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ABSTRACT

Post-training quantization (PTQ) serves as a potent technique to accelerate the
inference of large language models (LLMs). Nonetheless, existing works still
necessitate a considerable number of floating-point (FP) operations during infer-
ence, including additional quantization and de-quantization, as well as non-linear
operators such as RMSNorm and Softmax. This limitation hinders the deployment
of LLMs on the edge and cloud devices. In this paper, we identify the primary
obstacle to integer-only quantization for LLMs lies in the large fluctuation of
activations across channels and tokens in both linear and non-linear operations.
To address this issue, we propose I-LLM, a novel integer-only fully-quantized
PTQ framework tailored for LLMs. Specifically, (1) we develop Fully-Smooth
Block-Reconstruction (FSBR) to aggressively smooth inter-channel variations of
all activations and weights. (2) to alleviate degradation caused by inter-token
variations, we introduce a novel approach called Dynamic Integer-only MatMul
(DI-MatMul). This method enables dynamic quantization in full-integer matrix
multiplication by dynamically quantizing the input and outputs with integer-only
operations. (3) we design DI-ClippedSoftmax, DI-Exp, and DI-Normalization,
which utilize bit shift to execute non-linear operators efficiently while maintaining
accuracy. The experiment shows that our I-LLM achieves comparable accuracy to
the FP baseline and outperforms non-integer quantization methods. For example,
I-LLM can operate at W4A4 with negligible loss of accuracy. To our knowledge,
we are the first to bridge the gap between integer-only quantization and LLMs.
We’ve published our code on anonymous.4open.science, aiming to contribute to
the advancement of this field.

1 INTRODUCTION

Large Language Models (LLMs) have paved the way for general artificial intelligence with their
remarkable performance across a wide range of tasks. However, the rising number of parameters and
computing power requirements of LLMs pose significant challenges when it comes to deployment.

Post-training quantization (PTQ) is a powerful technique employed to accelerate the inference process
of LLMs. Previous PTQ methods for LLMs have primarily relied on simulated quantization (aka.
fake quantization) (Xiao et al., 2022; Shao et al., 2023; Wei et al., 2022b; Yuan et al., 2023a),
where integer values are typically used for inputs/outputs and compute-intensive operations are
performed using dequantized floating-point (FP) values (as shown in Fig1). Although this scheme
offers benefits in scenarios where data transmission bandwidth is limited, it does not effectively
reduce computational costs and thus has little effect on compute-bound situations. Besides, non-linear
operations (e.g., Softmax and RMSNorm) often involve complex operations, including transcendental
functions such as exponential functions and square root functions. These functions are typically
performed on dedicated FP units and may require multiple iterations for accurate computation.
In contrast, integer-only quantization (Jacob et al., 2018; Wu et al., 2020; Qin et al., 2022; Li & Gu,
2023; Lin et al., 2022) utilizes low-precision integer arithmetic for all operations, including linear
operations (e.g., matrix multiplication) and non-linear operations. It enables quantized models to take
full advantage of fast and efficient integer arithmetic units, resulting in promising speedup effects
and reduction of latency and power consumption. Additionally, integer-only quantization facilitates
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Figure 1: Typical LLM quantization vs. I-LLM.
The former requires dequantization and involves
FP arithmetic, while the latter performs the entire
inference using integer-only arithmetic.

Figure 2: PPL↓ of different PTQ methods on
LLaMA family using W8A8. Notably, due to
the exceptionally high PPL of I-Bert, a dedicated
y-axis has been allocated for its representation.

deployment on popular edge processors specifically designed for embedded, mobile, or IoT devices,
which often lack dedicated floating point units. Examples of such edge processors include ARM
Cortex-M (WIKIPEDIA, 2024), GreenWaves GAP-9 (Flamand et al., 2018), and Google’s Edge
TPU (Google, 2024). Note that Turing Tensor Cores in GPU server-class devices also have introduced
support for integer logical units, offering notably lower latency compared to FP arithmetic.

However, the aforementioned integer-only methods are designed specifically for CNNs or small
Transformer networks (e.g., Bert Kim et al. (2021) and ViT Dosovitskiy et al. (2020)), which renders
them inadequate for LLMs. First, they are incapable of straightforwardly supporting the non-linear
operators inherent in LLMs, such as SwiGLU and RMSNorm. Furthermore, their accuracy on
LLMs deteriorates significantly (as depicted in Figure 2), even when those non-supported operators
are executed in full-precision mode. This is because as the model size increasing, the presence of
activation outliers in both linear and non-linear layers becomes prominent. As illustrated in Fig 3,
Llama2-7B exhibits substantial variations in activation magnitude at both the token and channel
levels, making previous approaches ineffective. Last but not least, these methods are limited to 8-bit
quantization, whereas LLMs would benefit from lower bit-width quantization (e.g., 4-bit) to address
the extensive computational requirements and storage demands. Consequently, how to accurately
perform LLMs with efficient integer-only arithmetic remains an unresolved issue that requires
further investigation.

The performance of different quantization
methods on six zero-shot datasets using the
LLaMA-30B under W4A4 setting.

In this paper, we identify the primary obstacle to
integer-only quantization for LLMs lies in the large
fluctuation of activations across channels and tokens
in both linear and non-linear operators. To address
this issue, we introduce I-LLM, a novel integer-only
PTQ framework tailored for LLMs: (1) We pro-
pose Fully-Smooth Block-Reconstruction (FSBR) to
harmonize the variance in activation across chan-
nels. While Omniquant Shao et al. (2023) and
Smoothquant Xiao et al. (2022) share some similari-
ties, they primarily focus on smoothing the activation
in serial norm-linear and parallel linear-linear oper-
ations. We argue that mitigating the disparities of all
suitable activation-activation and activation-weight
pairs of LLMs (see Fig.5) significantly enhances ac-
curacy. For instance, the input of SwiGLU encounters
numerous disparities on both token-wise and channel-
wise dimensions, as depicted in Fig.4-a. To achieve
smoothing on such a non-linear operator, we decom-
pose SiLU into x · σ(x) to apply FSBR, and as a result the input becomes more consistent and
amenable to quantization, as shown in Fig.4-b. (2) To alleviate the degradation resulting from inter-
token variations, we present a novel approach called Dynamic Integer-only MatMul (DI-MatMul).
DI-MatMul facilitates quantization on full-integer matrix multiplication by employing integer-only
operations to quantize the input and outputs dynamically. Traditional static quantization methods,
which are characterized by their lack of robustness and adaptability, often falter when encountering
input beyond the calibration set. In contrast, DI-MatMul is designed to proactively recognize and
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Figure 3: Differences in activations of the non-
linear operator in LLaMA2 7b model across the
channel/token dimensions.

Figure 4: The input activation distribution of the
SwiGLU before FSBR (a) and after FSBR (b).

adapt to the diverse range of input data, thereby reducing quantization errors and enhancing overall
model performance. (3) For non-linear operators, we design DI-ClippedSoftmax, DI-Exp, and
DI-Norm, which leverage the efficiency of bit shifting to replace complex math calculations while
maintaining accuracy. Our contributions are summarized as:

1. We identify the primary obstacle to integer-only quantization for LLMs lies in the large fluctuation
of activations across channels and tokens in both linear and non-linear operators. To address
inter-channel variations, we propose FSBR to effectively reduces disparities among all suitable
activation-activation and activation-weight pairs, thereby markedly improving accuracy.

2. We attribute the failure of previous integer-only quantization methods on LLMs to various range
in activation tokens. To tackle this problem, we introduce DI-MatMul, which enables dynamic
quantization on input and output through full-integer matrix multiplication. DI-MatMul proactively
adapts to the range of input, minimizing quantization errors and improving overall performance.

