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Abstract
Recent advances in CV and NLP have inspired re-
searchers to develop general-purpose graph foun-
dation models through pre-training across di-
verse domains. However, a fundamental chal-
lenge arises from the substantial differences in
graph topologies across domains. Additionally,
real-world graphs are often sparse and prone to
noisy connections and adversarial attacks. To ad-
dress these issues, we propose the Multi-Domain
Graph Foundation Model (MDGFM), a unified
framework that aligns and leverages cross-domain
topological information to facilitate effective and
robust knowledge transfer. MDGFM bridges
different domains by adaptively balancing fea-
tures and topology while refining original graphs
to eliminate noise and align topological struc-
tures. To further enhance knowledge transfer,
we introduce an efficient prompt-tuning approach.
By aligning topologies, MDGFM not only im-
proves multi-domain pre-training but also en-
ables robust knowledge transfer to unseen do-
mains. Theoretical analyses provide guarantees of
MDGFM’s effectiveness and domain generaliza-
tion capabilities. Extensive experiments on both
homophilic and heterophilic graph datasets val-
idate the robustness and efficacy of our method.
Our code is available at https://github.
com/wbkzwqtzw/MDGFM.

1. Introduction
Graphs, as a versatile data structure, are widely used across
various domains, such as citation networks (Ebesu & Fang,
2017), social networks (Traud et al., 2012), and bioinformat-
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ics (Zhang et al., 2021). Inspired by recent advances in CV
and NLP (Vidit et al., 2023; Cheng et al., 2024), researchers
have sought to develop general-purpose graph foundation
models. In particular, multi-domain graph pre-training has
gained significant attention for its ability to integrate knowl-
edge from various domains and enable effective transfer
learning (Yu et al., 2025; Zhang et al., 2024b). This ap-
proach is viewed as a critical milestone toward the creation
of truly general-purpose graph models.

Despite significant progress, a substantial gap remains in
fully understanding the richness and diversity of graph struc-
tural knowledge. Existing methods primarily rely on fixed
graph topologies and apply uniform encoding mechanisms
across all domains (Zhao et al., 2024; Yu et al., 2025),
which severely limits their generalizability across diverse
domains (Zhang et al., 2024). In this paper, we revisit the
multi-domain graph foundation model from a structural
perspective and address a critical challenge: topology align-
ment across different domains. Achieving effective topology
alignment is a non-trivial task, presenting two primary chal-
lenges that must be overcome to advance toward a truly
general-purpose graph model.

First, structural knowledge across domains often exhibits
significant semantic differences. For instance, citation net-
works predominantly display highly homophilic patterns,
whereas social networks and webpage link graphs frequently
contain numerous heterophilic edges (Zheng et al., 2022;
Shen and Kang, 2025; Xie et al., 2025). These differences
necessitate domain-specific adaptations of encoding mech-
anisms (Li et al., 2024; Pan and Kang, 2023). As a result,
there is an urgent need for a unified framework that can
adaptively capture critical information from both features
and topology while effectively learning domain-invariant
knowledge. Such a framework is essential to ensure robust
generalization to downstream domains (Li et al., 2022; Xie
et al., 2025).

Second, real-world graphs are inherently noisy (Jin et al.,
2020b), often containing unreliable edges characterized by
irrelevant, misleading, or missing connections. Additionally,
graph learning algorithms are highly susceptible to adver-
sarial attacks (Zügner et al., 2020), further exacerbating the
challenges of graph representation learning. These issues
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highlight the limitations of conventional training paradigms
that rely on fixed graph topologies. Therefore, developing
a robust multi-domain pre-training framework capable of
effectively handling complex noise distributions is critical
for constructing trustworthy and reliable graph foundation
models.

To tackle these challenges, we propose the Multi-Domain
Graph Foundation Model (MDGFM), a unified framework
designed to effectively align and leverage structural knowl-
edge across domains. First, we introduce a decoupled em-
bedding mechanism incorporating an adaptive balance token
that dynamically weighs feature and topology information.
To address inherent noise and achieve topology alignment,
we integrate a Graph Structure Learning module that learns
robust, domain-invariant knowledge, enhancing both gener-
alization and transferability. Additionally, we develop an ef-
ficient prompt learning strategy to transfer knowledge from
multiple source domains to a target domain. By aligning
topologies effectively, MDGFM not only improves multi-
domain pre-training but also enables efficient and robust
knowledge transfer to unseen downstream domains. Theo-
retical analyses validate the effectiveness of our topological
knowledge alignment and demonstrate superior domain gen-
eralization capabilities.

In summary, our contributions are as follows:

• We introduce a novel structural perspective on multi-
domain graph foundation models, addressing the com-
plexities arising from interconnected nodes and diverse
attribute types.

• We propose MDGFM, a unified multi-domain graph
foundation model that employs graph structure learn-
ing to reduce inherent noise and align topological struc-
tures. Our framework facilitates efficient and robust
knowledge transfer to unseen domains, with theoretical
guarantees on its effectiveness and domain generaliza-
tion capabilities.

• We conduct extensive experiments on both homophilic
and heterophilic benchmark graph datasets, demon-
strating the effectiveness, robustness, and versatility of
our approach.

2. Related work
2.1. Graph Pre-training

Graph pre-training aims to train Graph Neural Networks
(GNNs) on large amounts of unlabeled data, enabling the
transfer of the learned model to downstream tasks with lim-
ited supervision. This approach facilitates the acquisition of
general knowledge about real-world graphs while reducing
the dependence on labeled data (Hu et al., 2020; Jin et al.,

2020a).

Pre-training methods can be broadly categorized based on
their downstream task-tuning strategies. The first category
follows a pretrain-and-fine-tune paradigm, emphasizing ef-
fective pre-training strategies in the upstream phase through
self-supervised learning. For example, DGI (Velickovic
et al., 2019) enhances training by maximizing the mutual
information between global and local representations. Sim-
ilarly, GraphCL (You et al., 2020) and SimGRACE (Xia
et al., 2022) focus on minimizing the distance between repre-
sentations of different augmentations, effectively capturing
invariant and robust structural information.

