
Understanding Deep Neural Function Approximation
in Reinforcement Learning via ϵ-Greedy Exploration

Fanghui Liu∗, Luca Viano, Volkan Cevher
Laboratory for Information and Inference Systems

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{first}.{last}@epfl.ch

Abstract

This paper provides a theoretical study of deep neural function approximation in
reinforcement learning (RL) with the ϵ-greedy exploration under the online setting.
This problem setting is motivated by the successful deep Q-networks (DQN)
framework that falls in this regime. In this work, we provide an initial attempt
on theoretical understanding deep RL from the perspective of function class and
neural networks architectures (e.g., width and depth) beyond the “linear” regime.
To be specific, we focus on the value based algorithm with the ϵ-greedy exploration
via deep (and two-layer) neural networks endowed by Besov (and Barron) function
spaces, respectively, which aims at approximating an α-smooth Q-function in a
d-dimensional feature space. We prove that, with T episodes, scaling the width
m = Õ(T

d
2α+d ) and the depth L = O(log T ) of the neural network for deep RL

is sufficient for learning with sublinear regret in Besov spaces. Moreover, for a
two layer neural network endowed by the Barron space, scaling the width Ω(

√
T )

is sufficient. To achieve this, the key issue in our analysis is how to estimate the
temporal difference error under deep neural function approximation as the ϵ-greedy
exploration is not enough to ensure “optimism”. Our analysis reformulates the
temporal difference error in an L2(dµ)-integrable space over a certain averaged
measure µ, and transforms it to a generalization problem under the non-iid setting.
This might have its own interest in RL theory for better understanding ϵ-greedy
exploration in deep RL.

1 Introduction

Efficient reinforcement learning (RL) under the large (or even infinite) state space and action space
setting is increasingly important and relevant challenge [1, 2, 3]. One of the first successful approaches
towards this problem is the deep Q-network (DQN) [4, 5] framework, which deploys powerful
nonlinear function approximation techniques via Deep Neural Networks (DNNs) [6] to concisely
approximate state and action spaces. Despite its impressive practical success, there is still a gap
between practical uses and theoretical understanding on deep RL with regard to the function class
and the employed ϵ-greedy policy.

In the perspective of function class, many theoretical works center around linear function approxima-
tion [7, 8] and linear mixtures [9, 10]. Existing non-linear function approximation results on RL are
largely based on neural tangent kernel (NTK) [11, 12], Bellman rank [13, 14], and Eluder dimension
[15, 16, 17]. Nevertheless, these approaches fail in truly capturing the highly non-linear properties of
deep RL. For example, NTK (or lazy training [18]) essentially works in a “linear” regime [19, 20, 21],
and can not efficiently learn even a single ReLU neuron [22, 23, 24] as it requires Ω(ε−d) samples
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to achieve ε approximation error, where d is the (original) or transformed feature dimension input;
the Bellman rank is normally difficult to be estimated for neural networks as suggested by [25]; the
Eluder dimension is at least in an exponential order [26, 27] even for two-layer neural networks. The
above general function approximation schemes appear difficult to fully demonstrate the success of
practical deep RL both theoretically and empirically.

In the perspective of exploration schemes, DQN is directly equipped with the ϵ-greedy policy instead
of confidence-bound based scheme that are commonly used in RL theory. The ϵ-greedy exploration
is theoretically demonstrated to have exponential sample complexity in the worst case [28] but is still
popular in practical deep RL due to its simple implementation. In this case, theoretical analyses of
ϵ-greedy in deep RL are still required. Besides, to ensure a sublinear regret, under the NTK regime,
the width of neural networks is required to be m = Ω(T 13) [12], where T is the number of episodes.
This does not match deep RL in practice with small width/depth under large episodes [4, 29].

To bridge the large theory-practice gap, we study the value iteration algorithm with deep neural
function approximation and the ϵ-greedy policy under the online setting, which broadly captures the
key features of DQN. Our analysis framework is based on DNNs (as well as two-layer neural networks)
where the target Q function lies in the Besov space [30] or the Barron space [31], respectively.
These function classes can fully capture the properties of Q-functions, e.g., smoothness by neural
networks. Our results demonstrate that the sublinear regret can be achieved for deep neural function
approximation under the ϵ-greedy exploration with reasonably finite width and depth in practice.
Besides, the relationship between the problem-dependent smoothness of Q-function and regret bounds
is also developed. These results could also motivate practitioners to consider different architectures
of implementations of deep RL.

1.1 Technical challenges and contributions

Most previous RL theory results on function approximation in the online setting work with “optimism
in the face of uncertainty” principle for exploration, leading to a series of upper confidence bound
(UCB)-type algorithms to ensure the temporal difference (TD) error smaller than zero.

Conceptually, optimism is sometimes too aggressive and UCB-style algorithms can suffer exponential
sample complexity even for nonlinear bandits [27]. Technically, UCB-type algorithms in linear/kernel
function approximation [7, 12, 32] depend on a known feature mapping or the NTK kernel, which
appears invalid for deep neural function approximation beyond the “linear” regime. This is because,
the used confidence ellipsoid and elliptical potential lemma are not applicable for data-dependent
feature mapping of DNNs. To avoid explicitly designing a bonus function, Thompson sampling
[33, 34] appears promising in a Bayesian perspective by using randomized (i.e., perturbed) versions
of the estimated model or value function [35]. Nevertheless, the bonus function is still implicitly
included in confidence estimate of perturbations.

In this work, we center around deep neural function approximation with the ϵ-greedy exploration.
Since this exploration scheme is not enough to ensure the TD error smaller than zero, the technical
challenge in our analysis is how to estimate it to ensure the sublinear regret. In our proof framework,
by a measure transform, the TD error is analysed in an L2(dµ̄)-integrable space, where µ̄ is the
averaged measure wrt a mini-batch of historical state-action pairs. To break the dependence between
the episodes for neural networks training, we utilize the experience replay scheme [36] from DQN,
and then transform the TD error estimation to generalization error under the independent but non-
identically distributed data setting and approximation error in the respective function spaces. Note that
in practice, experience replay makes observations to be (nearly) iid, but our analysis only requires the
independence of observations, that is weaker than iid. Such generalization problem can be addressed
by uniform convergence via (local) Rademacher complexity of the Besov/Barron spaces under the
averaged measure. This considered function spaces in this work is more general than Hölder spaces
used in offline RL [37].

Our results show that (i) the problem-dependent smoothness of Q-function affects the efficiency
of learning with deep RL, which can be improved by increasing the model capacity (width and
depth). We use α as a parameter indicating the smoothness degree of Q-function. A larger α
indicates smoother functions, easier RL tasks, and smaller exploration times, which coincides with
our theory. (ii) for deep neural networks under the Besov space, the width m = Õ(T

d
2α+d ) and the

depth L = Õ(1) are enough for sublinear regret under the ϵ-greedy policy, where Õ(·) omits the log
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terms. (iii) for two-layer neural networks under the Barron space, the width m = Ω(
√
T ) suffices to

ensure sublinear regret. Furthermore, our regret bounds can be independent of the feature dimension,
supporting the premise of practical, high-dimensional data in RL.

1.2 Related work
Recent work on neural network function approximation beyond NTK (or the Eluder dimension)
mainly restrict on the generative setting [25, 38] by assuming a simulator in which the agent can
require any state and action, and the offline setting [37, 39]. In sequel, we review RL with function
approximation under the online setting that DQN falls into this regime. We also mention that,
theoretical understanding of DQN can be conducted by from the perspective of neural fitted Q-
iteration algorithm [40, 37, 41], and Q learning [42] in the perspective of understanding the target
network [43] and experience replay [44, 45, 46] with linear function approximation. Note that, for
notational consistency with previous work, in this subsection, T denotes the total number of steps
(i.e., interactions with the environment) instead of the number of episodes in our paper.

RL with linear/kernel function approximation: RL with linear function approximation achieves
a sublinear regret bound with Õ(

√
d3H3T ) under a low-rank MDP in a model-free setting [7] and

Õ(dH2
√
T ) in a model-based setting [32], where H is the length of each episode. The regret

can be improved to Õ(dH
√
T ) under a low inherent Bellman error by assuming a global planning

oracle [47] or under a Bernstein-type exploration bonus and controlling extra uniform convergence
cost [48]. This nearly optimal regret can be also achieved under the linear mixtures setting [10].
In the kernel regime, the regret can be achieved with Õ(δF

√
H3T ) [32, 12], where δF is the

intrinsic complexity (e.g., effective dimension) of the function class RKHS F . The above bounds
are based on confidence ellipsoid to quantify the uncertainty in an explicit bonus function by feature
mapping/kernel function; while Thompson sampling [34, 33] utilizes an implicit bonus function in
probability estimation on uncertainty quantification, which leads to an Õ(d2H2

√
T ) [35] regret in

linear function approximation.

RL with general function approximation: One prototypical scheme uses the Eluder dimension [15],
which measures the degree of dependence among action rewards, resulting in an Õ(poly(δFH)

√
T )

regret [16, 17], where the complexity δF depends on the Eluder dimension. Using this metric, the
sublinear regret under the ϵ-greedy exploration can be achieved by [49]. Besides, the low Bellman
rank assumption [13], where the Bellman error “matrix” admits a low-rank factorization, can be
also used general function approximation [14] by measuring the error of the function class under the
Bellman operator. Combining Bellman rank and Eluder dimension results in a new metric, Bellman
Eluder dimension [50], achieving Õ(H

√
δFT )-regret, where δF depends on this metric.

Overall, the above metrics are difficult to the nonlinear spaces of DNNs beyond “linear” regime that
concern us.

2 Background and preliminaries

In this section, we introduce the necessary background and definitions with respect to online rein-
forcement learning based on episodic Markov decision processes (MDPs) and function spaces of
deep (and two-layer) ReLU neural networks.

Notation: We denote by a(n) ≲ b(n): there exists a positive constant c independent of n such that
a(n) ⩽ cb(n); a(n) ≍ b(n): there exists two positive constant c1 and c2 independent of n such
that c1b(n) ⩽ a(n) ⩽ c2b(n). We use the shorthand [n] := {1, 2, . . . , n} for some positive n and
⌈x⌉ denotes the smallest integer exceeding x. Let X = [0, 1]d be a domain of the functions, we
denote the Lp-integrable space by Lp(X ) endowed by the norm ∥f∥Lp(X ) =

( ∫
X |f(x)|pdx

)1/p
,

and the µ-integrable Lp space by Lp(dµ) for a probability measure µ on X and the norm is given by
∥f∥Lp(dµ) =

( ∫
X |f(x)|pdµ

)1/p
.

2.1 Episodic Markov decision processes

A (finite-horizon) episodic MDPs is denoted as MDP(S,A, H,P, r), where S is the state space
with possibly infinite states; A is the finite action space; H is the number of steps in each episode;
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P := {Ph}Hh=1 is the Markov transition kernel with the transition probability Ph(·|s, a) on action
a taken at state s ∈ S in the h-th step; the reward functions r := {rh}Hh=1 are assumed to be
deterministic. For notational simplicity, denote X = S ×A and x = (s, a), we assume X = [0, 1]d

as a compact space of Rd and rh : S ×A → [0, 1] at h-th step.

A non-stationary policy π is a collection of H functions π := {πh : S → A}Hh=1. Given a policy
π, the (state) value function V π

h : S → [0, H] is defined as the expected cumulative reward of the
MDP starting from step h ∈ [H], i.e., V π

h (s) = Eπ

[∑H
h′=h rh′(sh′ , ah′)

∣∣sh = s
]
,∀s ∈ S, h ∈ [H]

where Eπ[·] denotes the expectation with respect to the randomness of the trajectory {(sh, ah)}Hh=1
obtained by the policy π. Likewise, the action-value function Qπ

h : S × A → [0, H] is defined as
Qπ

h(s, a) = Eπ

[∑H
h′=h rh′(sh′ , ah′)

∣∣ sh = s, ah = a
]
.