3. We introduce DI-Exp, DI-ClippedSoftmax, and DI-Norm, innovative integer-only operators that
harness the power of bit shifting to replace complex mathematical computations within the
non-linear functions of LLMs, without compromising on accuracy.

4. To the best of our knowledge, this work represents the first attempt to utilize integer-only quanti-
zation for LLMs, enabling their deployment on edge devices that lack floating-point capabilities.
Experiments demonstrate remarkable accuracy when compared to SOTA non-integer quantization
techniques; for instance, I-LLM on LLAMA-13b achieves an approximate 20% reduction in
perplexity. Additionally, our integer-only algorithm achieves a 2x improvement in computational
performance and a 3.5x reduction in memory usage compared to the full-precision model.

2 RELATED WORK

LLMs Quantization. LLMs quantization can be broadly categorized into weight-only and weight-
activation quantization. To alleviate the computational burdens, some works (Liu et al., 2023b;
Frantar et al., 2022; Chee et al., 2023; Lin et al., 2023; Lee et al., 2023; Shang et al., 2023; Kim
et al., 2023; Dettmers et al., 2023) make efforts in weight-only quantization. GPTQ (Frantar et al.,
2022) and QuIP (Chee et al., 2023) achieve high compression rates by optimizing matrix multipli-
cations operation. AWQ (Lin et al., 2023) and OWQ (Lee et al., 2023) demonstrate performance
improvements by accounting for the impact of activation outliers on weight quantization. Moreover,
works such as QLORA (Dettmers et al., 2024), QA-lora (Xu et al., 2023) and LoftQ (Li et al.,
2023b) leverage Parameter Efficient Fine-Tuning (PEFT) techniques to achieve weight compression
with fine-tuning tasks. Different with weight-only quantization methods, towards to accelerate the
LLMs inference, the weight-activation quantization methods (Wei et al., 2022b; Yuan et al., 2023a;
Wei et al., 2023; Li et al., 2023a; Yuan et al., 2023b; Yue et al., 2024) quantize both the weights
and activations, including the KV cache. The primary challenge in quantizing activations lies in
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outliers, leading to significant quantization errors. To tackle this issue, ZeroQuant (Yao et al., 2022)
proposes a fine-grained hardware-friendly quantization scheme for both weight and activations.
SmoothQuant (Xiao et al., 2022) migrates the quantization difficulty from activations to weights
with a mathematically equivalent transformation (i.e., per-channel scaling). OmniQuant (Shao et al.,
2023) further enhances performance by training the quantization parameters. While these methods
have mitigated the quantization error, their inference pipelines still involve partially FP operations on
non-linear operators such as Softmax, Normalization, and SiLU. In this study, our focus on achieving
Integer-only inference for LLMs model using advanced PTQ (Li et al., 2021; Wei et al., 2022a; Liu
et al., 2023a; Zhou et al., 2024) techniques.

Integer-only Quantization. Current quantization methods for LLMs often involve dequantized
FP operations during inference, limiting the utilization of efficient low-precision arithmetic units.
Integer-only quantization, eliminating dequantization, enables complete inference using Integer-only
arithmetic, promising enhanced model acceleration. Previous approaches (Jacob et al., 2018; Yao
et al., 2021) leverage dyadic arithmetic for Integer-only pipeline on CNNs, but these are tailored
for linear operations and are unsuitable for non-linear operations in ViTs. Applying INT arithmetic
solely to linear operations while retaining FP arithmetic for non-linear ones maybe a straightforward
solution, but this demands custom hardware and introduces computational overheads. Advancements
include Fully-8bit (Lin et al., 2021) and I-BERT (Kim et al., 2021), which address non-linear
operations through employs L1 LayerNorm and INT polynomial approximations for the non-linear
operations. However, these methods face inefficiencies or fail to fully exploit hardware advantages.
Based on I-BERT (Kim et al., 2021), FQ-ViT (Lin et al., 2022) extends INT arithmetic to part of the
operations but overlooks significant non-linear operations like GELU. While some methods (Stevens
et al., 2021; Zhu et al., 2020) retain FP arithmetic during approximation, they cannot meet the
requirement for Integer-only arithmetic. Recently, I-ViT (Li & Gu, 2023) introduces Integer-only
quantization for ViTs, yet its suitability for LLMs is questionable due to differing data distributions,
and its computational graph includes partially INT32 precision operations. In this paper, we focus on
Integer-only inference for LLMs, maintaining the entire computational graph at INT8 precision or
lower bit (e.g., 6/4-bit), enhancing LLMs’ inference efficiency on edge processors.

3 METHOD

Challenges of Integer-Only Quantization for Large Language Models. Presently, integer-only
LLMs encounter two primary hurdles: (1) quantizing the activation of LLMs, especially those origi-
nating from non-linear operators, poses a formidable challenge. As evidenced in Fig 3, the divergence
in these non-linear activations often surpasses that of linear operators, particularly pronounced in
models such as LLaMA (Touvron et al., 2023a). Previous methods have failed to address these non-
linear activations, and straightforwardly quantizing non-linear layers may lead to substantial accuracy
degradation. (2) prior integer-only quantization techniques have overlooked the distinctive traits
of LLMs, including divergent activation scales and the substantial overhead of loading large-scale
weights. Even the W8A8 method introduced in I-BERT can lead to catastrophic outcomes, as shown
in Fig 2, let alone more aggressive quantization methods like W6A6 or W4A4.

In this section, we introduce a novel integer-only quantization framework termed I-LLM. As illustrated
in Fig 5, this framework incorporates a differentiable approach within the Post-Training Quantization
(PTQ) paradigm, termed Fully-Smooth Block Reconstruction. This method is designed to effectively
balance all feasible parameter pairs, as elaborated in Section 3.2. Furthermore, we advance the
develop of dynamic quantization within the integer-only context by introducing DI-MatMul, a
dynamic integer-only matrix multiplication method, which is elucidated in Section 3.3. Additionally,
we detail integer-only non-linear approximations, including DI-ClippedSoftmax, DI-exp, and DI-
Norm, that are built upon DI-MatMul and are presented in Section 3.4. These operators facilitate
8-bit input activations while minimizing accuracy loss.

3.1 BASIC MATHEMATICAL NOTATIONS

Matrices are denoted by bold uppercase letters such as X , vectors by bold lowercase letters such
as x. Floating-point and integer numbers are distinguished using the superscript I , for example,
xI for integers and x for floating-point numbers. The notation Q means the quant function, ⌊·⌋
represents the floor function, and ⌊·⌉ denotes rounding to the nearest integer. The symbol ⊗ indicates
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Figure 5: Details of I-LLM in a transformer block. The left side of the figure illustrates various
paradigms for channel-wise smoothing during the FSBR process. The right side depicts the integer-
only execution pipeline for both linear operators, such as matrix multiplication (MatMul), and
non-linear operators.

element-wise multiplication, while ⊘ denotes element-wise division. Other mathematical symbols
follow their standard definitions.

3.2 FULLY-SMOOTH BLOCK-RECONSTRUCTION (FSBR)
As mention above, to mitigate the issue of non-linear layer activations in LLMs being affected
by channel and token differences (Fig 3 and 4), we propose Fully-Smooth Block-Reconstruction
(FSBR). An intuitive method is to train a smoothing coefficient for all activations and weights to aid
in restoring the model’s quantization accuracy, especially the quantization accuracy of non-linear
operators. Therefore, we consider the activations of all non-linear layers and learn the smoothing
coefficients for all possible equivalent smoothing transformations at the channel level. On the left
side of Fig 5, four paradigms for achieving inter-channel smoothing during block reconstruction are
shown: Parallel Linear-Linear, Serial Linear-Norm, Serial Linear-Linear, and NonLinear Act-Smooth.
The first three smoothing methods are indeed linear, making them easier to implement.