The second type follows a pretrain-and-prompt-tuning
paradigm, where pre-trained models are not fine-tuned for
downstream tasks. Instead, these methods reformulate the
input data to align with the pretext task (Gao et al., 2020).
For instance, GPPT (Sun et al., 2022a) introduces a graph
prompting function that transforms independent nodes into
token pairs, reframing downstream node classification as an
edge prediction task. Similarly, GPF (Fang et al., 2024) em-
ploys learnable perturbations in the feature space of down-
stream graphs, enabling implicit modifications to node fea-
tures and graph structures. However, most existing methods
are constrained to single-domain pre-training and tuning,
significantly limiting their capacity to capture cross-domain
knowledge and generalize to unseen domains.

2.2. Multi-domain Generalization

Domain generalization aims to achieve out-of-distribution
(OOD) generalization by learning from multiple source do-
mains (Zhou et al., 2022). In contrast to domain adapta-
tion—which transfers prior knowledge from a single source
domain to a specific target domain—domain generalization
focuses on leveraging diverse information from multiple
source domains to generalize effectively to unseen domains.
This approach addresses two critical challenges: domain
shift and the absence of target domain data (Blanchard et al.,
2011).

Recently, domain generalization on graphs has gained at-
tention (Wang et al., 2024). These methods integrate and
extract knowledge from multiple source domains during the
upstream pre-training phase, enabling the transfer of this
knowledge to tackle various graph-related tasks in previ-
ously unseen downstream domains (Fang et al., 2025). For
example, GCOPE (Zhao et al., 2024) integrates multi-source
graph topologies during the pre-training phase by introduc-
ing interconnected virtual nodes. Additionally, MDGPT
(Yu et al., 2025) incorporates domain-specific tokens in
the pre-training phase to align node features from different
domains, and employs prompt-tuning during downstream
tasks for efficient knowledge transfer. Despite these ad-
vancements, significant gaps remain in understanding the
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semantic differences and reliability of multi-domain topolo-
gies. Consequently, there is an urgent need to design a
universal foundation model capable of achieving robust and
generalized knowledge transfer across domains.

3. Problem Definition
A graph is formally represented as G = (V,E,Xori) =
(A,Xori), where V is the set of nodes and E denotes the
set of edges, Xori ∈ R|V |×d′

represents the original feature
matrix of nodes. A is the corresponding adjacency matrix.
Each graph is associated with a domain Di ∈ D. Without
loss of generality, we assume Di ̸= Dj for any pair of
distinct graphs.

Given a set of graphs from different domains, say Gi =
(Ai, X

ori
i ), i = 1, ..., N . We pretrain our graph founda-

tion model on all visible graphs and test the performance
on graph T from an unseen target domain DT /∈ D. We
summarize the notations in Appendix A.

4. Methodology
As illustrated in Figure 1, our proposed MDGFM consists
of two modules: the Multi-domain pre-training module and
the Downstream target-domain adaptation module.

Multi-domain pre-training. For graphs originating from
multiple source domains, we begin by unifying their fea-
ture matrices to a common dimensionality, ensuring com-
patibility across domains. Next, we apply token operators
specifically designed to achieve semantic alignment between
disparate graphs. To address the challenges posed by het-
erophily in downstream tasks, we leverage graph structure
learning (GSL) to refine each source domain, integrating
both feature and topology information during the refine-
ment process. Additionally, GSL enables the model to learn
domain-invariant knowledge for better transfer, where we
prove the effectiveness in Section 5. Finally, the graph en-
coder is trained effectively using self-supervised signals,
enabling robust representation learning.

Downstream target-domain adaptation. Given that
graphs often share common intrinsic patterns, pre-trained
knowledge can be effectively transferred to unseen graphs
(Zhao et al., 2024). To bridge the gap between source and
target domains, we propose a dual-stream prompt frame-
work. This framework combines meta prompts, which trans-
fer broadly learned knowledge, with task-specific prompts
designed to align with the unique characteristics of the down-
stream domain.

4.1. Feature Projection into Unified Semantic Space

Graphs from different domains often exhibit diverse fea-
tures and structural patterns. To address these discrepan-

cies and customize the information propagation process in
GNNs, we employ both numerical and semantic alignment
to bridge domain gaps. First, we transform the feature ma-
trix of each graph into a consistent dimensionality shared
across all domains, enabling uniform representation. This
transformation is described by:

Xi = Proj(Xori
i ) ∈ R|Vi|×d (1)

where d represents the aligned dimensionality, and Proj(·)
denotes a specific projection operation. In our approach, the
Projection function is implemented using Principal Compo-
nent Analysis (PCA) (Abdi & Williams, 2010). While this
dimensional alignment ensures uniform feature dimensions
across graphs, it primarily addresses numerical consistency
and does not resolve the semantic disparities that remain
between domains.

To achieve semantic alignment, we propose the concept of
domain tokens denoted as tDi ∈ Rd, which encode domain-
specific characteristics by capturing unique contextual in-
formation from each domain. These tokens are applied via
element-wise Hadamard multiplication ⊙ with the feature
matrices, acting as adaptive filters that modulate features
to reflect their respective domain properties within a uni-
fied semantic space. This process not only preserves the
distinctive traits of individual domains but also facilitates
their alignment within a cohesive semantic framework.

A significant challenge in building a graph foundation model
lies in the substantial semantic variations across domains,
which can hinder effective knowledge transfer (Hassani,
2022). To address this, we leverage shared, domain-agnostic
information as a critical foundation for robust and efficient
transfer learning. Specifically, we introduce the shared to-
ken tS ∈ Rd which acts as a common semantic anchor
to bridge discrepancies between domains. By focusing on
shared patterns, ts captures transferable knowledge broadly
applicable to new domains, reducing dependence on domain-
specific features that may lack generalizability. This shared
representation enables consistent semantic alignment, en-
hancing the model’s adaptability and robustness to domain
variations. The overall feature unification procedure can be
formalized as:

X ′
i = tS ⊙ σ(tDi

⊙Xi) (2)

where σ(·) is non-linearity activation function to capture
complex information.

