
THUNDERSERVE: HIGH-PERFORMANCE AND COST-EFFICIENT LLM
SERVING IN CLOUD ENVIRONMENTS

Youhe Jiang * 1 Fangcheng Fu * 2 Xiaozhe Yao * 3 Taiyi Wang 1 Bin Cui 2 Ana Klimovic 3 Eiko Yoneki 1

ABSTRACT
Recent developments in large language models (LLMs) have demonstrated their remarkable proficiency in a range
of tasks. Compared to in-house homogeneous GPU clusters, deploying LLMs in cloud environments with diverse
types of GPUs is crucial for addressing the GPU shortage problem and being more cost-effective. However,
the diversity of network environments and various GPU types on the cloud bring difficulties to achieving high-
performance serving. In this work, we propose ThunderServe, a high-performance and cost-efficient LLM serving
system for heterogeneous cloud environments. We introduce a novel scheduling algorithm, which optimizes the
deployment plan of LLM serving to accommodate the heterogeneous resource and network bandwidth conditions
in cloud environments. Furthermore, we propose a lightweight re-scheduling mechanism, designed to adapt to
fluctuating online conditions (e.g., node failures, workload shifts) without the need for costly restarts of ongoing
services. Empirical results in both heterogeneous cloud and homogeneous in-house environments reveal that
ThunderServe delivers up to a 2.1× and on average a 1.7× increase in throughput and achieves up to a 2.5× and
on average a 1.5× reduction in latency deadlines compared with state-of-the-art systems given the same price
budget, suggesting opting for cloud services provides a more cost-efficient solution.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT (Achiam
et al., 2023), LLaMA (Touvron et al., 2023), OPT (Zhang
et al., 2022) and Falcon (Institute, 2023) have demonstrated
strong performance across a wide range of advanced applica-
tions. However, serving LLMs is cost-demanding, requiring
a large amount of hardware accelerators like GPUs to satisfy
efficiency requirements such as latency and throughput.

Mainstream LLM serving systems primarily focus on high-
performance GPUs like NVIDIA A100 and H100 in homo-
geneous GPU clusters. However, it is difficult for many
LLM service providers to get access to sufficient high-
performance GPUs, either due to the well known GPU
shortage problem (Yang et al., 2023; Strati et al., 2024)
or the substantial fees. Meanwhile, with more and more ad-
vanced GPU architectures announced in the past few years,
there are many less-performant GPUs in former generations
remaining under-utilized. Thus, real-world cloud environ-
ments usually consist of heterogeneous GPUs and diverse
prices. As shown in Table 1, cloud environments offer a

*Equal contribution 1Department of Computer Science, Univer-
sity of Cambridge, Cambridgeshire, UK 2Department of Computer
Science, Peking University, Beijing, China 3Department of Com-
puter Science, ETH Zurich, Zurich, Switzerland. Correspondence
to: Eiko Yoneki <eiko.yoneki@cl.cam.ac.uk>.

Table 1. GPU specifications and pricing
GPU
Type

Memory Access
Bandwidth

Peak
FP16 FLOPS

Memory
Limite

Price
(per GPU)

A100 2 TB/s 312 TFLOPS 80 GB $1.753/hr
A6000 768 GB/s 38.7 TFLOPS 48 GB $0.483/hr
A5000 626.8 GB/s 27.8 TFLOPS 24 GB $0.223/hr
A40 696 GB/s 149.7 TFLOPS 48 GB $0.403/hr
3090Ti 1008 GB/s 71 TFLOPS 24 GB $0.307/hr

wide range of hardware specifications and rental prices,
providing users with diverse options to reduce the costs as-
sociated with LLM deployment and serving. Recent efforts
(Jiang et al.; Mei et al., 2024; Griggs et al., 2024; Miao et al.,
2023) have demonstrated that serving LLM with heteroge-
neous GPUs presents opportunities in reducing the serving
cost. However, we find that these heterogeneous serving
systems mainly address the heterogeneity in hardwares but
fail to take account of the heterogeneity in the computation
and memory-access workloads of different inference phases,
which hinders the utilization of GPU resources. Such het-
erogeneity mainly comes from the distinct characteristics of
LLM inference, and has raised a surge of research interests.

Recent works (Patel et al., 2023; Hu et al., 2024; Qin et al.,
2024; Jin et al., 2024) have designed phase splitting ap-
proaches to utilize different amount of computational re-
sources for prefill and decoding phase in LLM inference,
which involves partitioning the two phases onto separate
devices and transmitting the intermediate results (primarily
KV caches) between them. Many empirical evidences have

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

3090 Ti A40
Prefill Phase

0.0
1.5
3.0
4.5
6.0
7.5

Pr
ice

 ($
)

×10 5

3090 Ti A40
Decode Phase

0.00
1.25
2.50
3.75
5.00 ×10 5

3090 Ti: Memory access-efficient (comparatively)
A40: Compute-efficient (comparatively)

Figure 1. Prefill and decode prices for a single request with input
and output lengths of 512 and 16 on 3090Ti and A40.

shown that such phase splitting approaches increase overall
hardware utilization and system efficiency compared with
the phase co-locating counterparts.

As the heterogeneity exists in both hardwares and workload
characteristics (i.e., compute/memory-bound), we suggest
that the phase splitting approach fits the heterogeneous ca-
pabilities among GPUs in cloud environments well. In
particular, since the two phases differ in the workload char-
acteristics, it is an intuitive idea to leverage different types
of GPUs for the two phases. For instance, as illustrated in
Figure 1, the A40 GPU with 149.7 TFLOPS is more cost-
effective for the compute-intensive prefill phase, whereas
the 3090Ti with 1008 GB/s memory bandwidth is better
suited for the memory-bounded decode phase. Inspired by
this, this work presents the first effort to integrate the phase
splitting idea with the heterogeneity among GPUs, aiming to
achieve high-performance and cost-effective LLM serving
in cloud environments. Nevertheless, the unique attributes
of cloud environments pose three key challenges:

Challenge 1: heterogeneous and limited resource pool.
The available GPUs in cloud environments are usually in het-
erogeneous types, each with distinct specification (e.g., peak
FLOPS, device memory bandwidth, and device memory
limit), and the amount of each type is also restricted (Yang
et al., 2023; Strati et al., 2024). As a result, to deploy mul-
tiple copies (a.k.a. model replicas) of the same LLM, we
must consider how to organize the available GPUs from
a global view — given the available resources of diverse
types, we need to jointly consider which GPUs should be
grouped together to serve one model replica, and whether
this replica should serve as the prefill or decoding phase. To
our knowledge, this is an unexplored problem so far.

Challenge 2: heterogeneous and low network bandwidth.
The second essential characteristic of cloud environments
is that GPUs are usually connected through low network
bandwidth, typically, PCIe for intra-node and ethernet for
inter-node communication. And the network bandwidth also
exhibits a high level of heterogeneity across different pairs
of GPUs due to the discrepancy in connectivity (different
PCIe versions, node locality, etc.). Such a network condi-
tion raises a hurdle for efficient LLM serving. On the one
hand, transmitting KV caches from prefill to decode replicas

inevitably incurs significant communication volume. While
prior works (Patel et al., 2023; Zhong et al., 2024) simply
assume high-speed network connections (e.g., NVLink and
Infini-Band) are available and overlook the communication
overhead of KV caches (detailed in §2), which is imprac-
tical for clouds. On the other hand, due to the astonishing
size of LLMs, model parallelism has been a cornerstone for
LLM deployment. Thus, there expresses a need for design-
ing heterogeneity-aware parallelization to facilitate phase
splitting LLM serving on clouds.

Challenge 3: workload variability. Compared to in-house
clusters, resources on clouds are more unstable (Miao et al.,
2023; Duan et al., 2024; Yousif, 2018; Erben et al., 2024),
and the distribution of requests (e.g., average arrival rate,
input and output length) may change over time in online
services in practice (Wang et al., 2024a). These factors
exacerbate the variability of serving workloads in cloud en-
vironments. In order to adapt to such workload variations,
prior works (Zhong et al., 2024) necessitate two steps: re-
generating the deployment plan from scratch and re-loading
the LLM parameters to adjust the model deployment. How-
ever, both steps are costly. Re-generating the deployment
plan could take minutes to complete due to the complex
hardware environments on cloud, and re-loading the LLM
with a huge amount of parameters could be time-consuming.
For instance, loading a 175B model with a disk bandwidth
of 1.2 GBps takes over five minutes. Such expensive steps
would lead to severe interruption to the online services.

To address these challenges, we develop ThunderServe, an
efficient and robust LLM serving system on clouds. Our
contributions are summarized as follows:

Contribution 1: We formulate the scheduling problem of
LLM deployment and serving on cloud as a two-level hierar-
chical optimization problem, and develop a novel scheduling
algorithm to optimize the deployment plan. In the upper-
level, we develop a tabu search algorithm to partition the
available GPUs of diverse types into model serving groups
(with each group responsible for one model replica). In the
lower-level, we determine the optimal parallel configuration
for each group as well as the orchestration of prefill and
decode replicas to optimize GPU and network usage.

Contribution 2: We design a lightweight re-scheduling
mechanism, which only involves adjusting the phase des-
ignation and orchestration in real-time, accelerates the re-
generation of deployment plan by a large extent, and does
not need to re-load the LLM parameters. It enables our
system to adapt to workload shifts at minimal cost, thereby
enhancing the robustness of LLM serving on cloud.

Contribution 3: Based on these techniques, we implement
ThunderServe, an efficient LLM serving system for clouds
featuring phase splitting. ThunderServe allows the two

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

0 1 2 3 4 5 6
Batch Size

0
5000

10000
15000
20000

Th
ro

ug
hp

ut
 (t

ok
en

/s
) Prefill phase

0 1 2 3 4 5 6
Batch Size

0
200
400
600
800

Decode phase

Figure 2. Effects of batching on different phases (LLaMA-7B with
each input having a sequence length of 1024).

phases of LLM inference to be split onto separate GPUs
with different resource allocations and parallel strategies.
We further integrate a KV cache compression technique into
our system, which performs a one-shot compression on the
KV cache for efficient inter-phase communication on clouds
while maintaining the model quality.

