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Abstract
Contrary to traditional deterministic notions of
algorithmic fairness, this paper argues that fairly
allocating scarce resources using machine learn-
ing often requires randomness. We address
why, when, and how to randomize by proposing
stochastic procedures that more adequately ac-
count for all of the claims that individuals have to
allocations of social goods or opportunities.

1. Introduction
Sometimes resources or opportunities are scarce: jobs, wel-
fare benefits, or life-saving medicines cannot be divided
among all those who deserve them. Worse yet, it is often
unclear which individuals are most deserving. Perhaps they
all are. Decision-makers hope to use algorithmic systems
to allocate scarce resources and goods fairly. But without
careful attention, it is easy for algorithms to replicate or
amplify the biases and inequalities in their training data.

The fair machine learning community has developed sophis-
ticated theoretical and formal tools to reduce algorithmic
bias, increase fairness, and promote justice. However, these
tools are almost exclusively deterministic. For example,
employers with more qualified applicants than job openings
often rely on hiring algorithms to screen applicants for in-
terviews (Raghavan et al., 2020). These algorithms assign
a score or ranking to candidates. Employers then threshold
these scores or rankings to deterministically pick candidates
to interview. Similarly, healthcare providers often have a
limited supply of life-saving medical resources such as ven-
tilators, therapeutics, or organs. Patients are often triaged
based on algorithms that predict their survival rate or life
expectancy post-treatment (Chin et al., 2023). Most existing
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work on algorithmic fairness relies on deterministic algo-
rithms to incorporate fairness. Once algorithmic bias has
been reduced to the extent possible, the algorithm allocates
resources to the top candidate(s). If Alice is the top-ranked
candidate for every job or has the most expected quality-
adjusted life-years, she should deterministically receive the
job offer or organ every time.

Recent works on arbitrariness and fairness suggest that even
counterfactual non-determinism can be unfair. If there exist
many possible models with similar predictive performance
but slightly different decisions on individuals, a state of
affairs called “predictive multiplicity” (Marx et al., 2020)
or “model multiplicity” (Black et al., 2022), it is unfair to
naively pick one of the models for our decision-making al-
gorithm (Hsu & Calmon, 2022). Instead, we should reduce
multiplicity by altering the training process to reduce the
variance that leads to diverging predictions (Cooper et al.,
2023), especially on under-represented individuals (Ganesh
et al., 2023), iterate until predictions agree about individu-
als (Roth et al., 2023) or even abstain from making predic-
tions on some people altogether (Cooper et al., 2023).

While sharing the goal of reducing bias and increasing
fairness, this work argues that the fair machine learning
community has underutilized non-determinism and random-
ization as tools to achieve fairness. In some settings that
involve algorithmic decision-making, we contend that non-
determinism is required for fair outcomes. In what follows,
we first motivate why and when fairness requires randomiza-
tion. We adopt philosopher John Broome’s concept of the
value of lotteries in fairness to argue that randomization is
needed in scarce resource settings to respect the claims that
individuals have to resources, even if they do not receive
them, by giving each person with a claim a chance.

Second, we argue that because algorithmic predictions in-
volve uncertainty, it is unfair to those on whom we make
mistakes to deterministically commit to those mistakes. This
is especially true in multi-shot contexts in which each indi-
vidual is affected by multiple decision-makers or a series
of decisions over time. Across an ecosystem of multiple
decision-makers, consistently allocating scarce resources
and goods to the same candidate(s) can be sub-optimal, as
it prevents the decision-makers from learning (Kleinberg
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& Raghavan, 2021; Peng & Garg, 2023), or unfair, as it
means that many decision-makers reject or make mistakes
on the same individuals (Ajunwa, 2021; Creel & Hellman,
2022; Bommasani et al., 2022; Toups et al., 2023; Jain et al.,
2024). And when individuals receive a series of decisions
over time, biased early allocations often affect the data
available for the next decision-maker. An initial negative
judgement leads to a series of further negative judgements,
forming a “patterned inequality” or compounding injus-
tice (Eidelson, 2021; Hellman, 2018). For these reasons,
deterministic judgements under uncertainty can reinforce
structural injustices. Therefore, we take the position that
many scarce resource allocations that rely on machine
learning1 should be randomized.

Having motivated randomizing allocations (section 3), we
then formalize how to randomize to bring about more fair
outcomes. We consider two settings: when claims are
known (subsection 4.1), and when claims are uncertain
(subsection 4.2). Finally, we discuss why existing determin-
istic methods may not be enough to achieve both fair and
efficient allocations (section 5).

2. Related Work
The idea that randomizing decisions might promote fairness
when resources are scarce is not new. Lotteries have been
used to admit students to some public schools (Hastings
et al., 2006) and medical schools (Cohen-Schotanus et al.,
2006). In healthcare, lotteries were also used to allocate
COVID-19 treatments (McCreary et al., 2023).

We build on work that extends this concept to machine
learning and advocates for using randomness to increase
fairness in algorithmic decision-making. For example, con-
cerned with decision quality and the loss of diversity in
the decision-making process that comes from relying on
machine learning, Grgić-Hlača et al. (2017) propose ran-
domizing among models in classifier ensembles obtained by
retraining multiple times. We second their concern, connect-
ing it to the growing literature on the homogenization of out-
comes that results from automated decision-making (Klein-
berg & Raghavan, 2021; Ajunwa, 2021; Creel & Hellman,
2022; Bommasani et al., 2022; Toups et al., 2023; Jain et al.,
2024) and from the use of foundation models (Bommasani
et al., 2021). We extend the idea of randomizing among
models with similar performance to the setting of fair allo-
cations based on claims.

Agarwal & Deshpande (2022) are concerned with the loss
of accuracy that results when we impose fairness constraints
and introduce a randomized framework for classification
to address this concern. We follow them in demonstrating

1We consider any data-driven algorithmic decision-making process
to be under the umbrella of the term “machine learning”.

that many randomization procedures have minimal impact
on accuracy while improving fairness. Furthermore, Singh
et al. (2021) argue that evaluating candidate merit without
accounting for uncertainty is unfair in rankings. To address
this unfairness, they introduce the notion of a “posterior
merit distribution,” suggesting that goods should be allo-
cated based on the probability that an individual is among
the top k candidates. We agree that fairness sometimes re-
quires quantifying uncertainty and extend the argument to
specify when and how to incorporate randomness based on
uncertainty.

The reinforcement learning literature also considers random-
ization under uncertainty in multi-shot contexts. However,
these works focus on stochastic methods that can help a sin-
gle decision-maker learn and improve their own utility over
time (Agrawal & Goyal, 2012; Joseph et al., 2016b; Li et al.,
2020). We consider the broader multi-shot context that may
involve multiple decision-makers making any number of
allocations, and center fairness and individual claims as our
motivation for randomness. Past work also centers individ-
ual fairness under uncertainty (Joseph et al., 2016a) and the
distribution of errors across individuals (Sharifi-Malvajerdi
et al., 2019).