Moreover, since the action space and episode length are both finite, there always exists an optimal
policy π⋆ [51] such that V ⋆

h (s) = supπ V
π
h (s) for all s ∈ S and h ∈ [H]. To simplify the

notation, denote (PhV )(s, a) := Es′∼Ph(·|s,a)[V (s′)] and the Bellman operator (ThV )(s, a) =
rh(s, a) + (PhV )(s, a) for any measurable function V : S → [0, H]. Using this notation, the
Bellman equation associated with a policy π can be formulated as

Qπ
h(s, a) = (ThV

π
h+1)(s, a), V π

h (s) = ⟨Qπ
h(s, ·), πh(·|s)⟩A, V π

H+1(s) = 0 . (1)
Similarly, the Bellman optimality equation is given by

Q⋆
h(s, a) = (ThV

⋆
h+1)(s, a), V ⋆

h (s) = max
a∈A

Q⋆
h(s, a), V ⋆

H+1(s) = 0 . (2)

Accordingly, the optimal policy π⋆ is the greedy policy with respect to {Q⋆
h}Hh=1. Hence the Bellman

optimality operator T⋆
h is defined as

(T⋆
hQ)(sh, ah) = rh(sh, ah) + Esh+1∼Ph(·|sh,ah)[max

a∈A
Q(sh+1, a)], ∀ Q : S ×A → [0, H] .

By definition, the Bellman equation in Eq. (2) is equivalent to Q⋆
h = T⋆

hQ
⋆
h+1, ∀h ∈ [H].

In the online setting, the goal is to learn the optimal policy π⋆ by minimizing the cumulative regret
under the interaction with the environment over a number of episodes. For any policy π, the difference
between V π

1 and V ⋆
1 quantifies its sub-optimality. Thus, after T (fixed but large) episodes, the total

(expected) regret is defined as Regret(T ) =
∑T

t=1

[
V ⋆
1 (s

t
1) − V π̃t

1 (st1)
]
, where π̃t is the policy

executed in the t-th episode and st1 is the initial state.

2.2 Function spaces

We give an overview of Besov spaces for deep neural networks and the Barron space for two-layer
neural networks. More details refer to Appendix A. For description simplicity, we focus on the ReLU
activation function in this work.

Besov spaces: Previous work in approximation theory focuses on the “smoothness” of the function,
e.g., Hölder spaces [52, 37] and Sobolev spaces [53]. Here we consider the concept of α-smooth
from modulus of smoothness [30], cf., Appendix A.

Based on this, we consider a more general function space beyond Hölder spaces and Sobolev spaces,
i.e., Besov spaces [54, 30], which allows for spatially inhomogeneous smoothness with spikes and
jumps. The Besov space is defined by Bα

p,q(X ) = {f ∈ Lp(X ) | ∥f∥Bα
p,q

< ∞}, where the Besov
norm is ∥f∥Bα

p,q
:= ∥f∥Lp(X ) + |f |Bα

p,q
. The smoothness parameter α indicates which function at a

certain smoothness degree can be represented. For example, if α > d/p, then the related Besov space
is continuously embedded in the set of the continuous functions; if α < d/p, then the functions in
the Besov space are no longer continuous. The formal definition and relations to Hölder spaces and
Sobolev spaces are deferred to Appendix A.

Barron spaces: A two-layer neural network with m neurons can be represented as f(x) =
1
m

∑m
k=1 bkσ(w

⊤
kx + ck) with the ReLU activation function σ(·) used in this work and the

neural network parameters {bk,wk, ck}mk=1. It admits the integral representation f(x) =∫
Ω
bσ
(
w⊤x+ c

)
ρ(db,dw,dc), x ∈ X , where Ω = R × Rd × R and ρ is a probability measure

over Ω. Then the Barron space [31] endowed by the Barron norm is defined as

P̃ =

{
f admits Eq. (9) : ∥f∥P̃ = inf

ρ
{Eρ|b|(∥w∥1 + |c|)} <∞

}
.
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The Barron space P̃ [31] can be (roughly) equipped with the ℓ1-path norm, i.e., ∥f∥P̃ ⩽ ∥f∥P :=
1
m

∑m
k=1 |bk|(∥wk∥1 + ck) ⩽ 2∥f∥P̃ . Accordingly, it is natural to use ∥f∥P to denote the Barron

norm, as the discrete version.

The Barron space [31] can be regarded as the largest function space for two-layer ReLU neural
networks. Here the “largest” terminology [31, 55] means that the approximation ability can avoid
curse of dimensionality, i.e., 1) any function in Barron spaces can be efficiently approximated by
two-layer neural networks with bounded norm; 2) any continuous function that can be efficiently
approximated by two-layer neural networks with bounded norm belongs to a Barron space.

We remark that, avoiding curse of dimensionality is important in theory for practical high-dimensional
data in RL. However, Besov spaces are too large and thus do not enjoy this property for deep ReLU
neural networks.

3 Algorithm: Value iteration via DNNs under ϵ-greedy exploration

In this section, we lay out our algorithm 1 via value iteration by DNNs under the ϵ-greedy policy.
Though our value iteration algorithm is different from one gradient-step for deep Q-learning in
DQN, it still shares the key spirit with DQN in terms of function approximation via DNNs, ϵ-greedy
exploration, and experience replay.

Function class: We define the function class F given by F = F1 × · · · × FH , including FSNN for
two-layer (Shallow) ReLU neural networks and FDNN for deep ReLU neural networks as below

FSNN =

{
f : [0, 1]d → [0, H]

∣∣∣f(x) = 1

m

m∑
k=1

bkσ(w
⊤
kx+ ck), ∥f∥P ⩽ B

}
, (3)

where B > 0 is the ℓ1-path norm constraint parameter, and deep ReLU neural networks [30] as

FDNN(L,m, S,B) :=

{
f : [0, 1]d → [0, H]

∣∣∣f(x) = (W (L)σ(·) + b(L)) ◦ · · · ◦ (W (1)x+ b(1)) ,

L∑
i=1

(∥W (i)∥0 + ∥b(i)∥0) ⩽ S, max
i

(∥W (i)∥∞ ∨ ∥b(i)∥∞) ⩽ B

}
,

(4)

where the weight parameters are W (1) ∈ Rm×d, W (l) ∈ Rm×m, ∀l ∈ {2, 3, . . . , L − 1}, and
W (L) ∈ Rm; the bias parameter are b(l) ∈ Rm, ∀l ∈ [L − 1] and b(L) ∈ R. Such sparsely-
connected neural networks require most of the network parameters to be zero or non-active, which
can be verified [56]. The depth L, the width m, the sparsity parameter S and the norm parameter B
can be determined later in our proof to achieve good approximation and estimation performance.

Experience replay: In our setting, after initialization, at t-th episode, at h-th time step, we have
observed t− 1 transition tuples, {(sτh, aτh, sτh+1)}

t−1
τ=1 and attempt to estimate {Q⋆

h}Hh=1 via DNNs.
Note that, at each time step h, these t− 1 transition tuples are neither independent nor identically
distributed due to the interaction with value functions and stochastic transition. To pursue the
independence among the transition tuples that is required in our analysis, we follow the experience
replay scheme [36] that is successfully applied in DQN [4]. The intuition behind experience replay is
to break (or weaken) the temporal dependency among the observations for neural networks training.
When the replay memory is large (e.g., 106 in DQN [4]), experience replay is close to sampling
independent transitions. To be specific, at t-th episode, we store transition {(sth, ath, rh, sth+1)}Hh=1
in the replay memory D, and then sample a mini-batch of independent observations from D with
{(sτjh , a

τj
h , s

τj
h+1)}(j,h)∈[t̃]×[H] for DNNs training. Here the number of mini-batch is denoted as

t̃ := ⌈ϱt⌉ with the mini-batch ratio ϱ ∈ (0, 1), and {τj}t̃j=1 is the index for the mino-batch of t̃
independent samples. Note that such independence assumption from experience replay is also used
in RL theory, e.g., [37, 44] and theoretically demonstrated to be a good de-correlator [57]. In fact,
our analysis only requires independence via experience replay, which is still weaker than the standard
iid assumption.
Value iteration via neural networks: In our algorithm, we apply the classical least squares value
iteration via neural networks for value function learning [28]. We solve the following least squares
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Algorithm 1 Value Iteration via DNNs under ϵ-greedy exploration with experience replay
1: Input: Function class F , the number of episodes T , the ϵ-greedy parameter ϵ ∈ (0, 1), mini-batch

ratio ϱ ∈ (0, 1).
2: Initialize replay memory D.
3: for episode t = 1, . . . , T do
4: Receive the initial state st1.
5: Set V t

H+1 as the zero function.
6: Set the minibatch size t̃ := ⌈ϱt⌉ for experience replay.
7: for step h = H, . . . , 1 do
8: Obtain Q̂t

h := argminf∈F
∑t̃

j=1

[
f(s

τj
h , a

τj
h )− rh(s

τj
h , a

τj
h )− V t

h+1(s
τj
h+1)

]2
.

9: Obtain Qt
h := Q̂t

h and V t
h(·) = maxa∈AQ

t
h(·, a).

10: end for
11: //ϵ-greedy for exploration
12: Take the policy {π̃t

h}Hh=1 to be greedy policy with probability 1 − ϵ or any policy with
probability ϵ.

13: for step h = 1, . . . ,H do
14: Take ath ∼ π̃t

h(·|sth) .
15: Observe the reward rh(sth, a

t
h) and obtain the next state sth+1.

16: end for
17: //experience replay
18: Store transition {(sth, ath, rh, sth+1)}Hh=1 in D.
19: Sample random mini-batch of transitions from D with t̃ pairs {(sτjh , a

τj
h , s

τj
h+1)}(j,h)∈[t̃]×[H].

20: end for

regression problem via t̃ independent samples

Q̂t
h = argmin

f∈F
Êt
h(f) :=

1

t̃

t̃∑
j=1

[
f(s

τj
h , a

τj
h )− rh(s

τj
h , a

τj
h )− V t

h+1(s
τj
h+1)

]2
. (5)

For ease of simplicity for analyses, we directly assume that the global minima solution of problem (5)
can be obtained, that follows [58, 52, 59] in deep learning theory. Nevertheless, our result could be
extended to allow small optimization error in each episode that will be discussed in Appendix B.

Besides, we also need the expectation version of Êt
h in problem (5) for our analysis. Formally, we

assume each state-action pair in the mini-batch is sampled from a respective (unknown) probability
measure, i.e., (sτjh , a

τj
h ) ∼ µ

τj
h ,∀j ∈ [t̃], where µτj

h ∈ P(S × A) is from the collection of all
probability distribution on S ×A. Taking the averaged measure µ̄t̃

h := 1
t̃

∑t̃
j=1 µ

τj
h , the expectation

of Êt
h is defined as

Et
h(f) = E(sh,ah)∼µ̄t̃

h,sh+1∼Ph(·|sh,ah)

[
f(sh, ah)− rh(sh, ah)− V t

h+1(sh+1)
]2
. (6)

Note that, Q̂t
h in Eq. (5) is not an unbiased estimator of the squared Bellman error minimizer [60, 61].

Indeed, Et
h differs from the squared Bellman error because of an extra variance term caused by the

stochastic transition [62]. This biased estimation issue can be avoided (or alleviated) in practice by
introducing target networks in DQN [63]. Some variants [64] of DQN can also reduce the biased
estimate and performs well without target networks. Nevertheless, in our analysis, we center around
the uniform bound supf∈F |Et

h(f)− Êt
h(f)| instead of the Bellman error.

