to suboptimal performance in less
heterogeneous settings.

An alternative worth exploring is the adaptive adjustment of µ. In the original Fed-
Prox paper (Li et al., 2020), the authors test on synthetic data a heuristic where µ is
initialized differently based on data distribution (starting at µ = 1 for IID data and
µ = 0 for non-IID data) and then adjusted by δ = 0.1 every 5 rounds, decreasing
when the loss consistently decreases and increasing when the loss rises. Despite this
proposal, most studies that employ FedProx as a baseline tend to fine-tune a fixed
value of µ rather than using the adaptive approach. For instance, in the MOON pa-
per (Li et al., 2021), the authors fine-tune µ for each dataset but keep it fixed across
different heterogeneity settings. In future work, we plan to explore this adaptive ap-
proach further by also fine-tuning the adjustment factor δ. To better understand the
impact of µ on our experiments, we have re-run the hyperparameter tuning for the
middle heterogeneity setting (α = 2.00, p = 0.90). The newly selected values are the
following:

– communication rounds: 100.

– local updates: 1.

– learning rate: 1e− 5.

– µ: 0.1.

Results are reported in Table C. Due to time constraints, we were not able to re-run
the fine-tuning for the remaining heterogeneity settings. However, these additional
results further confirm the heavy dependence of FedProx on µ, regardless of the loss
function used for training.

• MOON: the hyperparameters fine-tuned are µ (contrastive loss weight) and τ (tem-
perature parameter). In the original MOON paper (Li et al., 2021), τ is fixed at 0.5,
which our tuning also confirmed as optimal. The original experiments were conducted
on CIFAR-10, CIFAR-100 and Tiny-ImageNet, where data were partitioned among 10
clients using a Dirichlet distribution with α = 0.5, and µ was tuned for each dataset
under this setting. Subsequently, robustness analysis was performed on CIFAR-100
by varying the heterogeneity (α = 0.1 and α = 5.0), without re-tuning µ. Despite
using a fixed µ across different heterogeneity levels, MOON consistently outperformed

16



Ordinal Classification in Federated Medical Image Analysis

Table 1: Performance comparison of FedProx using CE, BCE, and OE under intermediate
heterogeneity conditions (α = 2.00, p = 0.90). The upper section reports metrics
(Auoc, MAE, Kendall’s τ , Balanced Accuracy) for the newly selected hyperpa-
rameters after re-tuning (communication rounds r = 100, local updates lu = 1,
learning rate lr = 1 × 10−5, proximal term µ = 0.1). The lower section shows re-
sults for the previously selected hyperparameters (communication rounds r = 100,
local updates lu = 1, learning rate 1× 10−4, proximal term µ = 0.5). Results are
averaged across three runs and include standard deviations.

(2.00,0.90) Auoc ↓ MAE ↓ Kendall’s tau ↑ Balanced Accuracy ↑
r=100, lu=1, lr=1e-5, mu=0.1

CE 0.7310±0.0251 0.8399±0.0465 0.7202±0.0068 0.3850±0.0470

BCE 0.7199±0.0254 0.7829±0.0693 0.7374±0.0041 0.3782±0.0450

OE 0.7428±0.0218 0.8594±0.0671 0.7122±0.0210 0.3645±0.0178

r=100, lu=1, lr=1e-4, mu=0.5

CE 0.7789±0.0346 1.0200±0.1312 0.7027±0.0263 0.3266±0.0367

BCE 0.7739±0.0182 0.9549±0.0737 0.6828±0.0194 0.3164±0.0235

OE 0.7628±0.0114 0.9531±0.0602 0.7194±0.0208 0.3377±0.0144

the baselines. Their choice of tuning at intermediate heterogeneity could be argued as
balanced for evaluating robustness across extremes. In contrast, our work explicitly
focuses on understanding model behaviour at extreme heterogeneity, motivating our
decision to tune hyperparameters specifically for the highest heterogeneity setting. It
is worth noting, however, that while these hyperparameter settings effectively miti-
gate misalignment in extreme data heterogeneity, in lower heterogeneity settings they
might enforce an unnecessarily strong alignment.

