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Abstract

Group equivariance has emerged as a valuable inductive bias in deep learning,
enhancing generalization, data efficiency, and robustness. Classically, group equiv-
ariant methods require the groups of interest to be known beforehand, which may
not be realistic for real-world data. Additionally, baking in fixed group equivariance
may impose overly restrictive constraints on model architecture. This highlights
the need for methods that can dynamically discover and apply symmetries as soft
constraints. For neural network architectures, equivariance is commonly achieved
through group transformations of a canonical weight tensor, resulting in weight
sharing over a given group G. In this work, we propose to learn such a weight-
sharing scheme by defining a collection of learnable doubly stochastic matrices
that act as soft permutation matrices on canonical weight tensors, which can take
regular group representations as a special case. This yields learnable kernel trans-
formations that are jointly optimized with downstream tasks. We show that when
the dataset exhibits strong symmetries, the permutation matrices will converge to
regular group representations and our weight-sharing networks effectively become
regular group convolutions. Additionally, the flexibility of the method enables it to
effectively pick up on partial symmetries.

1 Introduction

Equivariance has emerged as a beneficial inductive bias in deep learning, enhancing performance
across a variety of tasks. By constraining the function space to adhere to specific symmetries, models
not only generalize better but also achieve greater parameter efficiency [8, 9]. For instance, integrating
group symmetry principles into generative models has enhanced sample generation and efficient
learning of data distributions, particularly benefiting areas such as vision and molecular generation
[11, 5].

The most well-known and transformative models in equivariant deep learning are convolutional neural
networks (CNNs) [17], which achieve translation equivariance by translating learnable kernels to
every position in the input. This design ensures that the weights defining the kernels are shared across
all translations, so that if the input is translated, the output features are correspondingly translated;
in other words, equivariance is achieved through weight sharing. In the seminal work by Cohen
and Welling [9], this concept was extended to generalize weight-sharing under any discrete group of
symmetries, resulting in the group-equivariant CNN (G-CNN). G-CNNs enable G-equivariance to a
broader range of symmetries, such as rotation, reflection, and scale [9, 4, 32, 27], thereby expanding
the applicability of CNNs to more complex data transformations.
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However, the impact of G-CNNs is closely tied to the presence of specific inductive biases in the
data. When exact symmetries, such as E(3) group symmetries in molecular point cloud data, are
known to exist, G-CNNs excel. Yet, for many types of data, including natural images and sequence
data, these exact symmetries are not present, leading to overly constrained models that can suffer in
performance [30, 22, 2, 29]. In scenarios with limited data and for certain critical downstream tasks,
having appropriate inductive biases becomes even more crucial.

To avoid overly constraining models, symmetries must be chosen carefully to match those in the
input data. This requires prior knowledge of these symmetries, which may not always be available.
Furthermore, different symmetries at different scales can coexist, making manual determination of
these symmetries highly impractical. To address this, multiple works have proposed partial or relaxed
G-CNNs [22, 6, 2, 30]. Such models are initialized to be fully equivariant to some groups and learn
from the data to partially break equivariance on a per-layer basis where necessary. However, these
methods still require specifying which symmetries to include and can only achieve equivariance to
subsets of these symmetries.

In this work, we tackle the challenge of specifying group symmetries upfront by introducing a general
weight-sharing scheme. Our method can represent G-CNNs as a special case but is not limited to
exact equivariance constraints, offering greater flexibility in handling various symmetries in the data.
Inspired by the idea that group equivariance for finite groups can be achieved through weight-sharing
patterns on a set of base weights [21], we propose learning the symmetries directly from the data on a
per-layer basis, requiring no prior knowledge of the possible symmetries.

We leverage the fact that regular group representations act as permutations and that the expectation
of random variables defined over this set of permutations is a doubly stochastic matrix [7]. This
implies that regular partial group transformation can be approximated by a stack of doubly stochastic
matrices which essentially act as (soft) permutation matrices. Consequently, we learn a set of doubly
stochastic matrices through the Sinkhorn operator [26], resulting in weight-sharing under learnable
group transformations.

We summarize our contributions as follows:

• We propose a novel weight-sharing scheme that can adapt to group actions when certain symmetry
transformations are present in the data, enhancing model flexibility and performance.

• We present empirical results on image benchmarks, demonstrating the effectiveness of our approach
in learning relevant weight-sharing schemes when there are clear symmetries.

• The proposed method outpaces models configured with known symmetries in environments
where they are only partially present. Moreover, in the absence of predefined symmetries, it
adeptly identifies effective weight-sharing patterns, matching the performance of fully flexible,
non-weight-sharing models.

• We provide analyses of the learned symmetries on some controlled toy settings.

2 Related work

Partial or relaxed equivariance Methods such as [22, 6, 2] learn partial equivariance by learning
distributions over transformations, and thereby aim to learn partial or relaxed equivariances from
data by sampling some group elements more often than others. [30] tries to relax equivariance by
introducing learnable equivariance-breaking components. [10, 29] Relax equivariance constraints
by parameterizing layers as (linear) combinations of fully flexible, non-constrained components
and constrained equivariant components. Finally, several works model soft invariances through
learning the amount of data augmentation in the data or model relevant for a given task, either through
learned distributions on the group or (automatic) hyperparameter selection [6, 12, 20]. However,
these methods require pre-specified sets of symmetry transformations and/or group structure to be
known beforehand. In contrast, we aim to pick up the relevant symmetry transformations during
training.