Contribution 4: The performance of ThunderServe in the
cloud environment is evaluated through comprehensive ex-
periments. We compare its system and economic efficiency
with state-of-the-art LLM serving systems, including Hex-
Gen in the same heterogeneous cloud environment, as well
as DistServe and vLLM in a homogeneous in-house setting
given the same budget in terms of cloud service fees. The
empirical results demonstrate that ThunderServe achieves
up to 2.1× and on average 1.7× increase in throughput and
up to 2.5× and on average 1.5× reduction in latency com-
pared with existing systems, showcasing the potential of
cost-effective LLM serving over clouds.

2 BACKGROUND AND RELATED WORKS

Phases of LLM inference. Given an input prompt, the
inference process of LLMs typically consists of two phases:
the prefill phase processes the prompt to compute the key-
value (KV) cache and generates the first token in a single
step, and the decode phase takes the last generated token and
KV cache as inputs to generate subsequent tokens. Different
from the prefill phase, the decode phase is executed for
several steps, with each step generating only one token,
which makes the decode phase more memory bandwidth
bounded than the computationally intensive prefill phase.

Performance metrics. There are three key metrics to evalu-
ate LLM inference: time to first token (TTFT), which mea-
sures the time of generating the first token; time per output
token (TPOT), which quantifies the average time of gen-
erating each token in the decode phase; end-to-end (E2E)
latency, which assesses the overall processing time of a
request (includes queuing, prefill, and decode costs). For
LLM serving systems, there are also two key metrics: Ser-
vice Level Objective (SLO) attainment, which represents the
percentage (e.g., 99%) of requests that can be served within
a predefined time frame set by the SLO, and the SLO is
often scaled to different multiples of single device execution
latency (denoted as SLO scale) to evaluate system perfor-
mance under different levels of SLO stringency; throughput,

which measures the number of requests a system can handle
within a specified time period. Efficient LLM serving sys-
tems should optimize either of the metrics, and meanwhile
meet the performance requirements of specific applications
if necessary.

Batching. Due to the divergent workloads of the two phases,
integrating batching strategies results in performance vari-
ations. In the prefill phase, a small batch size quickly sat-
urates the GPU, yielding marginal benefits from further
batching. Besides, execution latency increases linearly with
batch size, rendering batching impractical when the TTFT
constraints are strict. As shown in Figure 2, we conduct
a small testbed with LLaMA-7B as an example, which re-
veals that when the total number of tokens in a batch exceeds
1024, GPU efficiency reaches a plateau rather than being
further enhanced, showcasing the limited effect of batching
on system performance during the prefill phase. Due to
the token-by-token processing nature of the decode phase,
batching is essential for preventing low GPU utilization and
enhancing efficiency. As shown in Figure 2, increasing the
batch size enhances GPU efficiency, particularly in the de-
code phase. In short, batching in the decode phase improves
performance, even under stringent TPOT constraints.

Parallelism strategies. To parallelize the model over mul-
tiple GPUs, there are two prevalent forms of model par-
allelism, which are tensor model parallelism and pipeline
model parallelism. Tensor model parallelism (TP) (Shoeybi
et al., 2019; Nagrecha, 2021) divides model weights and
computationally intensive operations such as matrix multi-
plication across various GPUs, thereby splitting data scan-
ning and computation to minimize LLM inference latency,
particularly the TTFT in the prefill phase. Pipeline model
parallelism (PP) (Huang et al., 2019; Narayanan et al., 2019)
divides the layers of a model into multiple stages. These
stages are assigned to distinct GPUs for execution and they
establish a pipeline. Only inter-layer activations are needed
to be communicated between stages.

Phase splitting deployment. As the prefill and de-
code phases differ in workload characteristics (i.e.,
compute/memory-bound) significantly, recent efforts pro-
pose to utilize different hardware resources for the two
phases in order to avoid performance interference (Patel
et al., 2023; Zhong et al., 2024; Hu et al., 2024; Jin et al.,
2024; Qin et al., 2024). In other words, there are two kinds
of model replicas, one for prefill and the other for decode,
respectively, and it is necessary to transmit the KV cache
from the prefill replicas to the decode ones. Due to the sub-
stantial size of KV cache, existing efforts essentially require
high communication bandwidth for the KV cache transfer —
Zhong et al. (2024) proposed to colocate prefill and decode
replicas on GPUs within the same node, facilitating fast KV
cache transfer with NVLink, while Patel et al. (2023) and

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Data Center 1

Cluster Information

Data Center 2

Group Construction & Phase Designation (§3.2)

Prefill Instance

Decode Instance

Prefill Instance

Decode Instance

Parallel Configuration Deduction (§3.3)

(TP=2,
PP=2)

(TP=2,
PP=3)

(TP=1,
PP=2)

(TP=1,
PP=4)

Prefill & Decode Orchestration (§3.3)

Upper-level Lower-level

Lower-level

1 2

3 4
1

2

3

4

1

2

3

4

Figure 3. Workflow of our scheduling algorithm.

Hu et al. (2024) utilized high-speed Infini-Band connections
for inter-node communication. However, in cloud environ-
ments, GPUs are connected via limited bandwidth (typically,
PCIe for intra-node connections and Ethernet for inter-node
connections) rather than high-speed connections (typically,
NVLink and Infini-Band). Therefore, KV cache transfer
would lead to a huge cost and it necessitates enhancement.

Heterogeneous GPU Computing. Recent research has in-
vestigated diverse approaches to deploy large models on
heterogeneous GPU clusters. HexGen (Jiang et al.) pro-
poses asymmetric partitioning and advanced scheduling to
deploy generative inference in a decentralized and hetero-
geneous setting. Helix (Mei et al., 2024) formulates the
heterogeneous GPUs and network connections as a maxflow
problem and adopts a mixed integer linear programming
algorithm to discover highly optimized strategies to serve
LLMs. Our work has a similar objective, but is the first
effort that integrates phase splitting with the heterogeneous
GPUs to provide high-performance cloud serving for LLMs.

3 SCHEDULING IN THUNDERSERVE

This section introduces our scheduling algorithm, which
aims to optimize the overall SLO attainment of the serving.

3.1 Overview and Problem Formulation

To describe the model deployment over the available re-
sources of heterogeneous capabilities, the scheduling algo-
rithm should produce four essential components: 1⃝ The
group construction, i.e., how to partition the GPUs into
multiple model serving groups, where each group is respon-
sible for one model replica. 2⃝ The phase designation that
indicates whether each group should serve as the prefill or
decode phase. 3⃝ The parallel configuration for each model
replica. 4⃝ The orchestration of prefill and decode replicas
to guide how the requests should be routed. We term a
solution to these four components as a deployment plan.

As each deployment plan consists of four components, there
is an extremely huge solution space. To ease the scheduling,
we decouple the huge solution space into the Cartesian
product of two sub spaces, by turning the derivation of

deployment plan into a two-level hierarchical optimization
problem as follows.

• Upper-level: Suppose there are G GPUs of T types in
total, and Gt denotes the number of GPUs of type t. The
objective of the upper-level problem is to find out the best
combination of group construction and phase designation
that maximizes the end-to-end SLO attainment.

• Lower-level. Given the group construction and phase
designation, the objective of the lower-level problem is to
determine the best parallel configuration for each group
and how the prefill and decode replicas should be orches-
trated to maximize the end-to-end SLO attainment.

Obviously, the Cartesian product of the solution spaces of
the two problems completely covers all possible deployment
plans, so finding the optimal deployment plan is equivalent
to solving the hierarchical optimization problem by nature.
Figure 3 shows the workflow of our scheduling algorithm.
Given the target model and the available resources, we ini-
tiate the GPU construction and phase designation process,
which involves a tabu search process that iteratively pro-
poses solutions to the upper-level problem (§3.2). Then, for
any possible solution to the upper-level problem, we solve
the lower-level problem to obtain its performance, which
involves the the parallel configuration deduction and phase
orchestration process (§3.3).

3.2 Solving the Upper-level Problem

In cloud environments, there are various types of GPUs with
heterogeneous capabilities, making the group construction a
non-trivial problem. In addition, the phase-splitting design
requires meticulous phase designation to the model serv-
ing groups for better performance, making the upper-level
problem even more complex. Formally, in Appendix A, we
show that the upper-level problem is essentially a job shop
scheduling problem (JSSP), which is a notoriously difficult
NP-hard problem in combinatorial optimization (Sotskov &
Shakhlevich, 1995; Omar et al., 2006).

A well-known approach to solve JSSP is tabu search (Glover,
1990; Glover & Laguna, 1998; Gendreau & Potvin, 2005)
and there have been many efforts applying tabu search to
solve JSSP under various situations (Hurink et al., 1994;
Dauzère-Pérès & Paulli, 1997; Zhang et al., 2007). Moti-
vated by this, we adapt tabu search to the upper-level prob-
lem and design a brand new algorithm to identify the optimal
deployment plan, which is demonstrated in Algorithm 1. In
essence, it starts from an initial solution, and leverages an it-
erative neighborhood search process to improve the solution.
Below we focus on how to determine the initial solution and
how to construct neighbors given the current solution in our
scenario.

