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ABSTRACT

In the rapidly evolving landscape of deep learning, the quest for models that balance
expressivity with computational efficiency has never been more critical. Orchid is
designed to address the quadratic computational complexity of attention models
without sacrificing the model’s ability to capture long-range dependencies. At
the core of Orchid lies the data-adaptive convolution layers, which conditionally
adjust their kernels based on input data using a conditioning neural network. This
innovative approach enables the model to maintain scalability and efficiency for
long sequence lengths. The adaptive nature of data-adaptive convolution kernel
combined with the gating operations allows it to offer a highly expressive neural net-
work. We rigorously evaluate Orchid across multiple domains, including language
modeling and image classification, to showcase its generality and performance.
Our experiments demonstrate that Orchid not only consistently outperforms tradi-
tional attention-based architectures in most scenarios but also extends the feasible
sequence length beyond the constraints of dense attention layers. This achievement
marks a significant milestone in the pursuit of more efficient and scalable deep
learning models for sequence modeling.

1 INTRODUCTION

In the realm of modern deep neural networks, attention mechanisms have emerged as a gold standard,
pivotal in domains such as natural language processing, image, and audio processing, and even
complex fields like biology Vaswani et al. (2017); Dosovitskiy et al. (2020); Dwivedi & Bresson
(2020). Despite their strong sequence analysis capabilities, these mechanisms face challenges,
especially the computational complexity of Transformers, which scales quadratically with sequence
length, creating significant hurdles in long-context tasks Dao et al. (2022); Chen et al. (2021a;b). In
response to these computational challenges, the research community has explored alternatives to
traditional dense attention layers. Methods like linear attention, sparse, and low-rank approximations
of attention have been developed to reduce the computational complexity of attention layers in deep
neural networks, enhancing scalability to larger sequences Child et al. (2019); Wang et al. (2020);
Kitaev et al. (2020); Zhai et al. (2021); Schlag et al.. However, while these methods significantly
reduce computational overhead, they often have lower expressiveness and performance.

Addressing the need for expressive, sub-quadratic, and hardware-efficient mixing operators is a
formidable challenge. Recent studies have introduced sub-quadratic sequence mixing with long
convolutions or state space models as potential solutions Gu et al. (2021); Romero et al. (2021);
Mehta et al. (2022); Wang et al. (2022); Poli et al. (2023); Fu et al. (2023a;b). Orchid marks a
significant advancement by offering an expressive, sub-quadratic primitive based on input-adaptive
convolution, providing a robust alternative to the traditional Transformer paradigm and laying the
foundation for further advancements in efficient modeling, opening new pathways to address the
computational challenges in deep learning.
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Figure 2.1: Orchid block. ⊙ and ∗ denote element-wise multiplication and the convolution operator,
respectively. The convolutions are implemented in the frequency domain using FFT. On the right two
different conditioning networks, introduced in equations (2) and (3) as shift-invariant convolution
kernels, are depicted.

2 PRELIMINARIES

Self-Attention Mechanism: Given a length-L sequence of embeddings (of tokens) x =
(x1, x2, . . . , xL), self-attention generates a new sequence by computing a weighted sum of these
embeddings.1 It does this by linearly projecting x into three components: queries (Q), keys (K),
and values (V ), i.e., Q = xWQ, K = xWK , V = xWV . Each head of self-attention can be
expressed as a dense linear layer as follows:

y = SelfAttention(Q,K, V ) = SoftMax
(
QKT

√
dk

)
V = A(x)xWV ,

where the matrix A(x) is populated with the attention scores between each pair of tokens. This
description of the attention layer highlights its notable benefits, including its capability to capture
long-range dependencies efficiently, with a sublinear parameter count. The attention mechanism
enables direct computation of interactions between any two positions in the input sequence, regardless
of their distance, without a corresponding rise in parameter counts. Additionally, the attention layer
implements a data-adaptive dense linear filter, effectively filtering the input while the filter weights
are conditioned by a mapping of the data. However, these merits come at the expense of quadratic
computational complexity and memory costs.

This motivates us to develop a scalable and efficient data-adaptive convolution mechanism, featuring
an adaptive kernel that adjusts based on the input data. The kernel size of this convolution layer is as
long as the input sequence length, allowing the capture of long-range dependencies across the input
sequence while maintaining high scalability.

Linear Convolution: Discrete-time linear convolution is a fundamental operation in digital signal
processing that computes the output as the weighted sum of the finite-length input x with shifted
versions of the convolution kernel, h, also known as the impulse response of a linear time-invariant
(LTI) system, formally as y[t] = (h ∗ x)[t] ≜

∑L−1
ℓ=0 h[t− ℓ]x[ℓ]. Circular convolution is defined as

y[t mod L] = (h⊛x)[t] ≜
∑L−1

ℓ=0 h[t− ℓ mod L]x[ℓ], which is equivalent to the linear convolution
of two sequences when one is padded cyclically.