Symmetry discovery methods [24, 19] learn the group structure via (irreducible) group represen-
tations. [24] proposed to learn the Fourier transform of finite compact commutative groups and their
corresponding bispectrum by learning to separate orbits on our dataset. This approach can be extended
to non-commutative finite groups leveraging advanced unitary representation theory [19]. However,
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these methods are constrained to finite-dimensional groups and require specific orbit-predicting
datasets. In contrast, our approach learns a relaxation of regular group representations—as opposed
to irreducible representations. Moreover, our approach is not merely capable of learning symmetries,
it subsequently utilizes them in a regular group-convolution-type architecture.

Weight-sharing methods Previous studies have demonstrated that equivariance to finite groups
can be achieved through weight-sharing schemes applied to model parameters. Notably, the works
in [21], [34], and [33] provide foundational insights into this approach. In [34], weight-sharing
patterns are learned by using a matrix that operates on flattened canonical weight tensors, effectively
inducing weight sharing. They additionally prove that for finite groups, there are weight-sharing
matrices capable of implementing the corresponding group convolution. However, their approach
requires learning these patterns through meta-learning and modeling the weight-sharing matrix as
an unconstrained tensor. In contrast, our method learns weight sharing directly in conjunction with
the downstream task and enforces the matrix to be doubly stochastic, thereby representing soft
permutations by design.

[33] presents an approach closely aligned with ours, where a weight-sharing scheme is learned that
is characterized by row-stochastic entries. Their method involves both inner- and outer-loop opti-
mization and demonstrates the ability to uncover relevant weight-sharing patterns in straightforward
scenarios. However, their approach does not support joint optimization of the canonical weights and
weight-sharing pattern, and they acknowledge difficulties in extending their method to higher input
dimensionalities. Unlike [33], we enforce both row and column stochasticity. Additionally, we can
optimize for the sharing pattern and weight tensors jointly, and successfully apply our approach to
more interesting data domains such as image processing.

In [28], group actions are integrated directly into the learning process of the downstream task. This
method involves learning a set of generator matrices that operate via matrix multiplication on flattened
input vectors. However, this approach constrains the operators to members of finite cyclic groups,
which inherently limits their ability to represent more complex group structures. Furthermore, this
restriction precludes the possibility of modeling partial equivariances, reducing the flexibility and
applicability of the model to more diverse or complex scenarios.

3 Background

We begin by revisiting group convolutional methods in the context of image processing, followed by
their relation to weight-sharing schemes. We then proceed to briefly cover the Sinkhorn operator,
which is the main mechanism through which we acquire weight-sharing schemes. Some familiarity
with group theory is assumed, and essential concepts will be outlined in the following.

Groups We are interested in (symmetry) groups, which are algebraic constructs that consist of a set
G and a group product—which we denote as a juxtaposition—that satisfies certain axioms, such as
the existence of an identity element e ∈ G such that for all g ∈ G we have eg = ge = g, closure such
that for all g, h ∈ G we have gh ∈ G, the existence of an inverse g−1 for each g such that g−1g = e,
and associativity such that for all g, h, i ∈ G we have (gh)i = g(hi).

Representations In the context of geometric deep learning [8], it is most useful to think of groups
as transformation groups, and the group structure describes how transformations relate to each other.
Specifically, group representations ρ : G → GL(V ) are concrete operators that transform elements
in a vector space V in a way that adheres to the group structure (they are group homomorphisms).
That is, to each group element g, we can associate a linear transformation ρ(g) ∈ GL(V ), with
GL(V ) the set of linear invertible transformations on vector space V .

Group convolution Concretely, such representations can be used to define group convolutions.
Consider feature maps f : X → RD over some domain on which a group action is defined, i.e., over
a G-space. E.g., for images (signals over X = R2) we could consider the group G = (R2,+) of
translations, which acts on X via gx = x+ y, with g = (y) a translation by y ∈ R2. While the group
G merely defines how two transformations g, h ∈ G applied one after the other correspond to a net
translation gh ∈ G, a representation ρ concretely describes how data is transformed. E.g., signals
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f : X → R can be transformed via the left-regular representation [ρ(g)f ](x) := f(g−1x), which in
the case of images and the translation group is given by [ρ(g)f ](x) = f(x− y).

