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Abstract

The recent Maximal Update Parametrization (µP)
enables the hyperparameters for small models to
transfer directly to large ones, substantially re-
ducing the cost of training by avoiding expen-
sive sweeps at scale. We present a new scheme,
u-µP, which improves upon µP by combining it
with Unit Scaling, a method for designing models
that makes them easy to train in low-precision.
The two techniques have a natural affinity: µP en-
sures that the scale of activations is independent
of model size, and Unit Scaling ensures that the
starting-scale of these activations is one (along
with weights and gradients). This synthesis opens
the door to a simpler scheme, whose default val-
ues are near-optimal. This in turn facilitates a
more efficient sweeping strategy, with u-µP mod-
els reaching a lower loss than comparable µP mod-
els and working out-of-the-box in FP8.

1. Introduction
Finding good hyperparameters (HPs) is critical to effec-
tive training, yet doing so for modern large language mod-
els (LLMs) is challenging. The huge scale of models and
datasets makes performing multiple runs over a set of can-
didate HPs prohibitively expensive. The Maximal Update
Parametrization (µP) aims to make HP values consistent
across model sizes, allowing practitioners to sweep HPs
on a small-scale proxy model and transfer them to a larger
target model (Yang & Hu, 2021; Yang et al., 2022).

Whether µP has been used to train any recent leading LLMs
has not been disclosed, though there are some indications
of its use1. However, amongst the few LLMs for which
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Figure 1. (Top) Using default HPs, u-µP models have lower losses
and wider basins than µP models, while still transferring the opti-
mal learning rate across width.

(Bottom) FP8 training via a simple cast. µP uses HPs found by
random grid search here, whereas u-µP uses default HPs, only
sweeping the LR. Width = 4096, η = (2−7.5, 21.5) for (µP, u-
µP).
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comprehensive training details are known, µP has been a
popular choice (Dey et al., 2023a;b; Liu et al., 2023; Hu
et al., 2024). Indeed, it is the only principled method for
hyperparameter transfer in the literature. Unfortunately
users have not always found µP to provide effective transfer
in practice (Almazrouei et al., 2023; Lingle, 2024), with a
gap between the theory and its effective application. We
propose an improved scheme: the Unit-Scaled Maximal
Update Parametrization (u-µP). We specifically focus on
LLM architectures in developing u-µP, as this is the domain
in which µP has been used in practice.

Our method combines µP with another recent training in-
novation, Unit Scaling (Blake et al., 2023). Originally de-
signed to facilitate simple low-precision training, Unit Scal-
ing proposes the principle of unit variance at initialization
for activations, weights and gradients. In doing so it relies
on the same mechanism as µP: applying scalar multipliers to
linear layers to counteract the effects of changing model size.
This allows for a synthesis of the two methods and facilitates
several improvements. u-µP retains the HP-transfer property
of µP and the out-of-the-box FP8 training of Unit Scaling
(Figure 1), but also simplifies the scaling rules (Table 1)
and provides a more principled and interpretable set of HPs
(Appendix D). The default values of these HPs (= 1) are
near-optimal, giving lower losses than for µP (Figure 1) and
opening up more efficient sweeping strategies (Figure 3).

2. Background
2.1. The Maximal Update Parametrization

As model sizes have grown, the behavior of neural networks
during training in the limit of infinite width has become an
active field of research. One of the most important results in
this area is the classification of infinite-width limits under
all possible abc-parametrizations (Yang & Hu, 2021). An
abc-parametrization assumes that the training dynamics for
a weight W of a model are given by

W (t) = Aw(t), w(0) ∼ N (0, B),

w(t+ 1)− w(t) = CΦt(∇L0, ...,∇Lt),

and provides a scheme for scaling the weight multiplier A,
the initial variance B, and the learning rate C with some
exponent of the network width.

The authors prove that the only abc-parametrization (up
to symmetry) that allows all model features to evolve non-
trivially in the infinite-width limit without blowing up, is µP.
We outline µP’s parametrization rules in Table 1. This has
significant implications for training at scale, as it suggests

1The GPT-4 technical report (OpenAI, 2023) includes Yang
et al. (2022) in its references, though makes no explicit mention
of its use. The multipliers present in Grok (xAI, 2024) may also
suggest the use of µP.

that non-µP approaches will eventually be ineffective.

Another consequence of µP is that optimal hyperparameters
transfer between different model sizes, a process known as
µTransfer (Yang et al., 2022). This is not the case under the
Standard Parametrization (SP) and has led to its adoption
for LLM training. Yang et al. (2023) introduce a similar
scheme for depth known as depth-µP2, based on residual
branch multipliers and learning rates (also see Table 1).

2.2. Unit Scaling

Unit Scaling is a paradigm to facilitate training with low-
precision number formats. The use of these formats on
modern AI hardware can bring substantial efficiency gains
(Graphcore, 2022; Nvidia, 2022), but requires extra care to
guarantee stable numerics. Existing efforts on FP8 training
employ per-tensor scaling techniques, which are cumber-
some to implement and incur additional overheads.

Unit Scaling takes a different approach, offering a paradigm
for designing models that makes them inherently less likely
to generate out-of-range values during training. It does so
by ensuring that all activations, weights and gradients have
unit scale (i.e. σ = 1) at initialization. As a consequence,
unit scaled models can be trained in low-precision via a
simple cast operation.

This is achieved through the application of scalar multipli-
ers to every operation in the forward and backward passes,
counteracting the scale-changing effect of operations like
matrix multiplications. For example, the rule when multi-
plying a vector by a square matrix of length d is to re-scale
the result by 1/

√
d. Where different scales are required in the

forward and backward passes, in certain cases Unit Scaling
is able to leverage the cut-edge rule to satisfy this require-
ment without breaking the chain rule (see Appendix A.3 for
further details).

2.3. Low-precision training

While full-precision (FP32) floating-point arithmetic has
been the default in the machine learning community for
many years, the ever-growing scale of models and datasets
has led to a push towards lower-precision formats. The use
of FP16 formats has seen uptake in large-scale Transformer
training, but requires extra care to guarantee stable numerics.
Certain quantities, such as optimizer states, are routinely
kept in full precision and loss scaling techniques (Micike-
vicius et al., 2018; Kuchaiev et al., 2018) are employed to
keep gradients in the representable range of the FP16 format.
More recently, BFLOAT16 training has mitigated these scal-
ing issues for 16-bit formats. However, no such alternative
is available for narrower formats, such as FP8.

2When we refer to µP elsewhere in the paper we implicitly
assume the modifications introduced in depth-µP.
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Table 1. The µP and u-µP schemes (expressed in absolute terms)

Weight type Input Output Hidden Residual

µP

Init. Var. σ2
init σ2

init σ2
init

base-fan-in
fan-in —

Multiplier 1
base-fan-in

fan-in 1

√
base-depth

depth
*

Adam LR Mult. 1 1
base-fan-in

fan-in

√
base-depth

depth

u-µP

Init. Var. 1 1 1 —
Multiplier 1

1
fan-in

† 1√
fan-in

1√
depth

*

Adam LR Mult. 1√
fan-out

1
1√

fan-in
1√

depth

µP Associated HPs (8): η, η̂emb, base-width, base-depth, σinit, αemb, αattn, αoutput

u-µP Associated HPs (6): η, αresidual, αresidual-attn-ratio, αffn-act, αattn, αoutput

*Residual mults are applied to the end of each branch, rather than the output of linear layers.
†To maintain unit scale we apply 1/

√
fan-in scaling in the backward pass (see Appendix A.3).

