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ABSTRACT

This work introduces NeuroQuant, a novel post-training quantization (PTQ) ap-
proach tailored to non-generalized Implicit Neural Representations for variable-
rate Video Coding (INR-VC). Unlike existing methods that require extensive
weight retraining for each target bitrate, we hypothesize that variable-rate cod-
ing can be achieved by adjusting quantization parameters (QPs) of pre-trained
weights. Our study reveals that traditional quantization methods, which assume
inter-layer independence, are ineffective for non-generalized INR-VC models due
to significant dependencies across layers. To address this, we redefine variable-
rate INR-VC as a mixed-precision quantization problem and establish a theoret-
ical framework for sensitivity criteria aimed at simplified, fine-grained rate con-
trol. Additionally, we propose network-wise calibration and channel-wise quan-
tization strategies to minimize quantization-induced errors, arriving at a unified
formula for representation-oriented PTQ calibration. Our experimental evalua-
tions demonstrate that NeuroQuant significantly outperforms existing techniques
in varying bitwidth quantization and compression efficiency, accelerating encod-
ing by up to eight times and enabling quantization down to INT2 with minimal
reconstruction loss. This work introduces variable-rate INR-VC for the first time
and lays a theoretical foundation for future research in rate-distortion optimiza-
tion, advancing the field of video coding technology. The materials will be avail-
able at https://github.com/Eric-qi/NeuroQuant.

1 INTRODUCTION

Implicit Neural Representations (INRs) (Sitzmann et al., 2020; Chen et al., 2021a) have recently
introduced a new approach to video coding. They focus on learning a mapping from coordinates, like
frame indices, to pixel values, such as colors. This represents a significant departure from the widely
used variational autoencoder (VAE)-based frameworks (Lu et al., 2019; Li et al., 2021a; Lu et al.,
2024), which rely on generalized models trained on large datasets to create compact representations
for various input signals. Instead, INR-based video coding (INR-VC) encodes each video as a
unique neural network through end-to-end training, removing the need for extensive datasets. By
using specific, non-generalized network weights for each video, INR-VC provides a tailored video
coding method that has shown promising results (Chen et al., 2023; Kwan et al., 2024a).

INR-VC typically focuses on two main objectives: 1) Representation, where a neural network
models the target video with a minimized distortion, and 2) Compression, where the network’s
weights are compressed to lower the bitrate. Many prominent methods adopt a consistent precision
(quantization bitwidth) for all weights before lossless entropy coding, meaning the video bitrate
depends solely on the number of learnable weights. Consequently, independent weight training is
needed for each target bitrate, making the process very time-consuming. For example, encoding a
1080p video with 600 frames at a specific bitrate can take up to 10 hours.

To address this inefficiency, we consider how bitrate is managed in pretrained INR-VC model, which
is proportional to the sum of the bitwidth of each weight. Inspired by generalized codecs (Sullivan
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Figure 1: Left: Typical INR-VCs assume a consistent bitwidth and require separate weight training
with varying quantities for each target rate. Right: The proposed NeuroQuant achieves variable rate
by modifying the corresponding QPs, significantly reducing training costs.

et al., 2012; Li et al., 2023) that adjust quantization parameters (QPs) (Wang & Kwong, 2008) to
control bitrate, we pose the hypothesis: Can variable-rate INR-VC be achieved by modifying the QP
of post-training weights, thus eliminating the need for repeated model training for each target rate?
In the context of weight quantization, this can be approached by: 1) allocating quantization bitwidth
to match the target bitrate, and 2) calibrating QPs to preserve reconstruction fidelity.

However, directly adopting a consistent quantization bitwidth cannot support fine-grained rate con-
trol, e.g., only seven options from INT2 to INT8 are available. Additionally, existing mixed-
precision quantization methods (Nagel et al., 2021; Chen et al., 2021b), primarily designed for
general-purpose neural networks, encounter two key problems when applied to non-generalized
INR-VCs. First, mixed-precision algorithms (Dong et al., 2019; 2020; Chen et al., 2021b) typically
assume inter-layer independence with tolerable approximation errors. This assumption breaks down
in non-generalized INR-VCs, where layers exhibit significant dependencies. Second, popular layer-
wise calibration methods1 (Nagel et al., 2020; Li et al., 2021b) also rely on inter-layer independence
and aims at generalizing the network, making them unsuitable for INR-VC. Therefore, a dedicated
quantization methodology tailored for variable-rate INR-VC is necessary.

In this work, we explore, for the first time, the post-training quantization (PTQ) of weights in non-
generalized INR-VCs. Building on both empirical and theoretical insights, we propose NeuroQuant,
a state-of-the-art PTQ approach for INR-VC that enables variable-rate coding without complex re-
training. Our contributions tackle key challenges through the following research questions:

1. How to realize variable bitrate (Sec. 3.1): We redefine variable-rate coding as a mixed-precision
quantization problem. By theoretically demonstrating that the assumption of inter-layer indepen-
dence (Dong et al., 2020; Guan et al., 2024) does not apply to non-generalized models, we highlight
the necessity of incorporating weight perturbation directionality and off-diagonal Hessian informa-
tion for sensitivity assessment in quantizing INR-VC. Additionally, we introduce the Hessian-Vector
product to simplify computations by eliminating the need for explicit Hessian calculations.

2. How to ensure reconstruction quality (Sec. 3.2): We enhance reconstruction quality by calibrat-
ing the QPs on the corresponding video-specific weights. Through second-order analysis, we derive
a unified formula for MSE-oriented calibration across varying granularities. By considering sig-
nificant cross-layer dependencies and the diverse distribution of weights, we conduct network-wise
calibration and channel-wise quantization to minimize reconstruction loss.

3. How NeuroQuant performs (Sec. 4): We benchmark proposed NeuroQuant across various archi-
tectures against existing quantization techniques, achieving state-of-the-art results. For variable-rate
coding, NeuroQuant outperforms competitors while reducing encoding time by 80%. Moreover,
NeuroQuant is able to quantize weights down to INT2 without notable performance degradation.

4. How to advance INR-VC (Sec. 3.3): We revisit INR-VC through the lens of variational infer-
ence, proposing that the success of NeuroQuant stems from resolving the mismatch between the
representation and compression. We also suggest that rate-distortion (R-D) optimization is also
applicable to INR-VC and has the potential to achieve improved performance.

1To avoid ambiguity, we use the term calibration to describe the process of optimizing QPs, though some
literature refers to this as reconstruction. In this paper, reconstruction refers to the decoded video from
INR-VC system. And for simplicity, layer calibration also stands for block calibration.
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2 PRELIMINARIES

Basic Notations. We follow popular notations used in neural network. Vectors are denoted by low-
ercase bold letters, while matrices (or tensors) are denoted by uppercase bold letters. For instance,
W refers to the weight tensor, and w is its flattened version. The superscript of w(l) indicates the
layer index. For a convolutional or a fully-connected layer, we mark input and output vectors by x
and z. Given a feedforward neural network with n layers, the forward process is expressed as

x(l+1) = h(z(l)) = h(w(l)x(l)), 1 ≤ l ≤ n, (1)
where h(·) denotes the activation function. For simplicity, we omit the additive bias, merging it into
the activation. In the following, the notation || · || represents the Frobenius norm. Suppose x is
sampled from the dataset X , then the overall task loss is expressed as Ex∼X [L(w,x)].