3. Why and When To Randomize Allocations
In this section, we motivate randomization by arguing that
(weighted) lotteries better achieve fairness than determin-
istic allocation algorithms in certain settings. We give two
reasons. First, relying on John Broome’s characterization
of fairness (Broome, 1990), we show that when more indi-
viduals deserve a good than can receive it, the best way to
respect each person’s claim to that good is to give them a
chance to receive it by holding a lottery.

Second, deterministic decision-making over-represents the
certainty of our predictions. Many ML-based social allo-
cation problems have uncertain parameters. We cannot be
sure that we have formulated the problem-to-be-solved well,
that we have chosen appropriate variables or parameters, or
that our data is accurate (Passi & Barocas, 2019). Indeed,
in many cases we suspect that our problem formulation,
variable choice, and data gathering all may have been sys-
tematically skewed by social conditions. Our uncertainty
leads us to underestimate the claims of some to the good
and overestimate the claims of others, which has moral im-
plications in situations when not all claims can be satisfied.

3.1. Fairness and Individual Claims

To motivate why lotteries are sometimes needed to ensure
fairness, we turn to John Broome’s influential theory of
fairness (Broome, 1990). Broome’s theory is based on the
moral concept of a “claim.” An individual has a claim to
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a good, resource, or opportunity when she is owed it for
reasons of fairness (Broome, 1990, p.96). For example, if a
kidney is being allocated and there are two individuals who
have been on the waiting list for an equal amount of time
and are in all other respects equivalent, both individuals
have a claim on the kidney.

Some claims stem from desert: the person deserves the
good (Broome, 1990, p.93). All claimants on kidneys de-
serve the chance at life, so all have a claim, even if there is
disagreement about what factors attenuate the strength of
their claims. While claims based on a right to life always
exist, other claims only arise when a good is being allo-
cated (Broome, 1990, p.97). The best candidate for a job
does not have a claim to work at a company with no open-
ings, but once there is an opening she may have stronger
claims than others based on her merit. Desert, need, and
merit can all ground claims.

Claims are different from both the more familiar utility
calculations and side-constraints such as rights. Utilities
can be weighed against each other: a kidney is allocated
according to utilitarian principles such that its allocation
produces the greatest overall benefit. Once the allocation is
calculated, nothing remains to be said about the individual
who did not receive a kidney. Unlike utilities, however,
claims linger. The otherwise-identical individual who did
not receive a kidney still had a claim to that kidney, and she
was not fairly treated if her claims was simply “overridden”
by a deterministic allocation (Broome, 1990, p.98). Claims
are also unlike side-constraints such as rights. If someone
has a right to a good, that right cannot be discharged or
outweighed: it “directly ... determines what ought to be
done” (Broome, 1990, p.91). Rights are not comparative
between individuals: they simply mandate what must be
done to respect the right.

Claims, by contrast, are essentially comparative, as they are
a matter of fairness. If both people in need of a kidney are
equal in all morally relevant senses, then they have equally
strong claims on the kidney. It would be unfair to determin-
istically allocate the kidney to one person because doing so
would override or ignore the equivalent claim that the other
patient has on the same kidney (Broome, 1990, p.95). But
what if Person a has a slightly stronger claim than Person b?
Broome argues that if “fairness requires everyone to have
an equal chance when their claims are exactly equal, then
it is implausible it should require some people to have no
chance at all when their claims fall only a little below equal-
ity” (Broome, 1990, p.99). In other words, b’s claim does
not go away just because a’s claim is marginally stronger.
This motivates Broome’s proposal to allocate scarce and
indivisible goods using a lottery weighted by the strength of
claims. A weighted lottery allows stronger claims to have a
proportionately stronger chance while not overriding weak

claims. By giving everyone with a claim a chance, lotteries
and other randomization techniques give a “surrogate sat-
isfaction” to the claimants – the next best thing to actually
receiving the good (Broome, 1990, p.99). In summary, ac-
cording to Broome, the following two conditions should be
met in order for an allocation to be considered fair:

BF.1 The chance of a positive outcome should be greater for
those with stronger claims.

BF.2 Stronger claims should not completely override weaker
claims.

3.2. Multi-Shot Contexts: Systemic Denial of Claims

The perspective of individual fairness concerns whether
each allocation respects individual claims, but we should
also consider whether the structure of allocations as a whole
is fair. Concerns of structural injustice arise when certain
individuals find their claims repeatedly denied, whether by
multiple decision-makers at the same time (systemic exclu-
sion) or by multiple decision-makers across time (patterned
inequality). In conditions of systemic exclusion, decision-
makers across an ecosystem are correlated in their decisions
such that they make mistakes on the same people (Creel
& Hellman, 2022; Bommasani et al., 2022; Toups et al.,
2023). For example, different companies attempting to
hire candidates in the same sector often rely on the same
third-party vendors for their automated hiring tools. In fact,
over 60% of Fortune 100 companies use the same vendor
(HireVue) (Nawrat, 2023). Relying on the same vendor can
lead to identical outcomes if different companies use the
same underlying model to rank candidates, or correlated
outcomes if each company personalizes their model. In
either case, correlation between decision-makers can lead
to the same individuals being “algorithmically blackballed”
and excluded from opportunities (Ajunwa, 2021, 681).

Patterned inequality (Eidelson, 2021) is another form of
systemic injustice. It occurs when receiving one allocation
increases your likelihood of receiving future allocations
(and likely also your claims to those allocations) such that
clear patterns in social inequality emerge as a result of initial
conditions. This situation is also referred to as the “Matthew
effect,” in which the rich (or otherwise advantaged) get
richer over time due to their starting condition of advan-
tage. Patterned inequality is visible in domains such as
healthcare, where allocations of life-saving medical services
are often conditioned on projections of life expectancy or
evaluations of current health. Both of these, however, are
influenced by past access to treatment and health insurance,
for which there are well-documented inequalities between
socioeconomic groups (Schmidt et al., 2021). Algorithmic
decision-making can exacerbate these inequalities by rec-
ognizing the current gap in health without recognizing the
unequal starting conditions of health, wealth, and stability
that gave rise to them (Eidelson, 2021; Hellman, 2018; Jain
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et al., 2024). Though both these forms of structural injustice
involve a myriad of dynamics, we argue that randomization
can help to address both concerns.

3.3. Inherent Uncertainties in Predicting Claims

While Broome argues that a lottery weighted on the strength
of claims is fair, he acknowledges that it is not always
clear which particular reasons are claims and which are
not (Broome, 1990, p.93). This makes it difficult to com-
pare the strength of claims, leading some to reject the
claims framework altogether (Kirkpatrick & Eastwood,
2015). However, this so-called “calculation objection” ap-
plies to any problem formulation for allocating resources,
including utilitarian and rights-based frameworks (Passi &
Barocas, 2019; Mitchell et al., 2021). Given the inherent
uncertainty in any problem formulation, deterministic al-
locations on any basis will be unfair to some individuals,
especially if we acknowledge that claims exist and some
will not have been fairly calculated.