ϵ-greedy exploration: In order to work in the online setting, we need to ensure that the learner visits
“good” state action pairs in the sense that are almost maximizers of the value function for unseen
state, a.k.a., exploration. In RL theory, a classical way is to design an optimistic estimate of the value
function via a bonus function bth [12, 65] such that Qt

h = min{Q̂t
h + bth, H}+. Instead, we employ

the ϵ-greedy exploration that follows DQN-like algorithms. Using the ϵ-greedy exploration will
ensure each state-action pair can be visited with positive probability and favor independence among
samples. In our algorithm, we directly set Qt

h := min{Q̂t
h, H}+, and then naturally incorporate the

truncation operation in neural networks training, see Eqs. (3) and (4).
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Based on the above description, our algorithm centers around deep neural function approximation via
value iteration under the ϵ-greedy exploration and experience replay under the online setting. This
problem setting matches the spirit of practical DQN, which allows for better understanding deep RL.

4 Main results

This section presents our results for value iteration under deep (as well as two-layer) ReLU neural net-
works via the Besov spaces and Barron spaces, respectively. Our theory is based on the independence
assumption via experience replay and achieves sublinear regret under the ϵ-greedy exploration.

4.1 Efficient value iteration via DNNs in Besov spaces

In this setting, we consider Q̂t
h = argminf∈FDNN

Êt
h(f) in Eq. (5), where FDNN is the function space

of deep ReLU neural networks defined in Eq. (4). We make the following assumption on the Besov
space B, similar to [7, 12], where the Bellman optimality operator maps any bounded value function
to a bounded Besov space ball.

Assumption 1. Let R̃ be a fixed constant. Define BR̃ = {f ∈ Bα
p,q(X ) : ∥f∥B ⩽ R̃} in the Besov

space and assume that for any h ∈ [H] and Q : S ×A → [0, H], we have T⋆
hQ ∈ BR̃.

Remark: Due to Q ∈ [0, H], the radius R̃ in fact depends on H , i.e., R̃ ≍ H .

Based on this assumption, we have the following theorem on the regret bound in the Besov space for
deep RL under the ϵ-greedy exploration.
Theorem 1. Under Assumption 1 with the smoothness parameter α > d(1/p− 1/4)+ in the Besov
space Bα

p,q(X ), considering value function learning (5) via DNNs defined by Eq. (4) in Algorithm 1
under the ϵ-greedy exploration and the mini-batch ratio ϱ ∈ (0, 1), and taking

the depth L ≍ d
2α+d log T , the width m ≍ d

2α+dT
d

2α+d log T , (7)

then given a MDP-dependent constant K ∈ [1, H], for any δ ∈ (0, 1), the total regret can be upper
bounded with probability at least 1− δ

Regret(T ) ≲
( ϵ
A

)−K
2 1
√
ϱ

(
H

3
2T

α+d
2α+d log3 T +H2

√
T

√
log
(2
δ

)
log T

)
+ ϵHT +

√
TH3 log

(4
δ

)
≲ Õ(H

H+4
H+2K

2
K+2A

K
K+2T

αK+(α+d)(K+2)
(2α+d)(K+2) ) , taking ϵ = O((HK)

2
K+2A

K
K+2T− 2α

(2α+d)(K+2) ) .
(8)

Remark: We make the following remarks.
i) The constant K describes the “myopic” level of MDPs under the ϵ-greedy policy, e.g., the worst
case (K := H) under the sparse rewards setting; the benign case K := c (for some small constant c)
under the helpful dense rewards setting as discussed in [49]. The exponential dependence on H (in
the worst case for any MDP) can be avoided at an additional cost of worsening T dependence. In
fact, whether in the benign/worst case, the sublinear regret is always achieved under some certain ϵ
values in Eq. (8), which theoretically demonstrates the efficiency of deep RL. Note that the chosen
ϵ ∈ (0, 1) is always satisfied under a large episode T .
ii) Clearly, the regret bound is a non-increasing function of the smoothness parameter α, which shows
that an easier task (i.e., the target Q function is more smooth) leads to regret bounds with faster rates.
Specially, if we take α→ ∞ (i.e., the target Q function is sufficiently smooth), which holds for linear
function approximation

Regret(T ) ≲ Õ(H
H+4
H+2K

2
K+2A

K
K+2T

K+1
K+2 ) ,

which recovers the regret bound Õ(T
K+1
K+2 ) in [49, Theorem 3] via Eluder dimension. In the best

case (K = 1), our regret bound implies Õ(H
4
3A

1
3T

2
3 ) with H ⩾ 4, which matches the optimal

regret bound for the contextual bandits problem in terms of dependence on T or A under the ϵ-greedy
exploration [66]. In the worst case (K := H), we can still obtain the sublinear regret at a certain
Õ(T

H+1
H+2 ) rate.
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Theorem 1 demonstrates that the sublinear regret can be achieved by choosing O(log T ) depth and

Õ(T
d

2α+d ) width, but the sublinear regret bound Õ(T
αK+(α+d)(K+2)

(2α+d)(K+2) ) heavily depends on the feature
dimension d, failing in the curse of dimensionality, which appears ineffective on high dimensional
data in deep RL. In the next, we consider the Barron spaces, i.e., the “largest” function space for
two-layer neural networks to avoid the curse of dimensionality. In this case, the rate of the sublinear
regret can get rid of d, which is useful for high dimensional data in practical RL.

4.2 Efficient value iteration via two-layer neural networks in Barron spaces

As mentioned before, Barron spaces are the “largest” function space for two-layer neural networks.
In this setting, we consider Q̂t

h = argminf∈FSNN
Êt
h(f) in Eq. (5), where FSNN is the function space

of two-layer ReLU neural networks defined in Eq. (3). We give a similar assumption on the Bellman
optimality operator in the Barron space.

Assumption 2. Let R̃ > 0 be a fixed constant. Define PR̃ = {f ∈ P : ∥f∥P ≤ R̃} in the Barron
space, and assume that for any h ∈ [H] and Q : S ×A → [0, H], we have T⋆

hQ ∈ PR̃.

Based on this assumption, we have the following regret bounds for two-layer ReLU neural networks.

Theorem 2. Under Assumption 2, considering value function learning (5) by two-layer ReLU neural
networks with width m and bounded ℓ1 norm B defined by Eq. (3) in Algorithm 1 under the ϵ-greedy
exploration and the mini-batch ratio ϱ ∈ (0, 1), then given a MDP-dependent constant K ∈ [1, H],
for any δ ∈ (0, 1), the total regret can be upper bounded with probability at least 1− δ

Regret(T ) ≲
( ϵ
A

)−K
2

(
H2T

3
4

√
ϱ

[
B(log d)

1
4 +log

1
4

(4
δ

)]
+
H2T√
m

)
+ϵHT+

√
TH3 log

(4
δ

)
≲ Õ(H

K+4
K+2T

2K+3
2K+4 ) , by taking m = Ω(

√
T ) and ϵ = O

(
H

2
K+2T− 1

2(K+2)

)
.

Remark: In our result, taking m = Ω(
√
T ) is suffice to achieve the sublinear regret bound

Õ(T
2K+3
2K+4 ), which also gets rid of the feature dimension d, allowing for high-dimensional image data

in practice.

Proof outline: As mentioned before, the technical challenge in our analysis is how to estimate the
TD error without bonus function design. Apart from the regret decomposition, our proof framework
includes two main parts: 1) transformation of TD error estimation to generalization bounds and 2)
generalization bounds on non-iid data in certain Besov/Barron spaces for TD error analysis.

To bound the TD error, we first prove µ̄t̃
h(C) > 0, where the event C denotes that all state-action pairs

have been visited at all time steps under the ϵ-greedy policy. Then the TD error is formulated in the
L2(dµ̄t̃

h)-integrable space, and thus transformed to generalization error and approximation error in
the respective Barron or Besov spaces.

The key part left is to bound the generalization error on non-i.i.d data for the TD error estimation, and
we prove that the classical uniform convergence (e.g., Rademacher complexity, covering number)
is still valid under our setting. In our proof, we firstly verify that the maximum error in estimating
the mean of any function f ∈ F can be still bounded by the Rademacher complexity of F , and then
generalization bounds by Rademacher complexity still holds via the averaged measure µ̄t̃

h, which
only requires the data to be independent. These results can be easily extended to local Rademacher
complexity.

Regret bounds effected by optimization error: Here we briefly discuss the regret bound affected by
a solution (denoted as Q̃t

h) that is not a global minimum of problem (5). Assume that the optimization
error is small in the functional view, i.e., ∥Q̃t

h − Q̂t
h∥L2(dµ̄t̃

h)
⩽ εopt, that will appear in our analysis,

and accordingly the TD error incurs in an extra regret bound O(H2 log T ) if we take εopt := H/
√
t̃.

This condition is fair and reasonable as the optimization error decreases with the mini-batch size t̃ for
neural network training but requires a refined analysis under non-iid data [67, 68].
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5 Discussion on architecture guidelines in deep RL

In this section, we present a detailed discussion on how our results provide the architecture guidelines
in practical deep RL, in the perspective of the width, the depth, and problem-dependent smoothness
of the Q function.

Width-depth and DQN: According to Theorem 1, the O(log T ) depth and Õ(T
d

2α+d ) width are
enough for sublinear regret in deep RL. Interestingly, we notice that this result is closely matching
practical implementation of DQN. For example, the choices of [4] m = 512 and L = 5 can be
explained by our theory, indeed log(512) ≈ 6. Specially, when taking α → ∞, this setting holds
for linear function approximation. For two-layer neural networks endowed by the Barron space, the
curse of dimensionality in terms of width and regret bound can be avoided in Theorem 2, supporting
the premise of practical, high-dimensional RL.

Problem-dependent smoothness and exploration: The problem-dependent smoothness, determined
by α, largely affects our regret bounds. The difficulty of a task in deep RL can be defined in two
views: one is the smoothness of the target Q function; and the other is the degree of exploration.
Intuitively speaking, if a RL task is difficult, then the target Q function is often complicated, and thus
admits a relative lower smoothness; or we need conduct more exploration in a complex scenario. Our
results coincide with these two views. One hand, the regret bound in Theorem 1 is a non-increasing
function of the smoothness parameter α. A more difficult task in deep RL (i.e., a smaller α) leads to
a slower rate of the sublinear regret, which indicates that more episodes are required. On the other
hand, Theorem 1 shows that the parameter ϵ is also a non-increasing function of α. That means, a
more difficult task in deep RL requires a larger ϵ, i.e., we need conduct exploration more frequently.

Besides, the exploration parameter ϵ is also affected by K for MDPs with different situations. For
example, compared to the best case K = 1, more frequent exploration (a larger α) is required in
MDPs under difficult cases, which coincides with our certain ϵ value in Theorems 1 and 2.

Width and depth trade-off: Under a limit parameter budget, according to the width-depth ratio
m/L = T

d
2α+d in Theorem 1, our theory indicates that less problem-dependent smoothness of

Q-function requires DNNs to be wider. In practice, if we work in the limited budget of parameters N
in neural networks, e.g., N ≍ m2L, our theory implies that there is a tradeoff between the depth and
width on smoothness, i.e., the depth L := N1/3T− 2d

3(2α+d) increasing with α (or T ) and the width
m = N1/3T

d
3(2α+d) decreasing with α (or T ).

Besides, according to the width-depth ratio, it can be found that, the change of α leads to less changes
on the depth but more changes on the width. This shows that width and depth admit different levels
of parameter sensitivity under the change of problem-dependent smoothness.