In general, group convolution is defined as transforming a base kernel under every possible group
action, and for every transformation taking the inner product with the underlying data via

G-convolution, inner product form: (k ⋆G f)(g) = ⟨ρ(g)k, f⟩ , (1)

with ⟨·, ·⟩ denoting the inner product. For images, which are essentially functions over the group
G = (R2,+), and taking ⟨k, f⟩ :=

∫
X
k(x)f(x)dx the standard inner product, Eq. (1) boils down

to the standard cross-correlation operator2:

G-convolution, integral form: (k ⋆ f)(g) =

∫
G

k(g−1h)f(h)dh (2)

Standard (R2,+) Convolution: (k ⋆ f)(x) =

∫
R2

k(x′ − x)f(x′)dx′ . (3)

Semi-direct product groups When equivariance to larger symmetry groups is desired, e.g. in
the case of G = SE(2) roto-translation equivariance for images with domain X = R2, a lifting
convolution can be used to generate signals over the group G. In essence it is still of the form of (2),
however integration is over X instead of over G:

G-lifting Convolution: (k ⋆ f)(g) =

∫
X

k(g−1x)f(x)dx (4)

SE(2)-lifting Convolution: (k ⋆ f)(x,R) =

∫
R2

k(R−1(x′ − x))f(x′)dx′ , (5)

with g = (x,R) ∈ (R2,+) ⋊ SO(2). The roto-translation group is an instance of a semi-direct
product group (denoted with ⋊) between the translation and rotation group, which has the practical
benefit that a stack of rotated kernels can be precomputed [9], and the translation part efficiently be
taken care of via optimized Conv2D operators. Namely via (k ⋆ f)(x,Ri) = Conv2D[ki, f ], with
ki := k(R−1

i x). This trick can also be applied for full group convolutions (2).

4 Method

Our objective is to uncover the underlying symmetries of datasets whose exact symmetries may
not be known, in a manner that is both parameter-efficient and free from rigid group constraints.
To achieve this, we re-examine regular representations and their critical role in generating various
instantiations of the fundamental group convolution equation (1). Moving from the continuous setting
to concrete instantiations, we derive weight-sharing from a finite-dimensional vector of base weights
by interpreting regular representations as permutations. We further analyze the characteristics of this
weight-sharing approach, proposing the use of doubly stochastic matrices. This analysis forms the
foundation for developing weight-sharing layers that adaptively learn dataset symmetries.

4.1 Weight-sharing through permutations

In the current section, we first establish the connection between representations, weight-sharing and
permutations. We then proceed to provide practical instantiations as ingredients for the proposed
weight-sharing convolutional layers.

Weight-sharing through learnable representations To achieve weight-sharing over a finite set
of symmetries, we define learnable representations ρ : G → GL(V ). Specifically, we assign a
learnable transformation (permutation matrix) to each element in G. It is important to note that we
refer to G and ρ as a "group" and "representation" in a loose sense, as we relax the homomorphism
property and do not initially endow G with a group product. Consequently, the collection of linear
transformations does not form a group representation a priori. However, our proposed method is
capable of modeling this structure in principle.

2Due to the equivalence between convolution and correlation via kernel reflection, we henceforth simply
refer to operators of the type of (2) as convolution even though technically they are cross-correlations.
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Regular representations as permutations Consider the case of a continuous linear Lie group G,
e.g. of rotations SO(2), and a real signal f : G → R over it. This signal is to be considered an
infinite dimensional vector with continuous "indices" g ∈ G that index the vector elements f(g). To
emphasize the resemblance of the regular representation to permutation matrices we write it as

Regular representation in integral form: [ρ(g)f ](i) =

∫
G

Pg(i, h)f(h)dh , (6)

with Pg(i, h) = δg−1i(h) a kernel that for each g maps h to a new "index" i ∈ G, where the Dirac
delta essentially codes for the group product as δg−1h(i) is non-zero only if g−1i = h ⇔ g · h = i.

The discrete counterpart of such an integral transform is matrix-vector multiplication with a matrix
ρ(g) = Pg with entries Pghi = 1 if gh = i and zero otherwise. As a concrete example, consider a
signal f : G → R over the discrete group G = C4 of cyclic permutations of size 4, i.e., a periodic
signal of length four, then we could vectorize it as f → v with entries vg = f(g) and the regular
representation becomes a simple cyclic permutation matrix with

P0 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, P1 =

(
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

)
, P2 =

(
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)
, P3 =

(
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

)
.

We refer to the collection of permutation matrices P ∈ [0, 1]|G|×|G|×|G| as the permutation tensor.

Recall that the regular convolution operator (2) is not only defined for signals over groups G but for
G-spaces X , in general, as in Eq. (4). It requires a representation that acts on signals (convolution
kernels) over X . However, since the group G acts by automorphisms (bijections) on the space X , we
can define the regular representation—as before—using permutation integral with Pg(x, x

′) = δg−1x′

that effectively sends old "indices" x′ to their new location x, or concretely via permutation matrices
P of shape |G| × |X| × |X|, where X is the domain of the signal that is transformed—which can
also be G.

In practice, it is common that we perform a discretization of continuous signals f , e.g., when we
work with images, we discretize the continuous signal f : R2 → RC to f : Z2 → RC . Therefore,
the group action over the discretized signal should approximate the group action over the continuous
signal. We can see that in some cases, the group representation of the action on the discrete signal
can still be implemented using permutation matrices. E.g., 90◦ rotations (in C4) applied to images
merely permute the pixels. However, for finer discretizations, e.g. using 45◦ rotations, interpolation
can be used as a form of approximate permutations [16, Fig. 2].