Recently released AI accelerators have introduced native
hardware support for FP8 arithmetic (Graphcore, 2022;
Nvidia, 2022). However, the further reduced precision and
range of these formats introduces additional numerical chal-
lenges which have not been addressed conclusively by the
literature.

While FP16 arithmetic can be used throughout the complete
forward-backward pass through the model, efforts on FP8
training have focused on performing the computationally
most expensive operations, matrix multiplications, in FP8.
This means that input tensors are cast to an FP8 format prior
to a matrix multiplication, the result of which is produced
in a higher-precision format again.

Micikevicius et al. (2022) propose two different FP8 for-
mats for deep learning, assigning different numbers of bits
to the exponent and the mantissa, respectively. The E4M3
format uses 4 bits for the exponent and 3 bits for the man-
tissa, whereas the E5M2 format uses 5 bits for the exponent,
prioritizing range over relative precision. (The maximum
representable value of E5M2 is 57344 compared to 448 for
E4M3.) The authors recommend to cast activations and
weights to E4M3 and activation gradients (computed during
the backward pass) to E5M2.

Finally, existing attempts at FP8 training employ per-tensor
scaling techniques (Micikevicius et al., 2022). A scalar
factor is extracted prior to casting a tensor to FP8 and multi-
plied back onto the output. In pseudo-code that reads:

a = scale(A)
b = scale(B)
A = to_fp8(A / a)
B = to_fp8(B / b)
C = (a * b) * matmul(A, B)

where we assume that matmul takes inputs in FP8 and

directly produces the output in higher precision. An obvious
choice for the scaling factor is to rescale the maximum ab-
solute value of a tensor to the maximum value representable
by the FP8 format (Micikevicius et al., 2022). However, this
requires computing “absmax” prior to performing the matrix
multiplication, which hinders an efficient implementation.
To circumvent that, a so-called delayed scaling technique
has been proposed (NVIDIA, 2024), which tracks the scale
of each tensor over time, allowing rescaling and matrix mul-
tiplication to be implemented in an efficient fused kernel.

3. Combining µP with Unit Scaling
In this section we derive our new u-µP scheme. The final
set of scaling rules is given in Table 1.

3.1. From relative to absolute scaling

We seek to implement the rules specified by µP in a way that
maintains unit scale for all tensors at initialization. Our first
challenge is that whereas Unit Scaling provides absolute
initialization values and multipliers, µP only specifies a
parametrization. Yang et al. (2022) define a parametrization
as ‘a rule for how to change hyperparameters when the
widths of a neural network change, [not] how to set the
hyperparameters for any specific width’. To satisfy Unit
Scaling we require our u-µP scheme to provide absolute
scaling rules3, so our first step is to derive an absolute-value
implementation of µP. We do this by combining µP’s ‘base
shapes’ and initialization HPs with its standard scaling rules,
resulting in Table 1.

The non-unit initialization of µP here violates Unit Scaling.
However, due to the symmetry of abc-parametrizations (see

3In this sense u-µP is not strictly a parametrization, but we
retain the term for simplicity.
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Figure 2. (Top) Transfer of the input LR multiplier over width
when using µP.

(Middle) LR transfer over width using modified u-µP without our
1/

√
fan-out input LR scaling rule. Without our proposed rule, u-µP

would have worse transfer and absolute loss at large width.

(Bottom) LR transfer over width using standard u-µP with our
1/

√
fan-out input LR scaling rule. (Reproduced from Figure 1 for

comparison.)

Section 2.1), we can move scales between the initialization,
multiplier and learning rate to attain any desired initializa-
tion, choosing variance of 1 to give unit-scaled weights.
This results in the intermediate scheme shown in Table 2,
Appendix A.1.

We impose two further changes to simplify the scheme and
facilitate better transfer: dropping the ‘base shapes’ and
σinit HPs, and changing the input LR rule to 1/

√
fan-out

(these changes are justified in Appendix A.2 and Sec-
tion 3.2). This results in the u-µP scheme given in Table 1.

The input and hidden multiplier rules that result from this
scheme are exactly those specified by Unit Scaling (a re-
flection of its close relationship with µP). The u-µP output
multiplier breaks Unit Scaling temporarily, but this is not a
problem in practice as output mis-scaling does not propagate
in the forward pass and output gradients can be corrected
by 1/

√
fan-in scaling thanks to the cut-edge rule (see Ap-

pendix A.3). The only other point at which Unit Scaling is
violated is the 1/dhead attention scaling, but this again is tem-
porary. Otherwise, our resulting u-µP scheme has unit-scale
weights, gradients and activations, while satisfying µP.

3.2. A new embedding scaling rule

Our only fundamental deviation from µP in terms of scal-
ing rules is changing the embedding LR multiplier (η̂emb)
from not being scaled to being scaled by

√
1/fan-out (i.e.√

1/width). This is based on the empirical observations
shown in Figure 2, where the µP embedding learning rate
parameter does not transfer well with width.

The top plot demonstrates that the best η̂emb at e.g. the
256 width does not transfer to any subsequent width, with
a clear drift towards smaller multiplier values. This drift is
approximately corrected by scaling the embedding learning
rate by

√
1/width, which justifies our change to the scaling

rule provided by µP. The equivalent experiments for u-µP
are shown in Figure 6, which exhibits the same problem
until our correction is introduced.

This adjustment makes a significant difference in practice,
as the original scaling rule causes performance to degrade as
width increases. The middle and bottom plots demonstrate
this for u-µP without and with our η̂emb scaling correction.
Note that this phenomenon of poor embedding LR transfer
only has a minor effect on the transfer of the global LR,
but significantly degrades the overall loss as we scale to
larger models. We have observed similar issues for µP
models, where sweeping an embedding LR multiplier can
also impair the performance of the scaled-up model. We
leave a potential theoretical explanation of why the original
µP rules do not give transfer here to future work. It may be
the case that at much larger scales the original rule is more
appropriate, though this is unlikely to be of practical use.
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3.3. A maximally independent set of hyperparameters

The original set of µP HPs outlined in Table 1 is based on
common usage (i.e. those used for training LLMs in the lit-
erature, though the particular HPs for each model vary) and
there is complex interplay and redundancy between some
HPs (see Appendix E.1), in the sense that they effectively
control the same scale in the model. We aim for a set of
HPs that is maximally expressive while having no such re-
dundancy. Besides the global learning rate parameter η, we
end up with the following HPs:

• Residual branch multipliers: αresidual and ratio
αresidual-attn-ratio (see eq. (19)).

• Multipliers before non-homogeneous operations:
αattn, αffn-act, αloss-softmax (see eq. (25)).

This set of HPs, although smaller than the set of original µP
HPs, generates a rich set of training dynamics. Furthermore,
it has no redundancy and each multiplier controls a mean-
ingful scale in the model. For a more detailed explanation,
see Appendix D.

4. Additional Unit-Scaled Ops
For the sake of our experiments, a set of unit-scaled ops are
required for Llama-style (Touvron et al., 2023) transformer
architectures. We are able to utilize many of the ops given
in the Unit Scaling paper (Blake et al., 2023). However, this
selection lacks some of the features required to implement
modern LLMs. To address this, in this section we outline
a series of new unit-scaled ops for each of our required
architectural features.

The presentation here is derived from that of the Unit Scal-
ing Compendium given in Blake et al. (2023, appendix G).
This makes reference to the factors α, β1, . . . , βk. α is the
output scaling factor in the forward pass, and βi are the
scaling factors for the gradient of the op’s inputs in the
backward pass. For each op, a value or rule is provided for
determining the required mult to ensure unit scale. The cor-
rect value for these multipliers is derived by analyzing the
scaling behavior of each op, given some reasonable distribu-
tional assumptions about the input and incoming gradient
tensors.