INR-based Video Coding. INR-VC operates on the principle that a target video can be encoded
into learned weights through end-to-end training. For each frame Vt in an RGB video sequence
V = {Vt}Tt=1 ∈ RT×3×H×W , INR-VC assumes the existence of an implicit continuous mapping
F : [0, 1]din → Rdout in the real-world system such that Vt = F ◦ t. According to the Universal
Approximation Theorem (Hanin, 2019; Park et al., 2021), the unknown F can be approximated by
a neural network D of finite length LD. The estimated V̂t is then expressed as:

V̂t = D ◦ E(t) = UL ◦ h ◦ UL−1 ◦ · · · ◦ h ◦ U1 ◦ E(t), (2)
where D consists of cascaded upsampling layers U , and E(·) is an embedding of the timestamp t.
Typically, index-based INR-VCs (Chen et al., 2021a) employ a fixed Positional Encoding function
or a learnable grid (Lee et al., 2023) as E(·), while content-based INR-VCs (Chen et al., 2023; Zhao
et al., 2023) utilize a learnable encoder. The encoding of INR-VC involves training the learnable
weights w and subsequently compressing w into a bitstream using quantization and entropy coding
techniques. While existing INR-VC works primarily focus on minimizing distortion during the
training stage, video coding is fundamentally a R-D trade-off.

Post-Training Quantization. PTQ offers a push-button solution to quantize pretrained models
without weights training. It contrasts with Quantization-Aware Training (QAT), which involves both
weight optimization and quantization during training, leading to huge training cost. PTQ is generally
a two-step process: 1) initializing QPs (e.g., steps) with allocated bitwidth and weight distribution
statistics; 2) calibrating QPs to reduce quantization-induced loss. PTQ typically employs uniform
affine transformation to map continuous w ∈ R to fixed-point integers ŵ. Traditional methods aim
to minimize quantization error ||ŵ − w||. However, an increasing number of explorations (Stock
et al., 2020; Nagel et al., 2020; Hubara et al., 2021) suggest that this approach can yield sub-optimal
results, as the parameter space error does not equivalently reflect task loss. To analyze quantization-
induced loss degradation, AdaRound (Nagel et al., 2020) interprets quantization error as weight
perturbation, i.e., ŵ = w +∆w. The loss degradation can be approximated using Taylor series:

E[L(w +∆w,x)− L(w,x)] ≈ ∆wT · g(w) +
1

2
∆wT ·H(w) ·∆w, (3)

where g(w) = E[∇wL] and H(w) = E[∇2
wL] represent expected gradient and the second-

order Hessian matrix, respectively. For well-converged weights, gradients tend to be close to 0.
AdaRound further assumes inter-layer independence, leading to a diagonal Hessian matrix opti-
mization. BRECQ (Li et al., 2021b) extends AdaRound’s layer-wise calibration to block granularity
based on inter-block independence. However, these methods can significantly degrade the perfor-
mance of non-generalized INR-VCs, which exhibit significant dependencies among layers.

Mixed-Precision Quantization. Mixed-precision quantization facilitates fine-grained rate control
in INR-VCs, with bit allocation being crucial due to the varying levels of redundancy across layers
and their different contributions to overall performance. However, determining optimal bitwidth
assignments presents a significant challenge because of the extensive search space. For a network
with N layers and M candidate bitwidths per layer, exhaustive combinatorial searches exhibit expo-
nential time complexity of O(MN ). To address it, various strategies have been explored, including
search-based reinforcement learning Wang et al. (2019); Lou et al. (2019), neural architecture search
(Wu et al., 2016), and Hessian-based criteria (Dong et al., 2019; 2020). Despite these efforts, they
often prove impractical for INR-VCs, as the search costs may surpass those of retraining a model.
Furthermore, many existing criteria lack a robust theoretical basis for their optimality, rendering
them less reliable in INR-VC systems.
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Figure 2: Examples of quantizing layers in sequence. (a) Different layers exhibits varying sensitiv-
ities. (b) Lower Ω means flatter loss landscape. (c) Higher Ω is otherwise, and the loss landscape
shows pronounced directivity, indicating the necessity of considering the direction of ∆w.

3 METHODOLOGY

We introduce the proposed NeuroQuant for high-performance variable-rate INR-VC as follows:

Problem 1 (NeuroQuant). Given learned video-specific weights, the objective of NeuroQuant is to
achieve different R-D trade-offs by quantizing post-training weights with variable QPs. This can be
formulated as a rate-constrained optimization process:

argminE[L(Q(w),Q(e))− L(w, e)] (4)

s.t.

L∑
l=1

Param(w(l)) · b(l)w +

T∑
t=1

Param(e(t)) · be = R± ϵ, (5)

where R represents the target bitrate, e denotes the embedding, Param(·) indicates the number of
parameters, and b denotes the bitwidth.

We decouple this problem into three sub-problems: 1)Sec. 3.1: The rate-constrained term in Eq. 5
is defined as a mixed-precision bit assignment problem, accounting for fine-grained rate control
and varying layer sensitivity; 2) Sec. 3.2: The objective in Eq. 4 is interpreted as QP calibration
problem, focusing on calibration and quantization granularity of non-generalized INR-VC; 3) Sec.
3.3: We revisit the entire problem from the perspective of variational inference to provide a broader
theoretical grounding.

3.1 HOW TO REALIZE VARIABLE BITRATE

Sensitivity Criterion. The core concept of mixed-precision quantization is to allocate higher pre-
cision (e.g., greater bitwidth) to sensitive layers while reducing precision in insensitive ones. Sen-
sitivity can be intuitively understood through the flatness of the loss landscape (Li et al., 2018), as
illustrated in Fig. 2. A flatter landscape, indicating lower sensitivity, corresponds to smaller loss
changes with weight perturbations, whereas a sharper landscape indicates otherwise. Sensitivity es-
sentially captures the curvature of the loss function, often described using second-order information,
particularly the Hessian matrix H(w). H(w) defines how perturbations in weights affect task loss.
For instance, HAWQ (Dong et al., 2019) uses the top Hessian eigenvalue as a sensitivity criterion,
while HAWQ-V2 (Dong et al., 2020) demonstrates that the trace offers a better measure. However,
these criteria rely on two key assumptions: 1) Layer Independence: Layers are mutually inde-
pendent, allowing H(w) to be treated as diagonal. 2) Isotropy: The loss function is directionally
uniform under weight perturbations ∆w, meaning only H(w) is considered, ignoring ∆w.

While these assumptions may hold for general-purpose networks, they break down in the context
of non-generalized INR-VC, where significant inter-layer dependencies (Fig. 3(c)) and anisotropic
behavior (Fig. 2(c)) exist. The following toy examples demonstrate why relying solely on diagonal
information from H is suboptimal.
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Example 1 (Inter-Layer Dependencies). Consider three functions, F1 = 4x2+y2, F2 = 4x2+2y2,
and F3 = 4x2 + 2y2 + 5xy. Their corresponding Hessians are given as:

H(F1) =

[
8 0
0 2

]
, H(F2) =

[
8 0
0 4

]
, H(F3) =

[
8 5
5 4

]
. (6)

All three functions share the same top eigenvalue (8), yet F2 and F3 are clearly more sensitive than
F1. Although F2 and F3 have the same trace (12), F3 exhibits greater sensitivity due to the presence
of off-diagonal terms (i.e., 5xy).

This demonstrates that inter-layer dependencies are overlooked when relying solely on diagonal
information (e.g., eigenvalues or traces). Off-diagonal terms are essential to accurately capture
sensitivity, highlighting the need to consider the full Hessian matrix. The story does not end there.
Example 2 (Weight Perturbation Directions). Assuming a perturbation [∆x,∆y] applied to H(F3)

from above, the increase in loss is approximately proportional to
F3(x+∆x, y +∆y)−F3(x, y) ≈ [∆x,∆y]H[∆x,∆y]T = 8∆x2 + 4∆y2 + 10∆x∆y. (7)

Now, consider two cases: 1) Lower perturbation: [∆x,∆y] = [0.1, 0.1]; 2) Higher perturbation:
[∆x,∆y] = [0.2,−0.2]. The increases in task loss are 0.22 and 0.08, respectively. Surprisingly, the
higher perturbation results in a smaller task loss.