4.2. Graph Topology-aware Alignment

Previous research on graph prompting (Sun et al., 2023;
Dong et al., 2019) has predominantly emphasized feature
alignment, often overlooking the critical role of structural
discrepancies between graphs from different domains. How-
ever, rich semantic information is embedded within rela-
tional patterns and topology credibility, as characterized by
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Figure 1. The overall framework of the proposed MDGFM.

metrics like homophily and heterophily edge ratios (Zhu
et al., 2020). These structural characteristics underscore the
importance of aligning graph structure patterns to enable
meaningful knowledge transfer (Sun et al., 2022b; Zheng
et al., 2022).

Rather than solely focusing on direct structural unification,
our approach seeks to synchronize more reliable topology in-
formation through graph structure refinement on both source
and unseen downstream graphs. This is achieved via the
incorporation of GSL, which enhances the robustness and
effectiveness of cross-domain graph alignment. By address-
ing structural discrepancies, our framework bridges the gap
between diverse graph domains, facilitating more compre-
hensive knowledge transfer.

Unlike prior GSL approaches (Zhu et al., 2021; Jin et al.,
2020b), which primarily optimize graph structures based on
feature similarity, our method incorporates both semantic
and topological information for a more comprehensive re-
finement process. Specifically, we utilize Ar

iX
′
i to capture

the original structural information, where r represents the or-
der of graph aggregation (default set to one). To effectively
fuse X ′

i and Ar
iX

′
i during graph refinement, we introduce a

balance token tBi ∈ R2d, which operates in the following
manner:

Hi = tBi
⊙ [X ′

i, A
r
iX

′
i] (3)

Here, tBi dynamically balances the contributions of node
features and aggregated structural information.

Finally, consistent with existing GSL methods (Li et al.,
2024), we apply post-processing techniques to reconstruct
the refined adjacency matrix. Specifically, a similarity ma-
trix is first computed using Hi and then sparsified via k-
nearest neighbors (kNN). In practice, we employ kNN spar-
sification with its locality-sensitive approximation to en-
hance efficiency (Fatemi et al., 2021). Subsequently, op-
erations such as Symmetrization, Activation, and Normal-

ization are performed sequentially to produce the final A′
i.

Detailed implementation steps are provided in Appendix
F. Building on this topology-aware refinement process, we
propose a general pretraining framework capable of generat-
ing high-quality embeddings across multiple domains using
contrastive learning. By optimizing a contrastive-based
objective, the model learns generalized representations by
leveraging rich sample-to-sample relationships from diverse
perspectives (Yao et al., 2022). Mathematically, we maxi-
mize the mutual information between Gi1 = (Ai, X

′
i) and

Gi2 = (A′
i, X

′
i) as follows:

L = −I(Gi1;Gi2 † Ie)− I(Gi1;Gi2 †A′
i) (4)

where we use † to indicate positive samples when comput-
ing similarities, often utilizing the identity matrix Ie for
this purpose. The second term of L incorporates the re-
fined graph structure A′

i to increase the number of positive
samples. Detailed computations of the loss function are
provided in Appendix G. This loss formulation reduces the
information gap between the original and refined graphs, en-
suring that global structural properties are preserved during
optimization. By maintaining semantic consistency in the
graph structure, it enhances alignment and adaptability for
downstream tasks.

4.3. Knowledge Transfer to Downstream Domain

Similar to in-context learning, downstream adaptation aims
to enhance a model’s ability to learn tasks using only a few
examples provided as demonstrations (Dong et al., 2024),
highlighting the need for upstream knowledge transfer. In-
spired by the “pre-training & prompting” paradigm, our
framework employs a dual-prompt strategy. Specifically,
the meta prompt pm focuses on adjusting the distribution of
learned knowledge by modeling the relationships between
the target and source domains. This can be formalized as a
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function defined for feature X:

pm(X) = tS ⊙ σ(

N∑
i=1

αitDi ⊙X) (5)

where α1, ..., αN are trainable coefficients for the source do-
mains. Meanwhile, the learnable specific prompt ps ∈ Rd

aims to directly align the target domain with the unified se-
mantic space by learning from the limited available samples,
ensuring precise adaptation to the downstream domain.

As discussed, for the downstream graph T (AT , XT ) where
the feature dimension aligns with the given d, the dual
prompts pm and ps operate on XT to achieve semantic unifi-
cation. Since all tokens are optimized during the pretraining
phase, only the coefficients and ps need to be trained in
this process. The reduced number of learnable parame-
ters enhances transfer performance by compensating for the
scarcity of annotated samples. Consistent with upstream
operations, we use HT = t ⊙ [X ′

T , A
r
TX

′
T ] to obtain A′

T ,
where t could be composed of tDi

(similar to pm) or be
directly trained. Finally, we obtain the node representations
Z as follows, which can be applied to downstream tasks:

Z = GE(A′
T , βpm(XT ) + (1− β)ps ⊙XT ; θpre) (6)

where GE denotes the graph encoder and θpre the frozen pa-
rameters learned in pre-training phase. To mitigate the risk
of harmful transfer from source graphs with significant dis-
crepancies, as discussed by (Yan et al., 2024), the prompts
are integrated using a learnable parameter, β, instead of re-
lying solely on concatenation. For graphs that significantly
differ from the source domains, the meta prompt weights
are attenuated to minimize the transfer of irrelevant infor-
mation, thereby reducing its potential negative impact on
downstream tasks.

For the downstream node classification task, the loss func-
tion Ldst follows a universal task template grounded in
subgraph similarity. Given a labeled training set S =
{(x1, y1), . . . , (xi, yi), . . . }, where xi represents a node
and yi ∈ Y denotes the class label of xi with Y denot-
ing the set of all possible class labels, the loss function is
expressed as:

Ldst = −
∑

(xi,yi)∈S

ln
1
τ sim(zxi , z̄yi)∑

y∈Y exp
(
1
τ sim(zxi , z̄y)

) (7)

Here, zxi
denotes the final embedding of node xi, and z̄y

represents the class embedding for class y, computed as the
mean embedding of all training instances belonging to y.
We practically calculate sim(·, ·) by cosine similarity, while
τ serves as a temperature parameter to control the shape of
the output distribution.

5. Theoretical Analysis
In this section, we provide a theoretical analysis to demon-
strate the domain generalization capabilities of MDGFM.

