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ABSTRACT

Non-autoregressive language models are emerging as effective alternatives to au-
toregressive models in the field of natural language processing, facilitating si-
multaneous token generation. This study introduces a novel flow matching ap-
proach that employs Kullback-Leibler (KL) divergence geodesics to interpolate
between initial and target distributions for discrete sequences. We formulate a loss
function designed to maximize the conditional likelihood of discrete tokens and
demonstrate that its maximizer corresponds to the flow matching velocity during
logit interpolation. Although preliminary experiments conducted on the TinySto-
ries dataset yielded suboptimal results, we propose an empirical sampling scheme
based on a pretrained denoiser that significantly enhances performance. Addition-
ally, we present a more general hybrid approach that achieves strong performance
on more complex datasets, such as Fine Web and Lamini Instruction.

1 INTRODUCTION

Non-autoregressive language models have emerged as a promising alternative to traditional autore-
gressive models in natural language processing (NLP) tasks, potentially offering significant advan-
tages during inference by enabling the simultaneous generation of all tokens rather than a sequential
process. However, capturing the complex dependencies inherent in discrete textual data without
relying on the autoregressive assumption presents substantial challenges.

In this paper, we investigate a conditional flow matching approach for text generation, which has
garnered significant interest recently. Notably, methods such as discrete flow matching Gat et al.
(2024) and Dirichlet flow matching Stärk et al. (2024) have adapted continuous flow-based models to
address the discrete nature of text by representing tokens as one-hot vectors within a V -dimensional
simplex, where V denotes the vocabulary size.

The central concept in flow matching involves initiating a probability path ρt between a known
starting distribution ρ0 and a target distribution ρ1, which is only accessible through samples. In our
context, these samples are provided as discrete sequences, represented as sequences of vectors within
a V -dimensional simplex. Previous research has highlighted the limitations of linear interpolation
in this framework Stärk et al. (2024). In response, we propose the utilization of geodesics under
the Kullback-Leibler (KL) divergence, which effectively incorporates the inherent geometry of the
simplex. These geodesics correspond to linear interpolation in the logit space, expressed as lt =
log xt, thereby facilitating a simple closed-form interpolation method.

The loss function within the generation CFM (Conditional Flow Matching) framework can be se-
lected from various options; however, leveraging insights from recent studies, we implement a de-
noiser that maximizes the conditional likelihood logPθ(x1|xt, t), which predicts the discrete tokens
of x1. While it is feasible to model the joint conditional distribution, this approach does not confer
any advantages over existing GPT models, as setting t = 0 necessitates modeling the unconditional
data distribution. Therefore, we focus on modeling the marginal likelihood of each token in x1 con-
ditioned on xt, which corresponds to a simplified approximation of the joint distribution. Although
the theoretical justification for this loss function has been established in the context of single-token
scenarios, its applicability to general sequences has not been comprehensively investigated. We pro-
vide a theoretical analysis establishing that the exact maximizer of the likelihood yields a precise
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expression for the flow matching velocity under logit interpolation, thus offering a robust foundation
for our training scheme.

Despite the theoretical rigor of our approach, initial experiments conducted on the TinyStories
dataset Eldan & Li (2023) indicated that the model’s performance was suboptimal. To address this
issue, we propose an innovative empirical sampling scheme based on the same pretrained denoiser.
In this scheme, given a specific time t and a sample xt, we sample x1 from the distribution P (x1|xt)
and introduce additional noise to generate a sample xt+h. This process is iteratively repeated to pro-
duce the final sequence. Although the theoretical foundations for this method are not yet completely
established, our experimental results demonstrate substantial improvements compared to the initial
approach.

Our contributions can be summarized as follows:

• We introduce the application of Kullback-Leibler (KL) divergence geodesics, which cor-
respond to linear interpolation in the logit space, for flow matching in discrete sequence
modeling.

• We present a theoretical justification demonstrating that the exact maximizer of the likeli-
hood function yields the precise flow matching velocity in this context.

• We propose a novel empirical sampling scheme that, while currently lacking comprehen-
sive theoretical justification, exhibits significant performance improvements in experiments
conducted on complex datasets, including the Fine Web and Lamini Instruction datasets.