This counterintuitive behavior is also observed in practice, where quantizing layers with higher H
sensitivity to a lower bitwidth does not necessarily lead to significant performance degradation. We
argue that allocating higher bitwidth to layers primarily reduces ||∆w||. However, this does not
always guarantee a lower task loss, as L is anisotropy under ∆w in INR-VC. The key insight is that
task loss also depends on the direction of ∆w, not just its magnitude ||∆w||.
In conclusion, the sensitivity criterion of INR-VC must account for both the full Hessian matrix
H(w) and the direction of weight perturbations ∆w. This leads to the following theorem:
Theorem 1. Assuming the INR-VC weights are twice differentiable and have converged to a local
minima such that the first and second order optimality conditions are satisfied (i.e., the gradients are
zero and the Hessian is positive semi-definite), the optimal sensitivity criteria for mixed-precision
INR-VC is given by weighted Hessian information Ω = ∆wT ·H(w) ·∆w.

The criteria Ω, formed by Hessian-Vector product, can essentially be interpreted as a linear transfor-
mation on H(w), accounting for H(w) along the weight perturbation directions. Existing Hessian-
based criteria can be viewed as a degraded version of the proposed Ω that neglects the off-diagonal
terms. For instance, Eq. 7 would degrade to 8∆x2 + 4∆y2, and thus, loss is independent of inter-
variable dependencies and perturbation direction.

Approximating Hessian-Vector Product. The Hessian matrix is challenging to explicitly compute
and store as its quadratic complexity relative to the number of weights. Instead of forming H(w)

explicitly, we focus on the sensitivity criterion Ω = ∆wT ·H(w) ·∆w. Let’s construct a function
of the form G = g∆w, where g is the gradient of L with respect to w. The gradient of G can be
expressed as:

∇wG =
∂g∆w

∂w
=

∂g

∂w
∆w + g

∂∆w

∂w
=

∂2L
∂w2

∆w + g
∂∆w

∂w
= H(w)∆w + g

∂∆w

∂w
. (8)

In a converged model, g approaches 0. Moreover, quantization error can be modeled as a ran-
dom vector, with its component sampled independently form a Uniform distribution: ∆w ∼
U(−0.5, 0.5) (Ballé et al., 2017). Thus, the second term in Eq. 8 can be ignored. This approxi-
mation is also akin to straight-through estimator (STE) (Liu et al., 2022), where ∂ŵ

∂w = ∂w
∂w leads to

∂∆w
∂w = 0. Consequently, we arrive at the final formulation for Ω:

Ω = E[∆wT∇wG], where G = g∆w = E[∇wL∆w], G ∈ R1. (9)

In Eq. 9, ∆w is treated as a perturbation around w, allowing us to compute g centered at w. For
each potential bitwidth configuration, we only need to compute ∆w and the gradient of G in linear
time. Notably, different from using L directly, such criteria-based methods do not require super-
vised labels or forward inference over the entire full datasets for each potential bitwidth candidate,
enabling efficient mixed-precision search using techniques like integer programming, genetic algo-
rithms (Guo et al., 2020), or iterative approaches. So far, we have realized bit allocation for a target
bitrate. The next step involves calibrating QPs to minimize the reconstruction distortion.
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Figure 3: Statistic of the weight distribution among (a) layers and (b) channels. Other layers/chan-
nels exhibit similar distributions. (c) Non-generalized representation shows obvious layer/block
dependencies, implying that layer/block-wise calibration is not suitable for INR-VC. Exemplified
statistic information is based on HNeRV (1M) in Beauty sequence.

3.2 HOW TO ENSURE RECONSTRUCTION QUALITY

We follow the principle of PTQ to calibrate QPs (including steps and rounding variables in Eq. 16)
without optimizing the underlying weights. PTQ allows us to preserve reconstruction quality by
only calibrating QPs, instead of engaging in complex weight training as QAT.

Unified Calibration Objective. We begin by investigating the unified calibration objective. The
quantization-induced task loss degradation of a well-converged model can be approximated using
the second-order Taylor expansion:

E[L(w +∆w,x)− L(w,x)] ≈ 1

2
∆wT ·H(w) ·∆w. (10)

From this estimation, we aim to calibrate QPs by minimizing the proxy loss, defined as: min∆wT ·
H(w) ·∆w. Denote the neural network output as z(n). Using the chain rule, we can compute the
Hessian matrix H(w) as follows:

∂L2

∂wi∂wj
=

∂

∂wj

m∑
k=1

∂L
∂z

(n)
k

∂z
(n)
k

∂wi
=

m∑
k=1

∂L
∂z

(n)
k

∂2z
(n)
k

∂wi∂wj
+

m∑
k,l=1

∂z
(n)
k

∂wi

∂2L
∂z

(n)
k ∂z

(n)
l

∂z
(n)
l

∂wj
. (11)

Since the post-training model converges to a local minimum, we can assume the Hessian is positive-
semi-definite (PSD). With ∇z(n)L close to 0, the first term in Eq. 11 is negligible (Martens, 2010),
yielding Gaussian-Newton form G(w):

H(w) ≈ G(w) = JT
z(n)H

(z(n))Jz(n), (12)

where Jz(n) is the Jacobian matrix of the network output z(n) with respect to the weights w.

Considering L is given by a commonly used mean squared error (MSE), we have:

H(z(n)) = 2Im s.t. L =

m∑
k=1

(z
(n)
k − xk)

2. (13)

By substituting the Eq. 12 and Eq. 13 into the Eq. 10, we get the following minimization objective:

min∆wT ·H(w) ·∆w ≈ min[Jz(n)∆w]T [Jz(n)∆w] ≈ minE[||∆z(n)||2]. (14)

Remark 1. This results in a unified form of MSE-oriented calibration. Other distortion metrics
may have analogous form, but this is not guaranteed, as not all metrics necessarily correspond to
an analytical Hessian form. This can be addressed through approximated Hessian (Appendix C).
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Calibration Granularity. Based on the above objctive, we further investigate the optimal granular-
ity for calibration. Following Li et al. (2021b); Wei et al. (2022), we can define:

1. Layer-wise Calibration: This assumes layers are mutually independent and calibrates each
layers individually, resulting in a layer-diagonal Hessian matrix (blue diagonal in Fig. 3(c)), where
∆z in Eq. 14 reflects to the output error of individual layers.

2. Block-wise Calibration: A block is defined as a collection of several layers (e.g., residual
blocks). This calibration considers intra-block dependencies while assuming inter-block indepen-
dence. Calibration is performed block by block, leading to a block-diagonal Hessian matrix (orange
diagonal in Fig. 3(c)), with ∆z representing the output error of the block as a whole.

3. Network-wise Calibration: This granularity calibrates entire quantized network by considering
the global Hessian (full matrix in Fig. 3(c)), where ∆z reflects the entire network’s output error.

In generalized networks, layer/block-wise calibration is widely accepted, as dependencies are pri-
marily found within layers/blocks, allowing inter-layer/block dependencies to be neglected (Li et al.,
2021b). However, their network-wise calibration may lead to poor performance due to high general-
ization error. In the context of INR-VC, the situation differs: inter-layer/block dependencies cannot
be ignored (Fig. 3(c)), and INR-VC typically prioritizes non-generalized representation over gener-
alization. Therefore, we advocate for network-wise calibration as our preferred approach, as it better
captures the dependencies across the network layers.

Quantization Granularity. Next, we consider the granularity for quantization steps. Weight distri-
butions vary significantly across different layers of a given INR-VC weights (Fig. 3(a)), and even
among channels within a specific layer (Fig. 3(b)). This variability suggests that weights should be
modeled on a channel-wise basis, where all weights in a channel share the same quantization step.