We provide a summary of these results in Table 4, which
can be seen as an extension of Table A.2 in the Unit Scaling
paper.

Unit-scaled dot-product attention The Unit Scaling pa-
per considers the attention layer scaling in terms of its sep-
arate components: the various matmul operations and the
internal softmax. Linear operations are scaled using the

standard rule, and the softmax scaling is given a α = β = s
factor.

From an implementation perspective, the self-attention layer
is more typically broken down into weight-matmuls and a
fused scale-dot-product attention operation. This is the case
we handle here, accounting for three complicating factors
not considered in the Unit Scaling paper:

1. As we use a decoder-style transformer in our experi-
ments, our softmax operation has a causal mask applied
to its input.

2. We follow the µP guidance of using 1/dhead scaling in
our self-attention layer, rather than the usual 1/

√
dhead.

3. We place a αattn multiplier immediately before the
softmax, which is an HP that users may tune.

As a result our dot-product attention takes the form:

attention(q, k, v) = softmax

(
αattn · q · k

⊤

d−1
head

· cmask

)
· v

The addition of an HP before the softmax introduces an
additional challenge for Unit Scaling, as our scaling multi-
pliers will need to account for this value when preserving
unit scale.

This operation is sufficiently complex that we found an
empirical model of its scale to be more accurate than any
mathematically-derived rule (future work may consider jus-
tifying our model mathematically). We find that the scale of
dot-product attention is approximately

σ( attention(q, k, v)) =

log_interpolate

(
1

1 + 4dhead

α2
attn

, 1,

√
log(s)

s

)
where

log_interpolate(α, bupper, blower) =

eα log(bupper)+(1−α) log(blower).

The corresponding scaling rule is therefore to divide by this
factor in both the forward and backward pass, as outlined in
Table 4.

SwiGLU FFN Llama uses a SwiGLU (Shazeer, 2020)
layer for its FFN, which introduces two new operations for
us to unit-scale: a SiLU (Yu & Su, 2019) (a.k.a. swish
(Ramachandran et al., 2018)) operation and an element-
wise multiplication. We take a similar approach to our dot-
product attention, and consider unit-scaling the following
fused operation:

gated_silu(xin, xgate) =

xin ⊙ xgate ⊙ sigmoid(αffn-act xgate)

5
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For the surrounding weight-matmuls we follow the standard
Unit Scaling rules.

Again, we use an empirical model of the scale of this op,
which is surprisingly similar to the dot-product attention
model:

σ( gated_silu(xin, xgate))

= log_interpolate

(
1

1 + 1
α2

ffn-act

,
1√
2
,
1

2

)
,

dividing through by this factor to get our scaling rule.

Residual layers Our implementation of residual layers for
u-µP is more complex than other operations, as adjustments
are required to:

1. Make pre-norm residual networks support Unit Scaling
(see Appendix C).

2. Introduce our new, principled residual HPs (see Ap-
pendix D).

Our residual layer scheme is presented in full in D.1.2. For
readers interested in our justification for this, see the sections
noted above.

As mentioned in Appendix A.3, we also follow the example
of Unit Scaling and delay the application of our residual
multiplier in the backward pass to the base of the branch
(see Blake et al. (2023), Figure 3c). This does not change
the model, and enables unit scale to be maintained on the
residual branch regardless of the value of the multiplier.

RoPE embeddings We also require a unit-scaled imple-
mentation of Rotary Position Embeddings (RoPE (Su et al.,
2024)), which are applied just before the scaled dot-product
attention operation. As RoPE essentially consists of pair-
wise rotations of elements by different degrees, we observe
no meaningful scale-change as a result of it’s application,
and hence leave it unchanged.

RMSNorm Following Lingle (2024) we opt to use a non-
trainable version of RMSNorm (Zhang & Sennrich, 2019),
in order to facilitate better transfer. As a result, we also leave
this operation unchanged. Were a trainable RMSNorm to be
used, the recipe would follow closely that of the LayerNorm
presented in the original Unit Scaling Compendium.

Scale constraints One final, minor deviation from the
scheme outlined in the Unit Scaling paper is the way in
which we apply scale constraints (see their Section 5.2). The
essence of scale constraints is that for perfect unit scaling,
sometimes the ideal scale for the forward pass differs from
those in the backward pass. In some special cases (e.g. at

the ends of the network) the use of different scales can be
valid, but in the general case a single scale must be agreed
upon. The solution in the Unit Scaling paper is to use the
geometric mean of the forward and backward scales.

We propose instead to simply use the forward scale over the
backward scale(s) in these cases. We do so for the following
reasons:

1. For these architectures we find empirically that where
there is a disparity in ideal forward and backward
scales, it is not large.

2. By taking the forward scale, we can ensure strict unit-
scale in the forward pass.

The value of the latter point is in terms of what it means for
the interpretation of our u-µP multiplier HPs. Consider the
αffn-act multiplier; with strict unit scale we can say that the
standard deviation of activations immediately before this
multiplier is 1. Therefore the standard deviation immedi-
ately after is αffn-act. As this multiplier is (by design) the
last operation before the ffn activation function, we can say
that the interpretation of αffn-act is simply to set the input
standard deviation to the FFN’s activation function. Similar
arguments can be made for other u-µP multiplier HPs. This
interpretation only holds because we use the forward-scale
in our constraints.

5. Experiments
We provide empirical results to support our claim that u-
µP’s HPs facilitate more efficient sweeping than µP while
retaining good HP transfer, and demonstrate that it provides
out-of-the-box FP8 training without dynamic scaling. Our
experiments use the Llama (Touvron et al., 2023) archi-
tecture, trained on WikiText-103 (Merity et al., 2017) and
evaluated using final training cross-entropy loss.

5.1. Experimental details

Training and evaluation Our experiments are all in the
setting of autoregressive language model training, a do-
main that has proven a useful testing ground for general ma-
chine learning techniques in the model-capacity constrained
regime (the under-fitting regime described by Belkin et al.
(2019)). Our evaluation metric is final training cross-entropy
loss. This has the benefits of low variance and of separat-
ing the concerns of downstream training and regularization,
which are not in scope for this work. This follows the prece-
dent of Yang et al. (2022) who also report training loss.
As our model training is not in the over-fitting regime, we
expect training loss to track validation (and have seen so
empirically). Default training settings are given in Table 6,
with further experimental details in Appendix E.
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Figure 3. A comparison of random versus independent HP search
strategies on µP and u-µP, showing that u-µP parameters are more
amenable to independent search, and that combining the results of
independent searches of µP mults harms performance.

FP8 scheme We demonstrate that u-µP enables a simple
scheme for FP8 training, without the need for cumbersome
per-tensor scaling. Each linear module in a model induces
three matrix-matrix products: one during the forward pass
to compute the output and two during the backward pass,
computing gradients w.r.t. the weights and the inputs, re-
spectively. The tensors participating in these matrix-matrix
products are the input activations, the weights and the gradi-
ents w.r.t. the output activations. Unit scaling ensures unit
scale for all three tensors at initialization.

Empirically, the scales of these tensors do not drift too much
during training with the exception of the input tensors to the
FFN and self-attention final projections, which grow con-
siderably (see Appendix E.3, in particular Figure 9). This is
consistent across different HP settings (see Figure 10).

Based on this observation, we test a simple scheme for FP8
training. For every matrix multiplication, we cast the input,
weight and grad-output tensors to E4M3, with the exception
of the inputs to FFN and self-attention final projections,
which are cast to E5M2 to accommodate their growing scale.
The output of each matrix multiplication is produced directly
in the higher-precision format (FP32 in our case). No loss
scaling or per-tensor scaling is applied.