2 BACKGROUND

Flow matching Lipman et al. (2023) is a well-established method for determining a flow that con-
nects samples from two distributions with densities ρ0 and ρ1. This is achieved by solving the
continuity equation in relation to the time-dependent vector field v(x, t) and the time-dependent
density ρ(x, t), subject to the following boundary conditions:

∂ρ(x, t)

∂t
= −div(ρ(x, t)v(x, t)),

ρ(x, 0) = ρ0(x), ρ(x, 1) = ρ1(x).

The function ρ(x, t) is referred to as the probability density path. Typically, the initial distribution
ρ0 is chosen for convenience, often as a standard normal distribution, ρ(x) = N (0, I). The target
distribution ρ1 is unknown; we only possess a set of samples drawn from this distribution. Con-
sequently, our objective is to approximate the vector field v(x, t) ≈ v(x, t) using these available
samples.

Starting from a defined vector field, we can construct a flow xt, which represents a time-dependent
map satisfying the ordinary differential equation (ODE):

∂xt

∂t
= v(xt, t)

with the initial condition
xt=0 = x0.

From this process, one can sample a point x0 from the distribution ρ0 and subsequently use the ODE
to obtain a point xt=1 = x1, which will have a distribution approximately equal to ρ1. While the
vector field or path solutions are not unique for given boundaries ρ0 and ρ1, the identification of any
solution facilitates the sampling process from the unknown density ρ1.

The computation of the vector field is typically done by minimizing the flow-matching objective Lip-
man et al. (2023), where vθ(xt, t) is a parametrized velocity

LCFM (θ) = EtEx1,x0
∥vθ(xt(x0, x1), t)− x′

t∥2, (1)

where xt(x0, x1) is some (known) flow between x0 and x1 connecting x0 and x1 (for example, one
can take xt = (1 − t)x0 + tx1 in the simplest case). Here the dash indicates the time derivative.
Time variable t is uniformly distributed: t ∼ U [0, 1] and random variables x0 and x1 are distributed
according to the initial and final distributions, respectively: x0 ∼ ρ0, x1 ∼ ρ1.
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2.1 CONDITIONAL FLOW MATCHING FOR DISCRETE SEQUENCES

In the context of discrete sequences, the variable x1 assumes a finite set of values denoted as
{x(k)

1 }Nk=1. Nonetheless, we can conceptualize x1 as a continuous quantity by interpreting its prob-
abilities. Specifically, for a sequence of length 1, x1 can be represented by a one-hot vector of the
form (0, . . . , 1, . . . , 0), where the entry at position k corresponds to the selected value x

(k)
1 and all

other entries are zero. This framework allows us to view the possible values of x1 as the vertices of
an N -dimensional simplex.

For the initial distribution ρ0, it is appropriate to employ the Dirichlet distribution, which expresses
a uniform distribution over the simplex. Therefore, the task of flow matching consists of identifying
a random point on the simplex, denoted as x0, and matching it to a particular vertex k of the simplex.

To establish a flow on the simplex, we propose the implementation of geodesic interpolation, for-
mulated as follows:

xt(x0, x1) = Softmax
(
(1− t) log(x0) + t log(x1)

)
(2)

where t represents the interpolation parameter. Since x1 is represented as a one-hot vector, we
smooth this vector xs

1 for the stability of the calculation log(xs
1) by adding a constant component

weighted by β:

xs
1 = (1− β)x1 +

β

N
1 (3)

The vector field for geodesic interpolation can be expressed clearly as follows:

dxt

dt
= M(xt)(log(x1)− log(x0)) (4)

where M(xt) = I − xtx
T
t represents the projection matrix. Since the previous formulas utilize

the logit representation of the probabilities, we will adopt the following notations moving forward:
l0 = log(x0), lt = log(xt), l1 = log(x1). Consequently, the vector field for addressing the flow
matching problem in log space can be expressed as:

dlt
dt

= l1 − l0 (5)

It is noteworthy that geodesic interpolation on the simplex for the flow matching problem results in
linear flow matching in the logit space.

