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Abstract

Post-hoc explanations such as SHAP are increas-
ingly used to justify machine learning predictions.
Yet, these explanations can be fragile: small, real-
istic input perturbations can cause large shifts in
the importance of attributed features. We present a
multi-seed, distance-controlled stability assessment
for SHAP-based model explanations. For each data
instance, we use DiCE to generate plausible coun-
terfactuals, pool across random seeds, deduplicate,
and retain the K nearest counterfactuals. Using a
shared independent masker and the model’s logit
(raw margin), we measure per-feature attribution
shifts and summarise instance-level instability. On
four tabular fairness benchmark datasets, we apply
our protocol to a logistic regression, a multilayer per-
ceptron, and decision trees, including boosted and
bagged versions. We report within-model group-wise
explanation stability and examine which features
most often drive the observed shifts. To contextu-
alise our findings, we additionally report coverage,
effective- K, distance-to-boundary, and outlier diag-
nostics. The protocol is model-agnostic yet prac-
tical for deep networks (batched inference, shared
background), turning explanation variability into
an actionable fairness assessment without altering
trained models.

1 Introduction

Explainable AT (xAI) approaches such as post-hoc
explanations using SHAP [1] are increasingly being
paired with deep learning systems to justify predic-
tions in high-stakes settings, e.g., science, hiring,
justice, or healthcare [2—4]. Stakeholders use these
“reasons” to contest outcomes, debug models, and
satisfy governance requirements. Yet a persistent
practical problem remains: even small, feasible per-
turbations that cross the decision boundary can lead
to considerably different attributions. We therefore
pose a process-level question: are local explanations
of a model stable under small, feasible edits that flip
the decision, and equivalently, do similar individuals
receive consistent reasons? We introduce a stability
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audit to evaluate this empirically. Rather than mak-
ing normative fairness claims, we treat instability as
a diagnostic of process consistency that can inform
procedural assessments.

Prior work has demonstrated that counterfactual
explanation generators can be sensitive to initializa-
tion and search configurations [5], and that post-hoc
explanations can display group-based disparities in
quality across different subpopulations [6]. Robust-
ness studies typically probe explanations either by
perturbing inputs with largely isotropic noise, which
is not tailored to decision-relevant directions, or by
relying on a particular counterfactual (CF) solver,
so that solver randomness becomes entangled with
any model-level instability being measured [7-9].
Fairness audits, in turn, largely focus on outcome
disparities rather than on whether different groups
receive explanations that are equally stable [10, 11].
What is missing is a model-class-agnostic, multi-
seed, distance-controlled protocol that uses decision-
relevant perturbations to measure explanation sta-
bility at scale, including for deep neural networks.

We propose an assessment of SHAP-based [1]
model explanation stability under plausible edits. A
counterfactual for an instance is a nearby, feasible
version of the same case that flips the model’s
prediction, i.e., crosses the decision boundary. We
generate CF candidates with Diverse Counterfactual
Explanations (DiCE) [12] across multiple random
seeds, pool and deduplicate them, and then retain
only the closest K decision-flipping edits to enforce
a controlled neighbourhood around each instance.

Using a shared independent masker and explain-
ing the model’s margin/logit, we compute SHAP
attributions for the instance and for each retained
CF. For each feature, we calculate the median ab-
solute change across the CFs and aggregate these
changes into an instability score, Iy (root-sum-of-
squares). This allows us to contextualise the results
and distinguish generator anomalies from model be-
haviour. We also report on lightweight diagnostics
including coverage (the proportion of instances with
at least one CF), effective K (the number of CFs
that were actually retained), proximity to the deci-
sion boundary (measured via the absolute margin),
diversity among a person’s CFs and a simple outlier
rate using the Local Outlier Factor (LOF) [13].
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Empirically, across common fairness benchmarks
and multiple architectures (i.e., logistic regression
(LR), tree ensembles, and multi-layer perceptrons
(MLPs)), we find consistent patterns. We can ob-
serve that instability increases with distance to the
decision boundary. Tree models exhibit higher typ-
ical and tail instability than LR/MLP. After con-
ditioning on proximity, most dataset-model pairs
show overlapping group distributions, though a few
display small but systematic protected-reference
gaps, hence procedural-fairness risk signals under
our setup. High coverage and effective-K close to
the target indicate these findings are not driven by
CF search anomalies.

Our contributions are:

1. a multi-seed, distance-controlled CF neighbour-
hood that mitigates solver stochasticity,

2. a SHAP-based model-agnostic stability score
with practical diagnostics,

3. an empirical study showing when instability
concentrates (by proximity, model class) and
when groupwise risk signals persist after prox-
imity control.

The assessment is diagnostic (not normative) and
slots alongside accuracy and outcome-based fairness
checks to ask a complementary question: do similar
individuals receive stable reasons?