6 Conclusion
This paper provides an in-depth understanding on neural network function approximation with
the ϵ-greedy exploration under the online setting beyond the “linear” regime. Our results provide
theoretical guarantees of sublinear regret bounds, and shed light on some guidelines for understanding
deep RL in the perspective of the width-depth configuration and the problem-dependent smoothness
of RL tasks.

The analysis of this work is built on the ϵ-greedy policy for exploration, which are satisfied in practical
cases when employing DQN. Nevertheless, designing a provably efficient exploration mechanism
for deep RL could be an interesting future direction in both practice and theory. Besides, our theory
requires state-action pairs to be independent, which (approximately) holds via experience replay and
could be improved by reverse experience replay [69]. Furthermore, our work is built on the value
iteration based algorithm, which is different from practical DQN that adapts Q-learning via one-step
gradient descent. Towards a better understanding DQN in terms of Q learning and target networks
[43, 44] would be an interesting direction.
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The appendix is organized as follows

• Appendix A: preliminaries on Besov spaces and Barron spaces;

• Appendix B: an overview of our proof framework;

• Appendix C: proofs related to regret decomposition;

• Appendix D: proofs related to the temporal difference error and generalization error;

• Appendix E: proofs related to generalization bounds on non-iid data;

• Appendix F: proofs related to sublinear regret bounds for deep ReLU neural networks
endowed by Besov spaces;

• Appendix G: proofs related to sublinear regret bounds for two-layer neural networks en-
dowed by Barron spaces.

A Preliminaries: Besov spaces and Barron spaces

In this section, we give an overview of Besov spaces for deep ReLU neural networks and the Barron
spaces for two-layer ReLU neural networks.

A.1 Besov spaces

Here we briefly introduce a general function space for deep ReLU neural networks according to the
“smoothness” of the function, i.e., Besov spaces.

To define Besov functions, we need introduce the modulus of smoothness.

Definition 1. [30, modulus of smoothness] For a function f ∈ Lp(X ) with some p ∈ (0,∞], the
k-th modulus of smoothness of f is defined by

wk,p(f, t) = sup
h∈Rd: ∥h∥2⩽t

∥∆k
h(f)∥p ,

with

∆k
h(f)(x) =

{∑k
j=0

(
k
j

)
(−1)k−jf(x+ jh) if x ∈ X , x+ kh ∈ X ,

0 otherwise.

The quantity ∆k
h(f) captures the local oscillation of function f that is not necessarily differentiable.

Based on this, the Besov space is defined as below.

Definition 2. [54, 30, Besov space Bα
p,q(X )] For 0 < p, q ⩽ ∞, the smoothness parameter α > 0,

k := ⌊α⌋+ 1, define the semi-norm | · |Bα
p,q

as

|f |Bα
p,q

:=

{(∫∞
0

(t−αwk,p(f, t))
q dt

t

) 1
q (q <∞) ,

supt>0 t
−αwk,p(f, t) (q = ∞) .

The norm of the Besov space Bα
p,q(X ) is defined by ∥f∥Bα

p,q
:= ∥f∥Lp(X ) + |f |Bα

p,q
, and the Besov

space is Bα
p,q(X ) = {f ∈ Lp(X ) | ∥f∥Bα

p,q
<∞}.

The smoothness parameter α indicates which function at a certain smoothness degree can be rep-
resented. For example, if α > d/p, then the related Besov space is continuously embedded in the
set of the continuous functions. However, if α < d/p, then the functions in the Besov space are no
longer continuous. In particular, the Besov space reduces to the Hölder space Cα when p = q = ∞
and α is a positive non-integer; degenerates to the Sobolev space Wα2 when p = q = 2 and α is a
positive integer. The Besov space is more general than these two spaces as it allows for spatially
inhomogeneous smoothness with spikes and jumps. More properties of Besov spaces and relations to
other function spaces refer to [30] for details.
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Regret
decomp.
Lem. 1


statistical error: Lem. 2 with O(

√
H3T )

Term (i)⇐ Lem. 5

{
generalization
approximation ⇐ Lem. 4: ∥Γt

h∥2L2(dµ̄t̃
h)

⇐ Lem. 3: µ̄t̃
h(C) > 0

ϵ-greedy exploration: ϵHT

Figure 1: Proof framework of regret decomposition and transformation of the TD error.

A.2 Barron spaces

The study for deep ReLU neural networks is endowed by Besov spaces, but the complete of function
space for deep ReLU neural networks to avoid the curse of dimensionality is still open. Luckily, the
complete of function space for two-layer neural networks can be conducted by Barron spaces. Here
we briefly introduce the basic definition and property of Barron spaces [55, 31].

We consider a typical two-layer neural network f(x) = 1
m

∑m
k=1 bkσ(w

⊤
kx+ ck), where m is the

number of neurons in the hidden layer and σ(x) = max{x, 0} is the ReLU activation function used
in this work. Accordingly, the two-layer neural network admits the following representation

f(x) =

∫
Ω

bσ
(
w⊤x+ c

)
ρ(db,dw,dc), x ∈ X , (9)

where Ω = R×Rd ×R and ρ is a probability measure over Ω. Then the Barron space [31] endowed
by the p-Barron norm with p ∈ [1,+∞] is defined as

P̃p =

{
f admits Eq. (9) : ∥f∥P̃p

= inf
ρ
{Eρ|b|p(∥w∥1 + |c|)p}1/p <∞

}
.

Specifically, when using ReLU, these function spaces under different p are the same, i.e., P̃1 =

P̃2 = · · · = P̃∞, and thus we directly use P̃ for short. The is the main reason why we study ReLU
activation functions in this work. Besides, the Barron norm is close to the ℓ1-path norm [70]

∥f∥P̃ ⩽ ∥f∥P :=
1

m

m∑
k=1

|bk|(∥wk∥1 + |ck|) ⩽ 2∥f∥P̃ .

Based on this, for description simplicity, we do not strictly distinguish the Barron norm and the
ℓ1-path norm, and regard ∥f∥P as the discrete version of the Barron norm.

As suggested by [55], Barron space can be regarded as the largest function space for two layer neural
networks in two folds [31]: 1) direct approximation: Any function in Barron spaces can be efficiently
approximated by two-layer neural networks with bounded ℓ1 path norm at O(1/m) rate without
curse of dimensionality; 2) inverse approximation: Any continuous function that can be efficiently
approximated by two-layer neural networks with bounded ℓ1-path norm belongs to a Barron space.

B Proof outline

In this section, we outline the proof of our theoretical results presented in Section 4. As mentioned
before, the technical challenge in our analysis is how to estimate the TD error without bonus
function design. Apart from the regret decomposition, our proof framework includes two main parts:
transformation of TD error estimation to generalization bounds, see Figure 1; and generalization
bounds on non-iid data in certain Besov/Barron spaces for TD error analysis, see Figure 2. The
complete proof is reported in the appendix.

Regret decomposition: This part is standard and commonly studied in RL theory, e.g., [65, 7, 12].
We briefly include here for self-completeness. Define the temporal-difference (TD) error as
Γt
h(s, a) = rh(s, a)+(PhV

t
h+1)(s, a)−Qt

h(s, a) = (ThV
t
h+1)(s, a)−Qt

h(s, a), ∀(s, a) ∈ S×A ,
(10)

where Γt
h is a function on S × A for all h ∈ [H] and t ∈ [T ]. Accordingly, the regret can be

decomposed into (c.f. Lemma 1)

Regret(T ) ⩽
T∑

t=1

H∑
h=1

(
Eπ⋆ [Γt

h(sh, ah) | s1 = st1]− Γt
h(s

t
h, a

t
h)
)

︸ ︷︷ ︸
Term (i)

+Term (ii) + ϵHT ,
(11)
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Rademacher complexity on non-iid data: Lem. 7 ⇐ Lem. 6
two-layer NNs: Thm. 2 ⇐O(H2B

√
log d/n)⇐ Lem. 13: Rademacher complexity of Barron spaces

DNNs: Thm. 1 ⇐O(n−
2α

2α+d )⇐ Prop. 2 ⇐ Lem. 12 on LRC for Besov spaces

Figure 2: Proof framework of the TD error via generalization bounds on n non-iid data. We denote
LRC by local Rademacher complexity for short.

where the first term relates to the TD error and the second term is the statistical error based on the
standard martingale difference sequences, which can be upper bounded by the Hoeffding-Azuma
inequality with O(

√
H3T ) regret (c.f. Lemma 2). The last term ϵHT is due to the ϵ-greedy

exploration.

Transforming TD error to generalization bounds: To bound the TD error, we first introduce
Lemma 3 with µ̄t̃

h(C) > 0, where the event C denotes that all state-action pairs have been visited at
all time steps under the ϵ-greedy policy. Then we are able to build the connection between Term (i)

and ∥Γt
h∥L2(dµ̄t̃

h)
in the L2(dµ̄t̃

h)-integrable space (c.f. Lemma 4). After analysis of Et
h(f) in

Proposition 1, we transform the estimation of ∥Γt
h∥L2(dµ̄t̃

h)
to the following two terms: generalization

error and approximation error, respectively (c.f. Lemma 5)

∥Γt
h∥2L2(dµ̄t̃

h)
⩽
[
Et
h(Q̂

t
h)−min

f∈F
Et
h(f)

]
+ inf

f∈F
∥f − T⋆

hQ
t
h+1∥2L2(dµ̄t̃

h)
. (12)

where the first term is the generalization error which we elucidate in the next and the second term is
the approximation error and can be considered in an Lp(X ) space for Besov spaces in Corollary 1.
For example, the approximation error in the Besov space admits the certain O(N−2α/d) rate in [30]
for deep ReLU networks with L ≍ logN, S ≍ N, m ≍ N logN .

Generalization bounds on non-iid data: The key part left is to bound the generalization error on
non-i.i.d data for the TD error estimation, see the proof framework in Figure 2. In our proof, we firstly
verify that the maximum error in estimating the mean of any function f ∈ F can be still bounded
by the Rademacher complexity of F in Lemma 6, and then generalization bounds by Rademacher
complexity still holds by Lemma 7 via the averaged measure µ̄t̃

h, which only requires the data to be
independent. These results can be easily extended to local Rademacher complexity.

For deep neural networks, by computing the local Rademacher complexity of FDNN in Lemma 12
and choosing proper neural network parameters in Eq. (4), we derive the convergence rate of
generalization bounds at a certain O(n−

2α
2α+d ) rate in Besov spaces (c.f. Proposition 2) with n

non-iid data. Combining the result of approximation error and taking the depth and width in Eq. (7),
Term (i) can be upper bounded with high probability. Finally we conclude the proof of Theorem 1
by combining with the statistical error.

For two-layer neural networks, by computing the Rademacher complexity of FSNN in Lemma 13,
we obtain the generalization error at a certain O(H2B

√
log d/n) convergence rate. Combining the

result of approximation error in Barron spaces with other terms in the regret decomposition, we
conclude the proof of Theorem 2.

C Regret decomposition

We present the regret decomposition under the ϵ-greedy policy by constructing the martingale differ-
ence sequence and giving error bounds for this. Apart from an extra ϵHT regret, this decomposition
result appears in [65, 12], and we include them here just for self-completeness.