2.2 DENOISING OBJECTIVE

In the context of geodesic interpolation in logits, as described in Equation 2, the standard flow
matching (FM) problem outlined in Equation 1 can be reformulated as follows:

LCFM (θ) = Et,x0,x1∥vθ(xt, t)− (l1 − l0)∥2 (6)

By employing a variable substitution, we can express the velocity dlt
dt as a function that depends

solely on l1 and lt:

l1 − l0 =
l1 − lt
1− t

(7)

In a similar manner, the variable lt can be eliminated from the loss functional through the reparam-
eterization of the learnable function vθ(xt, t):

vθ(xt, t) =
v̂θ(xt, t)− lt

1− t
(8)

Consequently, the loss function is now solely reliant on the values of xt and l1, which facilitates a
modification in the averaging variables:

LCFM (θ) = Et,x0,x1
∥v̂θ(xt, t)− l1∥2 (9)

Given that the probability pt(xt) is entirely characterized by the expression p(xt |
x0, x1)p0(x0)p1(x1), and since the loss functional is independent of the variable x0, we can ex-
press the relationship as follows:

Et,x0,x1 = Et,xt∼pt(xt),x1∼p(x1|xt) (10)

3
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Algorithm 1 Inference scheme (ODE)
Require: Initial distribution p0; model parameterizing p(x1|xt); parameter K (number of itera-

tions); parameter h (time step size, default 1/K).
1: Set t = 0
2: Sample xt ∼ p0
3: for i = 1 to K do
4: Compute w = Softmax(p(x1|xt))

5: Compute smoothed mean logit l1 = w log
(
1− β + β

N

)
+ (1− w) log

(
β
N

)
6: Compute lt ← lt +

h
1−t (l1 − lt)

7: Compute xt = Softmax(lt)
8: Update t← t+ h
9: end for

10: Return xt

Utilizing the relationship p(xt|x1)p(x1) = p(x1|xt)p(xt), we can derive the following expression
for the functional of the flow matching problem:

LCFM (θ) = Et,xt∼pt(xt),x1∼p(x1|xt)∥v̂θ(xt, t)− l1∥2 (11)

The minimizer of this problem assumes a straightforward form by defining the optimal target point
v̂(xt, t) for the flow as the average of all potential target points l1 associated with the flows that
traverse the current point xt:

v̂(xt, t) = Ex1∼p(x1|xt)l1 (12)

It is important to highlight that l1 is structured as a matrix of the form l1 = (l
(1)
1 , . . . , l

(S)
1 ).

Each element l
(k)
1 corresponds to the target value of token k in a sequence of length

S. Since each l
(k)
1 operates independently of the others, we have the relationship∫

p(x1|xt)dx
(1)
1 . . . dx

(k−1)
1 dx

(k+1)
1 . . . dx

(S)
1 = p(x

(k)
1 |xt). This allows us to take the expecta-

tion of each token independently of the others:

Ex1∼p(x1|xt)l
(k)
1 =

∫
l
(k)
1 p(x1|xt)dx

(1)
1 . . . dx

(S)
1 =

∫
l
(k)
1 p(x

(k)
1 |xt)dx

(k)
1 = E

x1∼p(x
(k)
1 |xt)

l
(k)
1

(13)
Therefore, the final solution can be expressed in the following matrix form:

v̂(xt, t) =
(
E
x
(1)
1 ∼p(x

(1)
1 |xt)

l
(1)
1 ... E

x
(S)
1 ∼p(x

(S)
1 |xt)

l
(S)
1

)
(14)

Instead of directly predicting the target point v̂(x, t), we can optimize the conditional probabilities
pθ(x

(k)
1 |x) and obtain the vector field by computing the expectation as specified in Equation 14. The

denoising objective for the Conditional Flow Matching (DCFM) problem is defined as follows:

LDCFM (θ) = −Et,xt∼pt(xt)

S∑
k=1

E
x
(k)
1 ∼p(x

(k)
1 |xt)

log pθ(x
(k)
1 |xt), (15)

2.3 INFERENCE: ITERATIVE SAMPLING SCHEME

ODE In the standard formulation of flow matching, inference is performed by solving an ODE.
For the denoising problem situated on a discrete manifold, it is essential to solve the following
equation:

dlt
dt

=
1

1− t

(
Ex1∼pθ(x1|xt)l1 − lt

)
(16)

The denoiser model v̂θ(xt, t) predicts the unnormalized probability p(x
(k)
1 |xt) of the k-th token,

up to a normalization constant, which denotes the likelihood of the k-th component of the current
sample xt transitioning to a specific vertex of the simplex. It is noteworthy that in the interpolation