However, when addressing non-linear operators (NonLinear Act-Smooth) in LLMs, such as the gated
activation function (SwiGLU), it becomes challenging to apply any linear transformations to them.
For convenience, we can represent SwiGLU using the following formula:

SwiGLU(x,W ,V , b, c) = SiLU(xW + b)⊗ (xV + c)

= x1⊗ x2⊗ σ(x1)
(1)

Where x ∈ Ric is a vector, W ,V ∈ Ric×oc are weight matrices, and b, c ∈ Roc represent biases.
x1 = xW + b, x2 = xV + c. SiLU stands for Sigmoid-Weighted Linear Unit. σ represents
the sigmoid activation function. In order to jointly balance the activation and weight quantization
difficulties of x1 and x2, we introduce a smoothing factor s, expressed in the formula as follows:

SwiGLU(x,W ,V , b, c) = (x1⊗ s)⊗ (x2⊘ s)⊗ σ′(x1)

= x1′ ⊗ x2′ ⊗ σ′(x1′)
(2)

Where W ′ = W ⊗ s, b′ = b ⊗ s, V ′ = V ⊘ s, c′ = c ⊘ s, x1′ = xW ′ + b′, x2′ =
xV ′+c′, σ′(x1′) = σ(x1′⊘s). As shown by the red dashed box in Fig 5, during reconstruction,
we first incorporate s into the weights. After calculating x1′ and x2′, we quantize them before
proceeding with the computation. The forward inference process of SwiGLU can be expressed
as: SwiGLU(x) = Q(Q(x)Q(W ′) + b′) ⊗ Q(Q(x)Q(V ′) + c′) ⊗ σ′(Q(Q(x)Q(W ′) + b′)).
After block reconstruction, it is natural to incorporate the smoothing factor s into the weights. The
only difference lies in replacing the original activation function σ with σ′, which incurs negligible
overhead. Fig 4 presents the output activation distribution of the gated unit in SwiGLU before and
after the FSBR. It can be observed that the significant imbalance between channels and tokens, as
depicted in Fig 4-a, is effectively alleviated after FSBR (Fig 4-b).
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It is worth noting that SmoothQuantXiao et al. (2022) and OmniQuantShao et al. (2023) are subsets
of FSBR. FSBR encompasses various previous equivalent quantization algorithms, providing more
possibilities for optimizing the distribution of weights and activations. Through mutual optimization
across channels, the network demonstrates improved robustness to quantization, as shown in Table 5.

3.3 DYNAMIC INTERGER-ONLY MATMUL (DI-MATMUL)
The dynadic arithmetic pipeline is an efficient approach that implements floating-point operations
using integer bit-shifts, allowing linear operations to be performed solely through integer arithmetic.
Initially developed for convolutional neural networks Jacob et al. (2018), this technique has been
extended to Vision Transformers by I-ViT Li & Gu (2023). However, these methods primarily
focus on static quantization, where the quantization parameters of the model’s activation are fixed
during runtime. In the context of LLMs, even after applying inter-channel smoothing, there still
exists considerable variation in activation on a token-wise basis, as shown in Fig. 6 in Appendix A.
Employing static quantization can result in significant quantization errors and subsequent degradation
in accuracy, as depicted in the Fig. 2. Therefore, implementing dynamic quantization for inputs and
outputs while adhering to Integer-only constraints poses a significant challenge.

We propose a novel DI-MatMul approach, where the matrix multiplication is formulated as
Y I , sy, zp

I = M(s1, zp
I
1,X

I
1 , s2, zp

I
2,X

I
2 ). Herein, s1, s2, and sy are floating-point scalars

representing the quantization steps for the inputs and outputs respectively; while zpI1 and zpI2 denote
zero-points. To avoid floating-point operations in our method, we represent quantization step s using
a dyadic number (DN), i.e., mI

2kI where both mI and kI are 8-bit integers. Consequently, the entire
matrix multiplication can be expressed as:

Y I ,mI
y, k

I
y , zp

I = M(mI
1, k

I
1 , zp

I
1,X

I
1 ,m

I
2, k

I
2 , zp

I
2,X

I
2 ) (3)

For a single matrix multiplication operation:

P I = (XI
1 − zpI1)(X

I
2 − zpI2), Y = P I m

I
1m

I
2

2k
I
1+kI

2

(4)

The intermediate result of the matrix multiplication is denoted as P I . By applying Eq 14 in Appendix
and preliminary Eq 3, we obtain the following approximation:

mI
y

2k
I
y

≈ sy =
(pImax − pImin) ·mI

1 ·mI
2

(2nI − 1) · 2kI
1+kI

2

(5)

where pImax and pImin denote the maximum and minimum values in P I . To obtain the quantization
scale of the output:

argmin
mI

y,k
I
y

∣∣∣∣∣
∣∣∣∣∣ (pImax − pImin) ·mI

1 ·mI
2

(2nI − 1) · 2kI
1+kI

2

−
mI

y

2k
I
y

∣∣∣∣∣
∣∣∣∣∣
1

s.t. mI
y, k

I
y ∈ 0, 1, 2, . . . , 255 (6)

Obtaining the optimal values for mI
y and kIy may require multiple iterations. However, by induction,

it is known that if an optimal value of kI0 is achieved for kIy , then increasing it to kI0 +1 will not result
in a worse outcome. Therefore, we set mI

y = 256 to determine the value of kIy , and subsequently
solve for the remaining variables as follows:

kI
y =

⌊
log2

(
256 · (2n

I

− 1) · 2k
I
1+kI

2

pImax − pImin

)⌋
=

⌊
log2

(
(2n

I

− 1) · 2k
I
1+kI

2+8

pImax − pImin

)⌋
(7)

mI
y =

⌊
(pImax − pImin) ·mI

x1 ·mI
x2

nI
≫ (kI

1 + kI
2 − kI

y)

⌉
(8)

zIy =

⌊
−pImin · (2n

I

− 1)

pImax − pImin

⌉
, Y I =

⌊
(P I − pImin) · (2n

I

− 1)

pImax − pImin

⌉
(9)

The implementation of ⌊log2(·)⌋ can be achieved using either the Most Significant Bit (MSB) method
or by performing iterative right shifts. As shown in Eq equation 7, equation 8, and equation 9, our
approach introduces only a few additional integer-only scalar computations during runtime, making
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it more efficient than previous methods. For the Dense layers in Large Language Models (LLMs),
one can simply replace an input with its corresponding weights. During inference, since the input
usually consists of a single token, this allows for per-token dynamic quantization naturally. In the
prefill phase, we adjust the required dimensions accordingly; for instance, we define mI and kI as
vectors in Rtoken.

3.4 DYNAMIC NON-LINEAR INTEGER-ONLY OPERATIONS

3.4.1 DYNAMIC INTERGER-ONLY CLIPPED SOFTMAX & DYNAMIC INTEGER-ONLY
EXPONENT FUNCTION

The Softmax function converts attention scores into a probability distribution. It can be represented
as follows:

Softmax (xi) =
exi∑i
j=0 e

xj

=
exi−xmax∑i
j=0 e

xj−xmax
, where i = 1, 2, · · · , d (10)

We introduce DI-ClippedSoftmax to avoid quantizing the entire input range. As shown in Fig
3, the activation inputs to the Softmax function in LLMs can exhibit significant outliers, with
their magnitudes being proportional to the number of tokens. Fortunately, the DI-MatMul approach
proposed in Section 3.3 allows for the differences between tokens to be handled individually. However,
simply applying 8-bit quantization to the Softmax inputs would result in substantial precision loss,
as demonstrated by the ablation studies in Section 6. Starting from the observation that the value
of the exponential function at −20 can be considered to be zero, this implies that, for each token,
only the values within the range (xmax − 20, xmax) contribute to the result. For a single token, we can
constrain the quantization range by limiting pImin as defined in Eq 5. Assuming we want to confine

the range within (pmax − c, pmax), we first represent c as a dyadic number, i.e., c = mI
c

2k
I
c

. Combining
this with Eq 5, the entire truncation process can be expressed as follows:

pImin = max(pImin, p
I
max − cI) , where cI = mI

c · 2k
I
1+kI

2−kI
c (11)

Therefore, regardless of the dynamic range, the length of our quantization range will never exceed
c. In our hyper-parameters tuning experiments (Table 6), we select the optimal value of c = 15,
ensuring that the maximum quantization error does not exceed 0.03.