Let us assume there exists some problem formulation for
the strength of claims (e.g. worker productivity in hiring,
life-expectancy in healthcare). Many formulations require
certainty about what an individual will do (e.g. individual
risk). However, individual future outcomes are fundamen-
tally unknowable, especially since the events in question
are typically realized only once (Dawid, 2017; Dwork et al.,
2021; Roth et al., 2023). Instead, decision-makers often
must estimate what an individual is likely to do based on
their features and data about what other people with similar
features have done in the past. For instance, in the kidney
allocation, we might determine that a patient’s claim should
be based on how much longer they are expected to live. If
we have data on prior patients, we could develop an algo-
rithm to gauge the strength of a patient’s claim based on
features such as their age, medical history, and lifestyle.

When posed as a supervised learning problem, the choice of
features, training data, and model class each contribute addi-
tional uncertainty to our estimates of the strength of claims.
First, a person’s features may or may not be predictive of
their claim or even measurable. In many social settings, the
vast majority of people remain inseparable on the basis of
the features that can be measured (also referred to as there
being no “margin”). For example, in the canonical New
Adult Census dataset, 95% of individuals have feature repre-
sentations for which there exist examples in both prediction
classes of high and low income. An individual could have a
strong claim that is predicted to be weak because there were
only a few examples of similar individuals in the dataset
and they all happened to have weak claims. Deterministi-
cally picking the strongest predicted claims may constitute
a kind of stereotyping in this situation. Likewise, people
may “look risky” because the features measured in the data

are not adequate to evaluate their claims. In both cases,
people are systemically denied opportunities they deserve.
We argue that in these situations randomizing can increase
the fairness of allocations.

Moreover, the uncertainty in predictions of claims may be
higher for some individuals than for others. Consider the
phenomenon of predictive multiplicity, wherein there exist
multiple models with similar accuracy that yield different
predictions for certain individuals (Marx et al., 2020; Black
et al., 2022). For individuals with high variance in their
predictions, it seems unfair to weight their chances based
on the prediction of a naively chosen model. The related
concept of leave-one-out unfairness highlights how some
individuals can receive radically different predictions due
to the inclusion or removal of a single other person in the
training data (Black & Fredrikson, 2021; Broderick et al.,
2020). This may be due to the fact that some individuals are
outliers based on the selected features or under-represented
in the training data. Uncertainty quantification methods
such as conformal prediction can help to identify these in-
dividuals (Angelopoulos & Bates, 2021). As we describe
further in subsection 4.2, these methods offer a way to ac-
count for varying levels of uncertainty in a weighted lottery
using predicted claims.

4. How To Randomize Allocations
We now formalize how randomization can help to address
the ethical demand of satisfying individual claims in algo-
rithmic decision-making. Specifically, we propose different
methods for randomization when claims are known or un-
certain and also show how these methods can help alleviate
the structural concerns of systemic exclusion and patterned
inequality. We also discuss the potential tradeoff between
randomization and accuracy and how to interpolate between
them when the tradeoff exists.

4.1. When Claims Are Known

Consider a setting in which there are n individuals and
each individual i is assigned a score ci ∈ [0, 1] in perfect
accordance with their claim. We say that individual i has
a stronger claim than individual j if ci > cj . A decision-
maker is tasked with allocating outcomes oi ∈ {0, 1} to
each individual i. Importantly, there is scarcity in that not
all claims can be satisfied: only k out of n individuals can
receive positive outcomes with k ≪ n, for a selection rate
of k/n.

Definition 4.1. An iterative weighted selection chooses
one individual in each round t without replacement until
k individuals are selected. Specifically, an individual i in
round t has probability wi,t of being selected. For all rounds
t ∈ {1, . . . , k}, we require

∑n−t+1
j=1 wj,t = 1 so that exactly
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one individual is selected per round.

Note that the formulation above encapsulates many kinds of
selections. For example, deterministically selecting the top
k claims2 would take wi,t = 1[ci = maxj∈{1...n−t+1)} cj ].
Recall that Broome’s notion of fairness calls for weights
that are chosen in proportion to a claim’s strength.

Definition 4.2. An allocation A involves the assignment of
outcomes oi through an iterative weighted selection based
on weights wi,t for each claim ci and each round t. It
satisfies Broome-Fairness (BF) if for all rounds t and all
individuals i, j not yet selected:

1. ci > cj =⇒ wi,t > wj,t (c.f. BF.1)
2. ci > 0 =⇒ wi,t > 0 (c.f. BF.2)

Example 4.3 (BF Lottery). An allocation with wi,t =
ci
Ct

satisfies BF, where wi,t is calculated among the remaining
individuals i in round t and Ct =

∑n−t+1
j=1 cj represents the

sum over claims not selected in previous rounds.

Importantly, deterministic allocations do not satisfy BF be-
cause some weights are zero (violating BF.2) and no distinc-
tion is made among rejected claims of varying strengths (vi-
olating BF.1). An unweighted lottery also violates BF.1 by
assigning the same weight to all individuals: wi,t =

1
n−t+1 .

4.1.1. SYSTEMIC HARMS

A lottery weighted by the strength of claims can help to alle-
viate the structural concerns of systemic exclusion and pat-
terned inequality. Suppose there are m > 1 decision-makers
conducting allocations either concurrently or across time.
Let o(j)i denote the outcome for individual i by decision-
maker j. Our concern is with the proportion of individuals
(or groups) who exclusively receive negative outcomes from
all m decision-makers.

Definition 4.4. The systemic exclusion rate (SER) (Bom-
masani et al., 2022) across m > 1 decision-makers is:

Ei

[∏m
j=1 1[o

(j)
i = 0]

]
To illustrate why randomization can help reduce SER, we
begin by considering two stylized models of allocations.
As our stylized models will suggest, if the existing SER
is sufficiently high across the m decision-makers or m is
sufficiently large, then in expectation, randomization will
help both systemic exclusion and patterned inequality.

Example 4.5 (Systemic Exclusion). Suppose there are m
allocations at the same time and that there are many more in-
dividuals with similarly strong claims than available positive
outcomes. If the SER is sufficiently high for the existing
set of allocations, than any allocation satisfying BF will
decrease the SER in expectation.

(a) Many Possible Distributions of Claims

(b) Reduction in SER using BF Lottery (k/n = 0.25)

Example 4.6 (Patterned Inequality). Suppose there are m
sequential allocations across time, and that receiving a pos-
itive outcome increases an individual’s claim in the next
allocation. Also assume that in the first allocation, there are
many more individuals with similarly strong claims than
available positive outcomes. Then any set of sequential allo-
cations satisfying BF will decrease the SER in expectation
when compared to a set of deterministic allocations if the
benefit from a positive outcome is sufficiently high.