• FedALA: The hyperparameters to be fine-tuned for FedALA are p (the number of
layers used for adaptive aggregation) and s (the sample proportion applied during ag-
gregation). In the original FedALA paper (Zhang et al., 2023), the authors evaluated
the method on four computer vision datasets and one natural language processing
dataset. They performed the tuning of p and s on the Tiny-ImageNet dataset, which
was partitioned across 20 clients using a Dirichlet distribution with α = 0.1. Their
results indicated that while s = 100 yielded slightly better performance than s = 80,
the difference was negligible; thus, s = 80 was chosen for all datasets and experiments
to balance performance with computational cost. Additionally, p = 2 was found to
provide the best results. In our tuning process, we similarly focused on fine-tuning s.

Furthermore, the original authors conducted extra experiments to assess robustness
under varying heterogeneity levels (α ∈ {0.01, 0.5, 1}), yet they did not re-tune the
hyperparameters for each different level. Given that the performance variations across
different values of s and p were minimal, they concluded that the effects of these hyper-
parameters are largely negligible in different heterogeneity settings. Nonetheless, it is
worth noting that since this analysis was carried out on only one dataset, the adaptive
mechanism controlled by these hyperparameters might result in over-compensation in
settings with lower heterogeneity.
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Table 2: Comparison of the centralised baseline and FedAvg in the lowest heterogeneity
scenario (α = 10.00, p = 0.99). Results are reported for Auoc, MAE, Kendall’s
τ , and Balanced Accuracy. Results are averaged and reported with the standard
deviation across three runs.

Auoc ↓ MAE ↓ Kendall’s τ ↑ Balanced Accuracy ↑
Centralised

CE 0.7403±0.0129 0.8575±0.0156 0.7051±0.0129 0.3892±0.0184

BCE 0.7077±0.0123 0.7398±0.0233 0.7347±0.0138 0.3960±0.0084

OE 0.7319±0.0108 0.8323±0.0260 0.7217±0.0027 0.3895±0.0126

FedAvg (10.00,0.99)

CE 0.7366±0.0088 0.8301±0.0302 0.7018±0.0088 0.3891±0.0131

BCE 0.7257±0.0158 0.7578±0.0274 0.7251±0.0140 0.3831±0.0335

OE 0.7231±0.0177 0.7978±0.0395 0.7361±0.0061 0.4017±0.0221

Overall, current methods for handling client heterogeneity in federated learning rely
heavily on hyperparameter tuning. While this approach performs well in controlled exper-
iments where heterogeneity levels are known, it may not be robust in real-world settings
where these levels are unpredictable. Future research should focus on developing adaptive
methods that dynamically adjust to varying heterogeneity, while also preserving ordinal
relationships when necessary.

Appendix D. Additional Results

D.1. Centralised Baseline

We present the centralised baseline results for CE, BCE, and OE, trained using data splits
from the lowest heterogeneity scenario ((α = 10.00, p = 0.99)), which best approximates a
centralised setting. In Table 2, these results are compared to those from FedAvg trained on
the same splits. Notably, FedAvg performs similarly to, and in some cases even outperforms,
the centralised baseline.

D.2. Runtime analysis

We performed a runtime analysis to evaluate computational costs across methods. Specif-
ically, we measured epoch and aggregation times for each FL approach. The experiments
were conducted for 10 communication rounds and 1 local update on a NVIDIA GPU A6000,
trained on the train/validation split defined by (α, p) = (0.90, 0.80) with seed = 0. Epoch
runtimes for each client are shown in Table 3, while the average aggregation times per
method are reported in Table 4. We observe that employing ordinal appraoches does not
affect runtime. However, differences arise due to the federated learning methods themselves.
In particular, MOON shows higher epoch runtimes compared to FedAvg and FedProx be-
cause of the additional computations required for the contrastive loss. In terms of aggre-
gation times, MOON and FedProx perform the same aggregation procedure as FedAvg,
resulting in similar aggregation durations across these three methods. Conversely, FedALA
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Table 3: Epoch runtimes (in seconds) for each approach on each client (mean ± standard
deviation). The bolded row for each approach indicates the average epoch time
across all five clients, with the standard deviation computed across those clients.