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Algorithm 1 Routine of solving the upper-level problem based
on tabu search, where Nstep denotes the number of search steps,
Nnghb denotes the number of neighbors to navigation in each step,
Nmem denotes the maximum number of memorized solutions, and
f(·) denotes the performance of a solution evaluated by solving
the lower-level problem.
1: function TABUSEARCH(Nstep=100, Nnghb=10, Nmem=5):
2: Initialize the current solution x
3: Initialize tabu list T ← [], best solution xbest ← x
4: /* Iterative Neighborhood Search */
5: for Nstep search steps do
6: Construct Nnghb neighbors of x and exclude those in T

to form the neighborhood setN for navigation
7: x′ ← argmaxx′′∈N f(x′′)
8: if f(x′) > f(xbest) then xbest ← x′

9: T. append(x′)
10: if len(T) > Nmem then T ← T [−Nmem :]
11: x← x′

12: end for
13: return xbest

14: end function

Initialization. It is essential to have a good initial solution
in tabu search in order to speedup the search process and
escape from local optima. Thus, we utilize the Hierarchical
Clustering method (Shetty & Singh, 2021) to cluster the
GPUs according to their inter-connection bandwidth matrix,
and subsequently treat each generated cluster as one model
serving group at initialization. Intuitively, this makes the
initial assignment of model serving groups strategically
avoid connections with ultra-low communication bandwidth
in the cloud environment. In addition, the phase designation
of each group is randomly initialized.

Neighbor construction. In the iterative search process,
tabu search evaluates a set of neighboring solutions given
the current solution. Denote gi,t as the number of GPUs of
type t in group i. We provide four approaches of to construct
the neighboring solutions, as exemplified in Figure 4 and
detailed below.

• Flipping phase designation. This approach randomly
selects a group and flips its phase. In other word, if the
group is originally designated to serve as a prefill replica,
then it will be changed to a decode replica, and vice versa.

• Splitting a group into two. This approach randomly selects
and splits a group gs,t into two based on a random ratio
r, assigning ⌊gs,t × r⌋ GPUs to the first new group g′s1,t
and the remainder to the second group g′s2,t, which is
effective for exploring how dividing resources impacts
performance, particularly when a group might be overly
large or tasked beyond its efficient operating capacity, i.e.,

g′s1,t ← ⌊gs,t × r⌋ , g′s2,t ← gs,t−g′s1,t,∀t ∈ {1, . . . , T}.

The phase of the new groups will be randomly designated.

• Merging two groups into one. This approach randomly

Split
the
4-th
group

1

2

3

1

2

3

1

2

1

2

Merge
the

1-th and
2-th
group

Move
GPUs

from 1-th
to 4-th
group

4 4

5

3

4

3

4

Figure 4. Examples of neighbor construction in tabu search
(changes in phase designation are omitted for simplicity).

selects and merges two groups gi,t, gj,t into one, which
explores the potential benefits or drawbacks of resource
centralization for individual model serving, i.e.,

g′merged,t ← gi,t + gj,t, ∀t ∈ {1, . . . , T}.

The phase of the new group will be randomly designated.

• Moving GPUs between groups. This approach involves
moving a certain number of (denoted as mt) GPUs of type
t from group i to group j. It is useful for exploring the ef-
fects of resource reallocation in scenarios where different
groups may benefit from different GPU capabilities.

g′i,t ← gi,t −mt, g′j,t ← gj,t +mt.

The adjustment in group construction and phase designation
iteratively navigate the neighborhood space of the current
solution, enabling tabu search to explore potential perfor-
mance enhancements. Additionally, to expedite the search
process, early checks are performed for each generated
neighborhood. For instance, if the total GPU memory of
any serving group after the moving or splitting operations
is insufficient to hold even a single copy of the model pa-
rameters, then the constructed neighbor is eliminated from
further evaluation.

3.3 Solving the Lower-level Problem

The goal of the lower-level problem is two-fold, i.e., find-
ing the optimal parallel configuration for each model serv-
ing group and how to orchestrate all groups together. For-
tunately, since the available resources and the designated
phase of each group are given, we find that the deduction of
optimal parallel configuration is independent to the orches-
tration. To be specific, suppose C ′ is a parallel configuration
for an arbitrary group, and C ′′ is another configuration with
higher performance, then it is obvious that we can always
find out an orchestration with C ′′ that is at least as good
as that with C ′. As a result, we first deduce the optimal
parallel configuration for each group individually, and then
determine the orchestration, as introduced below.

Deduction of parallel configuration. Given the available
resources and the designated phase of each group, we wish
to deduce the optimal parallel configuration. As discussed
in §2, the two phases differ in workload characteristics, so
their desirable parallel configurations also vary. For groups

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Coordinator

0.6

0.4

0.12

0.12
0.18

0.18

0.12

0.12

0.12

0.04

Prefill Replicas

Decode Replicas

𝒀𝒊,𝒋

𝑿𝒊

Figure 5. An example orchestration of prefill and decode replicas.

that serve as prefill replicas, we aim to deduce the latency-
optimal parallel configurations, since the prefill phase is
computation-intensive and batching does not help to en-
hance efficiency. In contrast, for groups that serve as decode
replicas, we aim to deduce the throughput-optimal paral-
lel configurations, since this memory bandwidth bounded
phase benefits from batching.

Numerous studies (Jiang et al.; Zheng et al., 2022; Li et al.,
2023; Miao et al., 2022; 2023; Wang et al., 2024b) have
investigated how to deduce the optimal parallel configura-
tion by meticulously enumerating a vast number of possible
configurations. In this work, we further take the key char-
acteristics of cloud environments into account and design
heuristics to accelerate the enumeration process. We in-
troduce the heuristics below and leave the details of the
deduction routine in Appendix B.

• Typically, cloud services generally do not provide rapid
links among nodes. Thus, we disallow tensor model par-
allelism to be deployed over GPUs across different nodes
due to its demand of higher network bandwidth.

• Since different types of GPUs may differ in the memory
capacity and computing ability, we support non-uniform
pipeline layer partitioning for pipeline model parallelism.

• In response to the heterogeneity in inter-node commu-
nication, we employ a dynamic programming algorithm
that aims to identify the path minimizing the cross-stage
communication cost in pipeline model parallelism.

Orchestration of prefill and decode replicas. Due to the
network heterogeneity in cloud environments, it is essential
to identify the optimal orchestration of prefill and decode
replicas within the cluster to minimize KV cache communi-
cation cost and optimize overall SLO attainment.

We adopt the inference task simulator from DistServe
(Zhong et al., 2024), which estimates the SLO attainment
according to workload information (e.g., input length, out-
put length, etc.) and single request processing time. It is
noteworthy that we integrate the KV cache communication
cost into the simulator, since it is non-negligible in cloud
environments. To be specific, suppose there are m prefill

replicas and n decode replicas, our simulator enumerates
every pair of them and estimates the SLO attainment by
integrating the KV cache communication cost, which is
analyzed via the alpha-beta model (Hockney, 1994):

T
(kv comm)
ij = αij + 2bshNbytes/βij , (1)

where b, s represent the batch size and sequence length for
inference, h represents the hidden size of a Transformer
block, Nbytes represents the byte size for KV cache com-
munication, and αij , βij represent the network latency and
bandwidth between the i-th prefill replica and the j-th de-
code replica. We evaluate the simulator and alpha-beta
model accuracy in Appendix J.

Based on this, we estimate the SLO attainment of every pair
of prefill and decode replicas. Formally, denote D ∈ Rm×n

as the SLO attainment matrix, where Dij represents the
estimated SLO attainment when requests are processed by
the i-th prefill replica and the j-th decode replica. Then,
we turn the optimization problem of overall system SLO
attainment into a simple two-stage transportation problem
(TSTP) (Santoso & Heryanto, 2022) as follows:

argmax
X∈Rm,Y ∈Rm×n

m∑
i=1

n∑
j=1

XiYijDij

s.t.
m∑
i=1

Xi = 1,

n∑
j=1

Yij for ∀i, Xi ≥ 0 for ∀i, Yij ≥ 0 for ∀i, j,

where Xi denotes the portion of incoming requests that
are assigned to the i-th prefill replica, and Yij denotes the
portion of requests processed by the i-th prefill replica that
are dispatched to the j-th decode replica. The TSTP can
be solved by linear programming, and the optimal X∗, Y ∗

describe how requests are routed among the model serving
groups, which also represent the orchestration of different
replicas to maximize the overall system SLO attainment.

By combining the deduction of optimal parallel configu-
ration and the orchestration of different replicas, we ac-
complish the solution to the lower-level problem, and the
resulting system SLO attainment is returned to the tabu
search process (i.e., f(·) in Algorithm 1).

3.4 Lightweight Rescheduling in Real Time

Numerous factors in cloud services affect the optimal de-
ployment plan, with two primary factors being LLM infer-
ence workloads and GPU availability. On the one hand,
LLM services usually exhibit significant variation in work-
load characteristics across different downstream tasks. For
instance, coding workloads typically generate shorter re-
sponses than conversational workloads but usually have
longer prompts (Patel et al., 2023). On the other hand, com-
pared to in-house clusters, cloud resources are inherently
more dynamic and unstable, necessitating a good support

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

1/3 1/1 3/1

Prefill/Decode Ratio

0.0e

3.7e3

7.5e3

1.1e4

1.5e4

Th
ro

ug
hp

ut
 (t

ok
en

/s
) 4 Replicas

1/5 1/2 1/1 2/1 5/1

Prefill/Decode Ratio

0.0e

8.1e3

1.6e4

2.4e4

3.2e4
6 Replicas

1/7 1/3 3/5 1/1 5/3 3/1 7/1

Prefill/Decode Ratio

0.0e

1.1e4

2.2e4

3.3e4

4.4e4
8 Replicas

Coding Conversation

Figure 6. Throughput (token/s) by prefill-to-decode ratio. Impact
of phase designation and orchestration on overall system through-
put. We experiment with LLaMA-13B on both coding and conver-
sation workloads across clusters with 8, 12, and 16 A5000 GPUs,
respectively, with two GPUs serving one replica. The ratio repre-
sents the prefill-to-decode ratio (i.e., the ratio of # prefill replicas
to # decode replicas). We have also provided SLO Attainment
results in Figure 14 of Appendix D.

for cluster size adjustments in real-time. Consequently,
rescheduling is essential for ThunderServe to adapt the de-
ployment plan to varying online workloads and cluster size
changes on cloud. However, altering the deployment plan
is far from trivial in cloud environments. If we re-run the
scheduling algorithm from scratch and reload the model
parameters according to the updated deployment plan (take
minutes to complete), it would lead to severe interruption
to the online services. Therefore, we propose a lightweight
rescheduling process that only adjusts the phase designation
and orchestration in the deployment plan to accommodate
varying workloads and cluster sizes.