In general, the ability of allocations satisfying BF to re-
duce the SER will depend on the distribution of claims,
correlation between allocations across decision-makers, and
selection rate (k/n). We simulate how much randomization
can reduce SER for various distributions of claims, when
each decision-maker has a noisy estimation of these claims
(±N(0, σ2)). As Figure (a) illustrates, we consider the
following distributions:

• Uniform: all claims equally likely
• Normal: more average claims
• Inverted Normal: more strong and weak claims
• Pareto: more weak claims
• Inverted Pareto: more strong claims

For all these distributions and many different selection rates

2This is equivalent to selecting all claims greater than or equal to
the threshold T = c(k) where c(k) is the k-th largest claim.
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and noise amounts, we observe a substantial reduction in
SER if each decision-maker uses the weighted lottery sat-
isfying BF in Example 4.3 rather than deterministically se-
lecting their top k claims. Figure (b) provides a snapshot of
our results in the setting where k/n = 0.25 and σ = 0.025
(Appendix Figure 3 shows other cases are similar).

4.1.2. UTILITY AND RANDOMIZATION

Why might one want to allocate deterministically? From
the viewpoint of risk-averse decision-makers, the objective
is to maximize their own utility. In hiring, for instance,
a company might allocate job interview slots based on a
candidate’s likelihood of being hired. We simplify to the
case where each individual has some utility o∗i ∈ {0, 1} (e.g.
whether or not the candidate would be hired).
Definition 4.7. The utility of an allocation is 1

k

∑n
i=1 o

∗
i ·

1{oi = 1}, which is simply the precision: i.e. the propor-
tion of selected individuals k that provide utility.

Note that o∗i can only be observed if the individual receives
the resource being allocated (oi = 1), which motivates the
idea of expected utility.
Definition 4.8. Suppose an individual’s chance of providing
utility is pi = P(o∗i = 1). Accordingly, the expected utility
of an allocation is 1

k

∑n
i=1 pi · 1{oi = 1}.

Utility aligns with the strength of claims in some merit-
based allocations. The individuals with the strongest claims
are those with the most “merit” or closest fit between their
skills and the needs of the role. These candidates there-
fore are also the most likely to be hired by the company.
Individuals may have other claims besides merit, such as
claims based in desert or entitlement. However, we adopt
the decision-maker’s perspective because it is the least fa-
vorable viewpoint to motivate randomization and results in
the worst-possible tradeoffs between the decision-maker’s
notion of utility and desirable properties of randomization.

If claims are exactly the chance of providing utility, then
deterministically selecting the k strongest claims will maxi-
mize the expected utility. But as we discussed above, this
overrides the most claims and violates both BF.1 and BF.2.
On the other hand, any amount of randomization will lead
to some probability of allocating resources to those who do
not have the strongest claims, resulting in some sacrifice
of expected utility in favor of respecting more claims. Fig-
ure (c) illustrates the difference in expected utility between
the top k allocation and BF lottery in Example 4.3 for the
normal and inverted Pareto distributions (other distributions
are similar). Note that this tradeoff increases with scarcity
(i.e. low selection rates).

Balancing this tradeoff requires a consideration of the fair-
ness arguments on each side. Consider two patients who
both have a claim to a single kidney. Patient a’s claim is

(c) Expected Utility for Top k v. BF Lotteries
(Partial BF: k′ = 0.5·k, n′ = k)

(d) Expected Utility for Varying Partial BF
Randomization Rates (Normal Dist; k/n = 0.25)

(e) SER v. Expected Utility Tradeoff for Varying
Partial BF Randomization Rates (k/n = 0.25)

based in their survival probability of 0.51, while patient b
has a survival probability of 0.49. If we deterministically
chose to give the kidney to patient a, Broome would argue
that this is unfair to patient b since they have no chance
at all to receive the kidney despite only having a slightly
weaker claim (Broome, 1990, p.99). But what if we instead
compare patient c, who has a survival rate of 0.99, to pa-
tient d, who only has a survival rate of 0.01? Brad Hooker
points out in an objection to Broome that “a great unfairness
would occur” if we held a weighted lottery and patient d
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won given the comparative strength of patient c’s claim in
this case (Hooker, 2005).3 This motivates the idea of not
randomizing some very strong or weak claims while still
conducting a weighted lottery for the remaining claims.

Definition 4.9. An allocation satisfies partial Broom-
Fairness when the criteria BF.1 and BF.2 are met for:

1. a subset of resources: k′ ∈ (0, k]

2. a subset of claims: n′ ∈ (k′, n− k + k′]

Example 4.10 (Partial BF Lottery). The following alloca-
tion satisfies partial BF: Give k − k′ resources to the top
claims. Then conduct the iterative weighted selection in Ex-
ample 4.3 for the remaining k′ resources over the n′ claims
closest to the k-th largest claim.

We discuss how a lottery satisfying partial BF can result in a
much smaller tradeoff with expected utility, yet still substan-
tially reduce SER. Figure (c) shows that the expected utility
difference is < 0.05 across different selection rates for a
partial BF lottery that uses k′ = 0.5·k and n′ = k. In other
words, we first allocate half the available resources to the
top 0.5k claims, then randomize over the next k strongest
claims for the other half of the available resources. Note
that this has the effect of randomizing near the so-called
“decision-boundary,” which represents the k-th largest claim
in our framework. Figure (d) explores how varying partial
BF randomization rates (i.e. different combinations of k′

and n′) change the difference in expected utility in the set-
ting4 where claims are normally distributed and k/n = 0.25.
We find that larger randomization rates have a dispropor-
tionately larger decrease in expected utility.

Figure (e) shows the lowest SER that we can achieve for a
given tradeoff with expected utility. Specifically, we com-
pare varying partial BF randomization rates for the same
setting as Figure (b) where k/n = 0.25 and the noise is
σ = 0.025. Consider, for instance, the 2% difference in
expected utility from the partial BF lottery in Figure (c)
when claims are normally distributed. This yields greater
than a 20% reduction in SER when there are m > 2
decision-makers. See Appendix A.1 for many other ex-
amples across different distributions of claims, selection
rates, and amounts of noise added for each decision-maker.

4.2. When Claims Are Uncertain

A fundamental assumption in machine learning is that the
targets of interest (in our case, claims) are predictable from
a set of measurable features in some domain X . While
pi = P(o∗i = 1) might be unknowable, the conditional prob-
ability p(xi) = P(o∗i = 1 |xi) can be estimated from data.

3Hooker’s objection considers one patient (here, c) who would
die without the medicine and another (d) who would only lose a
finger (Hooker, 2005).

4Appendix A.1 replicates Figure (d) for different dist. and k/n.

(f) Distribution of Swiss Unemployment Predictions

The validity of taking p(xi) to be an estimate of pi depends
on the choice of features that are measured and predictability
of the outcomes from those features. Putting these concerns
aside, a machine learning model p̂ : X → [0, 1] maps an
individual’s features xi ∈ X to a prediction p̂(xi), which es-
timates the conditional probability p(xi) = P(o∗i = 1 |xi).
In a healthcare allocation, p̂(xi) might represent a model’s
estimate based on prior patients in a hospital, whereas p(xi)
represents the conditional probability if we could measure
all possible patients represented in feature space X .