Weight sharing In a discrete group setting, we then see that convolution (1) is obtained by
multiplications with matrices obtained by stacking permuted base kernel weights w ∈ R|X|

Discrete G-convolution: fout = Wf in , with W = Pw :=

 (P0w)T

(P1w)T

...

 ∈ R|G|×|X| .

(7)

E.g., a group convolution over C4 is implemented with a matrix of the form W =

(
w0 w1 w2 w3
w3 w0 w1 w2
w2 w3 w0 w1
w1 w2 w3 w4

)
.

Regular representations allow for element-wise activations An important practical element
of using regular representations to define group convolutions is that permutations commute with
element-wise activations, namely, [ρ(g)σ(f)](i) = σ(f)(g−1i) = σ(f(g−1i)) = σ([ρ(g)f ](i)). In
contrast, steerable methods—based on irreducible representations (cf. App. A.1)—require specialized
activation functions so as not to break group equivariance. Such activations in practice are not as
effective as the classic element-wise activations such as ReLU [31]: they may introduce discretization
artifacts that disrupt exact equivariance, ultimately constraining the method’s expressivity [5]. Hence,
when learning weight-sharing schemes—as is our objective—it is preferred to achieve weight-sharing
using regular representations without the risk of breaking equivariance by using standard activation
functions.
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Figure 1: Kernel stacks are acquired through a learned weight-sharing scheme applied to a set of
flattened base kernels.

4.2 Learnable doubly stochastic tensors

Having established the link between regular representations and soft permutations, we now motivate
the use of doubly stochastic matrices as natural candidates for their implementation. Specifically,
we utilize the fact that the expected value of random variables over this set of permutations yields a
doubly stochastic matrix [7].

Doubly stochastic matrices Let S∞ (Sn) denote respectively the system of infinite (n× n) doubly
stochastic matrices, i.e. matrices S ≡ {sij ∈ [0, 1] : i, j = 1, 2, ...(, n)} such that

∑
j sij = 1, and∑

i sij = 1. Let P∞ (Pn) denote respectively the system of infinite (n× n) permutation matrices,
i.e. matrices P ≡ {pij ∈ {0, 1} : i, j = 1, 2, ...(, n)} such that

∑
j pij = 1, and

∑
i pij = 1. Note

that for any permutation tensor P ∈ R|G|×|X|×|X|, where X is the domain of the signal that is
transformed by the group G, then Pg ∈ P|X| for every g ∈ G.

Then, by Birkhoff’s Theorem [7], and its extension to infinite dimensional matrices, commonly called
Birkhoff’s Problem 111 [13, 23, 14, 3], we have that any convex combination of permutation matrices
will be equal to a doubly stochastic matrix, i.e,∑

P∈Pn

λ(P )P = S ∈ Sn, with
∑

P∈Pn

λ(P ) = 1 (∀n ∈ N ∪ {+∞})

where λ(P ) gives a probability measure supported on a finite subset of the set of permutation matrices
P . Therefore we may state that

Using doubly stochastic matrices, we can model approximate equivariance as defined in [22].

I.e., let S be a random variable over {Pg ∈ P|X| | g ∈ G} with a finitely supported probability
measure P[S = Pg] = λ(Pg) for every g ∈ G, then S = E[S] =

∑
g∈G P[S = Pg]Pg is a doubly

stochastic matrix. We want to note that S can be seen as a generalization of the convolution matrix
presented in [18].

Sinkhorn operator The Sinkhorn operator [26, 1] transforms an arbitrary matrix to a doubly
stochastic one through iterative row and column normalization, provided that the number of iterations
is large enough. That is, initialize a tensor X ∈ RN×N , then it will converge to a doubly stochastic
tensor via the following algorithm:

S0(X) = exp(X) , Sl(X) = Tc(Tr(S
l−1(X))) , SN ∋ S = lim

l→∞
Sl(X) , (8)

with Tc and Tr the normalization operators over the rows and columns, respectively, defined as
Tc = X ⊘ 1N1T

NX︸ ︷︷ ︸
sumc(X)

and Tr = X ⊘ X1N1T
N︸ ︷︷ ︸

sumr(X)

, where ⊘ denotes elementwise division, sumc(·),

sumr(·) perform column-wise and row-wise summation, respectively.
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Figure 2: Learned kernels from the lifting layer
of WSCNN, applied to rotated MNIST and re-
shaped to [No.elem., Cout]. Since R1 is set as
the identity operator, the first column displays
the raw kernels.

Figure 3: Comparison of C4 representations
and the representation stack learned by the lift-
ing layer on the rotated MNIST dataset. Top:
learned representations. Bottom: permutations
for C4 on d = 25.

Our proposal: Weight Sharing Convolutional Neural Networks Having established the foun-
dational elements, we now define our Weight Sharing Convolutional Neural Networks (WSCNNs).
We let Θl

i ∈ R|X|×|X| be a collection of learnable parameters that parametrize the representation
stack of the layer l as Rl = (SK(Θl

0), S
K(Θl

1), ..., S
K(Θl

N ))T ∈ [0, 1]|G|×|X|×|X|. i.e., we pa-
rameterize this tensor as a stack of |G| approximate doubly stochastic |X|-dimensional matrices,
wherein stochasticity is enforced via K applications of the Sinkhorn operator. We also define a set of
learnable base weights θl ∈ R|X|×Cout×Cin . The WSCNN layer is then simply given by (7) with P
and w respectively replaced by Rl and θl.