Note that we conducted our experiments with simulated FP8
numerics, quantizing inputs to a matrix multiplication as if
they were cast to FP8, while allowing the multiplication to
be computed on hardware without native FP8 support.

5.2. Hyperparameter search

The set of u-µP HPs has been chosen such that their ef-
fects should be independent (see Appendix E.1), with their
default (= 1) values also providing unit-scale inputs to as-
sociated functions. To test the benefit of this, we evaluate
two sweeping strategies on µP and u-µP. First, a random

input
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grad
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u-µP

input
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grad
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u-µP

Figure 4. Per-tensor RMS =
√

σ2 + µ2 across u-µP and µP mod-
els at initialization (top) and after training (bottom). u-µP tensors
have RMS that starts close to 1 and remains within E4M3 range at
the end of training. Dashed and solid red lines show each format’s
min. normal and subnormal values.

grid search following (Yang et al., 2022; Dey et al., 2023a;b;
Hu et al., 2024), which should perform well in the pres-
ence of HP interactions. Second, an independent search
which performs a line search for each HP in parallel, then
combines the optima. Figure 3 shows the results: u-µP
is amenable to both methods, while µP does not perform
well under independent search. Hence u-µP enables more
efficient sweeping strategies than µP, with near-optimal loss
after just the LR portion of the search.

5.3. Hyperparameter transfer

Figure 1 (top) demonstrates that u-µP retains the key learn-
ing rate transfer across width property of µP. Moreover,
using the default mult values, u-µP models are able attain
the optimal loss for µP models of twice the width. We also
demonstrate that the learning rate of u-µP transfers across
the number of training steps, batch size and depth in Fig-
ure 5, similarly to µP but again with better loss using default
HP values. Figures 2 and 6 show that u-µP’s change to the
input scaling rule improves width transfer and absolute loss.
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Figure 5. Learning rate transfer for µP (top) and u-µP (bottom), over training steps, batch size and depth. See Figure 1 (top) for transfer
over width. The default shape parameter for other panels is shown in bold. The shaded area shows the 95% confidence interval for the
mean.

5.4. Numerical properties

u-µP’s scaling rules and multipliers are designed to maintain
unit variance of activations, weights and gradients at ini-
tialization. Hence, these tensors are initialized well within
the range of FP8 formats and, empirically, do not drift out
of range during training (see Figure 4). Based on this, we
propose and test a simple proof-of-concept scheme for FP8
training with u-µP. For every linear module, we cast input,
weight and grad-output tensors to FP8 (without any scaling)
prior to the matrix multiplication. Extra care is required for
the inputs to FFN and self-attention final projections; the
details of our scheme may be found in Section 5.1. Fig-
ure 1 (top) and Figure 8 show that FP8 u-µP converges close
to the baseline value, while µP fails to train. Comprehensive
numerics experiments can be found in Appendix E.3.

6. Related work
The Tensor Programs series of papers (Yang, 2019; 2020a;
Yang & Littwin, 2021; Yang, 2020b; Yang & Hu, 2021;
Yang & Littwin, 2023; Yang et al., 2022; 2023) introduce
the mathematical framework from which µP is derived. Dey

et al. (2023a;b); Liu et al. (2023); Hu et al. (2024) employ
µP to derive the HPs for LLM training, with Lingle (2024)
exploring the transfer properties of µP variants. Blake et al.
(2023) introduce Unit Scaling, which has similarities to
Klambauer et al. (2017); Yuan & Zhu (2022) in its activation
function scaling, and to Glorot & Bengio (2010); He et al.
(2015) in its approach to initialization.

7. Conclusions
We demonstrate the effectiveness of our improved scheme,
which applies the principles of Unit Scaling to µP to form
u-µP. We retain the HP transfer property of µP and benefit
from the simple low-precision training brought by Unit Scal-
ing. This allows FP8 via a simple cast, bringing substantial
efficiency gains. Our u-µP HP scheme is more principled
than that used for µP, leading to a simpler sweeping strategy.
Indeed the default multipliers associated with u-µP models
are near-optimal in our experiments, reaching a lower loss
than heavily-tuned µP models. The combination of these
benefits indicates that u-µP can be a valuable component in
the simple, stable and efficient training of LLMs.
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A. From µP and Unit scaling to u-µP
Although u-µP provides the benefits of both µP and u-µP and is faithful to almost all of their rules, it includes some specific
changes that deviate from the parent schemes. In this section we give additional details about u-µP as well as highlighting
and explaining the changes from µP and Unit Scaling.

A.1. An intermediate scheme

The first step from µP to u-µP is enabled by the abc-symmetry (see Lemma J.1 in (Yang et al., 2022)). The initial hidden
weight variance base-fan-in/fan-in from Table 1 can be replaced by 1 if we change at the same time:

• Multiplier: 1 →
√

base-fan-in
fan-in

• Adam LR Mult.: base-fan-in
fan-in →

√
base-fan-in

fan-in

Together with setting σinit = 1 we get the intermediate scheme shown in Table 2.

Table 2. µP scheme after abc symmetry and normalized init. variance

Weight type Input Output Hidden Residual

µP

Init. Var. 1 1 1 —

Multiplier 1
base-fan-in

fan-in

√
base-fan-in

fan-in

√
base-depth

depth

Adam LR Mult. 1 1

√
base-fan-in

fan-in

√
base-depth

depth

A.2. Dropping base shapes

The next step in our transition from the µP scheme in Table 2 to our u-µP scheme in Table 1 is the removal of the ‘base
shapes’ HPs, base-fan-in and base-depth. It should be noted that although we refer to base-fan-in and base-depth in
the same way as the multiplier HPs, these are not intended to be swept, but rather chosen according to taste. The stated
purpose of the ‘base shapes’ in Yang et al. (2022) is to enable a model to behave unchanged at a particular size, yet still
scale according to µP rules as the model-size changes.

We argue that this is not necessary or desirable for u-µP based on the following:

1. Though in some cases it may be useful to align a µP model to some ‘base’ model in the manner described above, all
uses of µP in the literature simply set the base shapes to those of a small model and perform an HP sweep on top of it.
This sweep alters the dynamics of the base model before scaling-up, so there is little sense in which the base shapes
maintain the behavior of some smaller model as we scale. At best the base shapes can be seen as giving a useful starting
point to the HP sweep.

2. In contrast u-µP offers a principled approach to the base dynamics of the model: that all tensor-scales should have unit
variance. This can be seen as an alternative to the ‘base shapes’ approach, which substitutes this principle for alignment
with non-µP models at a particular scale.

3. The effect of base shapes on the weight multipliers is a constant. Our set of u-µP multipliers is able to express any
set of constant weight multipliers in the network, so our HP sweep is in effect testing what might happen were we to
introduce base shapes into u-µP.

4. The effect of base shapes on the LR multipliers is again a constant factor, which is applied to all hidden weights for
width, and residual weights for depth. This applies to the large majority of weights in the model in a similar fashion,
making it closely linked to a global shift in the LR. As the LR is swept anyway, we conjecture that the effect of base
shapes on the model’s LRs is minimal.

5. Finally, we argue for simplicity. If we can remove these additional HPs without detriment, then our scaling rules
become much simpler: each depends on a single factor.
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With this change implemented, our scaling rules become those shown in Table 3.