Standard practice in machine learning would be to deter-
ministically assign oi = 1 to the individuals with the k
highest value of p̂(xi). While this doesn’t satisfy BF, it is
unclear what implementable allocation does due to the dis-
tinction between p̂(xi) and pi. For example, we could use
the weighted lotteries in Example 4.3 or 4.10 by replacing
ci with p̂(xi). However, the estimation error in p̂(xi) could
be higher for certain individuals than others, potentially
violating BF.1.

We take our working example5 to be the 2003 Swiss Un-
employment dataset (Lechner et al., 2020). The goal is to
allocate scarce unemployment assistance resources such as
job search and training programs. Suppose an individual’s
true claim to these benefits is how long they would remain
unemployed without them, and that the programs want to
target those who would have remained unemployed for at
least 1 year. In this example, individual claims align with
the decision-makers’ notion of utility as long-term unem-
ployment. We can only estimate an individual’s probability
of being long-term unemployed based on features such as
their age, place of residence, education, previous job, prior
income, etc. Figure (f) shows that predictions6 appear to
follow a normal distribution for 3 different model classes:
logistic regression, random forests, and decision trees.

5Appendix A.2 includes an additional example of income predic-
tion using the New Adult Census dataset (Ding et al., 2021).

6We subset to individuals that did not receive an unemployment
benefit (n = 78, 294) and use an 80-20 train-test split (with 5
repetitions). Randomization results avg. from 100 iterations.
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Table 1: Randomizing using variance compared to ran-
domizing near the decision-boundary & the top k allocation.

Model
Random Rate Utility

k′/k n′/n Variance Decision- Top kBoundary

LR 14.0% 6.8% 62.9% 62.8% 63.1%
RF 32.2% 15.0% 64.1% 63.7% 64.3%
DT 73.7% 39.0% 61.5% 58.9% 62.9%

For our main analysis, we use a selection rate of k/n = 0.25
and explore other selection rates in the Appendix (which
yield similar results). 22% of individuals in the dataset
received some form of unemployment assistance, although
the most effective programs only had capacity for <5% of
individuals. Among those that did not receive assistance,
44% of individuals remained long-term unemployed (at
least 1 year). For our selection rate of k/n = 0.25, standard
practice would choose the top 25% of predictions. This
yields an (observed) utility of just 63.3% on average across
all 3 models.

In what follows, we first explore using the partial weighted
lottery in Example 4.10 to randomize over predictions near
the decision-boundary. We then propose two other random-
ization methods that quantify and incorporate the varying
levels of uncertainty in predictions across individuals. We
discuss how each method changes how many resources (k′)
and what kinds of people (n′) are randomized, while main-
taining a minimal loss in utility.

Randomizing Near Decision-Boundary. We first consider
using the partial weighted lottery in Example 4.10 by replac-
ing ci with p̂(xi). Recall that this has the effect of random-
izing near the decision-boundary or k-th largest prediction.
We find small tradeoffs with utility that are very similar
to those for expected utility that we saw for when claims
are known and normally distributed (c.f. Figure 1d). For
example, we observe just a 0.8% drop in utility for partial
randomization with k′ = 0.5·k and n′ = k, which randomizes
half the available resources across the k closest predictions
to the decision-boundary on either side7. Figure 4 in the
Appendix shows how utility is affected by different partial
randomization rates (i.e. different k′ and n′).

Randomizing Using Variance. A variety of methods exist
to estimate the variance of predictions (Black & Fredrikson,
2021; Cooper et al., 2023; Ganesh et al., 2023). For example,
Cooper et al. (2023) propose re-training on bootstrapped
sub-samples of the training data. Consider the set of predic-

7In our working example with k/n = 0.25, choosing k′ = 0.5·k
and n′ = k would first select the predictions above the 87.5-th
percentile, and then randomize the remaining resources across
people with predictions in the 62.5 to 87.5 percentile.

Table 2: Randomizing outliers (α = 0.2) compared to ran-
domizing near the decision-boundary & the top k allocation.

Model
Random Rate Utility

k′/k n′/n Outliers Decision- Top kBoundary

LR 1.2% 20.1% 62.7% 63.0% 63.1%
RF 1.0% 20.1% 64.0% 64.3% 64.4%
DT 3.0% 20.1% 62.2% 62.8% 62.9%

tions (p̂(1), . . . , p̂(m)) across m bootstrapped models8. We
contend that if any of these models placed an individual
among the top k claims, then they should have a chance to
receive oi = 1. Specifically, we propose directly assigning
oi = 1 to individuals placed in the top k by all models,
and then conducting an iterative weighted selection among
the remaining individuals, where the weights represent the
proportion of models that placed them in the top k.

When compared to randomizing near the decision-boundary,
we observe that randomizing using this estimation of vari-
ance results in a smaller utility loss for all model classes.
Table 1 shows the randomization rates and utility that re-
sult from randomizing according to 11 bootstrapped models
trained on 50% of the available training data. For the same
randomization rates, we compare the utility that results from
randomizing near the decision-boundary, and also report the
utility from no randomization (top k). Consider the random
forest model as an example: randomizing using variance
results in just a 0.2% utility loss while randomizing 32% of
resources over 15% of people. These randomization rates
yield a 0.6% utility loss for randomizing near the decision-
boundary.

Randomizing Outliers. Many out-of-the-box methods
exist for outlier detection, which quantify the uncertainty
in a prediction that stems from a lack of similar individuals
in the training data (Pimentel et al., 2014). For example, in
the Swiss unemployment dataset there exists an individual i
(and i′) with very high (and very low) predicted value across
all bootstrapped models, but with oi = 0 (and oi′ = 1).
Conformal prediction offers a way to assign a confidence
measure to outlier detection methods, and produces low
p-values for both individuals (<0.10). This motivates the
use of conformal prediction to flag outliers (Angelopoulos
& Bates, 2021) and then deploy a lottery for the resources
that would have gone to “outliers individuals” based on a
top k allocation.

Specifically, consider the pool of individuals that we believe
are outliers with high confidence (p-value ≤ α) for some

8Ganesh et al. (2023) show how to efficiently estimate the variance
in predictions by changing the data order across epochs in a single
training run.
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small α. If some of these individuals fall in the top k, then
we propose to randomize those resources over the entire
pool of “outlier” individuals using an unweighted lottery.
Note that the pool of individuals that we believe are outliers
is model-agnostic, since it is computed based on the features.
How many of these “outlier” individuals would have ended
up in the top k depends on the model.

Table 2 shows the randomization rates and tradeoff with
utility for α = 0.2, which is slightly more than the utility
loss for randomizing near the decision-boundary. We end
up randomizing just 2% of the available resources over 20%
of the total people (note this directly corresponds to our
choice of α = 0.2). This suggests that the individuals being
randomized based on outlier detection are different than
those near the decision-boundary or with high variance in
predictions.