4
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Algorithm 2 Inference scheme (Randomized)
Require: Initial distribution p0; model parameterizing p(x1|xt); parameter K (number of itera-

tions); parameter h (time step size, default 1/K).
1: Set t = 0
2: Sample xt ∼ p0
3: for i = 1 to K do
4: Sample x1 ∼ p(x1|xt)
5: Sample x0 ∼ p0
6: Compute lt = (1− t− h) log(x0) + (t+ h) log(x1)
7: Compute xt = Softmax(lt)
8: Update t← t+ h
9: end for

10: Return xt

formula, the target logit is smoothed according to l1 = log
(
(1− β)x1 +

β
N 1

)
. This smoothing

introduces a correction to the value of the vector field dlt
dt :

dlt
dt

=
w

1− t
log

(
1− β +

β

N

)
+

1− w

1− t
log

(
β

N

)
− lt

1− t
(17)

where w = Softmax(p(x1|xt)). A detailed description of the procedure can be found in Algo-
rithm 1. In practice, the ODE solution is effective primarily for low-dimensional problems. To
address this, we propose a variant of the method that substitutes the exact mean Ex1∼pθ(x1|xt)l1
with a one-sample estimate, given by l1 = log(x1) where x1 ∼ pθ(x1|xt). In our experiments we
called that approach Logit-FM (semi-randomized).

Randomized A fundamentally new approach to inference involves sampling xt+h conditionally
based on xt. Theoretically, the conditional probability distribution p(xt+h|xt) can be derived di-
rectly if we have knowledge of p(x1|xt):

p(xt+h|xt) =

∫
p(xt+h|x1)p(x1|xt) dx1.

Here, the term p(xt+h|x1) can be expressed as:

p(xt+h|x1) =

∫
p(xt+h|x0, x1)p(x0) dx0.

In practice, to sample from p(xt+h|xt), the following steps are performed:

• Sample noise x0 ∼ ρ0.
• Sample the target point x1 conditioned on xt: x1 ∼ p(x1|xt).
• Compute the interpolation between the noise and target points at the shifted time t + h

using the relation:

xt+h = Softmax
(
(1− t− h) log x0 + (t+ h) log x1

)
.

This procedure is further delineated in Algorithm 2. A critical limitation of this approach is the
inability to establish an exact expression for p(x1|xt). When analyzing a sequence comprised of
two tokens, we can express the conditional probability as:

p(x1|xt) = p(x
(1)
1 , x

(2)
1 |xt) = p(x

(1)
1 |xt) · p(x(2)

1 |x
(1)
1 , xt),

where the superscript denotes the position of each token within the sequence. It is important to
note that the denoising objective defined in equation equation 15 approximates the total probability
p(x

(2)
1 |xt), rather than the conditional probability p(x

(2)
1 |x

(1)
1 , xt). At time t = 0, we encounter a

particularly unfavorable scenario:

p(x
(2)
1 |xt=0) = p(x

(2)
1 ),

5
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indicating that the model effectively approximates the marginal distribution of the tokens, neglecting
any potential dependencies among them. This challenge is partially mitigated by incorporating noise
x0 into the sample x1 at time t to derive a sample at time t+h. Nonetheless, there are no guarantees
that this iterative sampling procedure will converge to the target distribution ρ1. Interestingly, for
simple data distributions, this technique has been shown to perform effectively, as demonstrated in
the experimental section.

Hybrid Randomized inference demonstrates effectiveness for simple data distributions; however,
its performance deteriorates when applied to more complex distributions, as evidenced by exper-
imental results. To address this limitation, we propose a hybrid inference scheme. Our previous
observations indicated that the randomized procedure exhibits its most significant shortcomings
when the time t is close to zero. Specifically, when sampling x1 from the distribution p(x1|xt),
the calculation for xt is given by:

xt = Softmax
(
(1− t)l0 + tl1

)
,

which predominantly yields noise l0 for sufficiently small values of t. To mitigate this issue, we
recommend performing a series of ODE integration steps until t reaches a specified threshold value,
denoted as t∗. Once this threshold is surpassed, the procedure can transition to randomized sam-
pling steps. This approach aims to enhance the robustness of inference in the face of complex data
distributions.

3 RELATED WORK

In this section, we examine the existing literature on modeling discrete sequences. The authors
in Campbell et al. (2024) introduce Discrete Flow Models (DFMs), which integrate discrete and
continuous data through the use of Continuous Time Markov Chains. These models enhance tra-
ditional diffusion methods, facilitating multimodal frameworks for protein co-design and achieving
state-of-the-art results in the generation of protein structures and sequences.