FedAvg FedProx MOON FedALA

CE 20.6333±3.4892 20.9081±3.5325 35.8841±6.4658 19.9587±3.4728

client 0 20.5991±0.6149 21.0684±0.3874 36.0840±0.3584 21.0252±3.5868

client 1 16.4326±0.4382 16.6843±0.3276 28.0037±0.1635 15.7149±0.6115

client 2 24.9204±0.6542 25.2264±0.5590 43.4734±0.1482 23.8610±1.1974

client 3 18.0903±0.6021 18.1954±0.3164 31.0572±0.0847 16.9883±0.7097

client 4 23.1241±0.4612 23.3661±0.3780 40.8023±0.0913 22.2041±0.9153

BCE 20.9500±3.6083 21.0632±0.0797 35.8950±6.4504 18.6942±3.2817

client 0 20.8436±0.3746 21.1456±0.5905 36.0957±0.0797 18.6777±0.4864

client 1 16.7477±0.5032 16.8931±0.4697 28.0777±0.1016 14.8505±0.3069

client 2 25.4342±0.6218 25.2165±0.4802 43.4598±0.1218 22.6341±0.5376

client 3 18.1897±0.3545 18.4162±0.3665 31.0191±0.1220 16.1266±0.5151

client 4 23.5347±0.6556 23.6448±0.4585 40.8225±0.0909 21.1819±1.0033

OE 20.9935±3.4795 20.8317±0.1756 35.8276±6.4546 18.6895±3.1515

client 0 21.0068±0.3855 21.0377±0.6390 36.0054±0.1137 18.6975±0.6909

client 1 17.0115±0.2657 16.4822±0.4228 28.0091±0.0775 14.9748±0.3864

client 2 25.3031±0.5451 25.0936±0.4700 43.3911±0.1172 22.5083±0.4264

client 3 18.1830±0.3451 18.1438±0.2320 30.9532±0.1075 16.2525±0.3446

client 4 23.4632±0.5094 23.4011±0.6625 40.7793±0.0934 21.0145±0.4071

Table 4: Average aggregation runtimes (in seconds) reported with standard deviation across
communication rounds.

FedAvg FedProx MOON FedALA

CE 0.0205±0.0020 0.0201±0.0004 0.0205±0.0003 384.9968±595.5023

BCE 0.0198±0.0001 0.0201±0.0002 0.0205±0.0002 367.4667±557.1648

OE 0.0199±0.0003 0.0202±0.0003 0.0204±0.0001 367.1724±551.8641

exhibits higher aggregation times with greater variability. This is explained by FedALA’s
adaptive local aggregation (ALA) module, which dynamically learns weights to combine lo-
cal and global model parameters. The runtime variance occurs because, in communication
rounds where local and global models differ substantially, the ALA module requires more
iterations to converge, whereas in rounds with closer models, convergence is faster.
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Figure 4: Performance trends for the four Federated Learning methods (FedAvg, FedProx,
MOON, FedALA) under increasing data heterogeneity (x-axis: different α and
p values), comparing approaches: Cross-Entropy (CE), Binomial Cross-Entropy
(BCE), and Ordinal Encoding (OE). The top row shows the Mean Average Error
(MAE), the middle row shows Kendall’s τb, while the bottom row shows Balanced
Accuracy, with error bars representing the standard deviation across three runs.
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Table 5: Comparison of Uniform Ordinal Classification Index (Auoc) for the four Federated
Learning methods (FedAvg, FedProx, MOON, FedALA) under increasing data
heterogeneity (different α and p values), comparing approaches: Cross-Entropy
(CE), Binomial Cross-Entropy (BCE), and Ordinal Encoding (OE). Results are
averaged and reported with the standard deviation across three runs.