Calibration. Once the granularity of both calibration and quantization are determined, we next
calibrate QPs to minimize distortion. While solving Eq. 14 circumvents the complexity issues asso-
ciated with the Hessian, it remains an discrete optimization problem. Inspired by Nagel et al. (2020),
we reformulate it into a continuous optimization framework using soft weight variables:

argmin
s,v

||F(x,w)−F(x, w̃)||2︸ ︷︷ ︸
Distortion term LD=||∆z(n)||2

+λ
∑

1− |2h(vi)− 1|β︸ ︷︷ ︸
Regularization term LReg

, (15)

s.t. w̃ = s · clip
(⌊w

s

⌋
+ h(v), −2b−1, 2b−1 − 1

)
, (16)

where Vi,j represents the continuous variable to optimize, and h(Vi,j) is any differentiable function
constrained between 0 and 1, i.e., h(Vi,g) ∈ [0, 1]. LReg acts as a differentiable regularizer, guiding
h(Vi,j) to converge towards either 0 or 1, ensuring at convergence h(Vi,j) ∈ {0, 1}. We also
anneal β in Lreg to facilitate stable convergence. This approach yields an intriguing observation:
by minimizing the discrepancy between a high-precision teacher model and an initialized student
model, we can effectively calibrate the quantized network. However, it’s crucial to emphasize that
we are different from knowledge distillation (Polino et al., 2018) that requires similar computational
and data resources as naive training, making it impractical for our variable-rate coding.

3.3 HOW TO ADVANCE INR-VC

Our NeuroQuant adjusts QP to manage R-D trade-off where higher rates lead to lower distortion and
vice versa. This trade-off can be formally interpreted through variational inference (Kingma, 2013;
Ballé et al., 2017), aiming to approximate the true posterior pw̃|x(w̃|x) with a variational density
q(w̃|x) by minimizing the Kullback–Leibler (KL) divergence over the data distribution px:

ExDKL[q||pw̃|x] = Ex∼pxEw̃∼q[log q(w̃|x)︸ ︷︷ ︸
=0

− log px|w̃(x|w̃)︸ ︷︷ ︸
Distortion LD

− log pw̃(w̃)︸ ︷︷ ︸
Rate LR

+ log px(x)︸ ︷︷ ︸
const

]. (17)

This leads to the R-D trade-off for INR-VC (Appendix B):

L = LR + λLD = log pw̃(w̃) +
1

2σ2
||x− x̂||2, s.t. px|w̃(x|w̃) = N (x|x̃, σ2), (18)

In coding, w̃ is replaced by the discrete symbol ŵ, which can be losslessly compressed using entropy
coding techniques, such as arithmetic coding (Rissanen & Langdon, 1981).
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Remark 2 (NeuroQuant vs. INR-VC). Popular INR-VCs (Chen et al., 2021a; Li et al., 2022b; He
et al., 2023; Zhao et al., 2023; 2024) focus on min log px|w(x|w) without considering the impact
of weight quantization, creating a mismatch between representation and compression objectives.
i.e., p(x|w) and p(x|w̃), which degrades performance after quantization. In contrast, the proposed
NeuroQuant directly optimizes log px|w̃(x|w̃), bridging this mismatch and yielding superior results.

While QAT (Ladune et al., 2023; Kim et al., 2024) can also optimize the same objective, Neu-
roQuant’s strength lies in transforming R-D optimization into a post-training process, particularly
advantageous for efficient variable-rate video coding, thereby reducing encoding costs. Despite
NeuroQuant enables a more flexible R-D trade-off than existing approaches, it is not yet a fully joint
optimization framework. Recent works (Gomes et al., 2023; Zhang et al., 2024) have begun to rec-
ognize the necessity of joint R-D optimization in INR-VC, but they lack principled explanations and
typically underperform compared to generalized codecs. For example, they often assume a Gaussian
prior or i.i.d. context model (Minnen et al., 2018; He et al., 2021), which is not entirely correct for
INR-VC. Future advancements will require the development of customized context models to better
capture weight characteristics, enabling true joint R-D optimization for INR-VC systems.

4 EXPERIMENTS

In this section, we conduct thorough experiments to verify the effectiveness of NeuroQuant. Detailed
implementation and additional experiments are available in Appendix E.

INR-VC Baselines. We select three representative INR-VCs as baselines to evaluate various quanti-
zation methods. NeRV (Li et al., 2022b) is a pioneering model that first maps frame indices to video
frames. HNeRV (Chen et al., 2023) first introduces an encoder to generate learnable embeddings
instead of the positional encoding used in NeRV. HiNeRV (Kwan et al., 2024a) further optimizes the
network architecture, achieving start-of-the-art performance.

Quantization Benchmarks. We first introduce naive PTQ in HNeRV, a widely adopted approach
across various INR-VCs. We also include four leading task-oriented PTQs: AdaRound (Nagel et al.,
2020), BRECQ (Li et al., 2021b), QDrop (Wei et al., 2022), as well as RDO-PTQ (Shi et al., 2023),
which is specifically designed for R-D optimization. Two QATs tailored for INR-VCs derived from
FFNeRV (Lee et al., 2023) and HiNeRV (Kwan et al., 2024a) are also evaluated.

4.1 QUANTIZATION

We summarize the quantization performance in Table 1. Starting with direct quantization in HN-
eRV, the results confirm Remark 2: optimizing reconstructive representation without considering
weight quantization (through training awareness or post-calibration) significantly degrades per-
formance. When compared with leading task-oriented PTQs—AdaRound, BRECQ, QDrop, and
RDOPTQ—NeuroQuant consistently demonstrates superior performance, with the advantage grow-
ing as bitwidth decreases. The results support our analysis: non-generalized INR-VC exhibits sig-
nificant inter-layer dependencies, making network-wise calibration necessary. Our NeuroQuant also
outperforms QATs designed for INR-VC (i.e., FFNeRV and HiNeRV) across all listed baselines,
particularly at lower bitwidths, achieving gains of more than 3dB. Its adaptability to varying preci-
sion highlights superior bitrate flexibility, indicating its potential for variable-rate video coding.

4.2 VARIABLE-RATE CODING PERFORMANCE

Figure 4 depicts the R-D curves for the evaluated methods. Compared to NeRV and HNeRV
equipped with direct 8-bit quantization, NeuroQuant demonstrates significant compression effi-
ciency gains of 27.8% and 25.5%, respectively. This improvement primarily stems from their lack
of optimization for the compression objective. In contrast, HiNeRV achieves superior compression
performance by incorporating QAT, as discussed in Sec. 3.3. Despite this, NeuroQuant also brings
another 4.8% gains by replacing the built-in QAT. A key advantage of NeuroQuant is its ability to
support variable-rate coding without training separate weights for each target bitrate, offering both
flexibility and efficiency in practice. Moreover, NeuroQuant outperforms the network coding tool
DeepCABAC (Wiedemann et al., 2020), highlighting the benefits of task-oriented QPs. Incorporat-
ing its advanced entropy coding with NeuroQuant is an exciting avenue for future research.
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Table 1: Reconstruction quality comparison of different quantization methods (vertical) across var-
ious INR-VCs with different model sizes (horizontal) in terms of PSNR on UVG (Mercat et al.,
2020). Bold values indicates the best results. † denotes QAT strategies and * represents mixed pre-
cision. All implementations are based on open-source codes.