Reduction in SER. Lastly, we turn to how much our ran-
domization proposals could reduce the systemic exclusion
rate (SER). Similar to the experiments when claims are
known, we find that small tradeoffs with utility yield much
larger reductions in SER. Figure (k) demonstrates our re-
sults for each randomization method using the decision tree
model class. In this case, randomizing using variance has
the best tradeoff, though results vary across model classes
and selection rates (see Appendix A.2 for other cases).

(k) SER v. Utility Tradeoff for each Randomization
Method (Model Class: Decision Tree)

5. Discussion
We argued in section 3 that sometimes fairness requires
randomizing allocations of scarce resources or opportunities,
and in section 4 we provide randomization techniques that
respect many claims while not losing significant predictive
performance. We now extend the argument and explore
implications of these findings.

Utility. When claims are known, randomization sometimes
trades off against expected utility or predictive success. Al-
though some may find this tradeoff hard to endorse, we

suggest two things. First, a claims-based moral framework
holds that people’s claims must be satisfied (or acknowl-
edged by the surrogate satisfaction of a lottery). Some reject
claims and take utility to be the only currency of moral con-
cern. However, anyone who agrees that it is more fair for
a qualified candidate to have a chance than to never have
had a chance can consider claims as an objective within a
broader utility-maximization framework, such that overall
utility can be improved by satisfying more claims. Second,
our exploration of uncertainty suggests that what appears to
be a tradeoff is, at times, a movement to a different point
within the same bounds of uncertainty. Over-optimizing for
apparent utility ignores our true uncertainty about the facts
and moral claims of the case. Thus the utility we appear to
give up in order to honor applicants’ valid claims may be
illusory: there may be no tradeoff at all.

Human Randomness. How does the intentional random-
ness we propose in this work compare to the natural variance
of human decision-making? For example, despite being
extensively trained in decision-making, judges who eval-
uate the same case (Ludwig & Mullainathan, 2021) often
disagree, and judges disagree with their past selves evaluat-
ing similar cases over time (Collins, 2008). This property
should make human decision-making less homogeneous
than algorithmic decision-making (Creel & Hellman, 2022).
However, we do not find human randomness to be a satis-
factory substitute for intentional randomization. Although
human decision-making is not consistent, its outcomes are
not guaranteed to be distributed across people in accordance
with their claims, as social biases concentrate bad outcomes
on individuals from marginalized groups in many situations.
Furthermore, we have showed above that fairness requires
selecting the most appropriate form of randomness given
the problem description and the underlying distribution of
data. Human inconsistency is not subject to these matching
constraints.

Scope. We do not think that randomization is fair in all set-
tings. For example, criminal justice is served by respecting
the procedural rights of defendants and attempting to deter-
mine whether the accusations they face are true. Criminal
justice is not a matter of comparative claims: each defendant
must be evaluated separately, not in comparison to others.
To randomize the outcomes would be unfair. However, we
affirm the value of randomization in settings in which scarce
resources must be fairly allocated on the basis of uncer-
tain information. Since this encompasses many algorithmic
decision-making contexts, we encourage the field of fair
machine learning to consider randomization as an important
element of fairness.

Code. We share the code for our randomization
methods and experiments at: https://github.com/
shomikj/randomization_for_fairness.

9

https://github.com/shomikj/randomization_for_fairness
https://github.com/shomikj/randomization_for_fairness


Scarce Resource Allocations That Rely On Machine Learning Should Be Randomized

Impact Statement
This paper contributes to the literature on algorithmic fair-
ness in two ways. (1) As a position paper, it encourages
others to reconsider whether deterministic algorithms are
always the right choice for fairness, arguing that randomiza-
tion techniques are to be preferred in some settings. (2) In
support of these arguments, the paper also presents concrete
techniques that can be used to randomize and shows how
they reduce systemic exclusion and patterned inequality. As
such, we hope that it will have a positive impact in reducing
bias and unfairness.

However, it is also possible that a decision-maker might use
the tools presented here to randomize outcomes in a domain
that the authors warn would be unjust or inappropriate, such
as the domain of criminal justice, and in doing so wrong
decision subjects. Since all of the randomization techniques
that form the basis of the paper’s experiments are well estab-
lished and easily implementable, the paper does not make
improper use of these tools easier than it would have been
before. But it is possible that its existence will suggest the
idea to someone who might not have otherwise had it.

The authors have attempted to prevent this outcome by mak-
ing it clear which uses of randomization they believe are
appropriate or inappropriate.
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Grgić-Hlača, N., Zafar, M. B., Gummadi, K. P., and Weller,
A. On fairness, diversity and randomness in algorithmic
decision making. arXiv preprint arXiv:1706.10208, 2017.

Hastings, J., Kane, T., and Staiger, D. Preferences and het-
erogeneous treatment effects in a public school choice lot-
tery, 2006. URL http://dx.doi.org/10.3386/
w12145.

Hellman, D. Indirect discrimination and the duty to avoid
compounding injustice. Foundations of Indirect Discrim-
ination Law, Hart Publishing Company, pp. 2017–53,
2018.

Hooker, B. Fairness. Ethical theory and moral practice, 8:
329–352, 2005.

Hsu, H. and Calmon, F. Rashomon capacity: A metric
for predictive multiplicity in classification. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 28988–29000. Curran
Associates, Inc., 2022.

Jain, S., Suriyakumar, V., Creel, K., and Wilson, A. Algo-
rithmic pluralism: A structural approach towards equal
opportunity. In ACM Conference on Fairness, Account-
ability, and Transparency, 2024.

Joseph, M., Kearns, M., Morgenstern, J. H., and Roth, A.
Fairness in learning: Classic and contextual bandits. In
Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 29. Curran Associates, Inc.,
2016a. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
eb163727917cbba1eea208541a643e74-Paper.
pdf.

Joseph, M., Kearns, M., Morgenstern, J. H., and Roth,
A. Fairness in learning: Classic and contextual bandits.
Advances in neural information processing systems, 29,
2016b.

Kirkpatrick, J. R. and Eastwood, N. Broome’s theory of
fairness and the problem of quantifying the strengths of
claims. Utilitas, 27(1):82–91, 2015.

Kleinberg, J. and Raghavan, M. Algorithmic monoculture
and social welfare. Proceedings of the National Academy
of Sciences, 118(22):e2018340118, 2021.

Lechner, M., Knaus, M., Huber, M., Frölich, M., Behncke,
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A. Appendix
A.1. When Claims Are Known Experiments

We simulate different distributions of claims and compare 3 different allocation types: (1) deterministic selection of the top
k claims, (2) the BF lottery in Example 4.3, and (3) the partial BF lottery in Example 4.10. Specifically, we analyze the
tradeoff between utility and reduction in SER under various selection rates and levels of noise. We simulate 1000 individuals
and average the results over 1000 iterations for each experiment. We consider the following distributions:

• Normal: more average claims (Figure 1)
• Inverted Pareto: more strong claims (Figure 2)

For each distribution, we illustrate the following (letters correspond to sub-figures for each distribution):

(a) Distribution of claims: Density under 3 different parameter choices for all distribution types except uniform (i.e.
different σ for normal or α for pareto)

(b) Expected utility for the top k selection and BF lottery in Example 4.3. We consider each parameter choice in (a).