We further note that on image data |X| can be large, making the discrete matrix form implementation
computationally demanding. Hence, we consider semi-direct product group parametrizations for
G, in which we let G be of the form (Rn,+)⋊H , with H a learnable (approximate) group. Then,
the representation stacks will merely be of shape |H| × |X ′| × |X ′|, with |H| ≪ |G| the size of the
sub-group and |X ′| the number of pixels that support the convolution kernel. A WSCNN layer is
then efficiently implemented via a Conv2D[f ,Rlθl]. For group convolutions (after the lifting layer)
the representation stacks will be of shape |H| × (|X ′| × |H|)× (|X ′| × |H|). Computational scaling
requirements can be found in Appendix C.4.

5 Experiments

We first demonstrate that the proposed weight sharing method can effectively pick up on useful
weight sharing patterns when trained on image datasets with different equivariance priors. We then
proceed to show the method can effectively handle settings where partial symmetries are present in
the data, and further analyze the learned weight-sharing structures on a suite of toy datasets. Model
architectures, regularizers (norm, ent) and design choices can be found in Appendix C.4 and C.1,
respectively. An analysis of computational requirements can be found in Appendix C.4

5.1 Image datasets and equivariance priors

We assess the efficacy of our proposed weight-sharing scheme in recognizing data symmetries through
experiments on datasets subjected to various data augmentations. Specifically, we evaluate our model
on MNIST images that have been rotated (with full SO(2) rotations) and scaled (with scaling
factors between [0.3, 1.0]). We categorize these datasets based on their data symmetry characteristics:
MNIST with rotation and scaling as datasets with known symmetries, and CIFAR-10 with flips as a
dataset with unknown symmetries.

For RotatedMNIST, we regard a C4-group convolutional model as a benchmark since it has been
equipped with a subgroup of the underlying data symmetries a priori. Additionally, we contrast
our results with a non-constrained CNN model which has double the number of channels, allowing
for free optimization without symmetry constraints. As such, our evaluations are benchmarked
against two distinct models: 1) a group convolutional model that is equivariant to discrete rotations,
embodying fixed equivariance constraints, and 2) a standard CNN that adheres only to translational
equivariance, without additional constraints.
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Table 1: Test accuracy on MNIST for both rotation and scaling transformations. Additional parameters
induced by weight-sharing are marked (+). Parameter counts denoted in millions (M) or thousands
(K). Best-performing models (equivalent within < 1%) marked bold.

Model # Params Sharing Scheme Accuracy
Rotations Scaling

CNN 412 K Z2 98.48± .08 99.30± .01
GCNN 103 K Z2 ⋊ C4 98.96± .14 97.50± .15

WSCNN + norm 410 K (+ 122 K) Learned 97.56± .07 99.27± .04
WSCNN + norm + ent 410 K (+ 122 K) Learned 98.04± .11 99.24± .01

Table 2: Test accuracy on CIFAR-10. Number of elements denotes the number of group elements
used in group convolutional models. Additional parameters induced by weight-sharing are marked
(+). Parameter counts denoted in millions (M) or thousands (K). Best-performing models (equivalent
within < 1%) marked bold.

Model # Params # Elements Accuracy
CNN-32 428 K - 70.50± 0.62
CNN-64 1.66 M - 76.29± 0.57
CNN-128 6.5 M - 78.83± 0.01
GCNN 1.63 M 4 76.72± 0.26

WSCNN + norm 1.63 M (+ 468 K) 4 78.80± 0.46
WSCNN + norm + ent 1.63 M (+ 468 K) 4 76.80± 1.40

This experimental setup positions the standard CNN as the most flexible model lacking predefined
inductive biases. In contrast, the group convolutional neural network (GCNN) is characterized by
fixed weight sharing, while our proposed weight-sharing CNN (WSCNN) introduces a semi-flexible,
learnable weight-sharing mechanism. Note that we explicitly distinguish between the number of free
model and kernel parameters and the additional parameters introduced by our weight sharing scheme
throughout results (marked by +).

Results can be found in Tab. 1. When there is a clear misalignment between the model and data
symmetries, the constraints imposed by the model hinder performance, as demonstrated by the
C4-GCNN on the scaled MNIST dataset. Notably, our proposed method consistently achieves high
performance across all datasets without requiring fixed group specifications. Furthermore, visual
inspection of the learned kernels indicates that WSCNN adapts to the underlying data symmetries by
effectively rotating kernels, as shown in Figure 2. Additionally, analysis of the learned representation
stack reveals that it closely resembles elements of C4 permutations, further demonstrating the model’s
capability to internalize and replicate data transformations (see Figure 3 and Appendix B.3).