The rationality behind our lightweight rescheduling is that
the changes in workload generally influence the demands
on the prefill and decode phases. To elaborate, we conduct
comprehensive experiments to demonstrate the impact of
phase designation and orchestration over diverse workloads
and cluster sizes (with fixed group construction and parallel
configuration). As shown in Figure 6, the coding work-
load, characterized by relatively longer input length and
shorter output length, exhibits enhanced performance with
more prefill replicas and fewer decode replicas. Conversely,
the conversation workload, typified by relatively shorter
prompts and longer responses, necessitates more decode
replicas and fewer prefill replicas to prioritize resources to
the long-running decoding, with the ideal prefill-to-decode
ratio fluctuating as the cluster size varies. These findings
underscore the critical importance of precise adjustments
in the phase designation and orchestration to achieve opti-
mal system performance and realize the ability to adapt to
various workloads and cluster sizes.

The lightweight rescheduling is done by simplifying the
routines introduced in §3.2 and §3.3:

• For the tabu search process, only the flipping phase des-
ignation approach is used to construct neighboring solu-
tions, while the other approaches are not involved in the

Table 2. Impact of KV cache communication compression on the
model accuracy on CoQA, TruthfulQA and GSM8K tasks.

Task LLaMA-7B LLaMA-13B

CoQA 16-bit 63.95 66.35
4-bit 64.58 66.54

TruthfulQA 16-bit 30.64 29.68
4-bit 30.13 29.34

GSM8K 16-bit 13.23 22.34
4-bit 12.54 21.29

lightweight rescheduling.

• The deduction of parallel configuration is skipped and the
orchestration problem will be solved using the unaltered
parallel configurations and the newly designated phases.

Although our lightweight rescheduling leads to sub-
optimality, our experiments in §5.4 show that it achieves
comparable performance against rescheduling from scratch
in various scenarios. More importantly, by merely adjust-
ing the phase designation and orchestration, there is no
need to reload the parameters, and thus introduces almost
zero overhead to the online services. Consequently, our
lightweight rescheduling improves the flexibility and robust-
ness of ThunderServe to a great extent.

4 IMPLEMENTATION

ThunderServe is a distributed LLM serving system designed
to optimize online services in cloud environments, which
develops a novel scheduling algorithm to partition the given
cloud GPU resources into model serving groups, designate
which phase each group should serve as, deduce the optimal
parallel configuration for each group, and determine how the
requests should be routed among groups. It is implemented
using 20K lines of Python and C++/CUDA code. Besides,
ThunderServe incorporates FlashAttention (Dao et al., 2022)
and PagedAttention (Kwon et al., 2023) to accelerate LLM
inference, and leverages the batching strategy proposed by
Zhong et al. (2024) for LLM serving.

Overall routine. The overall routine of ThunderServe is
as follows. 1⃝ To launch a serving process, the scheduling
algorithm (§3.2 and §3.3) generates the deployment plan,
which is then utilized to instantiate the model replicas over
the cloud GPU resources. 2⃝During the serving process, the
incoming requests are dispatched across the prefill and de-
code replicas, and the generated responses are gathered. 3⃝
At the same time, the inference workload is constantly mon-
itored and reported to the scheduling algorithm. 4⃝ Once a
workload shift is detected, the scheduling algorithm triggers
the lightweight re-scheduling process (§3.4) to adjust the de-
ployment plan in response to the new workload. Due to the
space constraint, we refer interested readers to Appendix E
for more implementation details of ThunderServe.

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

KV cache compression technique. As discussed in
§2, prior works rely on high-bandwidth connections (i.e.,
NVLINK or InfiniBand) for transferring KV cache in phase
splitting deployment, which is impractical in cloud service
scenarios characterized by heterogeneous network condi-
tions among GPUs. To reduce the KV cache communication
cost, we borrow the idea of low-precision quantization from
KIVI (Liu et al., 2024) to quantize KV cache to fewer bits,
so that the size of each element (i.e. Nbytes in Equation 1)
is shrinked. However, unlike existing works in the field of
KV cache quantization (Liu et al., 2024; Kang et al., 2024),
our system does not retain low bitwidths when using the
KV cache values for computation. Specifically, the KV
cache values in the prefill replica are quantized and packed
for communication, and then immediately unpacked and
dequantized after they are received by the decode replica.
Thus, both the prefill and decode phases are conducted using
the 16-bit KV cache values rather than the quantized ones.
By this means, we can significantly reduce the KV cache
communication volume, without harming the model quality.

To elaborate, we conduct a small testbed with LLaMA-
7B over two A5000 GPUs, which featured an inter-
communication bandwidth of 40 Gbps — significantly lower
than that of InfiniBand and NVLink. Quantizing the 16-bit
elements to 4-bit significantly reduces KV cache communi-
cation costs from 16-30% to 4-9% of the total end-to-end
inference costs, drastically improving the performance of
the system. Besides, we demonstrate the accuracy results
of LLaMA-7B and LLaMA-13B models on CoQA, Truth-
fulQA and GSM8K tasks with both 16-bit and 4-bit KV
cache precision levels. As we do not retain low bitwidths
when using the KV cache values for computation, our ex-
periments in Table 2 consistently show that the accuracy
drop when using 4-bit precision compared to 16-bit preci-
sion remains below 2% across all experimental scenarios,
which confirms the validity of our approach. Due to the
space constraint, we provide more evaluation results in Ap-
pendix I, including perplexity (PPL) and ROUGE-1/2/L on
the WikiText2, PTB, and CBT datasets, and the end-to-end
throughput comparisons between 16-bit and 4-bit precision.

5 EVALUATION

5.1 Experimental Setup

Hardware environments. We consider two types of hard-
ware environments with almost the same price budgets.

• Heterogeneous GPUs on the cloud. We rent GPUs
from Vast.ai, a GPU cloud service provider. We rent
four types of instances with 32 GPUs in total: two
4×A6000 instances, two 4×A5000 instances, one 8×A40
instance and two 4×3090Ti instances, with a total price
of $13.542/hour to represent the heterogeneous case.

• Homogeneous GPUs in a in-house server. For baseline
systems that do not support heterogeneous GPUs, we
use one in-house server equipped with 8×A100-80GB
GPUs. According to Table 1, renting the same GPUs costs
$14.024/hour, which is close to the aforementioned price
budget on the cloud.

The GPU specifications are provided in Table 1, while the
network bandwidth can be found in Appendix C.

Model and workloads. We deploy the popular open-
source LLaMA-30B model across two real-world work-
loads, coding and conversation, from the Azure Conversa-
tion dataset (Patel et al., 2023). And we follow prior works
(Li et al., 2023; Jiang et al.) to generate the inference work-
load using a Poisson process determined by the request rate,
with consecutive requests (inter-arrival times) following an
exponential distribution.

Evaluation metrics. Following prior works (Patel et al.,
2023; Zhong et al., 2024), we focus on overall system SLO
attainment and throughput when evaluating the performance.
System SLO attainment indicates the percentage of requests
completed within a predefined latency deadline. There are
three types of SLO: TTFT, TPOT, and E2E SLO. We specif-
ically measure system SLO attainment by the percentage of
requests that meet the time criteria established by each SLO
type. We scale the SLO to various multiples of the execu-
tion latency of A100 GPUs (SLO Scale in Figure 7), which
allows us to evaluate system performance under different
levels of operational stringency. For a target SLO attainment
goal (e.g., 90% and 99%), we focus on the minimum latency
deadline required to achieve the desired attainment.

Baselines. We consider state-of-the-art systems under both
the cloud and in-house settings, respectively. Under the
cloud setting, we consider HexGen (Jiang et al.), an LLM
serving system for clouds featuring advanced scheduling
and asymmetric parallelism. For the in-house scenario, we
consider vLLM (Kwon et al., 2023), a prestigious LLM
serving system, as well as DistServe (Zhong et al., 2024),
an LLM serving system featuring phase splitting.

5.2 End-to-end Evaluation

In this section, we compare the end-to-end performance of
ThunderServe against baselines on various workloads.

System SLO attainment comparisons on the cloud. We
first evaluate the performance of ThunderServe on the cloud.
As shown in Figure 7, typically higher average request ar-
rival rates require higher SLO scales (i.e., longer latency
deadlines) to meet the SLO attainment goal. ThunderServe
consistently outperforms HexGen in terms of all TTFT,
TPOT, and E2E SLO attainments.

On the coding workload, ThunderServe achieves up to 1.8×

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

12 23 34 46 57
28

52

76

100

SL
O

At
ta

in
m

en
t (

%
) req rate 18.0

8 16 23 30 38
21

47

74

100
req rate 12.0

0 2 4 6 8
0

33

67

100
req rate 6.0

3 8 14 20 25

SLO Scale

2

35

67

100

SL
O

At
ta

in
m

en
t (

%
) req rate 12.0

2 5 8 11 14

SLO Scale

0

33

67

100
req rate 9.0

1.0 2.6 4.2 5.9 7.5

SLO Scale

0

33

67

100
req rate 6.0

HexGen-E2E
HexGen-TTPT

HexGen-TPOT
ThunderServe-E2E

ThunderServe-TTPT
ThunderServe-TPOT

Figure 7. SLO attainment results on coding (top row) and conver-
sation (bottom row) workloads.