To establish the regret decomposition, we need some notations. Remember the definition of the regret,
π̃t is the ϵ-greedy policy and πt is the greedy policy at the t-th episode, and then we have

Regret(T ) =
T∑

t=1

[
V ⋆
1 (s

t
1)− V πt

1 (st1)
]
+

T∑
t=1

[
V πt

1 (st1)− V π̃t

1 (st1)
]

⩽
T∑

t=1

[
V ⋆
1 (s

t
1)− V πt

1 (st1)
]
+ ϵHT ,
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where ϵHT stems from the fact that the return of greedy and ϵ-greedy policies can differ at most
ϵH in each episode. In the next, we aim to estimate the first term in the above equation. It involves
the greedy policy πt at the t-th episode, which leads to a trajectory {(sth, ath)}Hh=1. Note that this
trajectory is different from Algorithm 1 that uses the ϵ-greedy policy but we use the same notation on
state-action pairs for notational simplicity in this section.

Following [65, 12], we define two quantities ζ1t,h, ζ2t,h ∈ R for any h ∈ [H] and t ∈ [T ] based on the
greedy policy

ζ1t,h := [V t
h(s

t
h)− V πt

h (sth)
]
− [Qt

h(s
t
h, a

t
h)−Qπt

h (sth, a
t
h)] ,

ζ2t,h := [(PhV
t
h+1)(s

t
h, a

t
h)− (PhV

πt

h+1)(s
t
h, a

t
h)]− [V t

h+1(s
t
h+1)− V πt

h+1(s
t
h+1)] .

(13)

By definition, ζ1t,h depends on the randomness of choosing an action ath ∼ πt
h(·|sth); and ζ2t,h captures

the stochastic transition, i.e., the randomness of drawing the next state sth+1 from Ph(·|sth, ath). Based
on the following definition of filtration, {ζ1t,h, ζ2t,h} forms a bounded martingale difference sequence.

Definition 3. [65, Filtration] For any (t, h) ∈ [T ] × [H], define σ-algebras Mt,h,1 and Mt,h,2

generated by the following respective state-action sequence as

Mt,h,1 := σ
(
{(sτi , aτi )}(τ,i)∈[t−1]×[H] ∪ {(sti, ati)}i∈[h]

)
,

Mt,h,2 := σ
(
{(sτi , aτi )}(τ,i)∈[t−1]×[H] ∪ {(sti, ati)}i∈[h] ∪ {sth+1}

)
,

(14)

where we identify Ft,0,2 with Mt−1,H,2 for all t ⩾ 2 and let M1,0,2 be the empty set. Further, for
any t ∈ [T ], h ∈ [H] and m ∈ [2], we define the time-step index τ(t, h,m) as

τ(t, h,m) = (t− 1) · 2H + (h− 1) · 2 +m, (15)

which offers an partial ordering over the triplets (t, h,m) ∈ [T ]× [H]× [2]. Moreover, according
to Eq. (14), for any (t, h,m) and (t′, h′,m′) satisfying τ(k, h,m) ⩽ τ(k′, h′,m′), it holds that
Mk,h,m ⊆ Mk′,h′,m′ . Thus, the sequence of σ-algebras {Mt,h,m}(t,h,m)∈[T ]×[H]×[2] forms a
filtration.

Accordingly, we have the following regret decomposition result.

Lemma 1 (Regret Decomposition [65, 12]). Recall the definition of the temporal-difference error
Γt
h : S ×A → in Eq. (10) for all (t, h) ∈ [T ]× [H], then the regret can be decomposed as

Regret(T ) ⩽
T∑

t=1

H∑
h=1

[
Eπ⋆ [Γt

h(sh, ah) | s1 = st1]− Γt
h(s

t
h, a

t
h)
]

︸ ︷︷ ︸
Term (i)

+

T∑
t=1

H∑
h=1

(ζ1t,h + ζ2t,h)︸ ︷︷ ︸
Term (ii)

+

T∑
t=1

H∑
h=1

Eπ⋆

[〈
Qt

h(sh, ·), π⋆
h(· | sh)− πt

h(·|sh)
〉
A

∣∣s1 = st1
]

︸ ︷︷ ︸
Term (iii)⩽0

+ϵHT ,

(16)

where ζ1t,h and ζ2t,h are defined in Eq. (13).

Proof. Remember the definition of the regret, π̃t is the ϵ-greedy policy and πt is the greedy policy at
the t-th episode, and then we have

Regret(T ) =
T∑

t=1

[
V ⋆
1 (s

t
1)− V πt

1 (st1)
]
+

T∑
t=1

[
V πt

1 (st1)− V π̃t

1 (st1)
]

⩽
T∑

t=1

V ⋆
1 (s

t
1)− V t

1 (s
t
1)︸ ︷︷ ︸

(∗)

+

T∑
t=1

V t
1 (s

t
1)− V πt

1 (st1)︸ ︷︷ ︸
(∗∗)

+ϵHT ,

(17)
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where the first term (*) can be bounded by [65, 12]

V ⋆
1 (s

t
1)− V t

1 (s
t
1) =

H∑
h=1

[
Eπ⋆ [Γt

h(sh, ah) | s1 = st1]

+

H∑
h=1

Eπ⋆

[〈
Qt

h(sh, ·), π⋆
h(· | sh)− πt

h(·|sh)
〉
A

∣∣s1 = st1
]

︸ ︷︷ ︸
⩽0

, ∀t ∈ [T ] ,

where we use the fact that πt is the greedy policy with respect to Qt
h for any (t, h) ∈ [T ]× [H]. The

second term (**) is also bounded by [65, 12]

V t
1 (s

t
1)− V πt

1 (st1) =

H∑
h=1

(ζ1t,h + ζ2t,h)−
H∑

h=1

Γt
h(s

t
h, a

t
h) , ∀t ∈ [T ] .

Finally, we conclude the proof.

In the next, it is natural to employ Azuma-Hoeffding inequality for martingale difference sequences
as below.
Lemma 2. [65, statistical error] For ζ1t,h and ζ2t,h defined in Eq. (13) and for any δ ∈ (0, 1), with
probability at least 1− δ, we have

T∑
t=1

H∑
h=1

(ζ1t,h + ζ2t,h) ≲
√
TH3 log(2/δ) .

D Proofs of transformation on the temporal difference error

In this section, we aim to transform the temporal difference error in Term (i) to generalization
bounds. This is the key part in our proof without bonus function design.

D.1 TD error under the averaged measure

Here we build the connection between Term (i) in the regret decomposition and the TD error Γt
h in

the L2(dµ̄t̃
h)-integrable space.

To this end, we need study the relationship between L2(dµ)-norm and L∞-norm, where µ can be
any probability measure over S ×A. For any f ∈ L2(dµ) with δ ⩽ ∥f∥∞, denote

Gδ := {(s, a) : |f(s, a)| ⩾ ∥f∥∞ − δ}, ∀(s, a) ∈ S ×A , (18)

then we have the following lemma that µ̄t̃
h(Gδ) can be lower bounded under the ϵ-greedy policy.

Lemma 3. Under the ϵ-greedy policy, considering the set in Eq. (18) and the averaged measure µ̄t̃
h

based on a mini-batch of t̃ historical state-action pairs, we have

µ̄t̃
h(Gδ) ⩾ Ω

(( ϵ
A

)H)
, ∀ϵ ∈ (0, 1) and δ ⩾ 0 .

Remark: Clearly, in the best case, we have µ̄t̃
h(Gδ) ⩾ Ω

(
ϵ
A

)
. Accordingly, we denote K ∈ [1, H]

as a MDP-dependent constant to describe the “myopic” level of MDPs [49] such that µ̄t̃
h(Gδ) ⩾

Ω
(
(ϵ/A)K

)
.

Proof. For any f ∈ L2(dµ) with δ ⩽ ∥f∥∞, we have

∥f∥L2(dµ) ⩾

(∫
Gδ

(∥f∥∞ − δ)2dµ

)1/2

= (∥f∥∞ − δ)[µ(Gδ)]
1/2 , (19)

which is also valid to µ̄t̃
h. Clearly, µ̄t̃

h(Gδ) ∈ [0, 1].
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To prove µ̄t̃
h(Gδ) > 0 with the lower bound, we consider the worst case with δ = 0 and every time

step taking non-greedy action with probability ϵ. That means, we need to find the optimal state-action
pair in Eq. (18), which can be achieved by the fact that all state-action pairs have been visited at all
time steps. It is clear that the cardinality of Gδ is a non-decreasing function of δ. Accordingly, there
exists j ∈ [t̃] such that

µ̄t̃
h(Gδ) ⩾ µ̄t̃

h(G0) ⩾ min
(s,a,h)

µ
π
τj
h

h (s
τj
h , a

τj
h ) ,

where µπ
τj
h

h is the occupancy measure of the policy πτj
h at the h-step and t-th episode. Accordingly,

µ
π
τj
h

h admits the following representation

µ
π
τj
h

h

(
s
τj
h , a

τj
h

)
=

∑
s
τj
1 ,...,s

τj
h−1

(
h−1∏
i=1

∑
a∈A

Pr
(
πτ
h

(
s
τj
i

)
= a

)
Pi

(
s
τj
i+1 | sτji , a

))
Pr
(
π
τj
h

(
s
τj
h

)
= a

τj
h

)
.

Accordingly, in the worst case, at every time step we take any one action with probability ϵ/A such
that

µ
π
τj
h

h

(
s
τj
h , a

τj
h

)
⩾ Ω

(( ϵ
A

)h)
⩾ Ω

(( ϵ
A

)H)
,

which implies that

µ̄t̃
h(Gδ) ⩾ Ω

(( ϵ
A

)H)
,

and accordingly we conclude the proof.

Lemma 4. Given a MDP-dependent constant K ∈ [1, H], for the temporal-difference error Γt
h

defined in Eq. (10) for all (t, h) ∈ [T ]× [H], under the ϵ-greedy policy, then Term (i) can be upper
bounded by

Term (i) ≲
( ϵ
A

)−K
2 √

T

H∑
h=1

√√√√ T∑
t=1

∥Γt
h∥2L2(dµ̄t̃

h)
+O(H

√
T ) .

Proof. According to the definition of Term (i) in Lemma 1, we have

Term (i) ⩽
T∑

t=1

H∑
h=1

(
Eπ⋆

[∣∣Γt
h(sh, ah)

∣∣∣∣∣s1 = st1

]
+
∣∣Γt

h(s
t
h, a

t
h)
∣∣)

⩽ 2

T∑
t=1

H∑
h=1

∥Γt
h∥∞ [hold for any (s, a) ∈ S ×A]

⩽ 2

T∑
t=1

H∑
h=1

∥Γt
h∥L2(dµ̄t̃

h)√
µ̄t̃
h(Gδ)

+ δ

 [taking µ := µ̄t̃
h in Eq. (19)] .

(20)

Furthermore, by taking δ := t−1/2 such that
∫ T

1
t−1/2dt = O(

√
T ), and using µ̄t̃

h(Gδ) ⩾
Ω
(
(ϵ/A)K

)
with K ∈ [1, H] in Lemma 3, the above equation can be further expressed as

Term (i) ≲
( ϵ
A

)−K
2

T∑
t=1

H∑
h=1

∥Γt
h∥L2(dµ̄t̃

h)
+O(H

√
T ) [using Lemma 3]

⩽
( ϵ
A

)−K
2

H∑
h=1

√
T

√√√√ T∑
t=1

∥Γt
h∥2L2(dµ̄t̃

h)
+O(H

√
T ) , [using elementary inequality]

which concludes the proof.
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D.2 Connection between the TD error and generalization bounds

Based on Lemma 4, the key issue left is to bound
∑T

t=1 ∥Γt
h∥2L2(dµ̄t̃

h)
≲ o(T ) for a sublinear regret.

To this end, we build the connection between ∥Γt
h∥2L2(dµ̄t̃

h)
and generalization bounds. We first

the study the decomposition of Et
h(f) in Eq. (6) by the following proposition: there exists an extra

variance term in the expected risk Et
h(f).