Table 3. µP scheme after abc symmetry, normalized init. variance and dropping of base shapes

Weight type Input Output Hidden Residual

µP

Init. Var. 1 1 1 —
Multiplier 1

1
fan-in

1√
fan-in

1√
depth

Adam LR Mult. 1 1
1√

fan-in
1√

depth

A.3. Forward multipliers vs. backward multipliers

Table 1 shows the scaling rules for weight multipliers in u-µP. If we are more precise, these values are actually post-op
forward multipliers, i.e. a multiplier α in a linear layer f gets applied as h 7→ α · f(h). This is because for low-precision
training, we cast the input h to FP8 in the forward pass and a pre-op multiplication α · h might go out of FP8 range if the
multiplier is too small or too large. Conversely, we want α to act as a pre-op multiplier in the backward pass, so we have
gh 7→ α ·gradf (gh) because in this case the gradient gh gets cast to FP8. The same logic applies to residual multipliers, with
the branch multiplier implemented after the residual path in the forward pass, and before the residual path in the backward
pass.

This is straightforward when the forward and backward multipliers are the same, but nevertheless crucial to implement
correctly in order to enable stable FP8 forward and backward passes. However, there are two instances in u-µP where
forward and backward multiplier are different:

1. Weight gradients. While model weights under Unit Scaling are correctly scaled in the forward pass, the weight
gradient computation involves a summation over the batch size b, hence from a Unit Scaling perspective we need to
apply a scaling in b to keep the weight gradient unit scaled. We choose the scaling

gw 7→ b−
1
2 gw,

that works well in practice. The discrepancy between forward and backward computation can be easily resolved
post-hoc in the optimizer function that calculates the weight update from its gradients. In the case of Adam, no
adjustment is needed because of its scale invariance property.

2. Readout layer. In order to satisfy µP and prevent logits from blowing up as the network width increases, the readout
layer has a forward multiplier of 1/fan-in. This contradicts Unit Scaling, but is not too problematic in the forward pass
since we are only under-scaled at the first step of training and then have logits of order 1. Also, this happens at the very
end of the network and has no significant effect on any subsequent operations, since the loss computation usually stays
in higher precision. In the backward pass however, using this multiplier leads to all gradients in the model becoming
under-scaled throughout training. The fix is to use the backward multiplier

√
1/fan-in instead. Again, this produces

"mathematically incorrect" gradients. Because the readout layer is not on a residual branch and the backward pass is
linear, we can again easily compensate for this static factor in the optimizer.

A unified explanation for why different forward and backward scale are admissible for weights and readout layer, but not for
operations on residual branches, is given by the cut-edge-rule (see Section 5.1 in (Blake et al., 2023)).

A.4. Additional figures for the new embedding scaling rule

Figure 6 provides additional results showing transfer of the input LR multiplier η̂emb for u-µP models (whereas the Figure 2
plot in the body of the paper shows this for regular µP models).

B. Additions to the Unit Scaling compendium
We provide a table summarizing our new unit-scaled ops in Table 4, to accompany the definitions set out in Section 4.
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Figure 6. Transfer of the input LR multiplier η̂emb over width. (Left) Modified u-µP without our 1/
√
fan-out input LR scaling rule. (Right)

Standard u-µP with our 1/
√
fan-out input LR scaling rule.

Table 4. Table of unit scaling factors for ops required for Llama, building on Table A.2. from the Unit Scaling paper (Blake et al., 2023).

Op Unit Scaling factors

attention(q, k, v) = α = βq = βk = βv =

softmax
(
αattn d

−1
head (qk

⊤) cmask
)
v 1/ log_interpolate

(
1

1+
4dhead
α2
attn

, 1,
√

log(s)
s

)
gated_silu(xin, xgate) = α = βxin

= βxgate
=

xin ⊙ xgate ⊙ sigmoid(αffn-act xgate) 1/ log_interpolate
(

1
1+ 1

α2
ffn-act

, 1√
2
, 1
2

)
residual_add(xresid., xskip) = a xresid. + b xskip a =

√
τ

τ+1 , b =
√

1
τ+1 (see D.1.2 for full details,

inc. values for τ .)
RoPE(x) α = β = 1 (i.e. no scaling)
RMSNorm(x) (non-trainable, see (Lingle, 2024)) α = β = 1 (i.e. no scaling)

C. Unit-scaled pre-norm residual layers
The popular pre-norm residual network architecture is simple to implement, but problematic to combine with Unit Scaling.
It exhibits scale-growth in the skip-stream at initialization, due to the repeated addition of residual connections without
subsequent normalization. Here we present a surprising and useful finding: that for any pre-norm model there exists a
mathematically-equivalent model where this scale-growth is eliminated, through the careful re-scaling of residual connections.
This is a crucial preliminary step for our u-µP HP scheme, which is discussed in Appendix D (readers only interested in the
final result may skip ahead to D.1.2).

C.1. Scale growth in pre-norm residual networks

Let’s consider a pre-norm residual network of depth L:

R0(x) = r0x, (1)
Rl(x) = rlfl(Rl−1(x)) +Rl−1(x), l = 1, .., L (2)

RL+1(x) = fL+1(RL(x)) (3)

with embedding multiplier r0 and residual branch multipliers rl for l = 1, .., L. To satisfy pre-norm, all fl are zero-
homogeneous functions, i.e. fl(λx) = fl(x).
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The scale of the skip-stream at initialization as a result of Equation (2) is

σ(Rl) =
√
r2l σ(fl)

2 + σ(Rl−1)2 > σ(Rl−1), l = 1, .., L (4)

assuming r2l σ(fl)
2 > 0. This shows that scale inevitably grows with the addition of each residual layer.

This scale-growth is clearly incompatible with unit scaling, which aims for σ(Rl) = 1 for l = 0, .., L+ 1. In the following
we present an elegant solution to this problem making use of a symmetry transformation available in pre-norm residual
architectures.

C.2. Residual symmetry in pre-norm architectures

To resolve the problem of scale shift in residual networks demonstrated by eq. (4), we try a slightly more general ansatz:

R̂0(x) = x, (5)

R̂l(x) = alfl(R̂l−1(x)) + blR̂l−1(x), (6)

R̂L+1(x) = fL+1(R̂L(x)) (7)

with coefficients al, bl. We want to choose these coefficients so that the outputs of R̂l are unit-scaled if the outputs fl, R̂l−1

are. A similar calculation as in eq. (4) leads to the sufficient condition

a2l + b2l = 1,

which can be easily satisfied. Having restored Unit Scale, we are faced with another issue. It seems that Equations (5) to (7)
describes a different network than Equations (1) to (3), whereas ideally the relation from input to final output should be
unchanged when converting the network to Unit Scaling.

Note that the coefficients al, bl are not uniquely defined yet, so our mathematical intuition tells us that we should find
an additional constraint to get a unique solution. To find this constraint, let us consider our original residual network in
Equations (1) to (3) and analyze how the variance propagates through the network if we assume all operations fl satisfy
Unit Scaling and σ(x) = 1. Let σ2

l−1 denote the variance of Rl−1. Then a simple inductive calculation shows that

σ2
l−1 =

l−1∑
i=0

r2i .

By Equation (2) the output of Rl adds a quantity of variance r2l from the residual connection and a quantity of variance σ2
l−1

from the skip connection. Intuitively, the ratio of these variances should be more important for the overall network dynamics
than the absolute scales. Thus our constraint becomes preserving the ratio of variances from the original model, through our
choice of al, bl:

a2l
b2l

=
σ(rlfl)

2

σ2
l−1

=
r2l∑l−1
i=0 r

2
i

=: τl,

which (up to sign) uniquely defines our multipliers al, bl as

al =

√
τl

τl + 1
, bl =

√
1

τl + 1
(8)

In summary, we propose the modified residual network

R̂0(x) = x, (9)

R̂l(x) =

√
τl

τl + 1
fl(R̂l−1(x)) +

√
1

τl + 1
R̂l−1(x), (10)

R̂L+1(x) = fL+1(R̂L(x)), (11)

τl =
r2l∑l−1
i=0 r

2
i

. (12)

Our main result of this section is that this transformation is indeed a mathematical equivalence under a simple additional
structural assumption:
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Lemma C.1. Consider Rl, R̂l defined as in Equations (2) and (10). Then R̂l = Rl/
√∑l

i=0 r
2
i for all l = 0, .., L.