(c) - (e) Expected utility for varying partial BF randomization rates in Example 4.10. We consider different choices of k′/k
and n′/n (in increments of 0.1). We now use a fixed parameter choice (σ = 0.15 for normal and α = 2 for pareto) in
this sub-figure and all subsequent sub-figures. (c) uses k/n = 0.1, (d) uses k/n = 0.25, and (e) uses k/n = 0.5.

(f) - (h) Systemic exclusion rate v. expected utility across varying partial BF randomization rates. For each of the choices
of k′/k and n′/n in (c) - (e), we calculate the systemic exclusion rate for a given amount of decision-makers and
noise added to each decision-maker’s claims (±N(0, σ2)). We then plot the tradeoff across randomization rates by
showing the lowest SER possible for each percentage decrease in expected utility. We show this tradeoff for 2, 3, and 4
decision-makers, as well as for no noise, σ = 0.025, and σ = 0.05. (f) uses k/n = 0.1, (g) uses k/n = 0.25, and (h) uses
k/n = 0.5.

In Figure 3, we show the reduction in systemic exclusion rate using the full BF lottery in Example 4.3 for all distributions of
claims together. This replicates Figure (b) in the main text, but for different amounts of noise added to each decision-maker’s
claims, as well as different selection rates.

A.2. When Claims Are Unknown Experiments

We test our randomization proposals on 2 datasets: (1) Swiss Unemployment Data (Lechner et al., 2020), and (2) Census
Income Data (Ding et al., 2021). For each dataset, we test our 3 randomization methods: randomizing near the decision-
boundary, randomizing using variance, and randomizing outliers. We report results for 3 different model classes (logistic
regression, random forests, and decision trees) and 3 different selection rates (0.1, 0.25, and 0.5). Specifically, we analyze
how each randomization method changes how many resources (k′) and what kinds of people (n′) are randomized, for some
(often minimal) loss in utility. We also compare how much each method reduces the systemic exclusion rate. All our
experiments involve an 80-20 train-test split (with 5 repetitions), and we average randomization results over 100 iterations.
For each dataset, we provide the following:

• Visualization of the distribution of predictions: Figure 4(a) for Swiss data and Figure 5(a) for Census data

• Utility and randomization rates for randomizing near the decision boundary: Figure 4(b)-(d) for Swiss data and
Figure 5(b)-(d) for Census data

• Utility and randomization rates for randomizing using variance: Table 3 for Swiss data and Table 5 for Census data

• Utility and randomization rates for randomizing outliers: Table 4 for Swiss data and Table 6 for Census data

• Visualization of the tradeoff between utility and systemic exclusion rate for all randomization methods: Figure 4(e)-(g)
for Swiss data and Figure 5(e)-(g) for Census data
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A.3. Pseudocode for Randomization Proposals

Notes:

• The ITERATIVE WEIGHTED SELECTION refers to Ex 4.3 and can be performed using numpy’s random.choice method.

• k′/k denotes the % of k resources that are randomized over a % of n people (n′/n).

• Array indexing is zero-based. SORT orders the arrays in descending order from the strongest to weakest claim.

• We use B = 11 for randomization using variance, and train bootstrapped models on a 50% subset of the training data.

• We provide additional details on how we compute the OUTLIER P-VALUE in the next section.

Algorithm 1 Partial BF Lottery

output selected people
input people, claims, k, n, k′, n′

Require: k′ ∈ (0, k], n′ ∈ (k′, n− k + k′]
1: people, claims← SORT(people, claims)
2: deterministic selections← people[ : k − k′]
3: random selections← ITERATIVE WEIGHTED SELECTION(k′, people[k−k′ : k−k′+n′], claims[k−k′ : k−k′+n′])
4: return deterministic selections + random selections

Algorithm 2 Randomization Using Variance

output selected people
input people, claims, k, n, B

1: people, claims← SORT(people, claims)
2: ŷB := list()
3: for i ∈ 1...n do
4: vote := 0
5: for 1...B do
6: if BOOTSTRAPPED CLAIM(people[i]) > claims[k] then
7: vote← vote + 1
8: end if
9: end for

10: ŷB .append(vote / B)
11: end for
12:
13: deterministic selections← people[i] for i ∈ 1...n if ŷB[i] is 1
14: uncertain people← people[i] for i ∈ 1...n if ŷB[i] ∈ (0,1)
15: uncertain claims← claims[i] for i ∈ 1...n if ŷB[i] ∈ (0,1)
16: k′ ← k− LENGTH(deterministic selections)
17: random selections← ITERATIVE WEIGHTED SELECTION(k′, uncertain people, uncertain claims)
18: return deterministic selections + random selections

Algorithm 3 Randomization Using Outliers

output selected people
input people, claims, k, n, α

1: people, claims← SORT(people, claims)
2: deterministic selections← people[i] for i ∈ 1...n if OUTLIER P-VALUE(people[i]) > α
3: uncertain people← people[i] for i ∈ 1...n if OUTLIER P-VALUE(people[i]) ≤ α
4: uncertain claims← claims[i] for i ∈ 1...n if OUTLIER P-VALUE(people[i]) ≤ α
5: k′ ← k− LENGTH(deterministic selections)
6: random selections← ITERATIVE WEIGHTED SELECTION(k′, uncertain people, uncertain claims)
7: return deterministic selections + random selections
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A.4. Conformal Prediction Methodology

We use conformal prediction to assign a confidence measure to outlier detection methods (Angelopoulos & Bates, 2021).
Specifically, we use the following procedure:

1. Suppose we have a novelty score s : X → R, where larger values indicate more abnormality from the training data.
For example, we use average Euclidean distance to the training data.

2. We want to find q : P(s(x) > q) ≤ α if x ∼ Xtrain, where α represents the bound on the false positive rate

3. Reserve a calibration dataset Xcal. For each xj
cal ∈ Xcal, compute the novelty score s(xj

cal) with respect to Xtrain.

4. Compute q̂ = quantile
(
s1cal . . . s

n
cal;

⌈(ncal+1)(1−α)⌉
ncal

)
5. If s(xi) > q̂, then we consider individual i to be an outlier.