Denote P t
X as the data distribution on feature space in the

target domain. t could be changed into i for source domain,
while X could be replaced by label space Y . With the
covariate shift assumption, each domain is characterized
by the distribution on X . Thus, we can approximate the
target domain distribution P t

X within the convex hull of
source domain distributions: Λ := {

∑M
i=1 πiP

i
X | π ∈

∆M}, where ∆M is the (M − 1)-dimensional simplex so
that each π represents a normalized mixing weights. The
generalization capability is quantified by the following:

Theorem 5.1 (Domain generalization error bound). Let
γ := minπ∈∆M

dH(P t
X ,

∑M
i=1 πiP

i
X ) with minimizer π∗

be the distance of P t
X from the convex hull Λ, and P ∗

X :=∑M
i=1 π

∗
i P

i
X be the best approximator within Λ. Let ρ :=

supP ′
X ,P ′′

X∈Λ dH(P ′
X , P ′′

X ) be the diameter of Λ. Then it
holds that

ϵt(h) ≤
M∑
i=1

π∗
i ϵ

i(h) +
γ + ρ

2
+ λH,(P t

X ,P∗
X ), (8)

where λH,(P t
X ,P∗

X ) is the ideal joint risk across the target
domain and the domain with the best approximator distri-
bution P ∗

X . ϵ1, · · · , ϵM represent the source risks and ϵt

denotes the target risk (Albuquerque et al., 2019).

To minimize the upper error bound, we introduce the con-
cept of invariant graph learning, which is highlighted in our
work:

Assumption 5.2. Given a graph G, there exists an optimal
invariant graph learner Φ∗(G) satisfying:
Invariance Property: ∀e, P e(Y |Φ∗(G)) = P e′(Y |Φ∗(G)).
Sufficient Property: Y = ω∗(g∗(Φ∗(G))) + ϵ, ϵ⊥G.
where g∗(·) is a representation learning function, ω∗ is the
classifier, e denotes the environments (i.e., domains), ⊥
indicates statistical independence and ϵ is the random noise.

Φ∗(G) could generate invariant graphs across different do-
mains, which is implemented as GSL procedure on all
domains in our work. Moreover, by maximizing the mu-
tual information between Gi1(Ai, X

′
i) and Gi2(A

′
i, X

′
i), our

method retains sufficient task-relevant information, thereby
satisfying the sufficient property. Motivated by Theorem
5.1, domain invariant representation learning minimizes the
risks over all source domains corresponding to the first term
of the bound, as well as the representation distribution dif-
ferences among source and target domains in the hope of
reducing γ and ρ. In general, based on the following theo-
rem, our model achieves the minimal error bound due to
its adherence to the invariant and sufficient properties.
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Theorem 5.3. Let Φ∗ be the optimal invariant graph learner
and denote the complement as G\Φ∗(G), i.e., the corre-
sponding variant subgraph. Then we can obtain the optimal
predictor under distribution shifts as follows.

argmin
ω,g

ω ◦ g ◦ Φ∗(G) = argmin
f

sup
e

R(f |e) (9)

if the following conditions hold: (1) Φ∗(G)⊥G\Φ∗(G);
(2) ∀Φ which is an invariant graph learner, ∃e′ such
that P e′(G, Y ) = P e′(Φ(G), Y )P e′(G\Φ(G)) and
P e′(Φ(G)) = P e(Φ(G)) (Li et al., 2022).

where R(f |e) = Ee
G,Y [l(f(G), Y )] is the risk of the pre-

dictor f on the domain e and l(·, ·) : Y× Y → R denotes a
loss function.

6. Experiments
In this section, we evaluate our proposed MDGFM on few-
shot node classification task. Specifically, we aim to answer
the following four research questions:

RQ1. How does MDGFM perform on multi-graph tasks in
few-shot learning scenarios compared to current baselines?
RQ2. How do the key components benefit our model? RQ3.
Does our model rely on specific source domains and exhibit
sensitivity to the removal of these source domains? RQ4.
Does our model demonstrate robustness against attacks and
deletion on the source domain?

6.1. Experimental Setups

Datasets. To ensure a comprehensive comparison, we con-
duct experiments on six primary datasets, including three
homophilic graphs—Cora (Sen et al., 2008), Citeseer (Sen
et al., 2008), and Pubmed (Namata et al., 2012)—and three
heterophilic graphs—Cornell, Chameleon, and Squirrel (Pei
et al., 2020). Additionally, we include Penn94 (Traud et al.,
2012), a large-scale graph dataset, as a downstream target
domain. Detailed statistical information on these datasets is
provided in Appendix C.

Baselines. We compare our method against four categories
of approaches:
Supervised methods: These methods train a GNN on down-
stream tasks and directly infer results. We employ two well-
known models: GCN (Kipf & Welling, 2016) and GAT
(Velickovic et al., 2017).
Graph Pre-training Methods: These approaches perform
self-supervised pre-training across multiple isolated source
domains, such as DGI (Velickovic et al., 2019) and GraphCL
(You et al., 2020), before fine-tuning on a new downstream
task. Notably, source domains are not trained simultane-
ously; instead, they are merged into a single batch object,
forming an adjacency matrix composed of distinct blocks.
Graph Prompting Methods: These methods freeze the

parameters of a pre-trained model, unify downstream tasks
and tune a single type of prompt accordingly. Represen-
tative methods include GPPT (Sun et al., 2022a) and GPF
(Fang et al., 2024).
Multi-domain Pre-training Methods: These methods inte-
grate multiple source domains during upstream pre-training
and transfer knowledge for few-shot learning on unseen tar-
get domains. For instance, GCOPE (Zhao et al., 2024) con-
structs a unified large-scale dataset with inter-dataset con-
nections, while MDGPT (Yu et al., 2025) encodes domain-
specific characteristics using unique tokens, followed by
fine-tuning and prompt adaptation.

For a fair comparison, we use GCN as the backbone for
all methods. To evaluate performance on unseen target do-
mains, we focus on scenarios where the model generalizes
to domains not encountered during pre-training. For the
Cora, Citeseer, Pubmed, Chameleon, Squirrel, and Cornell
datasets, we designate one dataset as the downstream target
domain while using the remaining five as source domains
during pre-training. Additionally, we extend this setup by us-
ing all six datasets as source domains and applying Penn94
as the target domain for few-shot learning. More details are
provided in Appendix E.