Moreover, Song et al. (2021) propose a stochastic differential equation (SDE) aimed at transforming
complex data distributions by systematically adding and removing noise, leveraging neural networks
for accurate score estimation. In addition, the work by Campbell et al. (2022) presents a continuous
time framework specifically designed for denoising diffusion models of discrete data, resulting in
the development of high-performance samplers that surpass conventional methodologies.

The research conducted by Gat et al. (2024) introduces Discrete Flow Matching, a novel approach fo-
cused on generating high-dimensional discrete data, such as language, while emphasizing improve-
ments in generative perplexity. Additionally, Ghazvininejad et al. (2019b) utilize masked language
modeling techniques to predict target words based on existing input text, and Austin et al. (2021)
enhance multinomial diffusion models by incorporating transition matrices tailored for discrete data.
Lastly, Hoogeboom et al. (2021) offer extensions to generative flows and diffusion models specifi-
cally for categorical data, demonstrating superior efficacy in text modeling and image segmentation
applications.

Recent advancements have also concentrated on the application of continuous space diffusion meth-
ods to discrete datasets Dieleman et al. (2022); Li et al. (2022); Han et al. (2022). Noteworthy
contributions by Lin et al. (2023) aim to refine the modeling of diffusion flows, while novel tech-
niques for Continuous Flow Matching have been introduced by Lovelace et al. (2022) and Stärk
et al. (2024) utilizing Dirichlet paths.

Autoregressive models have proven to be fundamental in the advancement of natural language pro-
cessing Zhao et al. (2023). The influential GPT-2 model Radford et al. (2019) exemplified the
potential of autoregressive approaches in producing coherent and contextually relevant text, thereby
setting the groundwork for significant progress in a wide range of applications. Subsequent re-
search has further explored these generative capabilities, underscoring the ability of autoregressive
methodologies to tackle complex linguistic challenges.

Masked generative modeling has emerged as a promising area, utilizing various techniques to gener-
ate content by obscuring portions of the input data and predicting the masked variables Ghazvinine-
jad et al. (2019a). Research conducted by Savinov et al. (2022) has investigated enhancements to
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traditional masking techniques within the domain of text generation, leading to developments such
as MaskGIT, which employs advanced methodologies for high-resolution image synthesis Chang
et al. (2022). Furthermore, Ziv et al. (2024) illustrated the effectiveness of a text-to-music model,
demonstrating that the adoption of the MaskGIT framework significantly elevates the quality of
generated outputs.

4 EXPERIMENTS

In this study, we undertaken a comprehensive evaluation of our proposed method across both lan-
guage modeling and image generation tasks. For the language modeling component, we compared
our method to existing approaches by employing the established generative metric known as per-
plexity. In the context of the image generation task, we utilized the Frechet Inception Distance
(FID) as our primary evaluation metric. All experiments were conducted utilizing two H100 GPUs,
each equipped with 80 GB of memory.

4.1 EXPERIMENTAL SETUP

Data For our experiments, we conducted evaluations using the Tiny Stories Eldan & Li (2023)
and Binarized MNIST LeCun et al. (2010) datasets. The Tiny Stories dataset comprises syntheti-
cally generated short narratives produced by the models GPT-3.5 and GPT-4. This dataset employs
a limited vocabulary, which significantly reduces the computational resources required for experi-
ments. The Binarized MNIST dataset consists of black-and-white images of handwritten digits, each
with a size of 28× 28 pixels. This can be interpreted as a modeling problem involving sequences of
length 784 and a vocabulary size of 2.

Furthermore, we extended our evaluation to more complex datasets, including the Fine Web Penedo
et al. (2024) dataset, which contains over 15 trillion tokens of cleaned and deduplicated English web
data. For our training purposes, we utilized a smaller subset of this dataset comprising 10 billion
tokens, represented as sequences with a length of 1024 and a vocabulary size of 50, 257.

Additionally, we assessed the proposed technique in the context of a conditional generation task,
utilizing the Lamini Instruction Wu et al. (2023) dataset, which includes 2.58 million pairs of in-
structions and responses, each with a length of 256 tokens. In all experimental tasks, we applied a
smoothing coefficient of β = 0.01 to facilitate geodesic interpolation.