Additionally, we test the model on CIFAR-10, representing a dataset with possibly more com-
plex/unknown symmetry structures, and CIFAR-10 with horizontal flips (which cannot be represented
by CN transformations). Results can be found in Tab. 2, with detailed training and model specifica-
tions available in Appendix C.4. We compare against the (possibly misspecified) C4-GCNN, and
several unconstrained CNNs models with varying number of channels: 1) CNN-32 matched in free
kernel size, 2) CNN-64 matched in parameter budget, and 3) CNN-128 matched in effective kernel
size (calculated as |G| × channels = 4 × 32 = 128). Despite the kernel constraints in WSCNN,
it achieves performance comparable to that of the unconstrained 128-channel CNN (within < 1%
accuracy), at a significantly smaller parameter budget (2.1 M vs. 6.5 M).

5.2 Learning partial equivariances

We show our method is able to pick up on partial symmetries by testing it on MNIST with rotations
sampled from a subset of SO(2) and compare it to the C4-GCNN. Additionally, we show results on
CIFAR-10 with horizontal flips, which is a commonly used train augmentation. Results can be found
in Tab. 3 and Tab. 4.
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Table 3: Test accuracy on MNIST with
partial rotations.

Model Rot. Range Accuracy
GCNN [0, 90◦] 98.84± .002

[0, 180◦] 98.72± .001

WSCNN [0, 90◦] 98.87± .001
[0, 180◦] 99.25± .001

Table 4: Test accuracy on CIFAR-10 with horizontal flips.

Model # Params # Elements Accuracy
CNN-64 1.7 M - 79.81± .001
CNN-128 6.5 M - 82.60± .001
GCNN 1.6 M 4 76.05± .004

WSCNN 1.6 M (+ 468 K) 4 82.38± .003

Additionally, We proceed to test the model’s capability to detect data symmetries by applying it
to a suite of toy problems, wherein the datasets comprise noisy G-transformed samples. Details
on the data generation framework are provided in Appendix B. Our testing employs a single-layer
setup aimed at learning a collection of kernels that ideally match each data sample, considering
inherent noise. This involves training the model to identify a set of base kernels and their pertinent
transformations, effectively adapting to the variations presented by the toy problems.

6 Discussion and Future Work

We demonstrated a method that can effectively identifies underlying symmetries in data, even without
strict group constraints. Our approach is uniquely capable of learning both partial and approximate
symmetries, which more closely mirrors the complexity found in real-world datasets. Utilizing
doubly stochastic matrices to adapt kernel weights for convolutions, our method offers a flexible
means of learning representation stacks, accommodating both known and unknown structures within
the data. This adaptability makes it possible to detect useful patterns, although these may not always
be interpretable in traditional group-theoretic terms due to the absence of predefined structures in the
representation stack.

Limitations include computational requirements, which scale quadratically with the size of the group
and the kernel size, posing challenges in scenarios with large groups or high-resolution data. As
such, in this work we have designed the representation stack to be uniform across the channel
dimension. However, this prevents learning of other commonly used image transformations such as
color jitter. Furthermore, the need for task-specific regularization to manage entropy scaling during
the learning of representations introduces complexity in hyperparameter tuning, which can be a
barrier in some applications. Additionally, we observed that representations in later layers may show
minimal diversity, suggesting that further innovation in regularization strategies might be necessary
to enhance the distinctiveness of learned features across different layers.

For future work, we aim to enhance our method by implementing hierarchical weight-sharing across
layers and promoting group equivariance more systematically. One promising direction is to leverage
the concept of a Cayley tensor, akin to [19], to identify and reuse learned group structures across
different layers of the network. This approach would not only impose a more unified and coherent
group structure within the model but also potentially reduce the computational overhead associated
with learning separate representations for each layer. By encouraging a shared group structure
throughout the network, we anticipate improvements in both performance and interpretability, paving
the way for more robust and efficient symmetry-aware learning systems.
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A Preliminaries

A.1 Irreducible representations

In this section, we closely follow the mathematical preliminaries outlined in [31]. For a comprehensive
reference on Representation Theory, see [25].

Equivalent representations Two representations ρ and ρ′ of a group G are considered equivalent
if there exists a similarity transform such that:

∀g ∈ G ρ(g) = Qρ′(g)Q−1

where Q represents a change of basis matrix.

Irreps A matrix representation is called reducible if it can be decomposed as:

ρ(g) = Q−1(ρ1(g)⊕ ρ2(g))Q
−1 = Q

(
ρ1(g) 0
0 ρ2(g)

)
Q−1

where Q is a change of basis matrix. If the sub-representations ρ1 and ρ2 cannot be further decom-
posed, they are termed irreducible representations (irreps). The set of all irreducible representations
of a group G is denoted as Ĝ.

Additionally, any representation ρ : G → GL(V ) of a compact group G can be expressed as:

ρ(G) = Q

⊕
j∈I

ρj

Q−1

where I is an index set (possibly with repetitions) over Ĝ.