6.2. Cross-domain Transfer Efficacy under Few-shot
Learning Conditions (RQ1)

We compare our proposed MDGFM against all baselines
on 1-shot and K-shot node classification tasks. Each ex-
periment is repeated five times, and we report the average
results in Tables 1 and 2.

In the one-shot setting, MDGFM consistently outperforms
all baseline models, demonstrating superior performance on
both homophilic and heterophilic graphs. This advantage
stems from MDGFM’s ability to effectively capture both
domain-specific information from each source domain and
shared patterns across domains. Notably, we observe that
supervised methods occasionally surpass graph pre-training
approaches, suggesting the presence of negative transfer in
certain scenarios.

Among multi-domain pre-training methods, MDGPT outper-
forms GCOPE on homophilic graphs, as GCOPE’s reliance
on virtual nodes propagates homophilic graph information,
inadvertently introducing noise. Conversely, on heterophilic
graphs, GCOPE surpasses MDGPT, as MDGPT’s simple
integration of source domain tokens fails to fully capture
cross-domain commonalities. For graph prompting meth-
ods, GPPT generally underperforms across most datasets, as
it is not specifically designed for few-shot learning. While
GPF achieves competitive performance, its high memory
requirements pose a significant limitation.

In the few-shot setting, we observe trends similar to those
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Table 1. Cross-domain transfer learning performance (mean accuracy ± std) of one-shot node classification. The highest result is bolded
and the runner-up is highlighted with red color. The symbol “OOM” means out of memory.

Methods Cora Citeseer Pubmed Cornell Squirrel Chameleon Penn94

GCN 28.57±5.07 31.27±4.53 40.55±5.65 31.81±4.71 20.00±0.29 24.17±5.21 50.45±1.79
GAT 28.40±6.25 30.76±5.40 39.99±4.96 28.03±13.19 21.55±2.30 23.93±4.11 50.48±1.40

DGI 29.30±5.82 30.03±4.88 41.85±7.78 31.54±15.66 21.15±1.68 21.73±5.47 50.22±0.74
GraphCL 34.94±6.49 30.58±4.58 40.37±7.81 27.15±12.64 21.42±2.23 22.49±3.02 50.61±2.03

GPPT 17.52±5.52 21.45±3.45 36.56±5.31 25.09±2.92 20.09±0.91 24.53±2.55 48.93±1.39
GPF 37.84±11.07 37.61±8.87 46.36±7.48 34.54±7.73 21.92±3.50 25.90±8.51 OOM

GCOPE 34.23±8.16 39.05±8.82 44.85±6.72 34.02±11.94 22.46±1.96 24.61±3.99 50.79±0.65
MDGPT 39.54±9.02 39.24±8.95 45.39±11.01 33.58±10.38 22.35±3.77 23.68±1.56 50.78±3.05

MDGFM 44.83±7.41 42.18±6.41 46.84±7.31 40.77±5.96 24.30±3.26 28.36±3.65 52.36±0.86

w/o-balance

w/o-topology

w/o-refinedadj
w/o-sumtoken

MDGFM

Figure 2. Ablation studies on key components.

in the one-shot scenario. Notably, on heterophilic graphs,
certain methods exhibit a decline in performance compared
to the one-shot case. This degradation is primarily due to
the introduction of noise from the few-shot samples. In
contrast, our model remains robust and does not experience
performance deterioration as the number of training samples
increases.

Quantitatively, across the seven datasets, MDGFM outper-
forms the second-best model by up to 18.04% in the one-
shot scenario and 8.11% in the few-shot scenarios.

We further evaluate large K values on the large-scale
Penn94 dataset. As shown in Table 3, our model’s per-
formance improvement becomes more pronounced as K
increases. In contrast, the performance of GCOPE and
MDGPT remains relatively stable, showing minimal change.

6.3. Ablation Study (RQ2)

In this section, we analyze the effectiveness of key compo-
nents in our model by designing four variants and comparing

their classification performance against MDGFM.
w/o-refinedadj: Removes the GSL module.
w/o-sumtoken: Excludes the shared token.
w/o-topology: Constructs the graph without considering
topological information in the GSL process, i.e., merely use
X ′

i in Eq.(3) rather than [X ′
i, A

r
iX

′
i] for the i-th graph.

w/o-balance: Removes the balance token.

Effectiveness of domain-invariant learning. MDGFM
captures shared information across domains through a
shared token. As shown in Figure 2, the w/o-sumtoken vari-
ant exhibits the weakest performance across most datasets,
underscoring the importance of capturing common informa-
tion for effective domain generalization.
Effectiveness of topology structure alignment. MDGFM
utilizes graph structure learning to extract information from
graph topology structure. The w/o-refinedadj, w/o-topology,
w/o-balance generally perform much worse than MDGFM,
demonstrating the necessity of each component.

6.4. Domain Sensitivity (RQ3)

In this section, we examine the extent to which our model
depends on specific source domains and its performance
under limited source-domain conditions. To assess this, we
systematically remove subsets of source domains and evalu-
ate the model using Cornell as the target domain, comparing
its performance against multi-domain pre-training baselines.
Specifically, we exclude one to three source domains while
keeping the target domain and all other parameters fixed.

According to the one-shot result in Table 4, the performance
of GCOPE and MDGPT deteriorates significantly, whereas
MDGFM maintains strong performance and stability despite
the removal of source domains. Our findings suggest that
these methods extract varying degrees of knowledge from
specific source domains. A counterintuitive phenomenon is
that in some cases, removing some source domains leads to

7
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Table 2. Cross-domain transfer learning performance (mean accuracy ± std) of few-shot node classification, where the values within
parentheses represent the K values used in the context of K-shot learning.