(alpha, p) Auoc ↓
(10.00, 0.99) FedAvg FedProx MOON FedALA

CE 0.7366±0.0088 0.7281±0.0126 0.7206±0.0238 0.7341±0.0031

BCE 0.7257±0.0158 0.7372±0.0077 0.7062±0.0101 0.7018±0.0161

OE 0.7231±0.0177 0.7733±0.0305 0.7261±0.0209 0.7340±0.0326

(5.00, 0.95) FedAvg FedProx MOON FedALA

CE 0.7650±0.0062 0.7514±0.0234 0.7130±0.0044 0.7390±0.0175

BCE 0.7421±0.0179 0.7470±0.0597 0.7033±0.0180 0.7328±0.0281

OE 0.7486±0.0090 0.7897±0.0244 0.7275±0.0012 0.7440±0.0130

(2.00, 0.90) FedAvg FedProx MOON FedALA

CE 0.7650±0.0110 0.7789±0.0346 0.7224±0.0174 0.7529±0.0025

BCE 0.7421±0.0179 0.7739±0.0182 0.7165±0.0112 0.7325±0.0281

OE 0.7440±0.0180 0.7628±0.0114 0.7264±0.0133 0.7267±0.0204

(1.50, 0.85) FedAvg FedProx MOON FedALA

CE 0.7605±0.0192 0.7617±0.0094 0.7348±0.0092 0.7920±0.0277

BCE 0.7426±0.0251 0.7286±0.0374 0.7266±0.0028 0.7321±0.0253

OE 0.7315±0.0078 0.7519±0.0060 0.7488±0.0102 0.7419±0.0303

(0.90, 0.80) FedAvg FedProx MOON FedALA

CE 0.7469±0.0053 0.7647±0.0349 0.7373±0.0125 0.7629±0.0172

BCE 0.7502±0.0147 0.7344±0.0080 0.7160±0.0223 0.7375±0.0103

OE 0.7386±0.0155 0.7952±0.0085 0.7320±0.0028 0.7476±0.0069
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Table 6: Comparison of Mean Average Error (MAE) for the four Federated Learning meth-
ods (FedAvg, FedProx, MOON, FedALA) under increasing data heterogeneity
(different α and p values), comparing approaches: Cross-Entropy (CE), Binomial
Cross-Entropy (BCE), and Ordinal Encoding (OE). Results are averaged and re-
ported with the standard deviation across three runs.

(alpha, p) MAE ↓
(10.00, 0.99) FedAvg FedProx MOON FedALA

CE 0.8301±0.0302 0.8473±0.0390 0.8194±0.0519 0.8615±0.0186

BCE 0.7578±0.0274 0.8294±0.0272 0.7463±0.0131 0.7234±0.0316

OE 0.7978±0.0395 0.9840±0.1452 0.8448±0.0639 0.8183±0.0731

(5.00, 0.95) FedAvg FedProx MOON FedALA

CE 0.9241±0.0457 0.8933±0.0670 0.7962±0.0106 0.8603±0.0361

BCE 0.7758±0.0204 0.8654±0.1785 0.7262±0.0407 0.7886±0.0331

OE 0.8604±0.0225 1.0650±0.0991 0.8306±0.0084 0.8591±0.0355

(2.00, 0.90) FedAvg FedProx MOON FedALA

CE 0.9469±0.0415 1.0200±0.1312 0.8073±0.0477 0.9010±0.0101

BCE 0.8181±0.0409 0.9549±0.0737 0.7595±0.0242 0.8046±0.0802

OE 0.8647±0.0345 0.9531±0.0602 0.8079±0.0433 0.8003±0.0498

(1.50, 0.85) FedAvg FedProx MOON FedALA

CE 0.9355±0.0832 0.9494±0.0500 0.8572±0.0325 1.0576±0.1028

BCE 0.8223±0.0709 0.8128±0.1074 0.7773±0.0219 0.7934±0.0670

OE 0.8350±0.0211 0.8713±0.0158 0.8771±0.0492 0.8580±0.0834

(0.90, 0.80) FedAvg FedProx MOON FedALA

CE 0.9011±0.0457 0.9525±0.0631 0.8443±0.0362 0.9205±0.0966

BCE 0.8302±0.0447 0.8106±0.0342 0.7644±0.0539 0.7962±0.0264

OE 0.8296±0.0317 1.0394±0.0714 0.8038±0.0296 0.8726±0.0537
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Table 7: Comparison of Kendall’s τb for the four Federated Learning methods (FedAvg,
FedProx, MOON, FedALA) under increasing data heterogeneity (different α and
p values), comparing approaches: Cross-Entropy (CE), Binomial Cross-Entropy
(BCE), and Ordinal Encoding (OE). Results are averaged and reported with the
standard deviation across three runs.