Remarkably, this result does not assume the individual network operations fl to actually satisfy Unit Scaling. It is purely a
consequence of the pre-norm residual structure. However, only under Unit Scaling can the factors τl be interpreted as the
ratio of variances between skip and residual branch.

As a consequence of the lemma, the final residual output RL(x) is the same as in our original network up to a fixed

multiplier. Due to the zero-homogeneity of the final output function fL+1 this gives R̂L+1 = fL+1

(
RL(x)/

√∑l
i=0 r

2
i

)
=

fL+1(RL(x)) = RL+1, proving the mathematical equivalence of our residual scheme.

Modern LLM architectures like Llama (Touvron et al., 2023) are pre-norm residual networks of this kind. Hence they admit
a faithful unit-scaled reparametrization.

C.3. Unit Scaling for transformer residuals

The above scheme describes Unit Scaling for arbitrary pre-norm residual networks. We now apply it to the case of (pre-norm)
transformer residual layers.

We can describe a transformer in terms of the residual network given in Equations (1) to (3). Our fl functions alternate
between self-attention layers and feed-forward layers. Implementations differ in the handling of how residual multipliers rl
correspond to HPs. In many cases practitioners simply ignore these rl, but for the sake of expressivity we assume the two
types of residual layer each have their own HP, as well as the embedding. In other words,

rl =


αemb l = 0

αattn-residual l is odd
αffn-residual l is even, and l > 0.

To convert this to a Unit Scaled network we apply Equations (9) to (12), from which can derive the following closed-form
expression for τl:

τl =


αattn-residual

αemb + ℓαattn-residual + ℓαffn-residual
l is odd

αffn-residual

αemb + (ℓ+ 1)αattn-residual + ℓαffn-residual
l is even.

where ℓ = ⌊ l−1
2 ⌋.

C.4. Proof of Lemma C.1

Proof. This is proved by induction. For the base-case l = 1, we have τ1 = r21/r
2
0 , giving

R̂1(x) =

√
τl

τl + 1
f1(x) +

√
1

τl + 1
x

= (r1f1(x) + r0x)/
√

r20 + r21

= R1/
√
r20 + r21.
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Then if the statement holds for l − 1 we have

R̂l(x) =

√
τl

τl + 1
fl(R̂l−1(x)) +

√
1

τl + 1
R̂l−1(x)

=
rl√∑l
i=0 r

2
i

fl(R̂l−1(x)) +

√∑l−1
i=0 r

2
i√∑l

i=0 r
2
i

R̂l−1(x)

=

rlfl(R̂l−1(x)) +

√√√√ l−1∑
i=0

r2i R̂l−1(x)

 /

√√√√ l∑
i=0

r2i

=

rlfl(Rl−1(x)) +

√√√√ l−1∑
i=0

r2i
Rl−1(x)√∑l−1

i=0 r
2
i

 /

√√√√ l∑
i=0

r2i

= (rlfl(Rl−1(x)) +Rl−1(x)) /

√√√√ l∑
i=0

r2i

= Rl(x)/

√√√√ l∑
i=0

r2i

D. Hyperparameters for u-µP
Here we explain the HPs from Section 3.3 in more detail. Our desiderata for the u-µP HPs are as follows:

1. Unit scale: For every choice of HPs we satisfy Unit Scaling, meaning that the variance at initialization throughout the
entire model is 1.

2. Interpretable HPs: Each HP value determines a dynamic of the model at initialization that we consider important,
giving them a clear interpretation.

3. Fully expressive: They result in a model which is as expressive as a standard pre-norm transformer network, meaning
that for any model expressed by Equations (1) to (3), there is a choice of HPs that forms a mathematically-equivalent
u-µP residual model.

4. No redundancy: Removing any HP results in a strictly less expressive model.

D.1. Residual branch multipliers αresidual, αresidual-attn-ratio

In this section we present our u-µP residual branch multipliers. They can be viewed as a reparametrization of the original
residual multipliers in C.3. We begin by explaining our heuristic for our new set of residual HPs and then combine this with
the residual branch re-scaling derived in the previous section, which gives our u-µP residual scheme.

D.1.1. IMPROVED HPS FOR TRANSFORMER RESIDUALS

In Section 3.3 we refer to a new pair of u-µP HPs, αresidual and αresidual-attn-ratio, which we use for residual layers. Here
we define them and make the case for including them as part of our u-µP scheme. To avoid cluttered notation, in this section
we rename

αresidual = αr, αresidual-attn-ratio = αρ.

There is no clear convention for the set of multipliers in a standard residual model. Hence we adopt the most generous and
straightforward group of multipliers, (αemb, αattn-residual, αffn-residual), as in Section C.3. For simplicity we rename

αemb = αe, αattn-residual = αa αffn-residual = αf .
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To make the presentation more clear, we derive our new HPs using the standard residual scheme from Equations (1) to (3).
For the actual unit scaled implementation one needs to transform the multipliers following Equations (9) to (12), which we
do in Section D.1.2.

Our new multipliers satisfy the following properties that (αe, αa, αf ) do not:

1. They have an intuitive interpretation for the multiplier values in the context of the residual output RL(x), such that
each controls a dynamic in the model that we consider important.

2. The number of multipliers is minimized, under the constraint that expressivity is maintained.

3. The most effective choice of one multiplier depends as little as possible on the choice of the other multiplier(s).

To facilitate our analysis, we can view the transformer residual output as the sum of three terms:

RL = R
(e)
L +R

(a)
L +R

(f)
L ,

R
(e)
L := αex,

R
(a)
L :=

L/2∑
l=1

αa√
L
f2l−1(R2l−1(x)),

R
(f)
L :=

L/2∑
l=1

αf√
L
f2l(R2l(x)),

R
(r)
L := R

(a)
L +R

(f)
L ,

Note that we have added in the depth-µP multipliers here, though a similar analysis can be performed for non-depth-µP
models. As above, fl functions alternate between self-attention layers and feed-forward layers.

With respect to point 1., we propose two new multipliers that correspond to dynamics in the network which we suggest
are important to control at initialization. The first is the ratio of the scale of the residuals’ contributions to those of the
embedding, αr = σ(R

(r)
L )/σ(R

(e)
L ). The second is the ratio of the scale of the attention-residuals’ contributions to those of

the feed-forward-residuals, αρ = σ(R
(a)
L )/σ(R

(f)
L ). We now demonstrate how the existing (αe, αa, αf ) multipliers can be

replaced by (αr, αρ).

Let us first examine these two quantities under the standard set of HPs. Residual functions of the same kind have the same
expected output scale at initialization in pre-norm networks. Hence we denote the output scale σ(fl(Rl)) of self-attention
functions as σa, and of feed-forward functions as σf . We thus have the following scales at the output:

σ(R
(e)
L ) = αeσ(x),

σ(R
(a)
L ) =

αa√
L
σ

L/2∑
i=1

f2l−1(R2l−1)

 =
αaσa√

2
,

σ(R
(f)
L ) =

αf√
L
σ

L/2∑
i=1

f2l(R2l)

 =
αfσf√

2
,

σ(R
(r)
L ) =

√
σ(R

(a)
L )2 + σ(R

(f)
L )2 =

√
(αaσa)2 + (αfσf )2√

2
,
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meaning our new multipliers are equal to:

αρ =
αa

αf

σa

σf
,

αr =

√
(αaσa)2 + (αfσf )2√

2αeσ(x)
,

=

√
α2
ρ + 1

2

σf

σ(x)

αf

αe
.