We also propose Dynamic Interger-only Exponent function(DI-Exp), an exponential computation
method that performs non-linear calculations of the exponential function using only shift operations.
For a dynamically quantized input composed of xI ,mI

x, k
I
x, where xI is already the result after

subtracting the maximum value, the computation of the exponential can be expressed as:

ex
I ·(mI

x≫kI
x) = 2x

I ·(mI
x≫kI

x)·log2 e = 2x
I ·mI

x·(log2 e≫kI
x) (12)

We let s = log2 e

2k
I
x

and sI =
⌊

2k
I
x

log2 e

⌉
, then: ex

I ·(mI
x≫kI

x) ≈ 2

(⌊
xI

sI

⌋
+(xI%sI)s

)
≈ 2−qI+rI ·s

where qI = −
⌊
xI

sI

⌋
, rI = xI%sI It is known that rI · s ∈ (−1, 0], therefore, we can simply

perform linear interpolation within this interval. That is, 2r
I ·s ≈ 1− rI

2·sI Finally, we obtain:

ex
I ·(mI

x≫kI
x) ≈

(
1− rI

2 · sI

)
≫ qI (13)

In DI-Exp, nonlinearity is achieved using only shift operations, which improves computational
efficiency compared to complex methods such as quadratic fitting and Taylor series expansion. Only
the calculation of sI and the linear interpolation within a small interval introduce errors, while other
computations remain equivalent to the original. Detailed implementation of DI-Exp is in Algorithm1.

3.4.2 DYNAMIC INTERGER-ONLY NORMALIZATION & DYNAMIC INTERGER-ONLY SWIGLU

DI-Norm. LayerNorm and RMSNorm are commonly used normalization methods in LLMs. RM-
SNorm represents a lightweight improvement over LayerNorm, as it does not necessitate the com-
putation of means and biases, thereby reducing computational complexity. Both RMSNorm and
LayerNorm exhibit similar characteristics, with significant fluctuations at the channel level. As
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depicted in the Fig 3, RMSNorm often exhibits more pronounced differences between channels due
to the absence of a centering step. We propose Dynamic Integer-only Normalization (DI-Norm) to
adapt to fluctuations between channels. When conducting FSBR, we perform per-channel quantiza-
tion on the inputs of LayerNorm and RMSNorm. During inference, while computing the mean is
straightforward, calculating the variance requires an appropriate root mean square function. Unlike
the Newton’s method used in I-BERT, to ensure consistency between inference and training, we
employ a bit-wise check method as mentioned in the Algorithm 4 to achieve higher precision.

DI-SwiGLU. During the block reconstruction stage, we decompose the SiLU activation function
of SwiGLU into SiLU(x) = x · σ(x) to achieve non-linear smoothing. As described in Algorithm
3, we implement the Dynamic Integer-only SwiGLU (DI-SwiGLU), consisting of a single sigmoid
nonlinearity and two multiplication operations, where the sigmoid implementation involves multiple
invocations of our proposed DI-Exp operator.

4 EXPERIMENTS

Implementation Details. I-LLM ensures that the activation of all non-linear operators remains at
8 bits, while the weights and activations of linear operators are determined by the current quan-
tization configuration, such as W4A8. Consistent with other methods, we employ 128 samples
for reconstruction. During the reconstruction phase, we maintain that the input to Softmax is not
quantized and ensure that all smoothing coefficients maintain a common learning rate of 5× 10−3.
After the reconstruction, all operators will be replaced with respective versions supporting dynamic
integer-only inference. All experiments are conducted on Nvidia A6000 GPU.

Models & Evaluation Metric. We conduct experiments on several commonly used open-source
LLMs, including OPT (Zhang et al., 2022), LLaMA (Touvron et al., 2023a), and LLaMA2 (Touvron
et al., 2023b). Additionally, we also evaluated the recently impressive LLaMA3-8B model. For the
sake of comparison, we tested the impact of quantization on Perperxity on two of the most commonly
used datasets WikiText2 (Merity et al., 2016) and C4 (Raffel et al., 2020). Moreover, accuracy is
evaluated in zero-short tasks including PIQA (Bisk et al., 2020), ARC (Boratko et al., 2018), BoolQ
(Clark et al., 2019), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi et al., 2021).

4.1 QUANTITATIVE RESULTS

Notably, our work is the first to address integer-only quantization for LLMs, whereas all the methods
we compare against in our experiments are not integer-only except I-Bert. Although this may seem
somewhat unfair for us, I-LLM still demonstrates the superiority through its remarkable performance.

Fig 2 illustrates the efficacy of our 8-bit quantization technique on widely adopted large-scale language
models. Despite SmoothQuant’s prior success with 8-bit quantization, our approach demonstrates
performance for each model that is closer to floating-point precision. This suggests that even with low-
bit quantization using integer-only conditions (e.g., 8-bit), we can achieve performance comparable
to floating-point representation. These findings strongly validate the effectiveness of our proposed
I-LLM, as it enables integer-only operators to yield results highly akin to those obtained through
floating-point operations, using simple arithmetic and integer bit-shifting.

Quantization results on OPT and LLaMA. As shown in Table 1 and Table 2, we report the
perplexity performance of I-LLM on the C4 and WikiText2 datasets. As depicted in these tables,

Table 1: Quantitative weight-activation quantization PPL(↓) re-
sults on OPT Family of I-LLM.

#Bits Method
OPT-6.7B OPT-13B OPT-30B

WikiText2 C4 WikiText2 C4 WikiText2 C4

FP16 - 10.86 11.74 10.13 11.20 9.56 10.69

W6A6

SmoothQuant 11.34 12.14 10.56 11.40 9.67 10.81
RPTQ 11.19 12.08 11.00 11.68 10.22 11.73

OmniQuant 10.96 11.81 10.21 11.27 9.62 10.76
I-LLM 10.94 11.82 10.17 11.90 9.72 10.83

W4A4

SmoothQuant 1.8e4 1.5e4 7.4e3 5.6e3 1.2e4 8.3e3
RPTQ 12.00 12.85 12.74 14.71 11.15 13.48

OmniQuant 12.24 13.56 11.65 13.46 10.60 11.90
I-LLM 12.20 12.21 11.45 13.41 10.53 11.66

I-LLM consistently surpasses pre-
vious methods across a diverse
array of LLM families (OPT
6.7B-30B, LLaMA-1 7B-30B,
LLaMA-2 7B-13B, LLaMA-3
8B) and varying levels of pre-
cision. Particularly notewor-
thy is its performance under the
W4A4 setting, where our pro-
posed method achieves perplexity
values that are consistently 10%
to 30% lower than those attained
by state-of-the-art methods.
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Table 2: Quantitative weight-activation quantization PPL(↓) results of I-LLM. We report WikiText2 and C4
perplexity of LLaMA Family in this table.