Methods Cora(5) Citeseer(5) Pubmed(5) Cornell(3) Squirrel(3) Chameleon(5) Penn94(5)

GCN 60.15±5.33 45.54±4.71 57.82±8.26 39.53±13.57 21.61±4.22 22.09±0.99 52.07±1.01
GAT 59.79±3.89 50.48±2.94 57.55±9.37 34.53±13.01 20.11±3.11 20.83±1.52 50.98±1.23

DGI 56.76±11.29 42.67±8.98 54.04±11.59 43.22±5.84 20.23±1.12 27.68±5.21 50.13±0.81
GraphCL 61.59±5.71 47.05±6.85 58.50±7.38 32.77±6.23 21.18±0.96 27.45±2.58 51.84±1.58

GPPT 43.67±7.11 47.31±6.93 40.47±10.17 34.69±8.54 22.14±1.53 28.25±1.39 51.75±1.60
GPF 51.21±11.44 56.90±8.84 58.76±7.70 38.17±8.15 21.62±3.10 28.09±4.93 OOM

GCOPE 54.63±3.98 53.18±4.47 57.74±2.73 48.21±11.97 21.37±4.20 25.50±1.23 50.69±0.81
MDGPT 59.64±5.73 52.71±5.71 58.65±7.54 35.18±8.90 21.42±4.16 26.18±5.18 50.41±3.13

MDGFM 64.56±7.29 61.24±4.82 63.50±5.81 49.56±6.92 23.00±4.39 30.54±2.87 53.58±0.83

(a) Adding edges (Cornell) (b) Deleting edges (Cornell) (c) Meta-attack (Cornell) (d) Meta-attack (Cora)

Figure 3. Performance of robustness analysis, where the dataset in parentheses represents the target domain.

Table 3. K-shot node classification accuracy on Penn94.

K GCOPE MDGPT MDGFM

10 50.30±1.03 50.59±4.35 54.43±0.93
50 51.36±0.28 50.73±3.85 55.69±1.28

100 51.61±0.33 51.14±4.88 58.51±1.15
500 52.88±0.40 51.52±3.64 63.25±0.82

improved performance. This occurs because multi-domain
graphs may result in conflicts or interferences rather than
synergy (Yu et al., 2025). Our model aims to mitigate such
negative influences by extracting the shared informative and
beneficial aspects of the available knowledge.

6.5. Robustness Analysis (RQ4)

To evaluate the robustness of our proposed MDGFM, we
assess the node classification performance under diverse
attacks. Simple modification attacks are implemented by
randomly adding or removing edges. Considering the vary-
ing influence of individual domains on the target domain,
we apply these random attacks to all source domains and
the target domain under one-shot learning.

Furthermore, we employ Metattack (Zügner & Günnemann,
2019), an advanced adversarial attack that perturbs the train-

Table 4. Performance of domain sensitivity analysis.

Removed Data GCOPE SAMGPT MDGFM

-Pubmed 33.38±8.19 31.42±9.53 39.66±5.51
-Squirrel 28.88±8.57 33.02±8.26 40.78±5.44

-Cora-Citeseer 30.25±8.99 30.04±8.77 39.96±5.99
-Pubmed-Squirrel 30.50±8.41 31.10±7.43 42.68±5.64

-Citeseer-Cora-Pubmed 26.37±10.85 29.38±9.39 40.08±5.74
-Pubmed-Citeseer-Squirrel 31.50±13.18 30.90±7.61 42.20±5.02

Original Performance 34.02±11.94 33.58±10.38 40.77±5.96

ing data to degrade the model performance after training.
Under identical attack conditions, we compare MDGFM
against multi-domain methods. As shown in Figure 3, the
performance of GCOPE and MDGPT deteriorates as attack
intensity increases. Notably, our model is quite stable and
consistently outperforms all baselines across all attack sce-
narios, which can be attributed to our proposed topology
alignment. Further analysis, including a sensitivity study
of hyperparameters, is provided in Appendix D. Time com-
plexity analysis is also summarized in Appendix B to show
the efficiency of MDGFM.
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7. Conclusion
In this paper, we introduce MDGFM, a novel graph founda-
tion model that unifies graphs from diverse domains into a
universal semantic space. Our approach enhances domain
generalization by extracting domain-invariant knowledge
through both feature and topology alignment. We validate
the effectiveness of MDGFM through theoretical analysis
and empirical evaluation. To the best of our knowledge, this
is the first work to explicitly address invariant information
embedded in topology structures across homophilic and het-
erophilic domains. Our findings pave the way for advance-
ments in graph-based domain generalization, with potential
extensions to dynamic graphs and large-scale heterogeneous
networks, further enhancing adaptability in real-world ap-
plications.
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A. Notations

Table 5. Frequently used notations.

Notation Description

Gi = (Ai, X
ori
i ) The i-th original input graph.

Gi1 = (Ai, X
′
i) Graph i after feature projection.

Gi2 = (A′
i, X

′
i) Graph i after feature projection topology aware alignment.

T = (AT , XT ) The downstream target graph.
Xori

i Features of the original input graph.
Xi Graph features after dimension alignment.
X ′

i Features after feature projection.
Y The set of all possible class labels.
r The order of graph aggregation.
d′ Dimension of the original node features.
d The unified dimension.
V The set of nodes.
E The set of edges.
Z Node embeddings.
D Set of source domains.
Di The i-th domain from the source domain set.
DT Target domain that does not belong to the source domain set.

Proj(·) A specific projection operation, here we use PCA.
σ(·) Non-linearity activation function.
L Loss function.
Ldst Downstream loss function.
sim(·, ·) Cosine similarity.
⊙(·) Element-wise multiplication.

tDi
Domain token for domain Di.

tS Shared token.
tBi Balance token for domain Di.
pm Meta prompt.
ps Specific prompt.
αi Trainable coefficients for source domain i.
β A learnable parameter used for integrating prompts.

B. Time complexity analysis
In the pre-training phase, each of the N source graphs is processed independently. For a graph with |V | nodes and
|E| edges (here we select |V | = max{Vn}, |E| = max{Em}, n,m ∈ [1, N ]), the model first aligns node features via
truncated PCA, which reduces the input dimension from d′ to d at a cost of O(|V | · d · log d′). As for token lightweight
element-wise multiplication, the time complexity is |V |d. It then applies locality-sensitive hashing kNN for graph
structure learning. Denote the batch size of sparse kNN as B, each requiring O(d) operations, resulting in O(|V | ·
B · d) time for reconstructing the graph. Next, an L-layer GCN operates on the refined structure , contributing an
additional O(L · |V | · d2 + L · |E| · d + |V |d). Therefore, the total pre-training complexity across all source graphs is
O
(
N ·

[
|V | · d · log d′ + |V | ·B · d+ L · |V | · d2 + L · |E| · d

])
.