Fast convolution algorithm: One key advantage of convolution operators is that, according to
the convolution theorem, they can be performed in the frequency domain, hence can be computed
efficiently in O(L logL) time using Fast Fourier Transform (FFT) algorithms. Generally speaking,
convolution can be performed as ŷ = F−1(F(ĥ)⊙F(x̂)) = T−1(hF ⊙ T x̂), where T is the DFT
matrix, F denotes the discrete Fourier transformation, x̂ = pad(x) denotes the zero-padded signal
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3 ORCHID

3.1 DATA-ADAPTIVE CONVOLUTION FILTER

We claim that making the kernel of convolution data dependent, renders the layer more expressive

y = hθ(x) ∗ x = NNθ(x) ∗ x (1)

We call the function hθ(x) = NNθ(x), conditioning network parameterized by θ. Hence given an
input,x, this operation defines how each token attends to the entire signal as a weighted sum whose
weights are conditioned on the input itself.

In general, a discrete convolution is shift equivariance, that is, ignoring boundary (edge) effects, if the
input data is spatially shifted, the output of the model shifts by the same amount. Boundaries doesn’t
affect this property in circular convolution, hence shiftm(y) = h⊛ shiftm(x) where shiftm(x)[t] ≜
x[t+m] (Bronstein et al., 2021). This property ensures that the operation’s output is robust to shift of
features within the input, thereby enhancing the model’s generalization capabilities. This capability
(which induces an inductive bias on the model) is at the core of the widespread success of convolution
operations Thomas et al.. Therefore it is desirable to design conditioning network in the data-adaptive
convolution in (1) to preserve shift equivariance property. It can be shown that to hold this property
for convolution operation it is sufficient to design filter kernel to be shift invariant. In the following,
we present two methods for designing a shift-invariant conditioning network.

I) Suppressing the Phase of Frequency Components: A circular shift of a sequence u corresponds
to multiplying its frequency components by a linear phase, i.e. F (shiftm(u)) [k] = uF [k] · e−

i2π
L km

Oppenheim (1999). Suppose g(x) is a shift-equivariant function (such as a depthwise Conv1d() ),
such that g(shiftm(x)) = shiftm(g(x)). The frequency components of g(x), when spatially shifted,
can be expressed as: F (g(shiftm(x)) [k] = F (g(x)) [k] · e− i2π

L km. Subsequently, by applying the
absolute value (or the magnitude of complex numbers) non-linearity to the frequency components, we
can achieve shift invariance. Defining hF (x) = |F (g(x)) |, it follows that hF (shiftm(x)) = hF (x),
thereby satisfying shift invariance.

In our setup, we define g(x) as a 1D depth-wise linear convolution, denoted as Conv1d(x), with a
short kernel length (typically 3-5) for each feature dimension, which is followed by a short convolution
in the frequency domain. Consequently, the conditioning neural network is formulated as

hF
θ (x) = Conv1d(|F (Conv1d(x)) |) (2)

This architecture choice minimizes the number of parameters and reduces the computational burden
that the conditioning network introduces to the overall model.

II) Using Cross-Correlation to Achieve Shift Invariance An alternative method to attain shift
invariance involves computing the cross-correlation between two versions of a signal. Consider
k(x) and q(x) as two shift-equivariant functions, satisfying: k(shiftm(x)) = shiftm(k(x)) and
q(shiftm(x)) = shiftm(q(x)). Define h(x) as the cross-correlation of k(x) and q(x), given by:
h(x)[t] = (k(x) ⋆ q(x))[t] ≜

∑L−1
ℓ=0 k(x)[ℓ] · q(x)[t+ ℓ mod L]. It can be demonstrated that h(x)

is shift invariant:

h(shiftm(x)) = k(shiftm(x)) ⋆ q(shiftm(x)) = shiftm(k(x)) ⋆ shiftm(q(x)) = k(x) ⋆ q(x) = h(x)

Moreover, according to the convolution theorem, the cross-correlation can be efficiently computed
in the frequency domain as hF (x) = F (k(x) ⋆ q(x)) = k∗F (x) ⊙ qF (x) where k∗F denotes the
complex conjugate of kF
Remark 3.1. By using the same function for both k and q, i.e. k(x) = q(x) = g(x), we derive
hF (x) = |gF (x)|2, implying that the cross-correlation-based approach generalizes approach (I).

In a similar manner, we leverage distinct 1D depth-wise short convolutions for k(x) and q(x) for
both k(x) and q(x), followed by another convolution post cross-correlation in the frequency domain.
As a result, the conditioning neural network is defined as

hF
θ (x) = Conv1d

(
F∗ (Conv1d(x))⊙ σ

(
F (Conv1d(x))

))
. (3)
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The two conditioning functions (2), (3) are also illustrated in Figure 2.1. For operations involving
long convolutions, we add a fixed (non data-adaptive) term which is implicitly parametrized using a
positional embedding of time step (token index in the sequence) and a feed forward networks (FFNs)
Romero et al. (2021); Poli et al. (2023) h(t) = FFN(PositionalEmbedding(t))). Subsequently, the
final convolution kernel is h = h(t) + hθ(x).