Proposition 1. According to the definition of Et
h(f) in Eq. (6), then we have

Et
h(f) = ∥f − ThV

t
h+1∥2L2(dµ̄t̃

h)︸ ︷︷ ︸
:=Ēt

h(f)

+E(sh,ah)∼µ̄t̃
h,sh+1∼Ph(·|sh,ah)

Var[V t
h+1(sh+1)] , (21)

where the variance Var[V t
h+1(sh+1)] :=

[
Esh+1

[V t
h+1(sh+1)]− V t

h+1(sh+1)
]2

.

Proof. Denote s′ := sh+1 for short, we expand Et
h(f) as the following expression

Et
h(f) = E(sh,ah)∼µ̄t̃

h,s
′

[
f(sh, ah)− rh(sh, ah)− Es′V

t
h+1(s

′) + Es′V
t
h+1(s

′)− V t
h+1(s

′)
]2

= E(sh,ah)∼µ̄t̃
h

[
f(sh, ah)− rh(sh, ah)− Es′V

t
h+1(s

′)
]2

+ E(sh,ah)∼µ̄t̃
h,s

′Var[V
t
h+1(s

′)]

= ∥f − ThV
t
h+1∥2L2(dµ̄t̃

h)
+ E(sh,ah)∼µ̄t̃

h,sh+1∼Ph(·|sh,ah)
Var[V t

h+1(sh+1)] ,

where we use Es′∼Ph(·|sh,ah)

[
Es′ [V

t
h+1(s

′)]− V t
h+1(s

′)
]
= 0 and conclude the proof.

According to the decomposition of Et
h(f) Proposition 1, Ēt

h(f) in Eq. (21) is close to the squared
Bellman error [61]. We are able to transform the estimation of the TD error to generalization error
and approximation error as below.

Lemma 5. For the temporal-difference error Γt
h defined in Eq. (10) for all (t, h) ∈ [T ]× [H], it can

be upper bounded in the L2(dµt̃
h) space with

∥Γt
h∥2L2(dµ̄t̃

h)
⩽
[
Et
h(Q̂

t
h)−min

f∈F
Et
h(f)

]
+ inf

f∈F
∥f − T⋆

hQ
t
h+1∥2L2(dµ̄t̃

h)
,

where the first term is the generalization error of Q̂t
h, the second term is the approximation error in

the function class F .

Proof. According to the definition of the TD error Γt
h and taking f := Q̂t

h in Eq. (21) given by
Proposition 1, we have

Et
h(Q̂

t
h) = ∥Q̂t

h − ThV
t
h+1∥2L2(dµ̄t̃

h)
+ E(sh,ah)∼µ̄t̃

h,sh+1∼Ph(·|sh,ah)
Var[V t

h+1(sh+1)]

=
1

t̃

t̃∑
j=1

∥Q̂t
h − ThV

t
h+1∥2L2(dµ

τj
h )

+ E(sh,ah)∼µ̄t̃
h,sh+1∼Ph(·|sh,ah)

Var[V t
h+1(sh+1)]

=
1

t̃

t̃∑
j=1

∥Γt
h∥2L2(dµ

τj
h )

+ E(sh,ah)∼µ̄t̃
h,sh+1∼Ph(·|sh,ah)

Var[V t
h+1(sh+1)] ,

(22)

where the second equality holds by the definition of the averaged measure µ̄t̃
h = 1

t̃

∑t̃
j=1 µ

τj
h ; and

we use Qt
h = Q̂t

h in the last equality as the truncation operation has been given in function classes,
see Eqs. (3) and (4). Then, taking the infimum on both sides of Eq. (21), we have

min
f∈F

Et
h(f) = inf

f∈F
∥f − ThV

t
h+1∥2L2(dµ̄t̃

h)
+ E(sh,ah)∼µ̄t̃

h,sh+1∼Ph(·|sh,ah)
Var[V t

h+1(sh+1)]

= inf
f∈F

∥f − T⋆
hQ

t
h+1∥2L2(dµ̄t̃

h)
+ E(sh,ah)∼µ̄t̃

h,sh+1∼Ph(·|sh,ah)
Var[V t

h+1(sh+1)] ,
(23)

where the second equality holds by V t
h+1(sh+1) = maxa∈AQ

t
h+1(sh+1, a).
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Combining Eqs. (22) and (23), we have

∥Γt
h∥2L2(dµ̄t̃

h)
= Et

h(Q̂
t
h)−min

f∈F
Et
h(f) + inf

f∈F
∥f − T⋆

hQ
t
h+1∥2L2(dµ̄t̃

h)
, (24)

which concludes the proof.

Based on Lemma 5, we have the following corollary if we consider the approximation error in
Lp(X )-integrable space, which is needed for our results on deep ReLU neural networks.
Corollary 1. Under the same setting of Lemma 5, we have

∥Γt
h∥2L2(dµ̄t̃

h)
≲
[
Et
h(Q̂

t
h)−min

f∈F
Et
h(f)

]
+ inf

f∈F
∥f − T⋆

hQ
t
h+1∥2L4(X ) .

Proof. Following the proof of Lemma 5, this result can be easily obtained by Cauchy-Schwartz
inequality. To be specific, for any probability measure µ, we have

∥f∥Lp(dµ) ⩽ ∥f∥L2p(X )

(∫
X
|g(x)|2dx

) 1
2p

≲ ∥f∥L2p(X ) ,

where g is the probability density function associated with the probability measure µ. Note that the
result here still holds true for the approximation error in L∞(X ) if we use Hölder inequality, but this
condition is much stronger as it requires the target Q function to be continuous.

E Generalization bounds on non-iid data

In this section, we prove that the traditional Rademacher complexity is still valid for independent but
non-identically distributed data under a well-defined measure. Similarly, such result is also valid to
local Rademacher complexity. The key fact is that, the classical Rademacher complexity [71] is still
valid as McDiarmid’s bound only requires the independent property.

For description simplicity, we consider a general setting beyond our reinforcement learning task,
i.e., learning with n independent but non-identical distributed data X = {xi}ni=1 in Rd with xi ∼
µi,∀i ∈ [n]. Define the average measure µ̄ := 1

n

∑n
i=1 µi, we have

Ex∼µ̄[f(x)] =
1

n

n∑
i=1

∫
Rd

f(x)dµi(x) =
1

n

n∑
i=1

Ex∼µi [f(x)] . (25)

Accordingly, the empirical Rademacher complexity of a function class F on the sample set X is
defined as

R̂n(F , X) =
1

n
Eξ

[
sup
f∈F

n∑
i=1

ξif(xi)

]
, (26)

where the expectation is taken over ξ = {ξ1, ξ2, · · · , ξn}, i.e., Rademacher random variables, with
Pr(ξi = 1) = Pr(ξi = −1) = 1/2. The related Rademacher complexity under our non-iid setting is
defined as

Rn(F) = Ex1∼µ1,··· ,xn∼µn

[
1

n
Eξ

[
sup
f∈F

n∑
i=1

ξif (xi)

]]
,

where the expectation is taken over {xi}ni=1 with respect to each probability measure {µi}ni=1. This
definition follows the classical Rademacher complexity [71] on iid samples to intuitively indicates how
expressive the function class is. Besides, in our proof, we also need a notation of local Rademacher
complexity on a set of vectors, where “local” means that the class over which the Rademacher process
is defined is a subset of the original class. Following the same style with Rademacher complexity, the
local Rademacher complexity under the non-iid setting is defined as Rn{f ∈ F : Eµ̄f

2 ⩽ R}, and
the empirical local Rademacher complexity is defined as R̂n{f ∈ F : Pnf

2 ⩽ R}, where we denote
Pnf := 1

n

∑n
i=1 f(xi) for short.

Besides, Rademacher complexity is also related to covering number, a metric for estimation of a
hypothesis space. Here we give the definition of covering number, that is also used in this work.
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Definition 4. [72, Definition 5.1, covering number] Let (F , ∥ · ∥) be a norm space. A δ-cover of the
set F with respect to ∥ · ∥ is a set {θ1, · · · , θn} ⊆ F such that for each θ ∈ F , there exists some
i ∈ [n] such that ∥θ − θi∥ ⩽ δ. The δ-covering number N (δ,F , ∥ · ∥) is the cardinality of the
minimal δ-cover.

In this work, we consider the covering number with two types of norms, one is N (ϵ,F , ∥ · ∥∞) and
the other is N (ϵ,F , ∥ · ∥2) := supn supPn

N (ϵ,F , ∥ · ∥L2(Pn)) [73].

E.1 Rademacher complexity on non-iid data

Based on the definition of Rademacher complexity and its empirical version, we have the following
lemma.

Lemma 6. Let X = {xi}ni=1 be an independent but non-identical distributed data set with xi ∼
µi,∀i ∈ [n], and Rn(F) be the Rademacher complexity of the function class F on X , denote the
averaged probability measure as µ̄ := 1

n

∑n
i=1 µi, then we have

Ex1∼µ1,··· ,xn∼µn

[
sup
f∈F

(
Ex∼µ̄[f(x)]−

1

n

n∑
i=1

f (xi)

)]
≤ 2Rn(F) .

Proof. The proof follows with the classical Rademacher complexity [74, Chapter 26] apart from
the averaged measure. Take a copy of X , i.e., X ′ = {x′

i}ni=1 such that X ′ is independent but
x′
i ∼ µi,∀i ∈ [n]. According to Eq. (25), we have

Ex∼µ̄[f(x)] = Ex′
1∼µ1,··· ,x′

n∼µn

[
1

n

n∑
i=1

f(x′
i)

]
. (27)

Note that every possible configuration/value of ξ has probability of 1/2n due to ξ ∈ {−1, 1}n.
Without loss of generality, we can permute any configuration of ξ of such that

ξu1 = ξu2 = · · · = ξuk
= 1, ξuk+1

= ξuk+2
= · · · = ξun = −1, k ∈ {0} ∪ [n] ,

where u = {u1, u2, · · · , un} is a permutation of {1, 2, . . . , n}. Accordingly, for any configuration
of ξ, we have

E{xi}n
i=1

[
E{x′

i}n
i=1

[
sup
f∈F

(
1

n

n∑
i=1

ξi (f (x
′
i)− f (xi))

)]]

= E{xi}n
i=1

[
E{x′

i}n
i=1

[
sup
f∈F

(
1

n

(
k∑

i=1

(
f
(
x′
ui

)
− f (xui

)
)
+

n∑
i=k+1

(
f (xui

)− f
(
x′
ui

))))]]

= E{xi}n
i=1

[
E{x′

i}n
i=1

[
sup
f∈F

(
1

n

n∑
i=1

(f (x′
i)− f (xi))

)]]
,

(28)
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where we use the fact that xui and x′
ui

are independent and symmetric. Based on this, we obtain

E{xi}n
i=1

[
sup
f∈F

(
Ex∼µ̄[f(x)]−

1

n

n∑
i=1

f (xi)

)]

= E{xi}n
i=1

[
sup
f∈F

(
E{x′

i}n
i=1

[
1

n

n∑
i=1

f (x′
i)

]
− 1

n

n∑
i=1

f (xi)

)]
[using Eq. (27)]

= E{xi}n
i=1

[
sup
f∈F

(
E{x′

i}n
i=1

[
1

n

n∑
i=1

f (x′
i)−

1

n

n∑
i=1

f (xi)

])]

⩽ E{xi}n
i=1

[
E{x′

i}n
i=1

[
sup
f∈F

(
1

n

n∑
i=1

f (x′
i)−

1

n

n∑
i=1

f (xi)

)]]
[Jensen’s inequality]

= E{xi}n
i=1

[
E{x′

i}n
i=1

[
Eξ

[
sup
f∈F

(
1

n

n∑
i=1

ξi (f (x
′
i)− f (xi))

)]]]
[using Eq. (28)]

⩽ E{xi}n
i=1

[
Eξ

[
sup
f∈F

(
1

n

n∑
i=1

ξif (xi)

)]]
+ E{x′

i}n
i=1

[
Eξ

[
sup
f∈F

(
1

n

n∑
i=1

ξif (x
′
i)

)]]
= 2Rn(F) ,

(29)
where the last inequality holds by the fact that ξi and −ξi, i ∈ [n] admit the same distribution, and
multiplying each term in the summation by a Rademacher variable ξi will not change the expectation
due to Eξi = 0.