Methods W-bits NeRV NeRV HNeRV HNeRV HiNeRV Avg

Full Prec. (dB) 32 31.39 32.30 32.49 33.80 35.09 33.01
Param. - 3.1M 6.2M 3.0M 6.2M 3.1M -

HNeRV (Chen et al., 2023) 6 30.68 31.56 32.05 33.29 32.10 31.94
FFNeRV (Lee et al., 2023)† 6 31.10 32.02 32.15 33.34 34.03 32.53
HiNeRV (Kwan et al., 2024a)† 6 31.20 32.09 32.25 33.48 34.54 32.71
AdaRound (Nagel et al., 2020) 6 31.03 31.96 32.10 33.26 33.92 32.45
BRECQ (Li et al., 2021b) 6 31.11 32.05 32.18 33.42 34.10 32.57
QDrop (Wei et al., 2022) 6 31.15 32.10 32.20 33.44 34.27 32.63
RDOPTQ (Shi et al., 2023) 6 31.15 32.06 32.16 33.39 34.23 32.60
NeuroQuant (Ours) 6 31.31 32.22 32.38 33.61 34.67 32.84

HNeRV (Chen et al., 2023) 4 27.02 27.86 28.14 28.60 24.30 27.18
FFNeRV (Lee et al., 2023)† 4 30.14 30.90 31.11 32.13 32.37 31.33
HiNeRV (Kwan et al., 2024a)† 4 30.37 31.32 31.46 32.67 32.95 31.75
AdaRound (Nagel et al., 2020) 4 30.12 30.65 31.02 31.98 32.10 31.17
BRECQ (Li et al., 2021b) 4 30.22 30.93 31.26 32.24 32.56 31.44
QDrop (Wei et al., 2022) 4 30.28 31.05 31.33 32.45 32.68 31.56
RDOPTQ (Shi et al., 2023) 4 30.25 30.96 31.24 32.25 32.60 31.46
NeuroQuant (Ours) 4 30.85 31.77 31.64 32.81 33.33 32.08

HNeRV (Chen et al., 2023) 2 14.81 15.50 13.32 13.06 13.30 14.00
FFNeRV (Lee et al., 2023)† 2 22.52 22.89 23.84 24.14 21.25 22.93
HiNeRV (Kwan et al., 2024a)† 2 24.08 25.30 25.11 26.51 23.89 24.98
AdaRound (Nagel et al., 2020) 2 22.51 23.44 23.70 24.56 22.10 23.26
BRECQ (Li et al., 2021b)* 2 24.05 25.17 25.40 26.32 25.87 25.36
QDrop (Wei et al., 2022)* 2 25.32 26.14 25.94 26.85 26.60 26.17
RDOPTQ (Shi et al., 2023)* 2 24.33 25.75 25.57 26.50 26.14 25.66
NeuroQuant (Ours)* 2 27.39 28.48 28.02 29.05 28.92 28.37

4.3 DIVING INTO NEUROQUANT

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Bit Rate (bpp)

31
32
33
34
35
36
37
38

PS
N

R
 (d

B
)

-27.8%

-25.5%

-4.8%

R-D Curves with BD-Rate on UVG

x264
x265
DCVC
DCVC-DC
NeRV
NeRV-VR
D-CABAC
HNeRV
HNeRV-VR
HiNeRV*
HiNeRV-VR

Figure 4: Compression efficiency comparison.
Variable-rate models are labeled with -VR suffix
using the solid line. * is INR-VC using QAT.

In this subsection, we perform a series of evalua-
tions to gain deeper insights into how our Neuro-
Quant functions.

Encoding Complexity. Table 2 presents the en-
coding time evaluation for 960 × 1920 videos
with approximate 3M parameters. From NeRV to
HiNeRV, compression performance is improved
at the cost of increased encoding complexity.
Without support for variable bitrates, generating
a new bitrate point typically requires retraining
the model, leading to an encoding time that is
generally unacceptable (e.g., exceeding 22 hours
for HiNeRV). In this context, NeuroQuant pro-
vides a practical solution by leveraging a pre-
trained model, enabling adaptation to variable bi-
trates while ensuring efficient encoding, achiev-
ing speedups of up to 7.9 times.

Table 2: Encoding time required to support a
new bitrate. Note that our pretrained model is
shared for all bitrates in range.

Baselines Naive NeuroQuant Pretrain

NeRV 1.8 h 0.4 h (×4.5) 1.8 h
HNeRV 4.7 h 1.0 h (×4.7) 4.7 h
HiNeRV 22.2 h 2.8 h (×7.9) 18.9 h

Furthermore, we select the Jockey sequence from
UVG as a representative example to have an anal-
ysis of variable-rate coding in Fig 5. The left sub-
plot presents the available points of mixed preci-
sion versus unified precision. The middle sub-
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Figure 5: Quantitative comparison of NeRV (up) and HNeRV (bottom).

plot depicts the RD curves for different quantization bitwidths, while the right subplot displays the
variable-rate range for models of varying sizes. More results can be found in Appendix E.3. We
have the following conclusions:

Rate Control and Mixed Precision. Mixed precision supports finer-grained rate control compared
to unified precision, making NeuroQuant more flexible for various bitrate. Additionally, it enables
better bit allocation, resulting in improved coding efficiency.

Unified R-D Curves across Bits. The coarseness of quantization affects both rate and distortion,
leading to a R-D trade-off. Within a certain range, different bitwidths exhibit unified R-D charac-
teristics, providing a foundation for variable-rate coding through adjusting quantization parameters.
While we demonstrate state-of-the-art performance, the degradation is still noticeable below INT3.
As a result, we do not recommend INT3 and below for variable-rate scenarios.

Variable-Rate Range. While NeuroQuant significantly reduces the need for exhaustive individual
weights training, achieving infinite rate range through quantization alone is impossible due to the
inherent lower bound of bitwidth. We believe this limitation can be addressed by introducing prun-
ing, which can be interpreted as a special case of NeuroQuant with bitwidth = 0. This approach
opens up new possibilities for further exploration based on the foundations laid by this work.

5 CONCLUSIONS

Conclusion. In this work, we introduce NeuroQuant, a novel approach for variable-rate INR-VC
that adjusts the QPs of post-training weights to control bitrate efficiently. Our key insight is that
non-generalized INR-VC exhibits distinct characteristics for quantization. Through empirical and
theoretical analysis, we establish the state-of-the-art weight quantization for INR-VC. NeuroQuant
significantly reduces encoding complexity while maintaining leading compression performance,
providing an effective solution for variable-rate video coding in neural representation.

Limitations and Future Work. Despite the success of NeuroQuant, there are some limitations.
The variable-rate range is inherently constrained by the available bitwidths. A promising solution
is integrating weight pruning techniques to endow the model weights with greater variability. Addi-
tionally, as discussed in Sec. 3.3, NeuroQuant enables variable R-D trade-offs than existing methods,
but it still fall short of achieving true joint R-D optimization. Future work will explore customized
probabilistic modeling for INR-VC, aiming to enable a fully joint R-D optimization process.
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A VARIABLE-RATE BACKGROUND

In real-world communication scenarios, practical video codecs pursue variable-rate coding to adapt
to complex network environments while reducing storage and computational overhead.

In traditional video codecs (Wiegand et al., 2003; Sullivan et al., 2012), variable-rate coding is
typically achieved by adjusting quantization parameters (QPs) (Liu et al., 2008; Li et al., 2020). For
learned generalized video codecs, current variable-rate methods can be categorized into two main
approaches: feature modulation and multi-granularity quantization. Feature modulation focuses on
modifying encoding and decoding features to achieve representations with varying entropy. For
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instance, Lin et al. (2021) proposed a scaling network that modulates the internal feature maps of
motion and residual encoders. Similarly, Rippel et al. (2021) converted discrete rate levels into one-
hot vectors, which were then fed into various codec sub-modules. Duan et al. (2024) introduced
an adaptive conditional convolution method that applies affine transformations to features based
on input Lagrangian multipliers (λ). In contrast, multi-granularity quantization aims to control
bitrate by adjusting the quantization levels of feature maps (also referred to as latents). For example,
Li et al. (2022a) proposed a coarse-to-fine quantization strategy using three learnable quantization
granularity parameters: global levels, channel-wise levels, and spatial-channel-wise levels.