Similarly, in the downstream phase, PCA procedure takes O(|VT | · d · logd′) time. Prompt fusion and token modulation
cost O(|VT | · d). GSL again uses local sensitive kNN, which adds O(|VT | ·B · d). The GCN encoder then performs L-layer
message passing with cost O(L · |VT | · d2 + L · |ET | · d+ |VT |d). Finally, classification is done via prototype matching,
where each node compares with C class centroids, yielding O(|VT | · C · d). Summing these terms, the overall downstream
complexity is O(|VT | · d · log d′ + |VT | ·B · d+ L · |ET | · d+ L · |VT | · d2 + |VT | · C · d).

Overall, the model scales linearly with the number of nodes and edges, and benefits from efficient structure refinement and
modular design like local sensitive kNN. We will include this complexity analysis in the final version for completeness.
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C. Datasets

Table 6. Statistics of Datasets.

Datasets Nodes Edges Feature dimension Node classes Homophily ratio

Cora 2,708 10,556 1,433 7 0.810
Citeseer 3,327 9,104 3,703 6 0.736
Pubmed 19,717 88,648 500 3 0.802

Squirrel 5,201 396,846 2,089 5 0.222
Chameleon 2,277 62,792 2,325 5 0.231

Cornell 183 298 1,703 5 0.305

Penn94 41,554 2,724,458 4,814 2 0.510

We provide an in-depth explanation of datasets, where their statistics details are presented in Table 6.

Citation network: The Cora and Citeseer (Sen et al., 2008) datasets represent a varied collection of scholarly articles in
the field of computer science, where each node is associated with bag-of-words features and a categorical label denoting
the corresponding topic of the paper. In contrast, the Pubmed (Namata et al., 2012) dataset consists of articles focused on
diabetes sourced from the PubMed database. Each node in this dataset is characterized by an attribute vector, along with a
label that identifies the specific type of diabetes addressed in the publication.

WebKB: Cornell (Pei et al., 2020) is a subset derived from the WebKB dataset. In this dataset, each node corresponds to
a web page, while the edges illustrate the hyperlinks that connect these pages. The features of nodes are expressed using
bag-of-words features derived from the content of the web pages. Nodes are classified into five distinct labels: student,
project, course, staff, and faculty.

Wikipedia network: The Chameleon and Squirrel (Pei et al., 2020) datasets comprise two page-to-page networks sourced
from Wikipedia, each centered on specific themes. Nodes signify individual web pages, and edges represent their connections.
Node attributes are characterized by collections of nouns gathered from the content of the pages. Additionally, each node is
categorized according to the average monthly traffic that the corresponding web page receives.

Online social network: The Penn94 (Traud et al., 2012) dataset is a large-scale social network derived from the Facebook
100 networks of university students from 2005, where each node corresponds to an individual student. The nodes are
annotated with the reported gender of each user, and the objective is to predict this gender. The features associated with
the nodes include major, secondary major/minor, dorm/house, year, and high school (Lim et al., 2021). The homophily
ratio of the Penn94 dataset is 0.51, indicating that its graph topology exhibits a mixture of homophilic and heterophilic
patterns. Previous research has shown that such topological information is nearly meaningless, making it difficult for existing
topology-fixed GNNs to adapt effectively to this type of graph (Chien et al., 2021; Chen et al., 2024).

D. Additional Experiments
D.1. Expansion of Robustness Experiments

We perform robustness experiments on the Cornell dataset before. To investigate whether the MDGFM model retains
its robustness under the condition where the downstream target domain consists of homophilic graphs, we replicate the
robustness experiments previously described on the Cora dataset, performance under metaattack is shown in the main text.
Specifically, we apply random edge additions and deletions on all domains. We compare our results with those of MDGPT
and GCOPE, as summarized in Figure 4. Our observations indicate that our model maintains commendable robustness when
evaluated on homophilic graph datasets. Furthermore, we note that in the context of heterophilic graph datasets, GCOPE
exhibits greater robustness compared to MDGPT, while the opposite trend is observed for homophilic graphs.

D.2. Sensitivity Analysis

We investigate the impact of the hyperparameter k in k-nearest neighbors (kNN) for downstream graph structure learning,
which is crucial to our model. The performance of our model varies with changes in the hyperparameter k as illustrated in
Figure 5. Overall, our model exhibits low sensitivity to changes in k, regardless of whether the downstream target domain is
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(a) Adding edges (b) Deleting edges

Figure 4. Performance of robustness analysis, where Cora is the target domain.

(a) Homophilic graphs (b) Heterophillic graphs

Figure 5. Sensitivity study of k.

homophilic or heterophilic. When the target domain is homophilic graphs, larger values of k (such as 20 or 30) yield the
best results. In contrast, for heterophilic graphs, relatively smaller values of k can produce satisfactory outcomes.

E. Experimental Details
For both one-shot and few-shot classification tasks, we pretrain the models on five datasets and subsequently perform
predictions on the remaining dataset, ensuring that the downstream domain remains unseen during the training phase. The
detailed experimental setup is summarized in Table 7, where a checkmark (

√
) indicates visibility during pre-training, while

the absence of the mark denotes invisibility. For the large-scale dataset Penn94, it is exclusively used as the target domain to
evaluate the generalization capability of the model.

All experiments are conducted on a platform equipped with an Intel(R) Xeon(R) Gold 5220 CPU and an NVIDIA A800
80GB GPU, using PyTorch 1.10.1 and DGL 0.9.1. Each experiment is run five times and the average results are reported.
We employ the Adam optimizer and set the batch size to 128. During the upstream pre-training phase, we utilize Principal
Component Analysis (PCA) to reduce the dimensionality of the initial features to 50 dimensions, thereby unifying the
features from multiple source domains. For homogeneous graphs, we set k=30 for Graph Structure Learning (GSL), while
for heterophilic graphs, we configure k=15. Additionally, we adjust the upstream and downstream learning rates across
different datasets, as detailed in Table 8. We fix the number of graph neural layers to 3, with a hidden dimension of 256
for the GCN model. When dealing with homophilic graphs, the number of Epochs is set to 60, whereas it is set to 100 for
heterophilic graphs. For the downstream node classification tasks, we implement few-shot learning scenarios with 1-shot
and 5-shot settings (3-shot for the Cornell and Squirrel datasets). We perform 50 resampling iterations in downstream
few-shot classification. The k values required for graph construction adhere to the configurations established during the
upstream pre-training phase.
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Table 7. Settings of multi-domain transfer.