The original αa, αf multipliers can then be written in terms of αr, αρ:

αa = αραf
σf

σ(σa)

αf = αrαe
σ(x)

σf

√
2

α2
ρ + 1

We have replaced two of the three original multipliers, but still have a dependence on αe here in our expressions for αf

and R
(e)
L , which we now remove by dividing it out of our residual branches and embedding. We use the hat (̂·) symbol to

denote terms that have been divided-through by αe. This new system of equations is equivalent to our old one thanks to the
zero-homogeneity of the final post-residual layer:

RL+1(x) = fL+1(R
(e)
L +R

(r)
L )

= fL+1((R
(e)
L +R

(r)
L )/αe)

= fL+1(R̂
(e)
L + R̂

(r)
L )

This gives R̂(e)
L = αex/αe = x, removing our first occurrence of αe. Following the division through R̂

(r)
L results in:

R̂
(r)
L = R̂

(a)
L + R̂

(f)
L ,

R̂
(a)
L :=

L/2∑
l=1

α̂a√
L
f2l−1(R2l−1),

R̂
(f)
L :=

L/2∑
l=1

α̂f√
L
f2l(R2l),

α̂a = αρα̂f
σf

σa
,

α̂f = αr
σ(x)

σf

√
2

α2
ρ + 1

.

This system of equations is the same as the original, but with the two αe terms dropped, meaning our model’s multipliers
can be expressed in terms of only αr and αρ. Using the above equations, any pair of values for (αr, αρ) can be translated
back into an equivalent set of values for (αe, αa, αf ) such that the output RL+1(x) is the same, meaning that our multipliers
are no less expressive than the original set. This satisfies our desired property of minimizing the number of multipliers while
maintaining expressivity.

We can simplify further in the case of unit-scaled models, which are designed such that σ(x), σa, σf are all 1 at initialization.
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In this case our re-parametrization becomes:

α̂a = αρα̂f , (13)

α̂f = αr

√
2

α2
ρ + 1

, (14)

α̂e = 1. (15)

This is the basis of our claim that Unit Scaling enables this more intuitive set of multipliers. Not only do the multipliers αr

and αρ represent important dynamics in the network at initialization (the ratio of residual-to-embedding scales, and the ratio
of attention-to-feed-forward scales), but it’s only via unit scaling that these equations become simple enough to implement
in practice. Using equations Equations (13) to (15) for a non-unit scaled network may still be effective, but the interpretation
we’ve given to αr and αρ no longer hold.

Our final desired property is an empirical one: that the most effective choice of one multiplier depends as little as possible
on the choice of the other multiplier(s). We demonstrate that our multipliers satisfy this property better than the standard set
of residual multipliers (see Fig 11 and Fig 12).

D.1.2. THE FULL U-µP RESIDUAL SCHEME

Here we give the full definition of our u-µP residual scheme, summarizing the results of previous sections. A general
pre-norm transformer is implemented as:

R0(x) = c x, (16)
Rl(x) = alfl(Rl−1(x)) + blRl−1(x), l = 1, .., L (17)

RL+1(x) = fL+1(RL(x)), (18)

where al, bl and c are scalar multipliers, and the fl alternate between self-attention and feed-forward layers. We consider our
baseline set of residual HPs here to be (αemb, αattn-residual, αffn-residual), which we implement (assuming depth-µP branch
scaling) as:

al =


αattn-residual√

L
l is odd (self-attention)

αffn-residual√
L

l is even (feed-forward)

bl = 1

c = αemb.

The corresponding u-µP set of residual HPs is (αresidual, αresidual-attn-ratio), which we implement as:

al =

√
τl

τl + 1
(19)

bl =

√
1

τl + 1
(20)

c = 1, (21)

τl =
1√
L

·


α̂a

1 + ℓα̂a + ℓα̂f
l is odd

α̂f

1 + (ℓ+ 1)α̂a + ℓα̂f
l is even

, ℓ =

⌊
l − 1

2

⌋
(22)

α̂a = α̂f αresidual-attn-ratio (23)

α̂f =

√
2

α2
residual-attn-ratio + 1

αresidual. (24)
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This is the u-µP residual scheme. It satisfies the three properties that we initially set out to achieve: the variance at
initialization of our Rl(x) is always 1, our HPs have a clear and useful interpretation, and our scheme is as expressive as the
baseline (which is neither unit-scaled or has interpretable HPs).

D.2. Multipliers for non-homogeneous ops αattn-softmax, αffn-act, αloss-softmax

In this section we derive the rest of our u-µP multipliers. We want to identify the minimal set of multipliers that can still
express all different choices of pre-op scales in the model. The crucial observation is that every pre-scale multiplier α of an
operation h 7→ f(αh) can be propagated through the network if f is k-homogeneous for some k > 0, i.e. f(αx) = αkf(x).
We can iterate this along the computational path until either the next operation is non-homogeneous, we are at the end of a
residual path, or the next operation is 0-homogeneous (e.g. a norm). In the first case the accumulated scales are absorbed in
the pre-op scale of the non-homogeneous operation (where we introduce a multiplier), in the second case they are absorbed
in the residual addition for that branch (where we again introduce a multiplier), and in the final case the scale disappears (so
we start over). We now go through the Llama forward computation and follow this paradigm to identify our multipliers in
Table 5.

Table 5. A walkthrough of the Llama architecture, showing how our αattn-softmax, αffn-act and αloss-softmax multipliers are derived via an
analysis of scale-propagation.

Op Scale propagation behavior

Embedding We already saw in the previous section that the embedding multiplier can be
absorbed in the residual multipliers.

Attention RMSNorm This operation is 0-homogeneous and thus we start over.
Query and key Query and key itself are linear, hence their weight multipliers get propagated.
Query-Key matmul The query-key matrix multiplication is 2-homogeneous when viewed as function

of the concatenated query-key vector. Hence it propagates the scale.
Softmax The softmax operation is non-homogeneous. Thus the pre-op scale of the

softmax becomes our first multiplier αattn-softmax.
Value The value layer is linear and hence propagates its scale.
Softmax-value matmul This operation is linear in all arguments and hence propagates the scale.
Attention projection This operation is linear and lies at the end of the attention residual path. Hence

there are no more multipliers in the attention block.

FFN RMSNorm This operation is 0-homogeneous and thus we start over.
FFN input scale The input layer is linear, hence its weight multiplier gets propagated.
Sigmoid input This function is non-homogeneous and thus we have another multiplier αffn-act.
SiLU weight This layer is also linear and propagates the scale.
Product The entry-wise multiplication of the outputs of sigmoid, input layer and SiLU

weight is homogeneous and thus propagates the scale.
FFN output This layer is linear and at the end of the residual path. Hence there are no more

multipliers in the FFN residual block.

Output RMSNorm This operation is 0-homogeneous and thus we start over.
Output head This layer is linear, hence its weight multiplier gets propagated.
Loss The cross-entropy loss is non-homogeneous and leads to our final multiplier

αloss-softmax.

In summary, we have three multipliers αattn-softmax, αffn-act, αloss-softmax that are applied in the softmax, sigmoid and
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Dataset WikiText-103 (Merity et al., 2017)
Sequence Length 256

Vocab Size 32000

Training Set Tokens 138 M

Architecture Llama (Touvron et al., 2023) (Transformer, PreNorm, RMSNorm,
SwiGLU, RoPE, “untied” embeddings), non-trainable RMSNorm pa-
rameters.