However, INR-based video codecs (INR-VCs) take a fundamentally different approach, converting
video signal compression into model weight compression. This diverges from the conventional
focus on extracting compact feature representations, making tailored variable-rate coding strategies
for INR-VCs essential. While preliminary studies have begun exploring variable-rate coding in
INR-VCs, their performance remains limited (detailed in Sec. E.2).

In this paper, we reduce this gap by framing variable-rate coding for INR-VCs as a mixed-precision
bit allocation problem. Our approach achieves variable-rate coding through QP adjustments and
demonstrates state-of-the-art performance.

B VARIATIONAL INFERENCE PERSPECTIVE

In INR-VC, the variational inference framework interprets the rate-distortion (R-D) trade-off as
an optimization problem, aiming to approximate the true posterior distribution pw̃|x(w̃|x) with a
variational density q(w̃|x) by minimizing the expected Kullback-Leibler (KL) divergence over the
data distribution px. Starting with the KL divergence, we have:

Ex∼pxDKL[q||pw̃|x] = Ex∼pxEw̃∼q

[
log

q(w̃|x)
pw̃|x(w̃|x)

]
(19)

= Ex∼pxEw̃∼q

[
log q(w̃|x)− log pw̃|x(w̃|x)

]
. (20)

Based on the Bayes’ theorem, the posterior pw̃|x(w̃|x) can be expressed as:

pw̃|x(w̃|x) =
px|w̃(x|w̃)pw̃(w̃)

px(x)
. (21)

Substituting this expression into Eq. 20, we get:
Ex∼pxDKL[q||pw̃|x] = Ex∼pxEw̃∼q[log q(w̃|x)− log px|w̃(x|w̃)− log pw̃(w̃) + log px(x)].

(22)
Here, we arrive at a form consistent with Eq.17. Let’s examine each of terms individually.

First Term. For unknown mapping from timestamps t to video data x = F(w, t), the inference
refers to computing the inverse transformation from input x (Ballé et al., 2017). Using a soft variable
similar to Eq. 16, we have:

q(w̃|x) =
∏
i

U(w̃i|wi −
1

2
,wi +

1

2
), with w = F−1 ◦ x, (23)

where U denotes a uniform distribution centered around wi. Then:

Ew̃∼q[log q(w̃|x)] = Ew̃∼q

[
logU

(
−1

2
,
1

2

)]
= 0. (24)

Second Term. For the second term, suppose px|w̃(x|w̃) follows a normal distribution:

px|w̃(x|w̃) = N (x|x̃, σ2), x̃ = F(w̃, t). (25)

Maximizing log px|w̃(x|w̃) is equivalent to minimizing the squared error term:

max log px|w̃(x|w̃) = −min logN (x|x̃, σ2) (26)

= −min log
1

σ
√
2π

exp

(
− 1

2σ2
||x− x̃||2

)
(27)

= min
1

2σ2
||x− x̃||2 (28)
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Third Term. The third term reflects the cost of encoding the latent variables w̃, representing the
model complexity.

Forth Term. For a specific video data, the true distribution p(x) is constant.

In conclusion, we obtain the objective function as derived in Eq. 17:

L = LR + λLD = log pw̃(w̃) +
1

2σ2
||x− x̂||2. (29)

By matching the variational density with the INR-based video coding framework, we observe that
minimizing the KL divergence corresponds to optimizing weights for the rate–distortion perfor-
mance.

C APPROXIMATING HESSIAN

While MSE is the most commonly used loss function in INR-VC, it is impractical to assume that
all future scenarios encountered by NeuroQuant will use MSE as their objective. To address this
limitation, we consider an alternative approach based on the variation inference discussed earlier.
The loss function of INR-VC can be framed as the likelihood estimation for p(x|w̃), allowing us to
define the Hessian as:

H = ∇2
w̃L = Ex∼p(x)

[
−∇2

w̃ log p(x|w̃)
]
. (30)

The negative expected Hessian of the log-likelihood function is equivalent to the Fisher information
matrix (FIM) (LeCun et al., 2002). We define the FIM, denoted by F , as follows:

F = Ex∼p(x|w̃)

[
−∇2

w̃ log p(x|w̃)
]

(31)

= Ex∼p(x|w̃)

[
− 1

p(x|w̃)
∇2

w̃p(x|w̃)

]
+ Ex∼p(x|w̃)

[
∇w̃ log p(x|w̃)∇w̃ log p(x|w̃)T

]
. (32)

The first term on the right side of Eq. 32 is zero, as shown in Chen et al. (2021b):

Ex∼p(x|w̃)

[
− 1

p(x|w̃)
∇2

w̃p(x|w̃)

]
(33)

=

∫
1

p(x|w̃)
∇2

w̃p(x|w̃)p(x|w̃)dx (34)

=

∫
∇2

w̃p(x|w̃)dx (35)

= ∇2
w̃

∫
p(x|w̃)dx (36)

= 0. (37)

Therefore,

F = Ex∼p(x|w̃)

[
−∇2

w̃ log p(x|w̃)
]

(38)

= Ex∼p(x|w̃)

[
∇w̃ log p(x|w̃)∇w̃ log p(x|w̃)T

]
. (39)

In Eq. 11, the first term is ignored, and we approximate H using Gauss-Newton matrix form G.
Similarly, in the context of likelihood estimation, this can be represented as:

G = Ex∼p(x)

[
∇w̃ log p(x|w̃)∇w̃ log p(x|w̃)T

]
. (40)

To summarize, we have the following relationships:

H = ∇2
w̃L = Ex∼p(x)

[
−∇2

w̃ log p(x|w̃)
]
, (41)

G = Ex∼p(x)

[
∇w̃ log p(x|w̃)∇w̃ log p(x|w̃)T

]
, (42)

F = Ex∼p(x|w̃)

[
−∇2

w̃ log p(x|w̃)
]

(43)

= Ex∼p(x|w̃)

[
∇w̃ log p(x|w̃)∇w̃ log p(x|w̃)T

]
. (44)
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In INR-VC, the observed data is consistent with the true data. Hence, when the target data distribu-
tion p(x) equals to the fitted distribution p(x|w̃), we derive:

H = G = F . (45)

This approximation, constrained by network capacity (e.g., bitrate) without data distribution, reveals
a unique advantage compared to generalized codecs. Therefore, we can get an equivalent objective
under the FIM form, though not exactly the same as the Hessian form

minE
[
∆zT diag

(
(
∂L
∂z1

)2, · · ·, ( ∂L
∂zn

)2
)
∆z

]
(46)

For some loss functions, such as perceptual loss (Rad et al., 2019), which lack an analytical Hessian
form, the FIM can serve as a suitable subsitute.

D NEUROQUANT ALGORITHM

In our approach, s represents the quantization steps. Once each layer is assigned a bitwidth bl, the
initial value of s is computed channel-wisely using

sl,k =
max(wl,k)−min(xl,k)

2bl − 1
, (47)

where wl,k is the weights in the k-th channel of the l-th layer. During the calibration process, s is
further optimized to minimize task loss.

Algorithm 1 Bit Allocation for Target Bitrate (Mixed Precision, Sec. 3.1)
Input: Pretrained weights W (FP32); Initial bitwidth b (e.g., 8 bit); Potential mixed-precision con-

figures set S under target rate R

Output: Quantization steps s, Quantized weights Ŵ
1: Quantize W to initial bitwidth b and get W0;
2: Compute the gradient of W0 with backward propagation g = ∂L

∂W0
;

3: for Si in S do
4: Get layer-wise bitwidth bl from Si;
5: for l = 1, 2, · · ·, N -th layer in W0 do
6: Compute channel-wise quantization parameter {sl,k}k=c

k=1; ▷ Eq. 47
7: Compute de-quantized Ŵ l = sl ·Round(W0/s

l);
8: end for
9: Compute weight perturbation ∆W = W − Ŵ ;

10: Compute Hessian-Vector Product H∆W with ∇G = ∇(g∆W ); ▷ Eq. 8
11: Compute criteria Ωi = ∆W TH∆W ; ▷ Eq. 9
12: end for
13: s, Ŵ = argminΩ.