#Bits Method
LLaMA-7B LLaMA-13B LLaMA-30B LLaMA2-7B LLaMA2-13B LLaMA3-8b

WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4 WikiText2 C4

FP16 - 5.68 7.08 5.09 6.61 4.10 5.98 5.47 6.97 4.88 6.46 6.14 8.88

W6A6
SmoothQuant 6.03 7.47 5.42 6.97 4.55 6.34 6.2 7.76 5.18 6.76 7.08 10.16
OmniQuant 5.96 7.43 5.28 6.84 4.38 6.22 5.87 7.48 5.14 6.74 6.97 10.08

I-LLM 5.84 7.32 5.23 6.79 4.32 6.25 5.68 7.27 5.10 6.74 6.61 9.77

W4A4

SmoothQuant 22.25 32.32 40.05 47.18 192.40 122.38 83.12 77.27 35.88 43.19 418.88 312.86
OmniQuant 11.26 14.51 10.87 13.78 10.33 12.49 14.26 18.02 12.30 14.55 437.88 315.69
AffineQuant 10.28 13.64 10.32 13.44 9.35 11.58 12.69 15.76 11.45 13.97 - -

I-LLM 9.10 12.33 7.99 10.96 7.24 9.85 10.44 12.92 9.76 12.57 21.19 30.9

Table 3: The performance of various methods for 4-bit and 6-bit quantization on the LLaMA family
models across six zero-shot datasets.

LLaMA / Acc(↑) #Bits Method PIQA(↑) ARC-e(↑) ARC-c(↑) BoolQ(↑) HellaSwag(↑) Winogrande(↑) Avg.(↑)

LLaMA-7B

FP16 - 77.47 52.48 41.46 73.08 73.00 67.07 64.09
W6A6 SmoothQuant 76.75 51.64 39.88 71.75 71.67 65.03 62.81
W6A6 OmniQuant 77.09 51.89 40.87 72.53 71.61 65.03 63.17
W6A6 I-LLM 76.99 52.66 40.78 72.94 71.31 65.67 63.39
W4A4 SmoothQuant 49.80 30.40 25.80 49.10 27.40 48.00 38.41
W4A4 LLM-QAT 51.50 27.90 23.90 61.30 31.10 51.90 41.27
W4A4 LLM-QAT+SQ 55.90 35.50 26.40 62.40 47.80 50.60 46.43
W4A4 OS+ 62.73 39.98 30.29 60.21 44.39 52.96 48.43
W4A4 OmniQuant 66.15 45.20 31.14 63.51 56.44 53.43 52.65
W4A4 AffineQuant 69.37 42.55 31.91 63.73 57.65 55.33 53.42
W4A4 I-LLM 67.25 45.58 32.59 63.88 58.89 57.06 54.21

LLaMA-13B

FP16 - 79.10 59.89 44.45 68.01 76.21 70.31 66.33
W6A6 SmoothQuant 77.91 56.60 42.40 64.95 75.36 69.36 64.43
W6A6 OmniQuant 78.40 57.28 42.91 67.00 75.82 68.27 64.95
W6A6 I-LLM 77.48 56.94 44.03 64.92 75.24 69.14 64.63
W4A4 SmoothQuant 61.04 39.18 30.80 61.80 52.29 51.06 49.36
W4A4 OS+ 63.00 40.32 30.38 60.34 53.61 51.54 49.86
W4A4 OmniQuant 69.69 47.39 33.10 62.84 58.96 55.80 54.37
W4A4 AffineQuant 66.32 43.90 29.61 64.10 56.88 54.70 52.58
W4A4 I-LLM 67.95 48.15 34.47 62.29 63.13 59.98 56.00

LLaMA-30B

FP16 - 80.08 58.92 45.47 68.44 79.21 72.53 67.44
W6A6 SmoothQuant 77.14 57.61 42.91 65.56 78.07 69.92 65.20
W6A6 OmniQuant 78.40 57.28 42.91 67.00 75.82 68.27 64.95
W6A6 I-LLM 79.43 58.88 45.14 73.36 78.51 72.61 67.99
W4A4 SmoothQuant 58.65 35.53 27.73 60.42 35.56 48.06 44.83
W4A4 OS+ 67.63 46.17 34.40 60.70 54.32 52.64 52.62
W4A4 OmniQuant 71.21 49.45 34.47 65.33 64.65 59.19 56.63
W4A4 AffineQuant 66.32 43.90 29.61 64.10 56.88 54.70 52.58
W4A4 I-LLM 71.38 51.81 37.12 65.69 67.79 61.40 59.20

Zero-shot results on LLaMA. Table 3 presents our performance on six zero-shot tasks, employing
both W4A4 and W6A6 settings. Particularly striking is the performance of the LLaMA-30b model,
configured with full quantization at W6A6 precision, which achieves an average accuracy on these
tasks surpassing even that of the floating-point model. This achievement underscores the potential
of fully quantized integer-only methods in maintaining the generalization capabilities of LLMs to a
considerable degree.
Table 4: Performance comparison of LLaMA models using I-LLM and traditional methods. The
table presents the comparison between the full-precision (Fp16) and quantized (W4A4) methods,
including the proposed I-LLM W4A4 approach. I-LLM W4A4 achieves up to a 2.63x speedup and a
3.08x memory saving across different LLaMA model sizes (7B, 13B, 8B). All experiments used a
token length of 2048.

Model Method Running Memory Latency(ms) ↓ SpeedUp Memory Saving

LlaMA2-7b
Fp16 14.40G 649 - -

Traditional W4A4 5.36G 314 2.06x 2.69x
I-LLM W4A4 4.73G 260 2.49x 3.04x

LlaMA2-13b
Fp16 27.03G 1240 - -

W4A4 9.31G 592 2.09x 2.90x
I-LLM W4A4 8.76G 493 2.52x 3.08x

LlaMA3-8b
Fp16 16.22G 702 - -

W4A4 7.43G 316 2.22x 2.18
I-LLM W4A4 3.74G 267 2.63x 3.03x
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Latency and memory saving on LLaMA. To validate the versatility of I-LLM, we have executed
a series of tests to assess its performance enhancement on Nvidia A6000 GPU. In Table 4, we
analyze the latency and memory saving of I-LLM across various models. Under W4A4 settings,
I-LLM achieves a substantial 2.6x speed boost and a 3x memory saving compared to the fp16 model,
surpassesing other W4A4 methods in both speed and memory saving. Specifically, as shown in
Table 7, DI-MatMul outperforms conventional quantized GEMM in both weight-activation (1.2x
speedup) and activation-activation (2.1x speedup) scenarios, attributed to DI-MatMul’s efficient
integer arithmetic and its requant-only feature. Additionally, Table 8 shows that DI-ClippedSoftmax
is over 5x faster than the fp16 implementation across different input sizes, while DI-Norm also
exhibits lower latency. Overall, I-LLM significantly improves both speed and memory saving,
outperforming competing methods and demonstrating its superior performance.

4.2 ABLATION STUDY

Contribution of Fully-Smooth Block Reconstruction In Table 5, we meticulously assess the
impact of various PTQ methods on model accuracy. To maintain impartiality, this experiment
abstains from utilizing integer-only operators; instead, all quantization procedures are substituted
with pseudo-quantization. The nodes necessitating quantization align with those delineated in Fig
1. Notably, conventional non-integer-only methodologies often overlook the influence of activation
in non-linear layers, leading to compromised model accuracy during integer inference. However,
with the integration of FSBR, these activations are thoughtfully considered during PTQ, effectively
reinstating the model’s accuracy under full quantization.
Table 5: Impact of different PTQ methods
and integer-only operators on LLaMA-7B
PPL(↓) across WikiText2 and C4 datasets.