Based on the above lemma, we demonstrate that the Rademacher complexity can be well approximated
by the empirical Rademacher complexity under our non-iid setting.
Lemma 7. Under the same setting of Lemma 6, for any f ∈ F , assume that |f(x) − f(x′)| ⩽
c, ∀x,x′ ∈ dom(f) for some constant c > 0, for any δ ∈ (0, 1), the following proposition holds
with probability at least 1− δ

Pr

(
Ex∼µ̄(f(x))−

1

n

n∑
i=1

f (xi) ⩾ 2R̂n(F , X) + 3δ

)
⩽ 2 exp

(
−2nδ2

c2

)
. (30)

Proof. The proof follows with the classical Rademacher complexity [74, Chapter 26] apart from
the averaged measure. Recall the definition of the empirical Rademacher complexity in Eq. (26),
R̂n(F , X) is a function of n random variables {xi}ni=1. Moreover, due to |f(x) − f(x′)| ⩽ c,
R̂n(F , X) satisfies the precondition for McDiarmid’s inequality by at most c/n, which only requires
independence of random variables without the identically distributed condition

Pr
(
R̂n(F , X)− E{xi}n

i=1
[R̂n(F , X)] ⩾ δ

)
⩽ exp

(
−2nδ2

c2

)
,

which implies

Pr
(∣∣∣R̂n(F , X)−Rn(F)

∣∣∣ ⩾ δ
)
⩽ 2 exp

(
−2nδ2

c2

)
. (31)

By Lemma 6, we have

E{xi}n
i=1

[
Ex∼µ̄[f(x)]−

1

n

n∑
i=1

f (xi)

]
⩽ E{xi}n

i=1

[
sup
f∈F

(
Ex∼µ̄[f(x)]−

1

n

n∑
i=1

f (xi)

)]
⩽ 2Rn(F) .

Denote event A as[
Ex∼µ̄[f(x)]−

1

n

n∑
i=1

f (xi)

]
− E{xi}n

i=1

[
Ex∼µ̄[f(x)]−

1

n

n∑
i=1

f (xi)

]
⩾ δ ,
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we use McDiarmid’s inequality again to obtain Pr(A) ⩽ e−2nδ2/c2 since Ex∼µ̄[f(x)] −
1
n

∑n
i=1 f (xi) can be regarded as a function of {xi}ni=1 and any variations of {xi}ni=1 would change

the outcome by at most c/n. Denote event B as Ex∼µ̄[f(x)]− 1
n

∑n
i=1 f (xi)− 2Rn(F) ⩾ δ, we

have Pr(B) ⩽ Pr(A) ⩽ e−2nδ2/c2 .

Further, denote the event C as R̂n(F , X) ⩾ Rn(F)− δ, we have Pr(C) ⩾ 1− exp(−2nδ2/c2) by
Eq. (31). Denote the event D as Ex∼µ̄(f(x))− 1

n

∑n
i=1 f (xi) ⩾ 2R̂n(F) + 3δ, we have

Pr

(
Ez∼µ̄(f(x))−

1

n

n∑
i=1

f (xi) ⩾ 2R̂n(F) + 3δ

)
= Pr(D) = Pr(C ∩ D) + Pr(C ∪ D)− Pr(C)

⩽ Pr(B) + 1− Pr(C)

= 2 exp
(
−2nδ2/c2

)
,

which concludes the proof.

Similar to the proof of Lemma 7, it is easy to verify that, the standard Massart’s lemma and the
Talagrand’s Contraction Lemma (empirical Rademacher complexity of Lipschitz function class) in
[74, Chapter 26] are valid to our independent but non-iid setting.

E.2 Local Rademacher complexity

Here we present some results on local Rademacher complexity [75] that is needed in this work. The
used lemmas here are still valid for our independent but non-identically distributed data. Since the
proof framework is similar to what we present for Rademacher complexity, we omit the proofs here.

When applying local Rademacher complexity, we need the following definition.
Definition 5. A function ψ : R+ → R+ is sub-root if it is non-negative, non-decreasing, and if
ψ(x)/

√
x is non-increasing.

Lemma 8. [76, Theorem 2] Let F be a function class with ∥f∥∞ ⩽ b, ∀f ∈ F and F̃ := {f − g :
f, g ∈ F}, and Pnf := 1

n

∑n
i=1 f(xi), then taking the average measure µ̄, we have

Rn{f ∈ F : Eµ̄f
2 ⩽ R} ⩽ inf

ϵ>0

[
2Rn{f ∈ F̃ : Pnf

2 ⩽ ϵ2}+ 8b log (ϵ/2,F , ∥ · ∥2)
n

+

√
2R logN (ϵ/2,F , ∥ · ∥2)

n

]
.

Lemma 9. [75, Theorem 3.3, modified version] Let f be a class of functions with ranges in [a, b]
and assume that there exists some functional T : F → R+ and some constant B such that Var(f) ⩽
T (f) ⩽ BPf for every f ∈ F . Let Pn be the empirical measure supported on the independent data
points {xi}ni=1 with the averaged measure µ̄ := 1

nµi, Let ψ be a sub-root function with the fixed
point R∗. If for any R ⩾ R∗, ψ satisfies

ψ(R) ⩾ BRn{f ∈ F : T (f) ⩽ R} ,
then for any J > 1 and δ ∈ (0, 1), with probability at least 1− δ, we have

Eµ̄f ⩽
J

J − 1
Pnf +

c1J

B
R∗ + (c2(b− a) + c3BJ)

log(1/δ)

n
,

where c1, c2, c3 are some positive constants.
Lemma 10. [73, Refined entropy integral] Let Pn be the empirical measure supported on the
independent data points {xi}ni=1. For any function class F and any monotone sequence {ϵk}∞k=0

decreasing to 0 such that ϵ0 ⩾ supf∈F
√
Pnf2, the following inequality holds for every non-negative

integer N

R̂n(F , X) ⩽ 4

N∑
k=1

ϵk−1

√
logN (ϵk,F , ∥ · ∥2)

n
+ ϵN . (32)
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F Proofs of regret bounds via deep ReLU neural networks

In this section, we give the proofs of regret bounds via deep ReLU neural networks according to the
function class of T⋆

hQ in Besov spaces.

To conclude our proof, we need the following lemma that how well the functions in the Besov space
can be approximated by deep neural networks with the ReLU activation. Here the approximation
error is defined in the L4(X )-integrable space (c.f. Corollary 1).

Lemma 11. (Approximation error in Besov space) [30, Proposition 1, modified version] Assume that
the smoothness parameter α satisfies

α > η := d(1/p− 1/4)+ ,

then there exists a deep neural network architecture FDNN(L,m, S,B) with ν := (α− η)/(2η) and a
large N such that

L ≍ logN, S ≍ N, m ≍ N logN, and B ≍ N1/ν+1/d , (33)

then it holds that

sup
f∗∈Bα

p,q(X )

inf
f∈FDNN(L,m,S,B)

∥f − f∗∥L4(X ) ≲ N−α
d , ∀q > 0 .

In our proof, we need the following result on local Rademacher complexity of deep ReLU neural
networks.

Lemma 12. Let X = {xi}ni=1 ⊆ [0, 1]d be an independent but non-identical distributed data set
with xi ∼ µi,∀i ∈ [n], and Rn{f ∈ FDNN : Pf

2 ⩽ R} be the local Rademacher complexity of the
function class FDNN on X defined in Eq. (4), denote the averaged measure as µ̄ := 1

n

∑n
i=1 µi, then

for a large N , we have

Rn{f ∈ FDNN : Eµ̄f
2 ⩽ R} ≲

(
1

n
+

√
R

n

)√
N [(logN)2 + log n] +

HN [(logN)2 + log n]

n
.

(34)

Remark: The parameter N depends on the number of the training data n, but it will be determined
later.

Proof. According to [30, Lemma 3], the covering number of FDNN can be bounded by

logN (ε,FDNN, ∥ · ∥2) ⩽ logN (ε,FDNN, ∥ · ∥∞) ≤ 2SL log

(
L(B ∨ 1)(m+ 1)

ε

)
≲ N

[
(logN)2 + log

(
1

ε

)]
.

Denote F̃DNN = {f − g : f, g ∈ FDNN}, it satisfies

logN (ε, F̃DNN, ∥ · ∥2) ⩽ 2 logN
(ε
2
,FDNN, ∥ · ∥2

)
⩽ 2 logN

(ε
2
,FDNN, ∥ · ∥∞

)
≲ N

[
(logN)2 + log

(
2

ε

)]
.

(35)

According to Lemma 10, taking εj = 2−jε, and using the inequality

N (εj , {f ∈ F̃DNN : Pnf
2 ⩽ ε2}, ∥ · ∥2) ⩽ N (εj/2, F̃DNN, ∥ · ∥2) ,
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then the following inequality holds for any J ∈ N+:

Rn{f ∈ F̃DNN : Pnf
2 ⩽ ε2} = ER̂n{f ∈F̃DNN : Pnf

2 ⩽ ε2}

⩽ 4E
J∑

j=1

εj−1

√
logN (εj/2, F̃DNN, ∥ · ∥2)

n
+εJ

⩽ 4E
J∑

j=1

2−(j−1)ε

√
2 logN ( ε

2(j+1) , F̃DNN, ∥ · ∥∞)

n
+ εJ

≲
ε√
n

J∑
j=1

2−(j−1)

√
2N

[
(logN)2 + log

(
2j+1

ε

)]
+ 2−Jε

≲
ε√
n

√
N

[
(logN)2 + log

(
1

ε

)]
, [taking J → ∞]

(36)

where the first inequality holds by Lemma 10 and the second and third inequalities hold by Eq. (35).
The last inequality uses the fact that

∑∞
j=0

√
j+1

2j−1 <∞.

According to Lemma 8 with supf∈FDNN
∥f∥∞ ⩽ H , we have

Rn{f ∈ FDNN : Pf
2 ⩽ R} ≲ inf

ε>0

[
2ERn{f ∈ F̃DNN : Pnf

2 ⩽ ε2}

+
8HN

[
(logN)2 + log

(
1
ε

)]
n

+

√
2rN

[
log2N + log

(
1
ε

)]
n

]

≲ inf
ε>0

[
ϵ+

√
2R√
n

√
N

[
(logN)2 + log

(
1

ε

)]
+
HN

[
log2N + log

(
1
ε

)]
n

]

≲
n−1/2 +

√
R√

n

√
N
(
log2N + log n

)
+
HN

(
log2N + log n

)
n

:= ψ(R) ,

(37)

where we choose ε := n−1/2 in the last inequality, and then we conclude the proof.

Based on the above result, we have the following proposition on generalization bounds in Besov
spaces under non-iid state-action pairs.