8 18 28 38 48
14

43

71

100

SL
O

At
ta

in
m

en
t (

%
) req rate 18.0

8 15 22 28 35
19

46

73

100
req rate 12.0

2 4 6 8 10
16

44

72

100
req rate 6.0

10 15 20 25 30

SLO Scale

39

59

80

100

SL
O

At
ta

in
m

en
t (

%
) req rate 12.0

5 10 15 20 25

SLO Scale

19

46

73

100
req rate 9.0

2 5 8 11 14

SLO Scale

0

33

67

100
req rate 6.0

ThunderServe (cloud) DistServe (in-house) vLLM (in-house)

Figure 8. SLO attainment results on coding (top row) and conver-
sation (bottom row) workloads.

ThunderServe HexGen DistServe vLLM
0.0

0.5

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut 1.5x 1.5x 1.7x

1.3x

2.1x 2.3x

Coding Conversation

Figure 9. Throughput scaled by ThunderServe.

and on average 1.4× lower E2E latency deadlines compared
with existing approaches. Specifically, as we will elaborate
in §5.3, the coding workload makes our scheduling algo-
rithm designate more prefill replicas than decode replicas,
since the bottleneck is on prefilling given the relatively long
input prompts. And the prefill-to-decode ratio decreases
with the surge of the average request arrival rate, which
matches our previous discussion in §3.4. On the conversa-
tion workload, ThunderServe achieves up to 1.4× and on
average 1.3× lower E2E latency deadlines. The conversa-
tion workload makes our scheduling algorithm deploy more
decode replicas than prefill replicas, since the bottleneck
is on decoding given the relatively long output responses.
The phase splitting technique significantly reduces prefill-
decode interference during inference, leading to improved
TTFT and TPOT SLO attainments in all cases.

Cost-efficiency of deploying LLM services on the cloud.
To assess the cost-efficiency of deploying LLM services on
the cloud, we compare ThunderServe in the cloud setting
with DistServe and vLLM in the in-house setting, given the
same price budget. As shown in Figure 8, ThunderServe
significantly outperforms DistServe and vLLM, achieving
up to 2.5× and on average 1.8× lower E2E latency dead-
lines. This advantage stems from ThunderServe’s ability to
deploy 3× more model replicas on the cloud than DistServe
on the in-house server within the same price budget, which
provides ThunderServe with superior parallel processing
capability. And the scheduling algorithm of ThunderServe
takes full advantage of the heterogeneity of cloud GPUs
and improves system performance by allocating appropriate
GPUs for prefilling and decoding, respectively. Thus, Thun-

Table 3. Model deployment discovered by ThunderServe.
Workload GPU Configuration Strategy Type of Replicas

C
od

in
g

8×A40 TP=2, PP=1 4 Prefill Replicas
4×A5000 TP=4, PP=1 1 Prefill Replica
4×A6000 TP=2, PP=1 2 Prefill Replicas
2×A5000+2×3090Ti TP=2, PP=2 1 Prefill Replica
4×3090Ti TP=2, PP=2 1 Decode Replica
4×A6000 TP=1, PP=2 2 Decode Replicas
2×A5000+2×3090Ti TP=2, PP=2 1 Decode Replica

C
on

ve
rs

at
io

n
6×A40 TP=2, PP=1 3 Prefill Replicas
2×A5000+2×3090Ti TP=2, PP=2 1 Prefill Replica
4×3090Ti TP=2, PP=2 1 Decode Replica
2×A40 TP=1, PP=2 1 Decode Replica
4×A5000 TP=2, PP=2 1 Decode Replica
8×A6000 TP=1, PP=2 4 Decode Replicas
2×A5000+2×3090Ti TP=2, PP=2 1 Decode Replica

derServe greatly improves the cost-efficiency of deploying
LLM services on the cloud.

System throughput comparisons. We further compare
the system throughput between ThunderServe and the base-
lines. As demonstrated in Figure 9, compared with HexGen,
ThunderServe achieves 1.5 and 1.3× higher throughputs in
coding and conversation workloads respectively. And com-
pared with DistServe in the in-house setting, 1.5 and 2.1×
higher throughputs are realized. These results demonstrate
ThunderServe’s ability to effectively manage larger loads.

5.3 Case Study of Scheduling

Table 3 presents the model deployment discovered by our
scheduling algorithm. It can be seen that ThunderServe
prioritizes the GPUs with better computing ability for pre-
filling (e.g., A40) and those with higher memory access
bandwidth GPUs for decoding (e.g., 3090Ti). Additionally,
ThunderServe automatically assigns more decode replicas to
the conversation workload due to its longer output lengths,
while more prefill replicas to the coding workload due to
the longer prompt lengths. These results verify that Thun-
derServe is able to take the heterogeneity in both hardwares
and serving workloads into account, generating model de-
ployment that maximizes the system performance.

Compared to the in-house setting with an 8×A100 instance,

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

20 40 60
Search Time (s)

60

80

100

Es
tim

at
ed

 S
LO

s (
%

) 16 GPUs 24 GPUs 32 GPUs

Figure 10. Convergence curves of
scheduling from scratch for differ-
ent cluster sizes.

2 4 6 8 10
SLO Scale (coding)

10

40

70

100

SL
O

At
ta

in
m

en
t (

%
)

2 3 5 6 8
SLO Scale (conversation)

0

33

67

100

Before GPU Offline
Full Rescheduling

Lightweight Rescheduling
w/o Rescheduling

Figure 11. SLO attainments of before (indicated
by the solid line) and after (indicated by the
dotted lines) 4 out of 32 GPUs offline.

2 4 6 8 10
SLO Scale (coding)

5

37

68

100

SL
O

At
ta

in
m

en
t (

%
)

2 3 5 6 8
SLO Scale (conversation)

0

33

67

100

w/ KV Comp.
w/ P/D Orch.

w/o KV Comp.
w/ P/D Orch.

w/o KV Comp.
w/o P/D Orch.

Figure 12. Impact of KV cache compression and
prefill and decode orchestration on the SLO at-
tainments.

where only 4 model replicas can be served, ThunderServe
serves a maximum of 12 model replicas in the cloud setting
within the same price budget. Although individual inference
processes in the cloud setting may experience increased
latency due to the lower hardware performance (i.e., the
cloud GPUs are less performant than A100), the overall
performance is improved due to the higher number of model
replicas. Thus, ThunderServe conveys the ability of high-
performance and cost-efficient LLM serving on clouds.

5.4 Effectiveness and Ablation Studies

Time cost of Scheduling. We evaluate the running time of
our scheduling algorithm from scratch with cluster sizes of
16, 24 and 32 GPUs. Leveraging our effectively designed
neighborhood construction method, the algorithm based on
tabu search scales well with the number of GPUs, requiring
approximately 21, 36 and 54 seconds to converge, as shown
in Figure 10. This search process is executed once before
the initial deployment of the system, rendering its time cost
negligible given the hourly scale of online services.

Lightweight re-scheduling. To evaluate the effectiveness
of our lightweight re-scheduling, we consider a scenario
where 4 out of 32 GPUs become unavailable. Specifi-
cally, we remove two decode replicas and let ThunderServe
re-schedule on the fly. We compare our lightweight re-
scheduling with 1⃝ a full re-scheduling approach, which
involves re-starting the services and reloading parameters,
and 2⃝ a no re-scheduling approach, which does not make
any changes to the deployment plan and keeps the ser-
vices using the remaining GPUs. As shown in Figure 11,
our lightweight re-scheduling achieves similar SLO at-
tainment to the full re-scheduling approach and outper-
forms the no re-scheduling approach, showing the strengths
of our lightweight re-scheduling. More importantly, our
lightweight re-scheduling process finishes within seconds,
without any overhead on parameter reloading, far exceeding
the full re-scheduling approach. This is reasonable as tabu
search is done locally and we only adjust the phase desig-
nation and orchestration to adapt to different cluster sizes.
Therefore, ThunderServe is able to handle the dynamicity
in cloud environments well.

KV cache compression and orchestration. There are two

Table 4. Overhead of Full and Lightweight Rescheduling.
Rescheduling Reloading Overall

Full 54(±5)s 103(±10)s 157(±13)s
Lightweight 13(±2)s 0s 13(±2)s

major techniques in ThunderServe to address the communi-
cation cost of KV cache transmission from prefill to decode
replicas, which are the KV cache compression and orches-
tration method. We conduct experiments to assess their
effects. As illustrated in Figure 12, ThunderServe exhibits
a degraded performance in both coding and conversation
scenarios without KV cache compression, incurring approx-
imately 1.3× the overhead per single request. This under-
mines the benefits of phase splitting. If we further disable
the orchestration method described in §3.3 and substitute
it with a random dispatching, there is another 4× of perfor-
mance degradation. In summary, ThunderServe chooses the
parallel configurations and KV cache communication paths
that optimize overall system performance given the high
heterogeneity of communication bandwidth on the cloud.

More Experiment Results. We have also conducted more
experiments to demonstrate the strengths of ThunderServe,
including more case studies, the effect of KV cache com-
pression on model quality, and the accuracy of our simulator.
Due to the space constraint, we refer interested readers to
our supplemental material for more details.

6 CONCLUSION

This paper explores the potential of deploying LLM ser-
vices on clouds. Toward this end, we presented Thunder-
Serve, a system that employs hybrid model parallelism and
phase splitting to enhance LLM serving efficiency across
heterogeneous cloud GPU clusters. With ThunderServe, we
proposed a novel scheduling algorithm that co-optimizes re-
source allocation, phase designation, parallelism strategies,
and the orchestration of both prefill and decode phases. Ad-
ditionally, we proposed a lightweight re-scheduling mecha-
nism to enhance ThunderServe performance in response to
fluctuating online workloads for extremely fast adjustment
on clouds. We conducted experiments on various workloads
in both heterogeneous cloud and homogeneous in-house set-
tings to demonstrate that ThunderServe outperforms state-
of-the-art systems within the same price budget.

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

REFERENCES

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness, 2022.

Dauzère-Pérès, S. and Paulli, J. An integrated approach
for modeling and solving the general multiprocessor job-
shop scheduling problem using tabu search. Annals of
Operations Research, 70(0):281–306, 1997.