LLaMA-7B W4A4 W6A6

Method WikiText2 C4 WikiText2 C4

SmoothQuant 256.58 218.47 6.09 7.6
OmniQuant 122.18 183.2 5.99 7.57

FSBR 9.44 12.72 5.83 7.02
+DI-CLippedSoftamx 9.44 12.72 5.83 7.02

+DI-Swiglu 9.12 12.38 5.83 7.04
+DI-Norm 9.52 12.63 5.85 7.35

Table 6: Effect of clipped value in DI-ClippedSoftmax.

LLaMA-7B W4A4 W6A6

Clipped Value c WikiText2 C4 WikiText2 C4

– 7360945.00 1998371.38 60335.22 47103.44
20 9.15 12.39 5.86 7.36
17 9.19 12.38 5.86 7.37
15 9.16 12.36 5.85 7.36
12 9.19 12.35 5.86 7.36
10 9.23 12.45 5.89 7.42

Impact of Integer-Only Operators. As shown in Table 5, we intricately outline the precise impact
of each integer-only operator on the holistic accuracy of the model. Additionally, we ablate the
influence of the clipping coefficient c in Eq 11 within DI-ClippedSoftmax on model accuracy, as
depicted in Table 6. Notably, owing to residual connections, the quantization of DI-Norm engenders a
discernible decrement in performance, a phenomenon meticulously anticipated in our comprehensive
analysis. In Table 5, we elaborate on the influence of each integer-only operator on the overall model
accuracy. Specifically, Table 6 illustrates the impact of the clipping coefficient c in the Eq 11 from
DI-ClippedSoftmax on model accuracy. It is worth noting that the quantization of DI-Norm leads to a
performance decline, primarily due to outliers in the residual connections.

5 CONCLUSION

In this paper, we present I-LLM, a fully-quantized integer-only PTQ framework for LLMs. We
address the challenge of fluctuating activations in both linear and non-linear operations by proposing
Fully-Smooth Block-Reconstruction (FSBR) to harmonize inter-channel variations and Dynamic
Integer-only MatMul (DI-MatMul) to handle inter-token variations. Additionally, we design DI-
ClippedSoftmax, DI-Exp, and DI-Norm as lightweight integer-only operators to replace compu-
tationally intensive floating-point operations. Experiments demonstrate that I-LLM outperforms
simulated quantization methods and achieves comparable accuracy to the floating-point baseline.
Notably, I-LLM operates effectively in a low-bit quantization setting with minimal accuracy loss,
thereby bridging the gap between low-precision integer-only quantization and full-precision LLMs.
Moreover, experiments demonstrate that I-LLM not only outperforms simulated quantization methods
but also achieves comparable accuracy to the floating-point baseline. In practical scenarios, I-LLM
benefits from the performance gains of low-precision computation, while its consistent operation at
low bit-width significantly reduces memory utilization. Consequently, this work not only accelerates
LLM inference on server-side deployments but also paves the way for efficient LLM deployment on
edge devices without floating-point capabilities.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Michael Boratko, Harshit Padigela, Divyendra Mikkilineni, Pritish Yuvraj, Rajarshi Das, Andrew
McCallum, Maria Chang, Achille Fokoue-Nkoutche, Pavan Kapanipathi, Nicholas Mattei, et al.
A systematic classification of knowledge, reasoning, and context within the arc dataset. arXiv
preprint arXiv:1806.00358, 2018.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher De Sa. Quip: 2-bit quantization of
large language models with guarantees. arXiv preprint arXiv:2307.13304, 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini, Florent Rotenberg, and
Luca Benini. Gap-8: A risc-v soc for ai at the edge of the iot. In 2018 IEEE 29th International
Conference on Application-specific Systems, Architectures and Processors (ASAP), pp. 1–4. IEEE,
2018.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Google. Edge tpu, 2024. URL https://cloud.google.com/edge-tpu.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. I-bert: Integer-
only bert quantization. In International conference on machine learning, pp. 5506–5518. PMLR,
2021.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Lessons
learned from activation outliers for weight quantization in large language models. arXiv preprint
arXiv:2306.02272, 2023.

Liang Li, Qingyuan Li, Bo Zhang, and Xiangxiang Chu. Norm tweaking: High-performance low-bit
quantization of large language models. Association for the Advancement of Artificial Intelligence,
2023a.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. arXiv preprint
arXiv:2310.08659, 2023b.

11

https://cloud.google.com/edge-tpu


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. In International
Conference on Learning Representations (ICLR), 2021.

Zhikai Li and Qingyi Gu. I-vit: integer-only quantization for efficient vision transformer inference.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17065–17075,
2023.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Post-training quantiza-
tion for fully quantized vision transformer. In Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence, IJCAI-22, pp. 1173–1179, 2022.

Ye Lin, Yanyang Li, Tengbo Liu, Tong Xiao, Tongran Liu, and Jingbo Zhu. Towards fully 8-bit
integer inference for the transformer model. In Proceedings of the Twenty-Ninth International
Conference on International Joint Conferences on Artificial Intelligence, pp. 3759–3765, 2021.

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. Pd-quant:
Post-training quantization based on prediction difference metric. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24427–24437, 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Haotong Qin, Yifu Ding, Mingyuan Zhang, Qinghua Yan, Aishan Liu, Qingqing Dang, Ziwei Liu,
and Xianglong Liu. Bibert: Accurate fully binarized bert. arXiv preprint arXiv:2203.06390, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 2021.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large language
models. International Conference on Learning Representations, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. CoRR, abs/2308.13137, 2023.

Jacob R Stevens, Rangharajan Venkatesan, Steve Dai, Brucek Khailany, and Anand Raghunathan.
Softermax: Hardware/software co-design of an efficient softmax for transformers. In 2021 58th
ACM/IEEE Design Automation Conference (DAC), pp. 469–474, 2021.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly dropping
quantization for extremely low-bit post-training quantization. In International Conference on
Learning Representations (ICLR), 2022a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei
Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language
models. Advances in Neural Information Processing Systems, 2022b.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and
Xianglong Liu. Outlier suppression+: Accurate quantization of large language models by equivalent
and optimal shifting and scaling. arXiv preprint arXiv:2304.09145, 2023.

WIKIPEDIA. Arm cortex-m, 2024. URL https://en.wikipedia.org/wiki/ARM_
Cortex-M.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization
for deep learning inference: Principles and empirical evaluation. arXiv preprint arXiv:2004.09602,
2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438,
2022.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization.
In International Conference on Machine Learning, pp. 11875–11886. PMLR, 2021.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong He.
Zeroquant: Efficient and affordable post-training quantization for large-scale transformers. arXiv
preprint arXiv:2206.01861, 2022.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun,
Qiang Wu, Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for
large language models. arXiv preprint arXiv:2304.01089, 2023a.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd: Activation-
aware singular value decomposition for compressing large language models. arXiv preprint
arXiv:2312.05821, 2023b.

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Sifan Zhou, Liang Li, Xinyu Zhang, Bo Zhang, Shipeng Bai, Miao Sun, Ziyu Zhao, Xiaobo Lu,
and Xiangxiang Chu. Lidar-ptq: Post-training quantization for point cloud 3d object detection.
International Conference on Learning Representations, 2024.

Danyang Zhu, Siyuan Lu, Meiqi Wang, Jun Lin, and Zhongfeng Wang. Efficient precision-adjustable
architecture for softmax function in deep learning. IEEE Transactions on Circuits and Systems II:
Express Briefs, 67(12):3382–3386, 2020.