3.2 ORCHID BLOCK

In contrast to attention layers, convolution filters perform parameter sharing, meaning they utilize
the same kernel weights across different positions within the input sequence. By integrating this
data-adaptive convolution approach with element-wise multiplications, it’s possible to achieve a
location-dependent filtering scheme. Through element-wise multiplication, specific locations within
the signal can be emphasized by assigning higher weights before applying the location-invariant
convolution. The composition of a cascade of circulant and diagonal matrices has been demonstrated
to serve as an efficient approximation for dense linear layers Moczulski et al. (2015); Cheng et al.
(2015). The overall architecture of a block, incorporating our data-adaptive convolution block, is
illustrated in Figure 2.1.

4 EXPERIMENTS

Our evaluation of Orchid focuses on three different Transformer-based models to assess its expressiv-
ity and generalization capabilities as an alternative to attention layers. Firstly, we conduct a set of
experiments on a synthetic task to assess the in-context learning ability (Liang et al., 2022; Olsson
et al., 2022) and scalability of the proposed model. It involves generating a value from a key given a
string of key-value tuples from a random dictionary. For instance, given the input ([a, 1 , b, e, 3 , f ], b),
the model is expected to return e , the value associated with the key b. The results, illustrated in Figure
4.1 and Table 4.3, demonstrate that the Orchid model offers superior expressiveness and outperforms
existing long convolution models in the associative recall task. Notably, in challenging scenarios with
short sequence lengths of 128 and large vocabulary sizes, Orchid significantly improves the model’s
accuracy.

Subsequently, we evaluate the performance of the proposed architecture on language modeling
tasks. Orchid is designed to integrate seamlessly with existing BERT-style language models, such as
BERT Devlin et al. (2018), As the results outlined in Table 4.1 show, Orchid-BERT-base achieves 1.0
points in average GLUE score performance compared to the BERT-base on the GLUE benchmark
with utilizing 30% fewer parameters. Similarly, Orchid-BERT-large outperforms the performance of
BERT-large by 1.0 points with a 25% reduction in parameter counts.

Moreover, we extend our experiments to the Vision Transformer (ViT) architecture (Dosovitskiy et al.,
2020) for image classification tasks, aiming to evaluate the model’s generalizability across diverse
domains. Our experiments are conducted on two widely recognized image datasets: CIFAR-10 and
ImageNet-1K. The performance outcomes, as highlighted in Table 4.2 for both the CIFAR-10 and
ImageNet-1K datasets, demonstrate that Orchid significantly outperforms baseline ViT-style models
on both datasets. These results affirm the adaptability and effectiveness of the Orchid architecture
beyond the realm of language modeling, showcasing its potential advantages in image processing
tasks.
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Table 4.1: Average GLUE Score of BERT-base and BERT-large (Devlin et al., 2018) in comparison
to Orchid-BERT-base and Orchid-BERT-base, and M2-BERT-base and M2-BERT-large Dao et al.
(2022). Baseline results are drawn from (Fu et al., 2023a).

Model (size) GLUE Score ∆ Params ∆ GLUE Score

BERT-base (110M) 79.6 - -
M2-BERT-base (80M) 79.9 -27.3% +0.3

Orchid-BERT-base (77M) 80.6 -30.0% +1.0

BERT-large (340M) 82.1 - -
M2-BERT-large (260M) 82.2 -23.6% +0.1

Orchid-BERT-large (254M) 82.7 -25.3% +0.6

Table 4.2: Performance comparison of Orchid with ViT-based models on ImageNet-1k and CIFAR-10
dataset. Baseline results are drawn from (Fu et al., 2023a).

Model (size) Top-1 (%) Top-5 (%)

ImageNet-1k
ViT-b (87M) 78.5 93.6

ViT-b + Monarch (33M) 78.9 94.2
Hyena-ViT-b (88M) 78.5 93.6

M2-ViT-b (45M) 79.5 94.5
Orchid-ViT-b (48M) 80.2 94.9

Model (size) Top-1 (%)

CIFAR-10
ViT (1.2M) 78.6

ViT + Monarch (607K) 79.0
Hyena-ViT (1.3M) 80.6

M2-ViT (741K) 80.8
Orchid-ViT (836K) 84.3
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Figure 4.1: Performance of the associative recall task across different long implicit convolution
models on various sequence lengths and vocabulary sizes (number of possible token values).

Table 4.3: This table shows the performance of in-context learning on the associative recall task with
a vocabulary size of 20 and different sequence lengths. The results for the baseline models are drawn
from Poli et al. (2023); Fu et al. (2023a). The symbol ✘ indicates that the Transformer model failed
to complete the task within a week or the model d oes not fit in memory.

Model 128 512 2K 8K 32K 128K

Transformer 100 100 100 100 ✘ ✘
Monarch-Mixer - 98.7 99.4 99.4 99.4 99.4

Hyena 93 99 99.6 100 100 -
Orchid 99.2 99.8 100 100 100 100
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