Duan, J., Song, Z., Miao, X., Xi, X., Lin, D., Xu, H.,
Zhang, M., and Jia, Z. Parcae: Proactive,{Liveput-
Optimized}{DNN} training on preemptible instances. In
21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pp. 1121–1139, 2024.

Erben, A., Mayer, R., and Jacobsen, H.-A. How can we train
deep learning models across clouds and continents? an ex-
perimental study. Proceedings of the VLDB Endowment,
17(6):1214–1226, 2024.

Gendreau, M. and Potvin, J.-Y. Tabu search. Search method-
ologies: introductory tutorials in optimization and deci-
sion support techniques, pp. 165–186, 2005.

Glover, F. Tabu search: A tutorial. Interfaces, 20(4):74–94,
1990.

Glover, F. and Laguna, M. Tabu search. Springer, 1998.

Griggs, T., Liu, X., Yu, J., Kim, D., Chiang, W.-L., Cheung,
A., and Stoica, I. Mélange: Cost efficient large language
model serving by exploiting gpu heterogeneity, 2024.

Hockney, R. W. The communication challenge for mpp:
Intel paragon and meiko cs-2. Parallel computing, 20(3):
389–398, 1994.

Hu, C., Huang, H., Xu, L., Chen, X., Xu, J., Chen, S.,
Feng, H., Wang, C., Wang, S., Bao, Y., Sun, N., and
Shan, Y. Inference without interference: Disaggregate
llm inference for mixed downstream workloads, 2024.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. Gpipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in neural information processing
systems, 32, 2019.

Hurink, J., Jurisch, B., and Thole, M. Tabu search for the job-
shop scheduling problem with multi-purpose machines.
Operations-Research-Spektrum, 15:205–215, 1994.

Institute, T. I. Falcon 180b, 2023. URL https://
falconllm.tii.ae/falcon-180b.html.

Jiang, Y., Yan, R., Yao, X., Zhou, Y., Chen, B., and Yuan, B.
Hexgen: Generative inference of large language model
over heterogeneous environment. In Forty-first Interna-
tional Conference on Machine Learning.

Jiang, Y., Fu, F., Yao, X., He, G., Miao, X., Klimovic, A.,
Cui, B., Yuan, B., and Yoneki, E. Demystifying cost-
efficiency in llm serving over heterogeneous gpus. arXiv
preprint arXiv:2502.00722, 2025.

Jin, Y., Wang, T., Lin, H., Song, M., Li, P., Ma, Y., Shan, Y.,
Yuan, Z., Li, C., Sun, Y., et al. P/d-serve: Serving disag-
gregated large language model at scale. arXiv preprint
arXiv:2408.08147, 2024.

Kang, H., Zhang, Q., Kundu, S., Jeong, G., Liu, Z., Krishna,
T., and Zhao, T. Gear: An efficient kv cache compression
recipe for near-lossless generative inference of llm, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Li, Z., Zheng, L., Zhong, Y., Liu, V., Sheng, Y., Jin, X.,
Huang, Y., Chen, Z., Zhang, H., Gonzalez, J. E., and
Stoica, I. Alpaserve: Statistical multiplexing with model
parallelism for deep learning serving, 2023.

LibP2P. A modular network stack, 2023. URL https:
//libp2p.io/.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman,
V., Chen, B., and Hu, X. Kivi: A tuning-free asym-
metric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024.

Mei, Y., Zhuang, Y., Miao, X., Yang, J., Jia, Z., and Vinayak,
R. Helix: Distributed serving of large language models
via max-flow on heterogeneous gpus. arXiv preprint
arXiv:2406.01566, 2024.

Miao, X., Wang, Y., Jiang, Y., Shi, C., Nie, X., Zhang, H.,
and Cui, B. Galvatron: Efficient transformer training over
multiple gpus using automatic parallelism. Proceedings
of the VLDB Endowment, 16(3):470–479, 2022.

Miao, X., Shi, C., Duan, J., Xi, X., Lin, D., Cui, B., and Jia,
Z. Spotserve: Serving generative large language models
on preemptible instances, 2023.

Nagrecha, K. Model-parallel model selection for deep learn-
ing systems. In Proceedings of the 2021 international
conference on management of data, pp. 2929–2931, 2021.

https://falconllm.tii.ae/falcon-180b.html
https://falconllm.tii.ae/falcon-180b.html
https://libp2p.io/
https://libp2p.io/

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. Pipedream: generalized pipeline parallelism for
dnn training. In Proceedings of the 27th ACM symposium
on operating systems principles, pp. 1–15, 2019.

Omar, M., Baharum, A., and Hasan, Y. A. A job-shop
scheduling problem (jssp) using genetic algorithm (ga).
In Proceedings of the 2nd im TG T Regional Conference
on Mathematics, Statistics and Applications Universiti
Sains Malaysia, 2006.

Patel, P., Choukse, E., Zhang, C., Íñigo Goiri, Shah, A.,
Maleki, S., and Bianchini, R. Splitwise: Efficient genera-
tive llm inference using phase splitting, 2023.

Qin, R., Li, Z., He, W., Zhang, M., Wu, Y., Zheng, W., and
Xu, X. Mooncake: Kimi’s kvcache-centric architecture
for llm serving. arXiv preprint arXiv:2407.00079, 2024.

Santoso, S. and Heryanto, R. M. Development of two-stage
transportation problem model with fixed cost for opening
the distribution centers. Jurnal Ilmiah Teknik Industri, 21
(1):63–71, 2022.

Shetty, P. and Singh, S. Hierarchical clustering: a survey.
International Journal of Applied Research, 7(4):178–181,
2021.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Sotskov, Y. N. and Shakhlevich, N. V. Np-hardness of shop-
scheduling problems with three jobs. Discrete Applied
Mathematics, 59(3):237–266, 1995.

Strati, F., Elvinger, P., Kerimoglu, T., and Klimovic, A. Ml
training with cloud gpu shortages: Is cross-region the
answer? In Proceedings of the 4th Workshop on Machine
Learning and Systems, pp. 107–116, 2024.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Wang, Y., Chen, Y., Li, Z., Kang, X., Tang, Z., He, X., Guo,
R., Wang, X., Wang, Q., Zhou, A. C., et al. Burstgpt:
A real-world workload dataset to optimize llm serving
systems. 2024a.

Wang, Y., Jiang, Y., Miao, X., Fu, F., Zhu, S., Nie, X., Tu,
Y., and Cui, B. Improving automatic parallel training via
balanced memory workload optimization. IEEE Transac-
tions on Knowledge and Data Engineering, 2024b.

Yang, Z., Wu, Z., Luo, M., Chiang, W.-L., Bhardwaj, R.,
Kwon, W., Zhuang, S., Luan, F. S., Mittal, G., Shenker, S.,
et al. {SkyPilot}: An intercloud broker for sky computing.
In 20th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 23), pp. 437–455, 2023.

Yao, X. Open Compute Framework: Peer-to-Peer Task
Queue for Foundation Model Inference Serving, Septem-
ber 2023. URL https://github.com/autoai-
org/OpenComputeFramework.

Yousif, M. Cloud computing reliability—failure is an option.
IEEE Cloud Computing, 5(3):4–5, 2018.

Zhang, C., Li, P., Guan, Z., and Rao, Y. A tabu search algo-
rithm with a new neighborhood structure for the job shop
scheduling problem. Computers & Operations Research,
34(11):3229–3242, 2007.

Zhang, J., Huang, H., Zhang, P., Wei, J., Zhu, J., and Chen, J.
Sageattention2: Efficient attention with thorough outlier
smoothing and per-thread int4 quantization, 2024. URL
https://arxiv.org/abs/2411.10958.

Zhang, J., Wei, J., Zhang, P., Zhu, J., and Chen, J. Sageatten-
tion: Accurate 8-bit attention for plug-and-play inference
acceleration. In International Conference on Learning
Representations (ICLR), 2025a.

Zhang, J., Xiang, C., Huang, H., Xi, H., Wei, J., Zhu, J., and
Chen, J. Spargeattn: Accurate sparse attention accelerat-
ing any model inference, 2025b.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language models,
2022.

Zheng, L., Li, Z., Zhang, H., Zhuang, Y., Chen, Z., Huang,
Y., Wang, Y., Xu, Y., Zhuo, D., Xing, E. P., Gonzalez,
J. E., and Stoica, I. Alpa: Automating inter- and intra-
operator parallelism for distributed deep learning, 2022.

Zhong, Y., Liu, S., Chen, J., Hu, J., Zhu, Y., Liu, X., Jin,
X., and Zhang, H. Distserve: Disaggregating prefill and
decoding for goodput-optimized large language model
serving, 2024.

https://github.com/autoai-org/OpenComputeFramework
https://github.com/autoai-org/OpenComputeFramework
https://arxiv.org/abs/2411.10958

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

A NP-HARDNESS OF DEPLOYMENT
PLANNING

Finding the optimal deployment plan that maximizes the
overall SLO for deploying multiple models on a hetero-
geneous GPU cluster with variable interconnect topology
and computational capabilities is non-trivial. In particular,
we show that this problem is NP-hard by transforming it
into the well-known NP-hard Job Shop Scheduling Problem
(JSSP) (Sotskov & Shakhlevich, 1995; Omar et al., 2006).