(alpha, p) Kendall’s tau ↑
(10.00, 0.99) FedAvg FedProx MOON FedALA

CE 0.7018±0.0088 0.7379±0.0103 0.7366±0.0074 0.7255±0.0254

BCE 0.7251±0.0140 0.7298±0.0169 0.7497±0.0151 0.7510±0.0028

OE 0.7361±0.0061 0.7050±0.0269 0.7319±0.0193 0.7224±0.0261

(5.00, 0.95) FedAvg FedProx MOON FedALA

CE 0.6787±0.0019 0.7303±0.0216 0.7331±0.0031 0.7186±0.0270

BCE 0.7258±0.0155 0.7245±0.0391 0.7515±0.0133 0.7321±0.0115

OE 0.7110±0.0134 0.6930±0.0077 0.7378±0.0147 0.7097±0.0115

(2.00, 0.90) FedAvg FedProx MOON FedALA

CE 0.6902±0.0380 0.7027±0.0263 0.7356±0.0065 0.7027±0.0186

BCE 0.7177±0.0273 0.6828±0.0194 0.7361±0.0080 0.7266±0.0169

OE 0.7107±0.0064 0.7194±0.0208 0.7342±0.0024 0.7352±0.0209

(1.50, 0.85) FedAvg FedProx MOON FedALA

CE 0.6958±0.0033 0.7227±0.0191 0.7177±0.0148 0.6711±0.0553

BCE 0.7250±0.0256 0.7397±0.0175 0.7414±0.0056 0.7330±0.0201

OE 0.7269±0.0096 0.7210±0.0302 0.7193±0.0134 0.7170±0.0293

(0.90, 0.80) FedAvg FedProx MOON FedALA

CE 0.7002±0.0194 0.7074±0.0185 0.7119±0.0163 0.7023±0.0347

BCE 0.7238±0.0212 0.7327±0.0016 0.7505±0.0236 0.7258±0.0091

OE 0.7181±0.0075 0.7158±0.0189 0.7488±0.0047 0.7064±0.0282
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Table 8: Comparison of Balanced Accuracy for the four Federated Learning methods (Fe-
dAvg, FedProx, MOON, FedALA) under increasing data heterogeneity (different
α and p values), comparing approaches: Cross-Entropy (CE), Binomial Cross-
Entropy (BCE), and Ordinal Encoding (OE). Results are averaged and reported
with the standard deviation across three runs.

(alpha, p) Balanced accuracy ↑
(10.00, 0.99) FedAvg FedProx MOON FedALA

CE 0.3891±0.0131 0.3955±0.0174 0.4029±0.0390 0.3949±0.0035

BCE 0.3831±0.0335 0.3437±0.0129 0.3934±0.0121 0.4081±0.0225

OE 0.4017±0.0221 0.3370±0.0302 0.4053±0.0208 0.3873±0.0380

(5.00, 0.95) FedAvg FedProx MOON FedALA

CE 0.3423±0.0155 0.3685±0.0304 0.4113±0.0069 0.3870±0.0337

BCE 0.3790±0.0074 0.3353±0.0739 0.3985±0.0134 0.3705±0.0125

OE 0.3651±0.0297 0.3127±0.0257 0.3926±0.0051 0.3711±0.0161

(2.00, 0.90) FedAvg FedProx MOON FedALA

CE 0.3427±0.0108 0.3266±0.0367 0.4034±0.0258 0.3647±0.0309

BCE 0.3606±0.0127 0.3164±0.0235 0.3836±0.0098 0.3738±0.0219

OE 0.3658±0.0282 0.3377±0.0144 0.3773±0.0146 0.3757±0.0139

(1.50, 0.85) FedAvg FedProx MOON FedALA

CE 0.3595±0.0370 0.3438±0.0101 0.3859±0.0095 0.3113±0.0419

BCE 0.3455±0.0153 0.3518±0.0452 0.3666±0.0099 0.3640±0.0307

OE 0.3798±0.0184 0.3460±0.0229 0.3358±0.0140 0.3579±0.0374

(0.90, 0.80) FedAvg FedProx MOON FedALA

CE 0.3824±0.0254 0.3425±0.0589 0.3847±0.0241 0.3526±0.0147

BCE 0.3367±0.0035 0.3510±0.0067 0.3643±0.0246 0.3635±0.0117

OE 0.3642±0.0360 0.3039±0.0191 0.3501±0.0226 0.3655±0.0161
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Figure 5: Confusion matrices for the highest heterogeneity setting, with (α, p) = (0.90, 0.80)
train/validation split (seed = 0) for the Federated Learning methods (FedAvg,
FedProx, MOON, FedALA) with Cross-Entropy (CE), Binomial Cross-Entropy
(BCE), and Ordinal Encoding.
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Figure 6: Confusion matrices for the lowest heterogeneity setting, with (α, p) = (10.00, 0.99)
train/validation split (seed = 0) for the Federated Learning methods (FedAvg,
FedProx, MOON, FedALA) with Cross-Entropy (CE), Binomial Cross-Entropy
(BCE), and Ordinal Encoding.
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