Similarly to what is showed in Section 4, a representation ρ : G → Rd×d can be viewed as a
collection of d2 functions over G. The Peter-Weyl theorem asserts that the collection of functions
formed by the matrix entries of all irreps in Ĝ spans the space of all square-integrable functions over
G. For most groups, these entries form an orthogonal basis, allowing any function f : G → R to be
written as:

f(g) =
∑
ρj∈Ĝ

∑
m,n<dj

wj,m,n ·
√

dj [ρj(g)]mn

where dj is the dimension of the irrep ρj , while m,n index the entries of ρj . Note that this expression
corresponds to the inverse Fourier transform and that the coefficients wj,m,n can be obtained by the
Fourier transform of f with respect to the basis functions {[ρj(g)]mn}j∈I .

Connection with regular representations It can be shown that the regular representations can be
decomposed using the corresponding irreps as follows:

ρreg(g) = Q−1

⊕
pj

dj⊕
ρj

Q

where Q performs the Fourier transform, while Q−1 performs the inverse Fourier transform. This
implies that when functions f : G → R are considered as vectors in R|G|, with a basis where each
axis corresponds to a group element, then, as we have seen in Section 4, the group action results in
a permutation of these axes. However, applying the Fourier transform changes the basis so that G
acts independently on different subsets of the axes, resulting in the action being represented by a
block-diagonal matrix, which is the direct sum of irreps.

B Toy problems

B.1 Data generation processes

For the construction of the toy problems, we look at two types of data-generating processes:
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Equivariant data. Assume a canonical vector x̂ and corresponding label ŷ. We assume these
vectors transform under a known group G, such that the data-generating process is as follows:

Sample group action: g ∼ µ(G),

Apply group action to feature with noise: x = ρx(g)x̂+ ϵ

Apply group action to label: y = ρy(g)ŷ

with ρx, ρy the representations of G acting on the feature and label space, respectively.

(a) Equivariant task. The labels transform with the data. (b) Invariant task. The labels are fixed.

Figure 4: Samples of the two tasks.

Evaluation metrics To assess whether our method effectively captures the underlying data symme-
tries, we analyze the learned weight-sharing structure by comparing it to known ground truth patterns.
Since our model does not impose associativity or any strict group constraints on the representation
stack, it may learn to represent mixtures or interpolations of group elements. Hence, in general, we
will not observe a relevant algebraic structure if we produce a Cayley table based on the learned
representations as done in [24, 19].

Therefore, we will use an approach that allows us to capture the flexibility of our representations.
To this end, we will examine each representation matrix to determine how closely it resembles a
convolution matrix [18] associated with a random variable defined over some specific group G. We
employ the set of group actions from G, represented as doubly stochastic tensors {Pgt

k }|G|
k=1, as a

reference framework to quantify the fit and alignment of our model’s representations with these
predefined group actions. As such, for each learned weight sharing tensor Rl

i, we calculate the fit
P̂i =

∑|G|
k ckP

gt
k and acquire coefficients ck > 0, such that

∑|G|
k ck = 1 in a constrained linear

regression setup by minimizing ||P̂i −Rl
i||2.

B.2 Additional results: toy problems

We conducted experiments on various signals subjected to different transformations, including: a
1D signal with cyclic shifts (exemplary samples shown in Fig. 4a), a 2D signal with C8 rotations
(illustrated in Fig. 7), and a 3D voxel grid enhanced by 24 cube symmetries. In each scenario,
the learned kernel stack accurately matched the data samples, achieving perfect accuracy. Figure 6
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(a) Shift-dataset with uniformly sampled
group elements.

(b) Shift-dataset with partially sampled
group elements.

Figure 5: Coefficient responses of learned representations and their base transformations.

displays the learned representations for localized shifts in the 1D signal, while Figure 8 presents the
learned kernel stack for the 2D signal dataset.

Furthermore, to assess whether our model can identify partial group structures, we evaluate it using
two distinct datasets: a 1D signal enhanced with cyclical shifts, and a 3× 3× 3 voxel grid subjected
to rotations from C4× C4. For the shift dataset, we utilize the complete set of cyclical shifts as the
ground truth representations. Figure 5(a, b) displays the coefficients for the shift dataset. Specifically,
part (a) shows coefficients when trained uniformly across group elements, while part (b) illustrates
coefficients using only the first half of the group elements, where the group no longer retains cyclic
properties or satisfies closure. Given that our method does not assume cyclic groups or group closure,
it effectively captures the relevant group transformations even for partial transformations. App. B.4
shows the coefficients for the base representations of C4 ×C4 ×C4 cube symmetries. Since the data
augmentation only applied C4 × C4 transformations, the method predominantly identifies elements
corresponding to these transformations, as highlighted by the red line.

Figure 6: Representations learned for 1D equivariant shift task

Figure 7: Samples of the 2D-signal dataset.
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Figure 8: Equivariant task for flattened rotated 2D signals. Learned kernel stack

B.3 Visualization of G-Conv layers

Figure 9 displays the ground truth permutation matrices that implement a shift-twist operator, which
is the group transformation that underlies regular group convolution operator for C4 rotations. Figure
10 illustrates the corresponding matrices learned for each learnable weight sharing layer on the
rotated MNIST dataset. The learned matrices closely show similar patterns as the shift-twist operator,
suggesting the model’s ability to capture such transformations from training data.
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Figure 9: Ground-truth permutation matrices for C4 rotations for 5× 5 spatial kernel, implementing
a shift-twist operator.