13

https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/ARM_Cortex-M


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 QUANTIZATION PRELIMINARIES

Quantization & Dequantization. Quantization typically refers to mapping a floating-point number
to a discrete interval with integer number. Here, we only consider uniform quantization. The
quantization process can be expressed as follows:

XI = clamp
(⌊

X

s

⌉
+ zpI , 0, 2n

I

− 1

)
(14)

s =
xmax − xmin

2nI − 1
(15)

zpI =

⌊
−xmin

s

⌉
(16)

X ′ = (XI − zpI) · s (17)

where X is the floating-point tensor, XI is its quantized counterpart and X′ is the dequantized resuls
of XI . Here, nI represents the number of bits (e.g., 8). s is the quantization step size, determined by
xmin, xmax, and nI .clamp represents truncation function. The choice of s greatly affects the accuracy
of the quantized model. We can obtain s from the activations of some samples, which is called static
quantization. Alternatively, we can derive it from runtime statistics, known as dynamic quantization.
Quantization can also be distinguished by its granularity into per-channel quantization and per-token
quantization (Yao et al., 2022).

A.2 IMPLEMENTATION DETAILS OF FULLY-SMOOTH BLOCK RECONSTRUCTION

To be more specific, the core idea of FSBR is to reduce quantization errors and enhance the overall
performance of the model by smoothing the distribution of activations and weights across different
computational units, such as linear operations and nonlinear activation functions. In contrast to
existing methods, such as SmoothQuant and OmniQuant, FSBR focuses on all computational units
and smooths all suitable activation-activation and activation-weight pairs.

Additionally, FSBR introduces unique contributions that are not present in existing state-of-the-art
(SOTA) methods, including:

• Linear Smoothing:
– GQA: FSBR smooths the Value Projection and Output Projection layers, as shown in

the third method in Figure 5. Specifically, head-wise smoothing is applied between the
Value Projection and Output Projection layers. For each head, the interaction between
the Value Projection and Output Projection layers is given by

Pxh
vW

h
v W

h
o

which can be rewritten as
Pxh

vW
h
v S

h
ovS

−1h

ov W h
o

Here, P represents the attention matrix, and Sov is the learnable scaling matrix. This
approach simultaneously smooths the channel-wise differences between the output
activations of the Value Projection and the input activations of the Output Projection.

– Up and Down Projection Smoothing: As shown in the third method in Figure 5,
FSBR also learns smoothing coefficients between the Up and Down projections. This
smoothing is based on the invariance property

x1W1 ⊗ x2W2 = x1W1S ⊗ x2W2S
−1

This ensures smoothness in the channel-wise differences between the output activations
of the Up Projection and the input activations of the Down Projection.

• Nonlinear Activation Smoothing:

14
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– SiLU Activation Smoothing: FSBR introduces the NonLinear Act-Smooth method,
which smooths the channel-wise differences between two inputs, as depicted in the
fourth method in Figure 5. Specifically, we introduce a smoothing parameter s to
reconstruct the two inputs x1 and x2 into a form that is more suitable for quantization
(see Equation 2). This innovation significantly reduces quantization errors in the
SwiGLU activation values (see Figure 4).

• Softmax Input Activation Smoothing: In Softmax, the outlier problem in activation values
is particularly noticeable. FSBR mitigates this by dynamically truncating the input range,
keeping the Softmax input within (−c, 0) (see Equation 11). This adjustment limits the
quantization range and reduces the quantization errors in the Softmax input.

A.3 DYNAMIC INTERGER-ONLY ALGORITHMS

Algorithm 1 Dynamic Integer-only Exp: DI-Exp
Input: Integer input xI , Integer input scale factor mI

x and Integer shift factor kIx.
Constant: Integer mI

e and kIe that satisfy mI
e >> kIe = log2e. Integer bIy represents the bitwidth of

output, e.g., bIy = 16

Output: The Integer result yI of the exponential function amplified by 2b
I

1: nI = kIe + kIx
2: xI = −(xI ·mI

x ·mI
e)

3: pI = xI ≫ nI

4: rI = xI − pI ≪ nI

5: yI = (1 ≪ nI)− (rI ≫ 1)
6: yI = yI ≫ (pI − bIy)

7: return yI

Algorithm 2 Dynamic Integer-only Softmax : DI-Softmax
Input: Integer input xI , Integer input scale factor mI

x, Integer shift factor kIx.
Output: Integer output yI , Integer output scale factor mI

y and Integer shift factor kIy .

1: xI
∆ = xI − max(xI)

2: eI∆ = DI-Exp(xI
∆,m

I
x, k

I
x)

3: eIsum =
∑

eI∆

4: oI = ⌊
eI∆ ≪ bIo
eIsum

⌋

5: return oI , 1, kIy

Algorithm 3 Dynamic Integer-only SwiGLU : DI-SwiGLU
Input: Integer input xI

gate,x
I
up, Integer input scale factor mI

gate,m
I
up, Integer shift factor kIgate, k

I
out,

smooth factor αsmooth and output bit-precision pIout.
Output: Integer output yI

out, Integer output scale factor mI
out and Integer shift factor kIout.

1: xI
smoothed_gate = xI

gate/αsmooth

2: xI
∆ = xI

smooth_gate −max(xI
smoothed_gate)

3: ExpI
∆ = DI-Exp(xI

∆,m
I
gate, k

I
gate)

4: ExpI
−max = DI-Exp(−max(xI

smoothed_gate),m
I
gate, k

I
gate)

5: yI
out = xI

gate·IntDiv(ExpI
∆,ExpI

∆ +ExpI
−max, p

I
out)·xI

up

6: mI
out = mI

gate·mI
up

7: kIout = kIgate + kIup + pIout − 1

8: return yI
out,m

I
out, k

I
out
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Algorithm 4 Dynamic Integer-only RMSnorm : DI-RMSnorm
Input: Integer input xI

in, input per-channel Integer scale factor mI
in, input per-channel Integer shift

factor kin, weights of RMSnorm γγγ and output bit-precision pIout.
Output: Integer output yI

out, and Output scale factor Sout.
1: function I-SQRT(Iin)
2: v = 15
3: n = 1
4: b = 0 x 8000
5: while b do
6: temp = ((n << 1) + b) << v −−
7: if Iin ≥ temp then
8: n+ = b
9: Iin− = temp

10: end if
11: b >>= 1
12: end while
13: Iout = n
14: return Iout
15: end function
16:
17: function DI-RMSNORM(xI

in,m
I
in,k

I
in, γγγ, p

I
out)

18: shiftI = kI
in −min(kI

in)

19: mI = mI
in ≪ shiftI

20: mmin = min(m)
21: s, n = shape(xI

in)
22: αααI = round(mI ·M/mmin)
23: varI = (sum(xI

in ∗mI))2

24: stdI = I-SQRT(varI)
25: dim_sqrtI = I-SQRT(n)
26: yI

out = IntDiv(xI
in·N ·dim_sqrtI , stdI , pIout)

27: Sout = mI · αααI · γγγ/(mmin · N)
28: return yI

out,Sout

29: end function
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A.4 THE OVERHEAD AND EFFICIENCY OF DI-MATMUL

The DI-MatMul has lower overhead and higher execution efficiency compared to conventional
GEMM quantization. As detailed in Section 3.3 of paper, we utilize two 8-bit scalars, mI and kI

to represent the quantization scale for a batch of activations. This approach incurs no additional
storage overhead compared to the previous method using FP16 to store the quantization scale. After
obtaining the intermediate results from integer-only matrix operations, I-LLM only requires a small
amount of scalar integer operations and one vector-scalar multiplication, as specified in Formulas 6,
7, and 8. The output of DI-Matmul is composed of a low-bit-width integer matrix and three 8-bit
scalars.

It should be noted that conventional quantization methods still require a large number of floating-
point computations during inference. In contrast, all computations in DI-MatMul are integer-based,
effectively leveraging efficient integer arithmetic units. To be more specific:

• Weight-only quantization demands an online dequantization step for the quantized weights,
involving floating-point multiplication as a precursor to the subsequent floating-point General
Matrix Multiply (GEMM) operations.