6. Specifically, we take the p-value associated with outlier detection to be: 1
ncal+1

· (1 +
∑ncal

i=1 1{s(xi) ≤ sical})
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Figure 1: Normal Distribution of Claims

(a) Distribution of Claims (b) Expected Utility for Top k v. BF Lottery in Ex 4.3

(c) - (e) Expected Utility for Varying Partial BF Randomization Rates in Ex 4.10

(c) Selection Rate = 0.1 (d) Selection Rate = 0.25 (e) Selection Rate = 0.5

(f) - (h) Systemic Exclusion Rate v. Expected Utility Across Varying Partial BF Randomization Rates

(f) Selection Rate = 0.1 (g) Selection Rate = 0.25 (h) Selection Rate = 0.5
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Figure 2: Inverse Pareto Distribution of Claims

(a) Distribution of Claims (b) Expected Utility for Top k v. BF Lottery in Ex 4.3

(c) - (e) Expected Utility for Varying Partial BF Randomization Rates in Ex 4.10

(c) Selection Rate = 0.1 (d) Selection Rate = 0.25 (e) Selection Rate = 0.5

(f) - (h) Systemic Exclusion Rate v. Expected Utility Across Varying Partial BF Randomization Rates

(f) Selection Rate = 0.1 (g) Selection Rate = 0.25 (h) Selection Rate = 0.5
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Figure 3: Reduction in SER using the BF Lottery in Example 4.3 (c.f. Figure (b) in Main Text);
Each decision-maker has a noisy estimation of claims (±N(0, σ2)), (a) - (f) show different σ and selection rates k/n

(a) k/n = 0.1, σ = 0.025 (b) k/n = 0.1, σ = 0.05

(c) k/n = 0.25, σ = 0.025 (d) k/n = 0.25, σ = 0.05

(e) k/n = 0.5, σ = 0.025 (f) k/n = 0.5, σ = 0.05

18



Scarce Resource Allocations That Rely On Machine Learning Should Be Randomized

Figure 4: Swiss Unemployment Data Experiments

(a) Distribution of Claims

(b) - (d) Utility From Randomizing Near the Decision-Boundary

(b) Selection Rate = 0.1 (c) Selection Rate = 0.25 (d) Selection Rate = 0.5

(e) - (g) Systemic Exclusion Rate v. Utility Tradeoff for Each Randomization Method

(e) Selection Rate = 0.1 (f) Selection Rate = 0.25 (g) Selection Rate = 0.5
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Table 3: Swiss Unemployment Data – Randomizing Using Variance

k/n Model
Random Rate Utility

k′/k n′/n Variance Decision- Top kBoundary

0.10
Log. Regression 25.7% 5.0% 69.2% 69.2% 69.3%
Random Forest 57.1% 9.2% 70.8% 69.9% 71.3%
Decision Tree 97.4% 12.3% 64.6% 68.3% 69.5%

0.25
Log. Regression 14.0% 6.8% 62.9% 62.8% 63.1%
Random Forest 32.2% 15.0% 64.1% 63.7% 64.3%
Decision Tree 73.7% 39.0% 61.5% 58.9% 62.9%

0.50
Log. Regression 7.2% 7.0% 55.7% 55.7% 55.8%
Random Forest 19.7% 20.1% 56.3% 56.0% 56.5%
Decision Tree 50.3% 57.6% 54.2% 52.5% 55.5%

Table 4: Swiss Unemployment Data – Randomizing Outliers

α k/n Model
Random Rate Utility

k′/k n′/n Outliers Decision- Top kBoundary

0.20 0.10
Log. Regression 0.5% 20.1% 69.1% 69.3% 69.3%
Random Forest 0.4% 20.1% 71.1% 71.2% 71.3%
Decision Tree 1.6% 20.1% 69.1% 69.4% 69.5%

0.20 0.25
Log. Regression 1.2% 20.1% 62.7% 63.0% 63.1%
Random Forest 1.0% 20.1% 64.0% 64.3% 64.4%
Decision Tree 3.0% 20.1% 62.2% 62.8% 62.9%

0.20 0.50
Log. Regression 3.3% 20.1% 55.2% 55.7% 55.8%
Random Forest 2.8% 20.1% 55.9% 56.4% 56.5%
Decision Tree 5.9% 20.1% 54.8% 55.3% 55.5%

0.10 0.25
Log. Regression 0.3% 10.1% 62.9% 63.1% 63.1%
Random Forest 0.3% 10.1% 64.3% 64.4% 64.4%
Decision Tree 1.2% 10.1% 62.6% 62.9% 62.9%

0.30 0.25
Log. Regression 4.1% 30.0% 61.8% 62.8% 63.1%
Random Forest 3.7% 30.0% 63.1% 64.1% 64.4%
Decision Tree 7.2% 30.0% 61.1% 62.5% 62.9%
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Figure 5: Census Income Data Experiments

(a) Distribution of Claims

(b) - (d) Utility From Randomizing Near the Decision-Boundary

(b) Selection Rate = 0.1 (c) Selection Rate = 0.25 (d) Selection Rate = 0.5

(e) - (g) Systemic Exclusion Rate v. Utility Tradeoff for Each Randomization Method

(e) Selection Rate = 0.1 (f) Selection Rate = 0.25 (g) Selection Rate = 0.5
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Table 5: Census Income Data – Randomizing Using Variance

k/n Model
Random Rate Utility

k′/k n′/n Variance Decision- Top kBoundary

0.10
Log. Regression 7.2% 1.5% 91.5% 91.5% 91.5%
Random Forest 66.9% 16.6% 90.7% 88.6% 90.9%
Decision Tree 0.0% 0.0% - - 83.3%

0.25
Log. Regression 3.9% 1.9% 86.1% 86.1% 86.1%
Random Forest 48.7% 26.4% 84.5% 81.6% 85.2%
Decision Tree 70.6% 39.9% 81.0% 74.2% 82.8%

0.50
Log. Regression 2.3% 2.2% 72.2% 72.1% 72.2%
Random Forest 30.0% 29.2% 70.8% 69.4% 71.6%
Decision Tree 45.9% 46.0% 67.7% 64.5% 69.4%

Table 6: Census Income Data – Randomizing Outliers

α k/n Model
Random Rate Utility

k′/k n′/n Outliers Decision- Top kBoundary

0.10 0.10
Log. Regression 10.7% 9.9% 86.5% 91.1% 91.5%
Random Forest 3.9% 9.9% 88.9% 90.7% 90.9%
Decision Tree 8.5% 9.9% 79.8% 83.2% 83.3%

0.10 0.25
Log. Regression 9.6% 9.9% 82.3% 85.7% 86.1%
Random Forest 7.7% 9.9% 81.8% 84.9% 85.2%
Decision Tree 7.5% 9.9% 79.8% 82.0% 82.8%

0.10 0.50
Log. Regression 9.4% 9.9% 69.6% 71.8% 72.2%
Random Forest 9.7% 9.9% 68.9% 71.2% 71.6%
Decision Tree 10.3% 9.9% 67.2% 69.1% 69.4%

0.05 0.25
Log. Regression 5.1% 5.0% 84.1% 86.0% 86.1%
Random Forest 3.7% 5.0% 83.5% 85.2% 85.2%
Decision Tree 3.6% 5.0% 81.3% 82.4% 82.8%

0.20 0.25
Log. Regression 18.6% 20.0% 78.5% 84.4% 86.1%
Random Forest 15.6% 20.0% 78.3% 83.8% 85.2%
Decision Tree 15.1% 20.0% 76.7% 80.8% 82.8%
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