Transformation of the deployment planning problem to
JSSP. Each GPU in the heterogeneous cluster serves as a
distinct machine in the JSSP. These GPUs exhibit differ-
ences in computation power, memory, and communication
capabilities. Each model, or its components depending on
the placement method, is considered a job within JSSP. The
deployment of each model involves multiple tasks or oper-
ations, each corresponding to the deployment of a part of
a model on one or more GPUs, accompanied by specific
resource requirements and execution constraints. Sequential
dependencies are evident in scenarios where the completion
of one operation on a GPU is prerequisite for the initia-
tion of the next on another GPU, characteristic of pipeline
model parallelism. Concurrent dependencies arise when
operations must occasionally synchronize across GPUs, re-
flecting interdependencies that require coordination akin to
those in tensor model parallelism. In this context, maxi-
mizing SLO does not solely involve minimizing idle and
wait times but also necessitates the optimization of the al-
location and scheduling of operations to ensure continuous
and efficient GPU utilization. Thus, this challenge can be
viewed as a variant of JSSP where the objective shifts from
minimizing makespan to maximizing SLO, analogous to
maximizing the number of completed jobs or operations
within certain latency deadlines. This requires managing
both the sequence and concurrency of operations across
heterogeneous resources and optimizing overall system effi-
ciency to mitigate bottlenecks and reduce synchronization
overheads.

Job shop scheduling is recognized as NP-hard due to the
complexity inherent in managing dependencies and varying
capabilities across machines. By formulating this problem
as a variant of JSSP adapted for SLO, we establish that
solving the model placement problem is at least as hard
as solving the classic NP-hard JSSP, thus confirming the
NP-hardness of the problem.

B DEDUCTION OF PARALLEL
CONFIGURATION

Given the group formation and the designated phase, we
need to deduce the optimal parallel configuration for each
group. Algorithm 2 outlines the process. 1⃝We enumerate

Algorithm 2 Generate Model Parallel Configurations
1: Initialize: group formation: G = {G1, G2, ..., Gg}, min-

imum number of single-type GPUs in the group: T =
{T1, T2, ..., Tg}, cluster information: I , model configuration:
M

2: model parallel configurations← []
3: for i in len(G) do
4: plan list← []
5: /* Limit TP within Single-type GPUs */
6: for TP in {1, 2, ..., Ti} do
7: for PP in {1, 2, ..., Gi.num gpus

Ti
} do

8: /* Route Pipeline Communication */
9: plan← Dynamic Programming(I, TP, PP)

10: /* Generate Pipeline Partition */
11: plan← Pipeline Partition(M,plan)
12: if Gi.type is prefill then
13: C ← latency(plan)
14: else
15: C ← throughput(plan)
16: end if
17: plan list.append((C, plan))
18: end for
19: end for
20: if Gi.type is prefill then
21: /* Select Latency Optimal Plan */
22: plan← min(C) in plan list
23: else
24: /* Select Throughput Optimal Plan */
25: plan← max(C) in plan list
26: end if
27: model parallel configurations.append(plan)
28: end for
29: return model parallel configurations

all possible TP and PP combinations on each given group
formation. Note that our first heuristic is to limit tensor
model parallelism within single-type GPUs, so the TP de-
gree should be smaller or equal to the minimum number of
single-type GPUs in the group, which largely minimizes the
search space. 2⃝ Dynamic programming algorithm is uti-
lized to route the pipeline communication path. It optimizes
communication routing in a network by using a bitmask
to represent all possible subsets of stages, initializes each
stage with a zero bandwidth and builds paths by calculat-
ing the potential bandwidth for each link between stages,
updates the optimal path recursively if a higher bandwidth
stage is found, and determines the maximum bandwidth
path available by examining the states for the subset that
includes all stages, ensuring the most efficient data transfer
across the network. 3⃝We adjust the pipeline layer parti-
tion with respect to the memory capacity and computing
ability of different GPU types. Specifically, the pipeline
partition is adjusted in proportion to the total memory and
computing capacity of the GPU set currently servicing this
stage, while ensuring that the memory limits of individual
GPUs are not exceeded. This heuristic has proven effec-
tive in determining an optimal pipeline partition. 4⃝ For
the compute-bound prefill replicas, we select the latency

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

0 4 8 12 16 20 24 28
GPU Index

0

4

8

12

16

20

24

28

GP
U

In
de

x

0 1 2 3 4 5 6 7
GPU Index

0
1

2
3

4
5

6
7

0

5

10

15

20

0

25

50

75

100

125

150

175

200

Figure 13. Heat map of inter-connection bandwidth matrix in the
cloud (left) and in-house (right) settings.

optimal plans, for the memory bandwidth-bound decode
replicas, we select the throughput optimal plans. To esti-
mate the latency and throughput of each plan, we employ
the cost model proposed by HexGen (Jiang et al.), which
directly provides us with the inference memory and latency
costs for both prefill and decode phases, relative to different
request batch sizes. We calculate the throughput by dividing
the maximum total batched token size that the device group
can handle by the decode latency. Note that the estimated
latency information is also provided to our simulator for
SLO estimation.

C INTER-CONNECTION BANDWIDTH
MATRIX

The bandwidth distributions exhibit significant variability in
cloud and in-house environments. We measure the commu-
nication bandwidth between each pair of GPUs via NCCL
for both environments described in §5.1. As shown in the
left heatmap of Figure 13, the cloud environment demon-
strates notable bandwidth heterogeneity, influenced by a
range of GPU types and network configurations. This vari-
ability results in non-uniform connectivity patterns across
the network. Conversely, the right heatmap showcases the
in-house environment, characterized by a uniform GPU-to-
GPU communication bandwidth, evidenced by consistently
high connectivity values. These visualizations emphasize
the distinctions between cloud and in-house environments.

D RATIO IMPACT ON SYSTEM SLO
ATTAINMENT

We show the impact of phase designation and orchestration
on overall system SLO attainment in Figure 14. The coding
workload, characterized by relatively longer input length
and shorter output length, exhibits enhanced performance
with more prefill replicas and fewer decode replicas. A
ratio of 5:3 yields the optimal results. Conversely, the con-
versation workload, typified by relatively shorter prompts

1.0 1.5 2.0 2.5 3.0

SLO Scale (coding)

55

70

85

100

SL
O

At
ta

in
m

en
t (

%
)

1.0 2.0 3.0 4.0 5.0

SLO Scale (conversation)

0

33

67

100

ratio 3/1
ratio 5/3

ratio 1/1
ratio 3/5

ratio 1/3

Figure 14. Impact of phase designation and orchestration on over-
all system SLO attainment. We experiment with LLaMA-13B on
both coding and conversation workloads across 16 A5000 GPUs,
with two GPUs serving one replica.

Scheduler (§3)

Served
Model

LLM

Cloud
GPUs

Profiler

Coding
/Conversation

Coordinator

Adjust deployment plan

GPU Group 1

GPU Group 2

GPU Group 3

…Input Output

Workload pattern

Workload shift

Request dispatch

Cluster info
Comm matrix

Plan

Place
model M

od
el

co
nf
ig

Figure 15. System overview of ThunderServe.

and longer responses, necessitates more decode replicas
and fewer prefill replicas to prioritize resources to the long-
running decoding. Here, a ratio of 3:5 achieves the best
performance.

E IMPLEMENTATION DETAILS

Overview of ThunderServe. The architecture overview of
ThunderServe is shown in Figure 15. There are three major
components, which are the scheduler, the workload profiler,
and the task coordinator.

The scheduler is the core of ThunderServe for high-
performance LLM serving in cloud environments. The
scheduler takes as input the model configurations (e.g., hid-
den size and layer number), workload patterns obtained from
the workload profiler, cluster information (e.g., available
GPUs and their corresponding types), and communication
bandwidth matrix among all GPUs. Then, it performs the
scheduling algorithm introduced in §3 to provide the opti-
mal deployment plan. Should there be a detected shift in
workload, or a GPU heartbeat timeout that suggests a need
for cluster size adjustment, the scheduler will perform the
lightweight re-scheduling process and adjust the deployment
plan to adapt to the new workload or cluster size.

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

The workload profiler monitors the real-time workload pat-
terns, including the average prompt length of incoming
requests and average output length of generated responses.
These patterns are utilized to analyze the prefill and decode
cost for each single request. For instance, in contemporary
LLM services, common workload scenarios include coding
and conversation (Patel et al., 2023), where both typically
have a median prompt length exceeding 1000 tokens. How-
ever, the coding service produces much fewer output tokens,
with a median of 13, while the conversation service gen-
erates a larger number of output tokens, with a median of
129. Undoubtedly, the overall system workload varies when
the proportions of incoming requests for various services
change in real-time. Once an obvious workload shift is
detected, the workload profiler will notify the scheduler.

The task coordinator is in charge of the request dispatching
among the prefill and decode replicas. Upon receiving a
request, the task coordinator assigns the appropriate prefill
replica and decode replica, respectively. The assignment is
guided by the deployment plan generated by the scheduler.
The task coordinator is mainly based on an open-source
implementation of decentralized computation coordination
(Yao, 2023) that utilizes libP2P (LibP2P, 2023) to estab-
lish connections among the work groups in a peer-to-peer
network.

Based on these components, the overall routine of Thun-
derServe is as follows. 1⃝ To launch a serving process, the
scheduler generates the deployment plan, which is then uti-
lized to instantiate the model replicas over the cloud GPU
resources. 2⃝ During the serving process, the coordinator
dispatches the incoming requests across the prefill and de-
code replicas, and gathers the generated responses. 3⃝ At
the same time, the workload profiler consistently monitors
the workload and reports to the scheduler. 4⃝ Once a work-
load shift is detected, the scheduler triggers a lightweight
re-scheduling process to adjust the deployment plan for
better adaptation to the new workload.

Parallel communication groups. All communication prim-
itives in ThunderServe are implemented using NVIDIA
Collective Communication Library (NCCL). To circum-
vent the substantial overhead associated with construct-
ing NCCL groups, ThunderServe preemptively establishes
a global communication group pool containing all poten-
tially required groups. For KV cache communication, we
employ NCCL’s asynchronous SendRecv/CudaMemcpy
functions for KV cache communication to prevent GPU
blocking and enable computation and communication over-
lapping during transmission. KV cache queues are main-
tained on the prefill replicas, and upon completion of a
decoding round, the decode replicas retrieve KV caches
from these queues, utilizing the GPU memory of the prefill
replicas as queuing buffers.