Model In our experiments, the architecture utilized for the toy tasks is based on the DiT model Pee-
bles & Xie (2022). We conducted extensive experiments on high-dimensional data sets (Fine Web
and Lamini Instruction), employing an efficient open-access implementation of GPT-2 1, which was
specifically modified to address the flow matching problem (see Appendix A). The text modeling
architecture consists of 12 layers, 12 attention heads (6 heads for high-dimensional tasks), an em-
bedding size of 768, and a vocabulary size of 50,257. For the image modeling task, we implemented
a model characterized by 4 layers, 6 attention heads, an embedding size of 96, and a vocabulary size
of 2.

Evaluation The performance of unconditional text modeling was evaluated using the generative
perplexity metric, which quantifies how well a language model predicts a sequence of words. This
assessment was conducted with several advanced language models, including GPT-2 Radford et al.
(2019), GPT-3 Brown et al. (2020), and Llama 2 Touvron et al. (2023). To further analyze the diver-
sity of the generated texts, we employed the entropy metric, which measures the unpredictability or
randomness in a dataset; a higher entropy value indicates greater diversity.

For the evaluation of conditional text generation, we utilized standard metrics including ROUGE-L,
Bert-Score, and BLEU Score. ROUGE-L Lin (2004) measures the overlap between the generated
text and reference text, focusing on recall and allowing for the assessment of longer sequences by
identifying the longest common subsequence. Bert-Score Zhang* et al. (2020) leverages contextual
embeddings from the BERT model to evaluate the semantic similarity between generated and refer-
ence texts, providing insight into both precision and recall of n-grams. BLEU Score Papineni et al.

1Github https://github.com/KellerJordan/modded-nanogpt
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Table 1: Generative perplexity on unconditional text generation compared to prior work. Models
were trained on Tiny Stories dataset.

Method NFE Llama 2 GPT 3 GPT 2
Data - 5.4 6.8 12.3

Autoregressive 128 9.1 9.9 14.8
DFM 32/64/128 24.5/21.5/23.1 28.4/24.3/26.3 34.3/29.5/31.5

Logit-FM
(randomized) 32/64/128 8.0/7.4/6.8 8.2/7.4/6.7 11.6/10.8/10.0

Logit-FM
(semi-randomized) 32/64/128 20.0/18.7/17.3 22.3/20.7/19.3 28.1/26.6/24.8

Logit-FM
(ODE) 32/64/128 46.2/41.9/42.8 67.3/60.1/55.2 83.0/75.9/68.5

Table 2: Generative perplexity on unconditional text generation compared to prior work. Models
were trained on Fine Web dataset.

Method NFE Llama 2 GPT 3 GPT 2
Data - 10.7 17.1 33.9

Autoregressive 1024 70.8 114.4 113.8
DFM 256/512/1024 206.2/159.5/110.7 353.5/253.8/156.6 390.8/278.8/172.4

Logit-FM
(ODE) 256/512/1024 220.1/214.2/207.1 682.1/604.6/598.0 744.6/660.7/657.7

Logit-FM
(hybrid) 256/512/1024 104.0/75.6/54.5 159.9/108.4/73.5 180.2/121.5/82.2

(2002) calculates the similarity between the generated text and reference text based on n-gram over-
lap, serving as a widely recognized metric for evaluating the quality of machine translation and text
generation. Each of these metrics contributes to a comprehensive understanding of the performance
and diversity of the generated texts.

4.2 UNCONDITIONAL LANGUAGE MODELING

We conducted a comparative analysis of our proposed method against established approaches, in-
cluding autoregressive text generation utilizing a trained GPT-like model and a non-autoregressive
model introduced in the Discrete Flow Matching (DFM) paper Gat et al. (2024). To ensure exper-
imental rigor, we utilized the most basic version of DFM. The results of this comparison for toy
experiments conducted on the Tiny Stories dataset are summarized in Table 1.

The observed results indicate that the performance of the trained Logit-FM model is highly depen-
dent on the inference method employed. Specifically, the ODE inference method yielded the lowest
text quality across all evaluation metrics. In contrast, both the DFM model and the semi-randomized
Logit-FM model demonstrated comparable text quality, outperforming the autoregressive approach.
Notably, the Logit-FM model operating under the randomized inference method produced output
that closely matched real texts and significantly surpassed the autoregressive model in quality. Fur-
thermore, we measured the entropy scores across all models and inference methods presented, find-
ing that they exceeded a threshold of 5, which is indicative of diverse text generation.