Target domain Cora Citeseer Pubmed Squirrel Chameleon Cornell

Cora
√ √ √ √ √

Citeseer
√ √ √ √ √

Pubmed
√ √ √ √ √

Squirrel
√ √ √ √ √

Chameleon
√ √ √ √ √

Cornell
√ √ √ √ √

Penn94
√ √ √ √ √ √

Table 8. The hyperparameters corresponding to each dataset.

Target domain Pre-training learning rate Downstream learning rate Epoch Unified dimension Dropout Downstream k

Cora 0.0075 0.001 60 50 0.1 30
Citeseer 0.001 0.001 60 50 0.1 30
Pubmed 0.0001 0.0015 60 50 0.1 30

Squirrel 0.01 0.0003 100 50 0.1 15
Chameleon 0.02 0.01 100 50 0.1 15

Cornell 0.02 0.0003 100 50 0.1 15

Penn94 0.0001 0.003 100 50 0.1 30

F. Methodology Details
Following the approach proposed in previous works (Liu et al., 2022; Shen et al., 2024), after constructing the cosine
similarity matrix of Hi, we implement post-processing techniques to ensure that A′

i exhibits the characteristics of sparsity,
non-negativity, symmetry, and normalization. For the convenience of discussion, the subscript i is omitted hereinafter.

kNN for sparsity. In most applications, a fully connected adjacency matrix often has limited practical significance and
incurs high computational costs. Therefore, we employ the k-Nearest Neighbors (kNN) operation to sparsify the learned
graph. For each node, we retain the edges with the top-k values and set the others to 0, thereby obtaining the sparse adjacency
matrix Asp. Note that we employ efficient kNN with locality-sensitive hashing (Fatemi et al., 2021) to enhance the model’s
scalability. This approach avoids the resource-intensive computation and storage of explicit similarity matrices, reducing the
complexity from O(|V |2) to O(|V |B), where |V | is the number of nodes and B is the batch size of the sparse kNN.

Symmetrization and Activation. Since real-world connections are typically bidirectional, we symmetrize the adjacency
matrix. Additionally, the weight of each edge should be non-negative. Given the input Asp, these operations can be expressed
as follows:

Asym =
σ(Asp) + σ(Asp)⊤

2
(10)

where σ(·) represents a non-linear activation implemented by the ReLU function.

Normalization. The normalized adjacency matrix with self-loops can be obtained as follows:

A′ = (D̃sym)−
1
2 Ãsym(D̃sym)−

1
2 (11)

where D̃sym is the degree matrix of Ãsym with self-loops. Subsequently, for each view, we can acquire the adjacency matrix
A′

i, which possesses the desirable properties of sparsity, non-negativity, symmetry, and normalization.

G. Details of Loss Functions
Note that directly computing mutual information between two graphs is impractical due to the complexity of graph-
structured data. Since we focus on node-level tasks, we assume the optimized graph should guarantee that each node’s
neighborhood substructure contains sufficient task-relevant information. Therefore, this requirement can be transferred to
mutual information between node representations (Liu et al., 2024), which can be easily computed using a sample-based

15



Multi-Domain Graph Foundation Models: Robust Knowledge Transfer via Topology Alignment

differentiable lower bound. For any view i and j, the lower bound Ilb of the mutual information I(Zi;Zj) is (Liang et al.,
2023):

Ilb(Z
i;Zj) = Ezi,zj+∼p(zi,zj)

zj∼p(zj)

[
log

expf(zi, zj+)∑
N expf(zi, zj)

]
(12)

where f(·, ·) is a score critic approximated by a neural network. p(zi, zj) denotes the joint distribution of node representations
from views i and j, while p(zi) denotes the marginal distribution. zi and zj+ are mutually positive samples, representing
the representations of the same node in views i and j respectively.

Note that in our work, we redefine I(Gi1;Gi2 † A′
i), where A′

i is the refined adjacency matrix to identify the positive
samples. That is to say, zi and zj+ are mutually positive samples if and only if node i and node j+ are neighbors in matrix
A′

i. Recall the following loss function in the pre-training phase:

L = −I(Gi1;Gi2 † Ie)− I(Gi1;Gi2 †A′
i) (13)

where Ie is the identity matrix. Particularly, the second term incorporates the refined graph structure A′
i to increase the

number of positive samples. The minimization objective L in multi-domain pre-training is calculated as follows:

ℓIe(Z
i1
m , Zi2

m) = log
esim(Z̃i1

m ,Z̃i2
m)/τc∑|V |

n=1 e
sim(Z̃i1

m ,Z̃i2
n )/τc

, ℓA′
i
(Zi1

m , Zi2
m) = log

∑|V |
n=1,A′

i[m,n] ̸=0
A′

i[m,n] · esim(Z̃i1
m ,Z̃i2

m)/τc∑|V |
n=1 e

sim(Z̃i1
m ,Z̃i2

n )/τc
(14)

L̂ = −1

2

|V |∑
m=1

(ℓIe(Z
i1
m , Zi2

m) + ℓIe(Z
i2
m , Zi1

m))− 1

2

|V |∑
m=1

(ℓA′
i
(Zi1

m , Zi2
m) + ℓA′

i
(Zi2

m , Zi1
m)) (15)

where Zi1 denotes the node representations of the original graph Gi1 = (Ai, X
′
i) obtained through the graph encoder, and

Zi2 denotes the node representations of the refined graph Gi2 = (A′
i, X

′
i). Z̃

i1
m is the non-linear projection of Zi1

m . A′
i[m,n]

denotes the element in the m-th row and n-th column of the adjacency matrix A′
i, which corresponds to the edge weights of

the learned structure via GSL. sim(·, ·) denotes the cosine similarity. τc is the temperature parameter, which is fixed at 0.2
in this work. During the pre-training phase, we sequentially minimize the objective L̂ for each input graph with different
domains.
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