Figure 10: Learned representations for the weight-sharing G-conv layers. Top to bottom: first to last
layer learned representation stacks.

B.4 Additional results: learning partial equivariance

Fig. 11 shows the coefficients for the base representations of C4 × C4 × C4 cube symmetries.
The x-axis quantifies the permutation representation for each element consisting of the number of
90-degree flips around each x, y or z axis.
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Figure 11: Cube dataset with C4 × C4 rotations with C4 × C4 × C4 base elements.

B.5 Convolution matrix decomposition for Fig. 3.

Figure 12: Coefficients for C4 representations for d = 25 and learned representations of the lifting
layer of the rotatedMNIST experiment.

C Architectural details

In the current section, we outline some design choices used across all experiments. Code is available
at https://github.com/computri/learnable-weight-sharing. Firstly, when defining the
learnable representation stack R, we have found that anchoring an identity element aids in distin-
guishing the base kernel from its potential transformations. This approach is based on the intuition of
starting with a learnable base kernel and subsequently learning its transformations and we have found
that it aids optimization.
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C.1 Regularizers

We test two regularizers on the representations R, which are similar to those used by [33]:

• Entropy Regularizer: The primary motivation for using the entropy regularizer is to
encourage sparsity in our weight-sharing schemes, which helps the matrices approximate
actual permutation matrices rather than simply being doubly stochastic. This approach stems
from the intuition for some transformations, the weight-sharing schemes should mimic
soft-permutation matrices. The effectiveness of this sparsity depends on the specific group
transformations relevant to the task—for example, C4 rotations are typically represented by
exact permutation matrices. In contrast, CN rotations or scale transformations might require
interpolation, thus aligning more closely with soft permutation matrices. Our experimental
results indicate that the utility of this regularizer varies with the underlying transformations
in the data; for instance, it is not beneficial for scale transformations in the MNIST dataset,
as anticipated. The entropy regularizer is of the following form:

ent(R) = −
N,D,D∑
ijk

Rijk · log(Rijk)

• Normalization Regularizer: Empirically, we have found the normalization regularizer
essential for reducing the number of iterations needed by the Sinkhorn operator to ensure
the matrices are row and column-normalized. Without this regularizer, the tensors either fail
to achieve double stochasticity or require an excessively high number of Sinkhorn iterations
to do so. The normalization regularizer is of the following form:

norm(R) =
1

D

D∑
i

sumr(R)2i + sumc(R)2i

Where sumr, sumc are defined as in 4.2.

C.2 MNIST

Model architecture For all MNIST experiments, a simple 5-block CNN was used. Each block uses
a kernel size of 5 and is succeeded by instance norm and ReLU activation, respectively. After the final
convolution block, any spatial and group dimensions are reduced through a global average pooling
operation, and a single linear layer is used as a classification head. For the group convolutional model
and our weight sharing model, the default hidden channel dimension in the blocks was set to 32
unless otherwise stated, and 64 in the regular CNN models.

Training details The models used a learning rate of 1e-2 and were trained for 100 epochs. All the
experiments were done on a single GPU with 24GB memory under six hours.

C.3 CIFAR10

Model architecture We used the ResNet architecture as in [15] Appendix B.1, except that we
swapped the final global max pooling operator with a global mean pooling. However, in contrast to
[15], we use regular discrete kernels instead of continuous kernel parameterizations.

Training details Following [15], we trained the models for 200 epochs using a learning rate of
1e-4. All the experiments were done on a single GPU with 24GB memory under six hours.

C.4 Computational Demands

Fig. 13 14 show the computational scaling analysis of our weight sharing layer, comparing it to a
group convolutional model of the same dimensions. We highlight that regular group convolutions
can be implemented via weight-sharing schemes, resulting in equal computational demands for both
approaches. Since the weight-sharing approach applies the group transformation in parallel across all
elements (as a result of matrix multiplication and reshape operations), our method can prove quite
efficient. Regarding memory allocation, group convolutions are often implemented using for-loops
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over the group actions, and this sequential method imposes a less heavy memory burden since the
operation is applied in series per group element. However, although scaling is quadratic w.r.t. the
number of group elements and the domain size for weight-sharing, we mitigate this issue by use of
the typically lower-dimensional support of convolutional filters (i.e., and ), rendering our approach
practical for a wider range of settings.

(a) C4-GCNN layer (b) WSCNN layer

Figure 13: Memory allocation at inference time for a C4-GCNN layer and a weight sharing layer, for
different number of group elements |G| and different kernel sizes. The input is 32× 3× 100× 100
(batch × channels × height × width)

(a) C4-GCNN layer (b) WSCNN layer

Figure 14: Execution time at inference time for a C4-GCNN layer and a weight sharing layer, for
different number of group elements |G| and different kernel sizes. The input is 32× 3× 100× 100
(batch× channels × height × width)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not give new theoretical results per see, the proposed method has a
theoretical formulation, that is give in detail in the paper and appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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that is necessary to appreciate the results and make sense of them.
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Answer: [Yes]
Justification:
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• The answer NA means that the paper does not include experiments.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
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11. Safeguards
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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