Importantly, even with a substantial reduction in the number of function evaluations (NFE) to 32
and 64, the quality of the generated text, as assessed by perplexity, remained relatively high. These
results were achieved using top-k sampling with k = 1 for the Logit-FM (randomized) method.

As illustrated in Figure 1, we investigated the effects of varying k on text quality (perplexity) and
variability (entropy). Our findings reveal that as k increases, there is a slight increase in variability;
however, a significant decline in quality is observed when k exceeds 5. Nevertheless, even at k = 1,
the text variability—measured by entropy—remained comparable to that of actual texts.

In addition to our previous analysis, we extended our investigation to include more complex datasets,
specifically the Fine Web dataset. Our experiments with sequences of length 1024 revealed that the
Logit-FM model consistently outperformed both the autoregressive and DFM approaches, as illus-
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Figure 1: quantitative assessment of the impact of selecting the k parameter for top-k sampling
from the conditional probability p(x1|xt) on the quality of the generated texts, measured in terms of
perplexity, as well as their variability, assessed through entropy. For reference, the graphs include
numerical estimates of the quality and variability of real texts, represented by a horizontal ”data”
line.

Table 3: Evaluation of conditional text generation compared to prior work.
Method ROUGE-L BERT Score BLEU Score

Autoregressive 0.30 0.59 0.17
DFM 0.17 0.50 0.04

Logit-FM
(ODE) 0.22 0.54 0.05

Logit-FM
(hybrid) 0.24 0.57 0.07

trated in Table 2. The fully randomized approach (Logit-FM randomized) was excluded from the
table due to a low entropy score of 3.7, which falls below the established threshold of 5 that in-
dicates insufficient text diversity (with most tokens in the sequence being repeated). In contrast,
hybrid approaches that integrate both ODE and randomized steps (see Appendix B) exhibited im-
proved text quality (as measured by perplexity) for 1024 function evaluations, while also generating
texts that satisfied the entropy requirement (exceeding 5). Notably, even with a twofold reduction
in function evaluations, the hybrid method still produced texts of quality comparable to that of the
autoregressive approach.

4.3 CONDITIONAL LANGUAGE MODELING

We have assessed the capability of the proposed methodology in addressing the conditional text
generation problem. The evaluations were conducted using the Lamini Instruction dataset, which
consists of sequences with total length of 512 (the maximal length of instruction and correspond-
ing response). Performance metrics were analyzed based on several established evaluation criteria:
ROUGE-L, BERT Score, and BLEU Score, as detailed in Table 3. Our findings indicate that the op-
timal balance between ODE and randomized steps in the hybrid (Logit-FM hybrid) approach occurs
when the number of ODE steps is zero (see Appendix B), resulting in a fully randomized method.
Consequently, no hybrid approach results are presented in the table. All values included in the
table were computed as averages over 8 independent runs of response generation for each instruc-
tion. While the results for Logit-FM are slightly inferior to those of the autoregressive approach,
they remain comparable. Furthermore, it was observed that both ODE and randomized approaches
outperform the DFM approach across all evaluated metrics.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

24 25 26 27 28 29

NFE

6

7

8

9

10

11

12

13

FI
D

DFM
Logit-FM

Figure 2: Quantitative comparison of the DFM and Logit-FM approaches in the context of image
modeling task. The performance of each method is evaluated using the Frechet Inception Distance
(FID) metric, plotted against the number of function evaluations (NFE).

4.4 IMAGE MODELING

We conducted an exploration into training the model to effectively reconstruct a picture manifold,
using the Binarized MNIST dataset as a fundamental example. A comparative analysis of the pro-
posed model, which utilizes (ODE) inference, against the diffusion probabilistic model (DFM) is
presented in Figure 2. Our analysis indicates that for a number of function evaluations (NFE) less
than 128, the DFM exhibits superior performance, as assessed by the Fréchet Inception Distance
(FID) metric. The FID metric serves as a robust measure of the similarity between generated images
and the real data distribution, thus providing insights into the quality of image generation. However,
as the number of function evaluations increases beyond 128, we observe that the quality of images
generated by both models begins to converge, suggesting that the enhancements provided by DFM
diminish at higher NFE. This trend highlights the importance of balancing computational resources
with the desired image quality in model training.