Width 256

Depth 4

Head Dimension 64

Batch size 64

Training steps 8192 (0.97 epochs)
LR schedule Cosine to 10%, 2000 steps warm-up

Optimizer AdamW (β1, β2, ϵ) = (0.9, 0.999, 10−8)

Weight Decay 2−13, independent (Loshchilov & Hutter, 2019)
Dropout 0.0

µP HP Search Range η ∈ [2−10, 2−6]

η̂emb ∈ [20, 28]

σinit, αemb, αattn, αoutput ∈ [2−2, 22]

u-µP HP Search Range η ∈ [2−1, 23]

αattn ∈ [2−2, 22]

αresidual, αresidual-attn-ratio, αffn-act, αoutput ∈ [2−3, 23]

µP HP Defaults σinit = αemb = αattn = αoutput = η̂emb = 1

u-µP HP Defaults αresidual = αresidual-attn-ratio = αffn-act = αoutput = αattn = 1

Table 6. Default hyperparameters and training settings.

loss function via:

fsoftmax(q, k) = softmax(αattn-softmax · d−1
head · (q · kt)), (25)

fact(h) = sigmoid(αffn-act · h), (26)
floss-softmax(h, xtargets) = CE(αloss-softmax · h, xtargets) (27)

We do not explicitly show the derivation of the residual multipliers here, as they undergo a change in accordance with D.1.1
before we get our final αresidual and αresidual-attn-ratio.

Our analysis from above shows that these three multipliers together with the residual multipliers are as expressive as the full
set of pre-ops multipliers in the whole transformer architecture while having no redundancy, i.e. a change in one of the
multipliers cannot equivalently be expressed in terms of changes to the other multipliers.

E. Additional Experimental Details
To compare µP and u-µP with the Llama architecture on a larger dataset, we modify the implementation provided by Yang
et al. (2022) for µP and implement u-µP in the same framework.

E.1. Hyperparameter Independence

Our analysis indicates that µP’s hyperparameters have overlapping effects on dynamics-defining scales within the model,
while u-µP attempts to isolate their effect. We hypothesize that this effect should be visible in the final loss—the effects of
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u-µP’s hyperparameters should be more separable than that of µP’s.

In our first test of this hypothesis, we construct pairs of hyperparameters, and perform a coarse 2D sweep for each pair
(Figure 11, Figure 12). These results show some visual dependence between µP hyperparameters as a diagonal structure in
the grids, such as (η̂emb, σinit) and (η, αattn). We quantify this difference by evaluating the increase in loss on a given row
by using the argmin hyperparameter from a different row of the grid, compared with the actual minimum and averaged
over all grids. This metric gives an average loss increase of 0.08 for µP versus 0.03 for u-µP. This suggests a quantifiable
improvement in hyperparameter separability, but note that the metric may conflate this with the flatness of the optimum.

The second test is more directly practical. We compare two hyperparameter search methods on µP and u-µP. The first is a
random grid search, which samples configurations without replacement from a grid defined over all hyperparameters. After
performing a single search, we can simulate the effect of a shorter search by taking a random sample of the results. The
second method is an independent search, which consists of the following phases:

1. Perform a 1D line search for an optimal learning rate, with other hyperparameters set to their default (9 runs).

2. For each hyperparameter in parallel, perform a 1D line search (330 runs).

3. Combine the best settings from step 2, and re-evaluate (6 runs).

Each 1D line search can be done on an iteratively refined grid, to provide an incremental improvement as the number of runs
increases.

Our results from this test in Figure 3 show that the first LR sweep is much more efficient for u-µP since the default
hyperparameters are better. For this reason, the 1D line search can outperform a random grid. We also observe that the final
step of combining optimum hyperparameters is very harmful to µP, while it shows only a slight degradation for u-µP, which
was expected as a regression to the mean.

E.2. Hyperparameter Transfer

We compare learning rate transfer for µP and u-µP in Figures 1 and 5, over a logarithmic grid of spacing 21/2, with 3 runs
for each point. We observe:

1. u-µP transfer of LR over width, training steps, batch size and depth is similar to or better than µP, when starting from
default parameters.

2. u-µP and µP both show increased variance when the learning rate is too high (visible in wide confidence intervals in
Figure 5).

3. The default settings for u-µP are better than those of µP, especially when scaling width and training duration (steps or
batch size).

Moreover, in Figures 2 and 6 we highlighted the poor transfer of the embedding LR multiplier η̂emb in µP, and demonstrated
that the 1/

√
fan-out scaling rule in u-µP resolves this issue. For completeness, we now include in Figure 7 a comparison of the

width transfer of all model hyperparameters from both µP and u-µP. We find good transfer for all hyperparameters defined
in the u-µP scheme, and a clear visualization of how setting all u-µP multiplier defaults to 1 (i.e., just omitting all of the
available scale modifiers) results in near optimal performance. In contrast, the µP results indicate that optimum values for
σinit and η̂emb do not transfer over width in our real-world evaluation.

E.3. Numerical Properties

Our analysis of the numerical properties of u-µP focuses on the RMS statistics of tensors that we wish to cast to FP8: linear
module input activations, weights and output gradients. RMS captures the larger of the mean and scale of a distribution, and
as such can be a good test of whether the tensor is likely to suffer range (clipping) errors in low-precision number formats.

Figure 4 shows the distribution of statistics over all linear modules in the model, and Figure 9 shows RMS on a per-tensor
basis, as it evolves during training. From these, we note:
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Figure 7. Transfer of model hyperparameters over width for µP (top) and u-µP (bottom). When one hyperparameter is being swept, all
others are fixed at 1, with the exception of Learning Rate η = (21.5, 2−7.5) for (u-µP, µP).
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1. µP has gradients and weights with low RMS, at risk of FP8 underflow, whereas u-µP starts with RMS ≈ 1.

2. Many input activations do not grow RMS during training (due to a preceding non-trainable RMSNorm), however the
attention out projection and FFN down projection have unconstrained input activations that grow considerably during
training.

3. The decoder weight grows during training. Since it is preceded by a RMSNorm, the model may require scale growth in
order to increase the scale of softmax inputs. Other weights grow slightly during training.

4. Gradients grow quickly but stabilize, except for attention out projection and FFN down projection, whose gradients
shrink as the inputs grow.

We also evaluate how RMS growth is affected by model and training hyperparameters in the tensors that showed the highest
end-training RMS, shown in Figure 10. This shows that the main parameter affecting scale growth is learning rate, with
end-training RMS increasing to the right of the optimal LR basin, as training becomes unstable. End-training RMS is
remarkably stable as width, depth, training steps and batch size are independently increased.

We therefore propose the FP8 scheme described in Section 5.1, which works for u-µP without any dynamic scaling or
exponent bias search (see Figure 1 (top), Figure 8).
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Figure 8. FP8 training by direct cast, width 256, default hyperparameters, η = (21, 2−8) for (u-µP, µP).
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Figure 11. Hyperparameter coupling sweep for µP. Note strong coupling between optima, e.g. in the cases of (ηemb, σinit) and (η, αattn).
See also: u-µP, Figure 12. Across all grids, the average training loss degradation from using the optimum from the wrong row/column is
0.08, which is worse than u-µP (0.03).
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Figure 12. Hyperparameter coupling sweep for u-µP. Note less coupling than with µP, see Figure 11. Across all grids, the average training
loss degradation from using the optimum from the wrong row/column is 0.03, which is better than µP (0.08).
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