E EXPERIMENTS

E.1 IMPLEMENTATION DETAILS

Evaluation. We conducted experiments on the UVG dataset2, which consists of 7 videos, each with
a resolution of 1920 × 1080 and recorded at 120 FPS over 5 or 2.5 seconds. We applied a center
crop to achieve a resolution of 1920× 960, similar to the preprocessing used in HNeRV and NeRV.
For evaluation metrics, we employed PSNR to measure reconstruction distortion and bits per pixel
(bpp) to access bitrate. Additionaly, the Bjøntegaard Delta Rate (BD-Rate) (Bjontegaard, 2001) was
calculated for each baseline codec.

2Beauty, Bosphorus, HoneyBee, Jockey, ReadySetGo, ShakeNDry, YachtRide
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Algorithm 2 Encoding for Target Rate (Calibration, Sec. 3.2)
Input: Pretrained weights W (FP32); Potential mixed-precision configures set S under target rate

R; iteration T
Output: Bitstream, bpp

1: Search optimal bit configure and get s, Ŵ ; ▷ Algorithm 1
2: Forward propagation and collect the FP network output z;
3: for i = 1, 2, · · ·, T do ▷ Calibration
4: Forward propagation and collect the quantized network output ẑ;
5: Compute L and gradient descent; ▷ eq. 16
6: ▷ Update s first with a few iteration and then update rounding parameters v
7: end for
8: Quantize W to integer with calibrated QPs, i.e., s,v;
9: Get bitstream with lossless entropy coding.

10: Compute bpp ▷ eq. 48

Here, the bpp calculation includes both the quantized network parameters ŵ and the quantization
parameters s:

bpp = bppw + bpps =

∑
E(ŵ)

H ×W × T
+

∑
s · bs

H ×W × T
, (48)

where E denotes lossless entropy coding. For example, on a 1080p video sequence with INT4 ŵ
and FP16 s, the bpp for HNeRV-3M is approximately: bppw ≈ 0.01, bpps ≈ 0.00004. As shown,
the contribution of s to the overall bpp is negligible, but it is still included in all calculations for
fairness.

Baselines. All baselines were implemented using open-source codes, including NeRV (Chen et al.,
2021a), HNeRV(Chen et al., 2023), and HiNeRV (Kwan et al., 2024a).

NeuroQuant. In the mixed-precision bit allocation, we targeted the final weights size instead of the
bpp, as the actual bpp cannot be accurately estimated after entropy coding. Specifically, the bitwidth
was constrained within the range of [3bit, 8bit]. The weights compression ratio (FP32 weights size/
quantized weights size) was maintained within an average range of [4.5, 10], where different base-
lines and weights size had small difference. We calculated potential bitwidth configurations while
allowing a 5% error tolerance to avoid empty solution. In current implementation, we conducted
search in a group of predefined bitwidth configures for a given target size, which can be finished in
one minute. Integer Programming (Hubara et al., 2021) also can achieve same objective.

Once the bits are allocated, we employed the Adam optimizer (Kingma, 2014) to calibrate quanti-
zation parameters (e.g, quantization steps, weight rounding) to minimize distortion. For frame-wise
INR-VC systems like NeRV and HNeRV, the batchsize was set to 2, while for patch-wise INR-VC
systems like HiNeRV, the batchsize was set to 144. The learning rate was set to 3e− 3 with a cosine
annealing strategy. QP were be optimized for 2.1 × 104 iterations, although most cases converged
in fewer than 1.5× 104 iterations. All experiments were conducted using Pytorch with Nvidia RTX
3090 GPUs.

Our code will be made open-source upon the release of the paper.

Task-Oriented PTQs. Benchmarks were based on open-source implmentations of AdaRound,
BRECQ, QDrop, and RDOPTQ. These methods were reproduced for INR-VC systems, using the
same batchsize and learning rate as NeuroQuant, which provided better results than naive learning
rate. Each layer/block was optimized for 2.1× 104 iterations.

INR-Oriented QATs. For FFNeRV, the QAT process is summarised as follows:

Forward: ŵ = sign(w) · ⌊(2
b − 1) · tanh(|w|)⌋

2b − 1
, (49)

Backward:
∂L
∂ŵ

≈ ∂L
∂w

. (50)
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For HiNeRV, the QAT process is based on QuantNoise (Stock et al., 2021) but forbidding the naive
Straight-Through Estimator (STE):

Forward: w̃ = w ·mask + ŵ · (1−mask), (51)

where ŵ = ⌊w · (2b − 1)

2 ·max(w)
⌉ · 2 ·max(w)

2b − 1
, (52)

Backward:
∂L
∂w̃

≈ ∂L
∂w

·mask, (53)

Inference: ŵ = ⌊w · (2b − 1)

2 ·max(w)
⌉ · 2 ·max(w)

2b − 1
(54)

where mask is a random binary tensor with the same shape as w. This random dropping is also
similar to QDrop.

Generalized Neural Video Codecs. We also included two representative generalized Neural Video
Coding Systems, DCVC (Li et al., 2021a) and DCVC-DC (Li et al., 2023), to compare with the
existing non-generalized INR-VC systems. Pretrained models were used to test the UVG dataset,
where all frames of each video were evaluated. The group of pictures (GOP) was set to 32, consistent
with other learned video coding methods.

Generalized Traditional Codecs. The command to encode using x264 in our paper is:

1 ffmpeg
2 -s {width} x {height}
3 -pix_fmt yuv444p10le
4 -framerate {frame rate}
5 -i {input yuv name}
6 -c:v libx264
7 -preset veryslow
8 -g 32
9 -qp {qp}

10 {bitstream file name}

The command to encode using x265 in our paper is:

1 ffmpeg
2 -s {width} x {height}
3 -pix_fmt yuv444p10le
4 -framerate {frame rate}
5 -i {input yuv name}
6 -c:v libx265
7 -preset veryslow
8 -x265-params
9 ‘‘qp= {qp}:keyint=32’’

10 {bitstream file name}

The pre-process followed the suggestions in Sheng et al. (2022); Li et al. (2024), where we used
BT.601 color range to convert between YUV and RGB.

E.2 VARIABLE-RATE COMPARISON

Here we further compare NeuroQuant with two typical variable-rate techniques: (1) Neural Network
Coding (NNC) techniques (Wiedemann et al., 2020) and Entropy Regularization (EM) techniques
(Gomes et al., 2023; Kwan et al., 2024b; Zhang et al., 2021). NNC uses video codec to compress
neural network, while EM introduces additional weight entropy regularization. We employ Deep-
CABAC (Wiedemann et al., 2020) and Gomes et al. (2023) as the typical represented methods,
respectively. We use the NeRV across three video sequences: Beauty, Jockey, and ReadySetGo to
compare. The results are summarized in the following table:

As shown, NeuroQuant consistently outperforms DeepCABAC and Gomes et al. across different
sequences and bitrates. These results demonstrate the effectiveness of our method in improving rate-
distortion performance. For one training iteration, Gomes et al. (2023) involves additional overhead
due to entropy estimation, resulting in approximately ×1.4 encoding time compared to NeuroQuant.

19



Published as a conference paper at ICLR 2025

Table 3: Variable-Rate comparison.
Methods Bpp Beauty Jockey ReadyS Avg.