Proposition 2. Given the solution Q̂t
h = argminf∈FDNN

Êt
h(f) in Eq. (5), then for a large N and any

δ ∈ (0, 1), with probability at least 1− δ, we have

Et
h(Q̂

t
h)− min

f∈FDNN

Et
h(f) ≲

N
[
(logN)2 + log n

]
n

+
H
√
N [(logN)2 + log n]

n
+
H2 log(1/δ)

n
,

where n := t̃ in our RL setting and N depends on t which needs further determined.

Proof. It is clear that ψ(R) defined in Eq. (37) in Lemma 12 is a sub-root function. Therefore, the
fixed point R∗ of ψ(R) can be analytically solved by the equation R∗ = ψ(R∗), which leads to

R∗ ≲

√
N [(logN)2 + log n]

n
+
HN

[
(logN)2 + log n

]
n

.

Strictly speaking, there is an extra term N
[
(logN)2 + log n

] 3
4 /n in the above equation, but we can

omit it as we only concern the smallest and largest order. By verifying the variance-expectation
condition, we have

E[Et
h(Q̂

t
h)− Et

h(f
⋆
h)]

2 ⩽ 16H2E[Et
h(Q̂

t
h)− Et

h(f
⋆
h)] , (38)
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where f⋆h := argminf∈FDNN
Et
h(f) and we use the fact Et

h(f) is 4H-Lipschitz. Denote the function
space F̂DNN with the following function formulation for any j ∈ [n]

ĝth :=
[
Q̂t

h(s
τj
h , a

τj
h )− rh(s

τj
h , a

τj
h )− V t

h+1(s
τj
h+1)

]2
−
[
f⋆h(s

τj
h , a

τj
h )− rh(s

τj
h , a

τj
h )− V t

h+1(s
τj
h+1)

]2
,

we have Pnĝ
t
h = Êt

h(Q̂
t
h)− Êt

h(f
⋆
h) ⩽ 0 due to Q̂t

h = argminf∈F Êt
h(f). Then using Eg2 ⩽ H2Pg,

for any g ∈ F̂DNN by Eq. (38), according to Lemma 9, the following inequality holds with probability
at least 1− δ

P ĝth ≲
J

H2
R∗ +

(H2J +H) log(1/δ)

n
, ∀J > 1 ,

where which further implies

Et
h(Q̂

t
h)− min

f∈FDNN

Et
h(f) ≲

N
[
(logN)2 + log n

]
n

+
H
√
N [(logN)2 + log n]

n
+
H2 log(1/δ)

n
.

Finally, we conclude the proof.

Proof of Theorem 1. Using the approximation error in L4(X ) by Corollary 1, the smoothness param-
eter satisfies α > d(1/p− 1/4)+. By taking δ/2 in Proposition 2, we have

∥Γt
h∥2L2(dµ̄t̃

h)
≲
[
Et
h(Q̂

t
h)− min

f∈FDNN

Et
h(f)

]
+ inf

f∈FDNN

∥f − T⋆
hQ

t
h+1∥2L4(X ) [using Corollary 1]

≲ N− 2α
d +

N
[
(logN)2 + log t̃

]
t̃

+
H
√
N
[
(logN)2 + log t̃

]
t̃

+
H2 log(2/δ)

t̃
,

(39)

where in the second inequality, taking α > d(1/p− 1/4)+, the approximation error can be estimated
by Lemma 11

inf
f∈FDNN

∥f − T⋆
hQ

t
h+1∥2L4(X ) ≲ N−2α/d .

Accordingly, the right hand side of Eq. (39) can be minimized by taking N ≍ t̃
d

2α+d up to (log t̃)3-
order in Eq. (33) for choosing suitable L,m, S,B. To make the architecture of deep RL independent
of a variable t̃ (or t) during different episodes, here we directly choose N ≍ T

d
2α+d log3 T , in this

case, Eq. (39) can be formulated as

∥Γt
h∥2L2(dµ̄t̃

h)
≲ HT− 2α

2α+d log3 t̃+
T

d
2α+d log5 T

t̃
+
H2 log(2/δ)

t̃
,

which requires the depth L and the width m up to

L ≍ d

2α+ d
log T, m ≍ d

2α+ d
T

d
2α+d log T .

Recall t̃ := ⌈ϱt⌉, according to Lemma 4, if α > d(1/p − 1/4)+, then for any δ ∈ (0, 1), with
probability at least 1− δ/2, the Term(i) can be upper bounded by

Term(i) ≲
( ϵ
A

)−K
2

H
√
T

√√√√ T∑
t=1

T− 2α
2α+d log3 ϱt+

T
d

2α+d log5 T

ϱt
+
H2 log(2/δ)

ϱt
+H

√
T

≲
( ϵ
A

)−K
2

H
√
T

√√√√HT
d

2α+d log3 T +
1

ϱ

∫ T+1

1

(
T

d
2α+d log5 T

t
+
H2 log(2/δ)

t

)
dt+H

√
T

≲
( ϵ
A

)−K
2 1
√
ϱ

(√
TH3

√
T

d
2α+d log6 T +H2

√
T
√
log(2/δ) log T

)
+H

√
T

≲
( ϵ
A

)−K
2 1
√
ϱ

(
H

3
2T

α+d
2α+d log3 T +H2

√
T
√

log(2/δ) log T
)
+H

√
T .

(40)

28



Then taking δ/2 in the statistical error Term(ii) in Lemma 1, if α > d(1/p−1/4)+, with probability
at least 1− δ, we have

Regret(T ) ≲
( ϵ
A

)−K
2 1
√
ϱ

(
H

3
2T

α+d
2α+d log3 T +H2

√
T

√
log
(2
δ

)
log T

)
+ ϵHT +

√
TH3 log

(4
δ

)
.

Then taking

ϵ = O(H
2

K+2K
2

K+2A
K

K+2T− 2α
(2α+d)(K+2) ) ,

which implies

Regret ≲ Õ(H
H+4
H+2K

2
K+2A

K
K+2T

αK+(α+d)(K+2)
(2α+d)(K+2) ) .

Finally we conclude the proof.

G Proofs of regret bounds via two-layer neural networks

In this section, we focus on generalization bounds under the independent but non-identically dis-
tributed data setting in the Barron space, and it is useful to present estimates of our regret bound.

Lemma 13. For two-layer ReLU neural networks with bounded ℓ1 path norm defined in Eq. (3)
given the function class FSNN and n independent but non-identically distributed data points X =
{xi}ni=1 ⊆ X , then we have

Rn(FSNN) ⩽ 2B

√
2 log(2d)

n
.

Proof. Here we directly focus on the ℓ1 path norm, which is different from [31, Theorem 3]. Based
on the definition of two-layer ReLU neural networks defined in Eq. (3), denote w̃k := (w⊤

k , ck)
⊤ and

x̃ = (x⊤, 1)⊤ for simplicity, the empirical Rademacher complexity of FSNN under our setting can be
upper bounded by

R̂n(FSNN, X) =
1

n
Eξ

[
sup

f∈FSNN

1

m

m∑
k=1

bk

n∑
i=1

ξiσ(w̃
⊤
k x̃)

]

⩽ Eξ

[
sup

f∈FSNN

1

m

m∑
k=1

|bk| ∥w̃k∥1
1

n

∣∣∣∣∣
n∑

i=1

ξiσ

(
w̃i∥∥w̃⊤
i

∥∥
1

x̃i

)∣∣∣∣∣
]

≤ BEξ

[
sup

∥w̃∥1⩽1

1

n

∣∣∣∣∣
n∑

i=1

ξiσ(w̃
⊤x̃i)

∣∣∣∣∣
]

⩽ 2BEξ

[
sup

∥w̃∥1⩽1

1

n

n∑
i=1

ξiw̃
⊤x̃i

]
[using symmetry of ξ and 1-Lipschitz of ReLU]

⩽ 2BEξ

∥∥∥∥∥ 1n
n∑

i=1

ξix̃i

∥∥∥∥∥
∞

, [using Hölder inequality]

where the first inequality holds by the homogeneity of ReLU for any w̃ ∈ Rd/{0}. Since the
Massart’s lemma is still valid under our independent but non-identically distributed data, Rn(FSNN)
can be further expressed by

R̂n(FSNN, X) ⩽ 2BEξ

∥∥∥∥∥ 1n
n∑

i=1

ξix̃i

∥∥∥∥∥
∞

⩽ 2B
√

2 log(2d)/n ,

where the last inequality holds by the maximum of n sub-Gaussian random variables [72] since
Rademacher random variables are sub-Gaussian, and finally we conclude the proof.
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Proof of Theorem 2. Denote X := {(sτjh , a
τj
h , s

τj
h+1)}t̃j=1 for simplicity and notice that the function

[f(sh, ah) − rh(sh, ah) − V t
h+1(sh+1)]

2 is 4H-Lipschitz. Then according to Lemma 7, for any
δ ∈ (0, 1), the following result holds with probability at least 1− δ/2

Êt
h(f)− Et

h(f) ⩽ 2R̂t−1(FSNN, X) + 12H

√
log(4/δ)

2t̃

⩽ 8BR̃H

√
2 log(2d)

t̃
+ 12H

√
log(4/δ)

2t̃
,

(41)

where we use the empirical Rademacher complexity in Lemma 13. Accordingly, by Lemma 5 and
Eq. (41), then with probability at least 1− δ/2, we have

∥Γt
h∥2L2(dµt̃

h)
⩽
[
Eh(Q̂t

h)− min
f∈FSNN

Eh(f)
]
+ inf

f∈FSNN

∥f − T⋆
hQ

t
h+1∥2L2(dµ̄t̃

h)

⩽ Eh(Q̂t
h)− min

f∈FSNN

Eh(f) +
3∥T⋆

hQ
t
h+1∥2P
m

⩽ 2 sup
f∈FSNN

|Et
h(f)− Êt

h(f)|+
3R̃2

m
[using Assumption 2]

⩽ 16BR̃H

√
2 log(2d)

t̃
+ 24H

√
log(4/δ)

2t̃
+

3R̃2

m
, [using Eq. (41)]

(42)

where the second inequality uses the approximation result for two-layer ReLU neural networks and
the Barron space in [31, Theorem 4]. Accordingly, by Lemma 4, for any δ ∈ (0, 1), the Term(i) in
the regret decomposition can be upper bounded with probability at least 1− δ/2

Term(i) ≲
( ϵ
A

)−K
2

H
√
T

√√√√ T∑
t=1

(
BH2(ϱt)−

1
2

√
log d+H(ϱt)−

1
2

√
log

4

δ
+
H2

m

)
+H

√
T

≲
( ϵ
A

)−K
2

H
√
T

√√√√ 1
√
ϱ

∫ T+1

1

(
BH2t−

1
2

√
log d+Ht−

1
2

√
log

4

δ

)
dt+

H2T

m
+H

√
T

≲
( ϵ
A

)−K
2 1
√
ϱ

[
T

3
4H2B(log d)

1
4 + T

3
4H

3
2 log

1
4

(4
δ

)]
+
( ϵ
A

)−K
2 H2T√

m
+H

√
T .

(43)

where we use R̃ ≍ H and
∫ T

1
(t− 1)−1/2dt = O(

√
T ).

Accordingly, taking δ/2 in the statistical error Term(ii) in Lemma 1, then with the probability at
least 1− δ, the total regret can be upper bounded by

Regret(T ) ≲
( ϵ
A

)−K
2

(
H2T

3
4

√
ϱ

[
B(log d)

1
4 +log

1
4

(4
δ

)]
+
H2T√
m

)
+ϵHT+

√
TH3 log

(4
δ

)
.

Taking m = Ω(
√
T ) and ϵ = O

(
H

2
K+2T− 1

2(K+2)

)
, the regret bound can be further represented as

Regret(T ) ≲ Õ(H
K+4
K+2T

2K+3
2K+4 ) ,

which concludes the proof.
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