• The joint quantization of weights and activations often incurs the necessity for online
quantization and dequantization procedures specifically for the activations. More importantly,
the output of traditional quantization methods is typically rendered in floating-point format
(e.g., FP16), while the output of DI-MatMul is in a low-bit-width integer format. This
paradigm not only conserves considerable memory and bandwidth but also reduces latency.
For instance, compared to FP16 format, employing 4-bit quantization for feature-map and
KV-cache results in a substantial reduction of memory and bandwidth usage by 75

• As shown in Table 7, DI-MatMul outperforms conventional quantized GEMM in both weight-
activation (1.2x speedup) and activation-activation (2.1x speedup) scenarios, attributed to
DI-MatMul’s efficient integer arithmetic and its requant-only feature.

Table 7: The latency comparison of Quantized-Gemm(QGemm) and DI-MatMul in both weight-
activation and activation-activation scenarios. Both QGemm and DI-MatMul are implemented based
on NVIDIA Cutlass.

Input Size QGemm(4bit) DI-MatMul(4bit) Speedup

Act-Act

1 x 4096 1.14ms 0.45ms 2.53x
2048 x 4096 1.71ms 0.69ms 2.48x

1 x 8192 3.73ms 1.54ms 2.42x
4096 x 8192 5.92ms 2.79ms 2.12x
8192 x 8192 8.21ms 3.83ms 2.14x

Act-Weight
1 x 8192 0.29ms 0.21ms 1.38x

4096 x 8192 2.08ms 1.75ms 1.18x
8192 x 8192 3.91ms 3.07ms 1.27x

A.5 FULL RESULTS

A.5.1 I-LLM IN DIFFERENT QUANTIZATION CONFIGURATIONS

I-LLM is a framework designed for fully integer quantization of large language models. However,
FSBR demonstrates significant performance improvements across various quantization configura-
tions. In Table 9, we present the results for different settings, including W4A16 and W4A8. The
experimental results clearly demonstrate the effectiveness of FSBR in restoring the quantization
accuracy of the model.

A.5.2 MORE COMPARISONS WITH OTHER METHODS

It is important to note that conventional quantization methods (Xiao et al., 2022; Shao et al., 2023),still
rely on a significant amount of floating-point computations during inference. Furthermore, while
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Table 8: Latency comparison of different Softmax or Norm implementation methods. FP16 represents
the native implementation in Torch. I-LLM achieves a twofold speedup for Softmax and accelerates
Norm, benefiting from efficient integer computation and reduced memory transfer overhead.

Input Size FP Latency I-LLM Latency SpeedUp

Softmax

1 x 4096 1.89ms 0.28ms 6.75x
2048 x 4096 1.91ms 0.33ms 5.79x
4096 x 4096 1.99ms 0.41ms 4.85x

131072 x 4096 10.75ms 5.90ms 1.82x

RMSNorm

1 x 4096 0.35ms 0.35ms 1.01x
2048 x 4096 0.23ms 0.19ms 1.21x
4096 x 4096 0.36ms 0.23ms 1.54x

1 x 8192 0.08ms 0.07ms 1.08x
4096 x 8192 0.67ms 0.40ms 1.68x
8192 x 8192 3.18ms 2.97ms 1.07x

Table 9: Accuracy performance of the Llama2 model under different quantization configurations
using the I-LLM method.

Quantization Setting Wikitext2 PPL C4 PPL
W16A16 5.47 6.97
W4A16 5.66 7.24
W6A6 5.68 7.27
W4A8 5.69 7.28
W4A4 9.60 12.71
W3A8 11.29 18.02
W2A8 25.33 35.07

some existing methods have achieved INT4 precision with minimal accuracy loss, such as AWQ (Lin
et al., 2023), these approaches primarily focus on weight-only quantization. A crucial distinction
is that in weight-only quantization methods, both the input and output activations are typically
represented in floating-point format (e.g., FP16). In contrast, I-LLM applies low-bit quantization
to the inputs and outputs of all operators throughout the entire dataflow, including GEMM (e.g.,
FC, Matmul), Norm, Softmax, SiLU, and Add. Therefore, direct comparisons between I-LLM
and weight-only quantization methods are not entirely fair, as I-LLM faces significantly greater
challenges in the quantization process. Despite this, I-LLM has achieved notable, and in some
cases, even superior results compared to these methods, as demonstrated in Tab32 10. In addition to
traditional quantization, we also report comparative results with the low-bit floating-point method,
LLM-FP4 (Liu et al., 2023b), as shown in Table 11.

Table 10: Comparison of perplexity between I-LLM and AWQ (Lin et al., 2023) methods on
WikiText2. Note that AWQ is a weight-only quantizationmethod that only quantizes the weights of
linear layers, while I-LLM considers quantization of all weights and activations in the network.

QuantSetting Method LLAMA3 8B LLAMA2 7B LLAMA2 13B
- FP16 6.14 5.47 4.95

W4 only AWQ 7.04 6.02 5.06
W6 only AWQ 6.21 5.49 4.89

W6A6
AWQ 6.90 5.98 5.19

I-LLM 6.61 5.68 5.10

W4A4
AWQ 125.74 8248 133.62

I-LLM 21.19 10.44 9.76
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Table 11: Comparison of I-LLM with current state-of-the-art low-bit floating-point quantization
methods on six zero-shot tasks.Note that LLM-FP4 only quantizes the weights and activations of
linear layer.

Quant Setting PIQA ARC-e Arc-c BoolQ HellaSwag Winogrande Avg

llama-7b
FP16 - 77.47 52.48 41.46 73.08 73.00 67.07 64.10

LLM-FP4 W4A4 71.40 63.80 31.50 62.10 45.70 62.60 56.00
I-LLM W4A4 67.00 47.35 32.94 63.88 58.49 58.80 54.74

llama-13b
FP16 - 79.10 59.89 44.45 68.01 76.21 70.31 66.33

LLM-FP4 W4A4 72.20 69.10 37.30 69.30 50.70 64.10 60.60
I-LLM W4A4 67.95 48.15 34.47 62.29 63.13 59.98 56.00

A.6 LIMITATION AND DISCUSSION

We have shown evidence that our I-LLM can replicate float-point performance with an integer-only
module with 8-bit or lower bits. A limitation is that we only focused on natural language models,
however, it would be interesting to explore how I-LLM performs in computer vision tasks. We leave
this for future work.
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A.7 VISIBLE RESULTS

In this section, we provide a comprehensive presentation of our results across various datasets to
complement the main paper. Specifically, the results include:

1. Figure 6 illustrates the activation distributions of the QKV Projection and Up Projection
in LLaMA-2-7B. It is evident that the disparities between activation channels have been
mitigated after training with FSBR.

2. Large language models exhibit significant outliers at the token level. Figure 7 illustrates
token-level outliers in the input down_proj of the first layer of the LLaMA-2-7B and
LLaMA-3-8B models. These outliers arise from various factors, with special positions often
triggering their occurrence. For instance, as shown in Figure 7, the first token (token 0)
frequently exhibits anomalous behavior. Additionally, as shown in Figure 8 certain special
tokens or attention distributions can lead to severe token-level outliers, where extreme
outliers for a small subset of tokens far exceed the variability across channels.

Figure 6: The activation distribution of FFN and Attention of LLaMA-2-7B before and after the
FSBR.
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Figure 7: 3D Visualization in activations of
LLaMA2 7b(up) LLaMA3 8b(down) model
across the token dimensions.

Figure 8: 2D Visualization in activations of
LLaMA2 7b(up) LLaMA3 8b(down) model
across the token dimensions.
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