Full Prec. (dB) - 33.08 31.15 24.36 29.53

DeepCABAC (Wiedemann et al., 2020) 0.016 32.98 30.94 24.24 29.39
Gomes et al. (Gomes et al., 2023) 0.016 32.91 30.66 23.92 29.16
NeuroQuant (Ours) 0.016 33.04 31.09 24.31 29.48

DeepCABAC (Wiedemann et al., 2020) 0.013 32.43 30.23 23.92 28.86
Gomes et al. (Gomes et al., 2023) 0.013 32.78 30.29 23.61 28.89
NeuroQuant (Ours) 0.013 32.97 30.96 24.18 29.37

DeepCABAC (Wiedemann et al., 2020) 0.011 31.59 28.70 22.85 27.71
Gomes et al. (Gomes et al., 2023) 0.011 32.63 29.89 23.26 28.59
NeuroQuant (Ours) 0.011 32.83 30.67 23.85 29.12

Besides, NeuroQuant achieves precise bitrate control by adjusting quantization parameters, as bitrate
is directly proportional to the number of parameters and their bitwidth. In contrast, entropy-based
methods can not directly estimate compressed bitrate from the Lagrangian multiplier λ. Instead,
it requires multiple encoding runs to fit a mapping from λ to bitrate. This mapping is sequence-
dependent, reducing its universality and reliability.

Additionally, we acknowledge that the lossless entropy coding used in NeuroQuant currently is less
advanced compared to CABAC-based techniques used in DeepCABAC. However, as a quantization
method, NeuroQuant is compatible with various entropy coding techniques. In future work, we aim
to incorporate CABAC and EM techniques into NeuroQuant as discussed in Sec. 3.3.

E.3 DIVING INTO NEUROQUANT

To analyze the efficiency of NeuroQuant, we conducted a series of deeper studies on the three
sequences (Beauty, Jockey, and ReadySetGo) using NeRV-3M and 4-bit precision. Below, we sum-
marize our findings.

E.3.1 IS INTER-LAYER DEPENDENCE A GOOD PROPERTY FOR INR?

Benefits of Inter-Layer Dependencies: INR models are inherently non-generalized and tailored
to represent specific video data. This specialization often leads to strong inter-layer dependencies,
where the contribution of each layer to the overall representation is tightly coupled. For video
representation, such strong coupling can reduce redundancy across the network, leading to better
rate-distortion performance in INR-VCs. In contrast, excessive independence could indicate poor
utilization of the network’s capacity.

Challenges of Inter-Layer Dependencies: Strong dependencies complicate quantization, as per-
turbations in one layer can propagate across the network. This is where network-wise calibration,
as proposed in NeuroQuant, becomes critical. Additionally, dependencies can limit scalability and
robustness, as architectural modifications can disrupt the internal balance of the network.

Simple Experiment: For INR-VCs, the overfitting (dependence) degree increases with the training
iterations growing. To measure dependence, we quantized the fourth layer using vanilla MinMax
quantization without any calibration, and observed its impact on final loss. Results for varying
training epochs are shown below:

The results indicate that stronger dependence means larger loss changes with quantization but pro-
vides better representation performance.

For future work, exploring a middle ground—where moderate independence is encouraged to bal-
ance representation fidelity and quantization robustness—might be an interesting direction.
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Figure 6: The influence of inter-layer dependence.

E.3.2 ABLATION STUDIES

Batch Size. We examined the impact of varying batch sizes on compression performance. As shown
in Table 4, increasing the batch size results in diminishing returns in PSNR, with larger batch sizes
also introducing greater complexity. For NeuroQuant, a batch size of 2 was chosen as the default
setting.

Table 4: Batch Size Ablation
1 2 4 8

Beauty 32.78 32.79 32.79 32.80
Jockey 30.54 30.58 30.60 30.62
ReadyS 23.75 23.79 23.82 23.84

Avg 29.02 29.05 29.07 29.09

Learning Rate. We experimented with different learning rates, as shown in Table 5. A learning rate
of 3e− 3 was selected as the default NeuroQuant setting.

Table 5: Learning Rate Ablation
1.5e− 3 2e− 3 3e− 3 5e− 3

Beauty 32.86 32.81 32.83 32.79
Jockey 30.58 30.62 30.67 30.53
ReadyS 23.88 23.82 23.85 23.79

Avg 29.11 29.08 29.12 29.04

Objective Trade-off. Eq. 14 describes the final calibration objective, which includes both the dis-
tortion term LD and the regularization term LReg . We explored the trade-off between these two
objectives by varying the regularization weight λ, as shown in Table 6. The results indicate that
NeuroQuant maintains robust performance across different regularization weights.

Quantization Granularity. We compared different quantization granularities, focusing on channel-
wise (CW) and layer-wise (LW) quantization strategies. As shown in Table 7, while layer-wise
granularity significantly degrades performance, NeuroQuant still yields satisfactory results in this
context. Channel-wise quantization delivers superior performance, supporting the correctness of the
proposed method.
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Table 6: Objective Trade-off Ablation
λ = 0.1 λ = 0.01 λ = 0.001

Beauty 32.79 32.78 32.78
Jockey 30.58 30.58 30.56
Ready 23.80 23.77 23.76

Avg 29.06 29.04 29.03

Table 7: Quantization Granularity Ablation
LW w/o NeuroQuant LW w/ NeuroQuant CW w/ NeuroQuant

Beauty 28.90 32.12 32.79
Jockey 22.49 29.08 30.58
ReadyS 19.50 22.51 23.80

Avg 23.63 27.90 29.06

Iterations. We analyzed the performance gains over different numbers of iterations, as illustrated in
Fig. 7. NeuroQuant achieves significant improvements in the first 103 iterations, indicating its rapid
convergence during calibration.
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Figure 7: Iterations Ablation.

Due to the tremendous encoding complexity of HiNeRV (10× compared to NeRV, e.g., more than
21GB memory requirement and nearly one GPU day for 3M weights), we exclude HiNeRV in next.

Unified R-D Characteristics. Fig. 8 presents the Rate-Distortion (R-D) curves for three different
video sequences: Jockey, Beauty, and ReadySetGo. In addition to the commonly used Jockey se-
quence, we include the less dynamic Beauty sequence, where baseline models tend to exhibit satura-
tion (showing less than 1 dB PSNR improvement across the entire bitrate range). We also consider
the highly dynamic ReadySetGo sequence, where all baselines show the worst R-D performance
within the UVG dataset.
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NeuroQuant significantly outperforms naive quantization techniques in terms of compression effi-
ciency. For the Beauty sequence, both NeRV and HNeRV show a saturation effect, where increasing
the number of weights does not yield noticeable gains in distortion reduction. In this case, Neuro-
Quant performs worse compared to its performance on other sequences..

On the other hand, NeuroQuant exhibits slight difference among different beseliens and video se-
quences. As highlighted in the zoomed-in areas of the R-D curves, NeuroQuant-4bit achieves higher
PSNR in the NeRV on ReadySetGo. When it comes to the NeRV on Beauty, NeuroQuant-5bit
achieves higher PSNR. Despite these differences, various precision levels (bitwidth) display nearly
unified R-D characteristics.

Visualization. We further visualize the lowest bitrate (0.01bpp) for all three sequences in Fig. 9,
10 and 11. Compared with naive 32bit floating-point HNeRV (FP32), NeuroQuant can compress
weights to INT4 without visual information loss.
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Figure 8: Quantitative comparison of NeRV (left) and HNeRV (right).
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Figure 9: Comparison around 0.01bpp with Beauty sequence in HNeRV.
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Figure 10: Comparison around 0.01bpp with Jockey sequence in HNeRV.
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Figure 11: Comparison around 0.01bpp with ReadySetGo sequence in HNeRV.
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