F CASE STUDY OF SCHEDULING

We list the deployment plan generated by ThunderServe
from coding workload to conversation workload in the het-
erogeneous setting. We use the following representation to
describe the scheduled results. We use an array to specify
one independent model replica, with two numbers repre-
senting the degrees of tensor model parallelism and pipeline
model parallelism. For example, (2,2) indicates a model
replica with tensor model parallel degree of 2 and pipeline
model parallel degree of 2 (2 pipeline stages).

We also provide the instances we considered in §5.1 here for
better readability: two 4×A6000 instances, two 4×A5000
instances, one 8×A40 instance and two 4×3090Ti instances,
making up to be 32 GPUs in total.

Parallel configuration breakdown. In the coding work-
load, the 8×A40 instance employs a parallel strategy (2,1)
to support four prefill replicas. One 4×A6000 instance
uses a parallel strategy (2,1) to support two prefill repli-
cas, while the other one 4×A6000 instance uses a parallel
strategy (1,2) for two decode replicas. One 2×A5000 and
one 2×3090Ti instances utilize a parallel strategy (2,2) to
support one prefill replica, and the other one 2×A5000 and
one 2×3090Ti instances utilize a parallel strategy (2,2) to
support one decode replica. One 4×A5000 instance utilizes
a parallel strategy (4,1) to support one prefill replica. One
4×3090Ti instance implements a parallel strategy (2,2) to
support one decode replica.

In the conversation workload, the 8×A40 instance employs
parallel strategies (2,1) and (1,2) to support three prefill repli-
cas and one decode replica, respectively. The two 4×A6000
instances utilize a parallel strategy (1,2) to support four de-
code replicas. One 2×A5000 and one 2×3090Ti instances
utilize a parallel strategy (2,2) to support one prefill replica,
and the other one 2×A5000 and one 2×3090Ti instances
utilize a parallel strategy (2,2) to support one decode replica.
One 4×A5000 instance utilizes a parallel strategy (2,2) to
support one decode replica. One 4×3090Ti instance im-
plements a parallel strategy (2,2) to support one decode
replica.

Insights. In the in-house setting, the 8×A100 instance can
only serve 4 model replicas, while in the cloud setting, the
32 cloud GPUs with various types can serve a maximum of
12 model replicas with various parallel configuration within
the same price budget. In this case, although individual in-
ference tasks in the cloud setting may experience increased
latency due to the lower hardware performance (e.g., GPU
flops and bandwidth), the overall system performance is
improved due to the higher number of model replicas. Ad-
ditionally, our scheduling algorithm prioritizes GPUs with
high peak fp16 flops for prefilling (e.g., A40) and high
memory bandwidth GPUs for decoding (e.g., 3090Ti), and

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Data Center 1 Data Center 2

5 Gbps

Data Center

40 Gbps

Case A: within data center Case B: cross data centers

Figure 16. Two exampled network conditions on cloud.

selects the most suitable model parallel configuration for
each phase to optimize the overall system performance. And
although KV cache compression can linearly mitigate com-
munication overhead, significant disparities in bandwidth
across different cloud environments render extremely low
bandwidth scenarios—such as those experienced between
data centers—unsuitable for effective KV cache communica-
tion. Thanks to our scheduling and orchestration algorithms,
ThunderServe automatically identifies KV cache transmis-
sion paths that maintain overall performance.

G CASE STUDY OF LIGHTWEIGHT
RESCHEDULING

We list the deployment plan change during lightweight
rescheduling with 4 out of 32 GPUs (one 4×A6000 instance
that support two decode replicas) become unavailable.

The deployment plan for the coding workload, detailed in
Appendix F, initially includes 8 prefill and 4 decode replicas.
After the offline of 4 GPUs, there are 8 prefill and 2 decode
replicas remaining. A subsequent lightweight rescheduling
converts one prefill replica, which uses 4 A5000 GPUs
with a (4,1) strategy, into a decode replica. The adjustment
is reasonable as this group of GPUs exhibits the highest
overall memory bandwidth among the prefill replicas. The
deployment plan for the conversation workload initially
includes 4 prefill and 8 decode replicas. After the offline of
4 GPUs, there are 4 prefill and 6 decode replicas remaining.
A subsequent lightweight rescheduling converts one prefill
replica, which uses 2 A40 GPUs with a (2,1) strategy, into a
decode replica.

H CASE STUDY OF NETWORK EFFECT ON
PHASE SPLITTING

Table 5. Benchmarks of non-disaggregation baseline vs. Thun-
derServe under high inter-instance communication bandwidth vs.
ThunderServe under low inter-instance communication bandwidth.

Configuration Prefill KV Comm Decode E2E Throughput
Baseline 884 ms 0 ms 1689 ms 1610 tokens/s
ThunderServe (High) 698 ms 133 ms 1126 ms 3292 tokens/s
ThunderServe (Low) 964 ms 41 ms 1846 ms 2196 tokens/s

Consider use ThunderServe to serve LLaMA-30B model in

Case A: within data center Case B: cross data centers

TP Comm PP Comm KV Comm

Figure 17. ThunderServe deployment plans on different cases.

Table 6. Impact of KV cache communication compression on the
perplexity results on WikiText2, PTB and CBT datasets.

Dataset LLaMA-7B LLaMA-30B

WikiText2 16-bit 3.53 2.73
4-bit 3.55 2.75

PTB 16-bit 7.46 6.49
4-bit 7.42 6.55

CBT 16-bit 7.66 6.31
4-bit 7.70 6.30

Table 7. LLaMA rouge results (using 16-bit outputs as the ground
truth and the 4-bit outputs as the prediction) on WikiText2, PTB
and CBT datasets.

Dataset LLaMA-7B LLaMA-30B

WikiText2
ROUGE-1 0.962 0.942
ROUGE-2 0.941 0.928
ROUGE-L 0.955 0.941

PTB
ROUGE-1 0.975 0.928
ROUGE-2 0.950 0.911
ROUGE-L 0.971 0.928

CBT
ROUGE-1 0.925 0.946
ROUGE-2 0.912 0.931
ROUGE-L 0.925 0.937

a heterogeneous environment featuring two GPU instances:
the first instance equipped with 4×A40 GPUs, and the sec-
ond with 4×3090Ti GPUs. We conducted tests on the in-
ference throughput of this setup by feeding it continuous
input sequences of length 1024 under two different inter-
instance communication bandwidths: 40 Gbps and 5 Gbps,
as demonstrated in Figure 16.

We established a non-disaggregating baseline that utilizes
4×A40 GPUs to support one model replica and 4×3090Ti
GPUs to support another. By comparing the baseline
with ThunderServe under different network conditions, we
observed some interesting results: With a bandwidth of
40 Gbps, ThunderServe leverages the 4×A40 GPUs with
higher peak flops to support one prefill replica, and the
4×3090Ti GPUs with higher memory access bandwidth to
support one decode replica. This configuration optimizes
system performance, achieving a 2× performance gain over
the non-disaggregating baseline. However, at a lower band-
width of 5 Gbps, the inter-instance communication band-
width is insufficient for efficient KV cache communication.
Consequently, ThunderServe allocates 2×A40 GPUs and

ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments

Table 8. Benchmarks of ThunderServe with 16-bit vs. 4-bit com-
munications.

Configuration Prefill KV Comm Decode E2E Throughput
16-bit 684 ms 584 ms 1108 ms 2450 tokens/s
4-bit 698 ms 133 ms 1126 ms 3292 tokens/s

1024 2048 3072 4096
Batched Total Token Size

0
200
400
600
800

1000

Ti
m

e
Co

st
 (m

s) 4 bit
8 bit
16 bit

Figure 18. Impact of KV cache communication compression.
(Non-transparent: time cost of KV cache communication. Trans-
parent: end-to-end processing time.)

2×3090Ti GPUs to both prefill and decode replica, which
utilizes intra-instance high network bandwidth for KV cache
communication and inter-instance low network bandwidth
for pipeline communication, resulting in a 1.4× improve-
ment over the non-disaggregating baseline. The illustration
of deployment plans are demonstrated in Figure 17, the sin-
gle request prefill/decode/KV cache communication time
and overall system throughputs are demonstrated in Table 5.

I PPL AND ROUGE RESULTS ON KV
CACHE COMPRESSION

We list the PPL and ROUGE results of LLaMA-7B and
LLaMA-30B models on WikiText2, PTB and CBT datasets
with both 16-bit and 4-bit KV cache precision levels, as
shown in Table 6 and Table 7. Experimental results have
demonstrated that the PPL between 16-bit precision and 4-
bit precision is within 1% across all experimental scenarios,
and the ROUGE-1, ROUGE-2 and ROUGE-L scores are
around 0.95 across all cases, which confirms the validity
of our approach. We also demonstrate the the benchmarks
of ThunderServe with 16-bit vs. 4-bit communications in
Table 8 with the same experimental setups as mentioned in
Appendix H, and benchmarks in Figure 18, with two A5000
GPUs serving a LLaMA-7B model.

J SIMULATOR AND ALPHA-BETA MODEL
ACCURACY

To assess the accuracy of the simulator and alpha-beta model
for KV cache communication, we conducted a series of
micro-benchmarks using the LLaMA-30B model. These
benchmarks varied in SLO scales and batched token sizes

1 2 4 8
SLO Scale

0
20
40
60
80

100

SL
O

at
ta

in
m

en
t (

%
)

0

26

78

100

0

24

80

100

1024 2048 4096 8192
Batched Token Size

20
28
36
44
52
60

La
te

nc
y

(m
s)

30
34

41

60

30
34

42

58

Actual Estimated

Figure 19. Comparison of benchmarked and estimated perfor-
mance metrics for simulator (left) and alpha-beta model (right).

to evaluate our estimation outputs against actual execution
metrics, specifically SLO attainment and latency. The re-
sults, detailed in Figure 19, indicate that the simulator and
alpha-beta model closely correspond with actual execution
performance.