5 CONCLUSIONS AND FUTURE WORK

In this study, we introduced Logit-FM as a robust solution for discrete problems, employing geodesic
interpolation within the simplex framework. We validated the use of a denoising objective, enabling
the independent resolution of the problem for each token in the sequence. Additionally, we de-
veloped a novel inference scheme for the learned denoiser model, which demonstrates significant
improvements over traditional inference methods in terms of the quality of generated sequences.
Remarkably, our proposed method consistently outperforms autoregressive models in quality, even
with a substantial reduction in the number of function evaluations.

Looking forward, we aim to establish a comprehensive theoretical foundation for our empirically
effective inference scheme and to assess its performance across a wider array of complex tasks. We
contend that the approach presented in this work has the potential to make a substantial contribution
to the field of discrete data modeling, paving the way for future advancements and applications.
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A OPTIMAL TRAINING CONFIGURATION
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Figure 3: Comparison of the impact of learning rate values on training a GPT-like model for the
Flow Matching problem. The base implementation utilizes the Muon optimizer for certain model
parameters, while the tag ”no Muon optimizer” indicates that the Muon optimizer has been replaced
with the Adam optimizer.
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Figure 4: Comparison of various strategies for time insertion within model architecture.

In this section, we discuss several critical aspects and technical strategies for addressing the Flow
Matching (FM) problem. The foundational code and architecture employed for training were derived
from an open-source GitHub repository featuring an efficient implementation of the GPT-2 model,
designed for standard language modeling tasks. However, our investigation revealed that the initially
suggested optimal configuration is not truly optimal for the FM problem.

A key factor influencing convergence is the selection of an appropriate learning rate. In Figure 3, we
present a comparison of various learning rate values, alongside an assessment of how the integration
of the Muon optimizer—proposed in the original repository—affects model performance. We found
that the standard learning rate of (lr = 0.0036) is not optimal. A learning rate reduced by a factor
of ten significantly accelerates convergence and mitigates the risk of stagnation during the initial
phases of training. Furthermore, we determined that the ratio of learning rates between the Adam
optimizer and the Muon optimizer yields optimal results. Additionally, the application of the Muon
optimizer for specific model parameters enhances convergence, even when employing a non-optimal
learning rate.

Another critical consideration is the method of incorporating temporal information into the model
architecture. We identified three primary strategies for this purpose:

• Time Token: Transform the time value into an embedding vector and incorporate it as a
separate token within the sequence.

• Layer Normalization: Employ a method akin to that used in the DiT architecture, where
the time embedding is utilized to adjust the mean and standard deviation of the data within
the layer normalization module.
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• Standard Addition: Simply append the time embedding to each token embedding.

Our findings, as presented in Figure 4, indicate that the Layer Normalization strategy is the most
effective approach, as it provides better convergence and achieves a lower loss value after 200k
training steps.

B OPTIMAL t∗ FOR HYBRID METHOD
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Figure 5: Comparison of the impact of various optimal splits t∗ (hybrid method) on entropy and
perplexity, as computed using the Llama2 model.

In paragraph 2.3, we described the division of the inference procedure into two distinct phases.
In the first phase, we perform ODE steps, while in the second phase, we implement randomized
steps. The transition between these two phases is governed by the hyperparameter t∗. For the
experiments summarized in Tables 2 and 3, we conducted a search to identify the optimal value of
t∗. Figure 5 illustrates the influence of this choice on the entropy and perplexity of the generated
texts. As indicated in the experimental section, the diverse texts exhibit an entropy value greater
than 5. Therefore, the optimal t∗ must both meet this criterion and yield low perplexity. For the Fine
Web dataset, we determined that the optimal value is t∗ = 0.28.

For the Lamini Instruction dataset, we employed a similar methodology to ascertain the optimal t∗.
The results are presented in Figure 6. Notably, the best scores for most metrics were achieved at
t∗ = 0, which corresponds to setting the number of ODE steps to zero. This finding indicates that
the most effective inference strategy for this dataset is a fully randomized approach.
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Figure 6: Comparison of the effects of different optimal splits t∗ (hybrid method) on conditional
generation performance, as measured by ROUGE-L, BERT Score, and BLEU Score.
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