2 Related Work

Why explainability matters for neural net-
works. Deep neural networks achieve often state-
of-the-art accuracy but are opaque. Their capacity
and nonlinearity make internal decision logic hard to
inspect. In high-stakes settings, practitioners there-
fore rely on post-hoc explanations (e.g., SHAP) to
debug, monitor, and justify predictions to stakehold-
ers [14-17]. Because explanations shape human trust
and downstream actions, disparities in explanation
quality across groups can yield unequal outcomes
even when the classifier is fixed. Dai et al. [6] for-
malise this concern along four axes—fidelity, stabil-
ity, consistency, and sparsity—and document group
disparities across datasets, models, and methods.

Explanation stability and vulnerabilities.
Stability has emerged as a central quality criterion
for xAl, with dedicated measures and taxonomies
[18, 19]. Unstable or manipulable explanations can
mislead users and “fairwash” models [20, 21]. Cri-
tiques also highlight regimes where SHAP is un-
reliable without careful protocol choices (e.g., link
function, background data) [22]. Bridging explain-
ability and fairness has been an active theme [17,
23, 24], with cautions about benchmark usage and
data ethics [25-27].

Counterfactuals as plausible variation and our
positioning. Counterfactual explanations opera-
tionalise feasible edits to inputs in black-box settings
[12, 28-30], with work on efficiency/metrics [31] and
fairness when used for recourse [32]. We adopt coun-
terfactuals not to prescribe recourse but rather as
a probe of plausible and feasible variations. This
replaces random noise with feasible edits and allows
us to explicitly control distance and seed effects to
evaluate stability. Related efforts connect game-
theoretic attributions and counterfactuals [33-38].
Compared to disparity analyses that perturb in-
puts using noise, our contribution is a multi-seed,
distance-controlled counterfactual stability assess-
ment. Specifically, we (i) pool and deduplicate DiCE
proposals across seeds; (ii) select the K nearest CFs
in standardised space; (iii) compute SHAP shifts us-
ing a shared independent masker on the model’s logit
to ensure a consistent attribution protocol across
models. This reframes stability as behaviour under
plausible edits rather than random perturbations,
while remaining model-agnostic and practical.

3 Stability Assessment Proto-
col

We formalise a model-agnostic procedure to quantify
the stability of SHAP explanations under plausible
and feasible (within DiCE) variations.  This
section defines the notation, attribution protocol,
multi-seed counterfactual set, stability summaries,
and fairness-oriented diagnostics that are used
throughout the paper.

Preliminaries and notation. Let D =
{(zi,s:,yi)}"_, be a tabular dataset with feature
vectors z; € RY, a sensitive attribute s; (e.g., gender,
race)!, and binary labels y; € {0,1}. Let g; € {0,1}
index protected groups derived from s;. A trained
classifier f:R? — [0, 1] outputs p(z) = P(Y=1 | z).
We explain the model’s raw margin (i.e., the logit)

p(z)
1—p(x)’

or the model’s decision function when available. Ex-
plaining the margin avoids probability-scale com-
pression and yields cleaner SHAP additivity. Model-
specific details are deferred to Section 4.

l(x) =log

Background on SHAP. SHAP [1] attributes a
scalar prediction to features via Shapley values. We
write ¢ = gbifrf% :R? — R? for the permutation SHAP
explainer, which returns per-feature attributions for
input z. With an independent masker and a fixed

INote that s; is part of x;, but the information is clearly
indicated and is thus separately listed as s;.



background B (a small subsample of the training
data reused across models), coordinates outside a
retained subset S of all features are independently
imputed from Z ~ B. Here, ¢;(z) denotes the
Shapley-weighted marginal contribution of feature j
averaged over coalitions S and draws Z. We esti-
mate these interventional values with permutation
SHAP and always explain the margin/logit (LR de-
cision function; MLP pre-sigmoid; logit(p) for trees),
keeping the protocol identical across model classes.
For context, observational/conditional SHAP condi-
tions on the joint data distribution [39—41].

Across all model families (logistic regression, trees,
MLPs) we use permutation SHAP with an indepen-
dent masker and a single background B (fixed per
dataset), and we always explain the margin/logit
(LR decision function; MLP pre-sigmoid; logit(p) for
trees). This yields interventional SHAP estimates
under the independence assumption and keeps the
protocol identical across model classes (we deliber-
ately avoid TreeSHAP /DeepSHAP).

Why SHAP (vs. LIME/Anchors) for stabil-
ity assessment? We measure per-feature shifts
in attributions under small, plausible edits. SHAP
provides local accuracy (additivity) and consistency
[1], ensuring that changes in attribution aggregate
meaningfully on the margin or logit. It also supports
a protocol that remains fixed across model families
by using an independent masker with a shared back-
ground B [39, 41]. LIME [42] fits a locally weighted
surrogate whose coeflicients depend on kernel width,
neighbourhood sampling, and discretisation choices,
which can inject method-induced variance. Note
that LIME and SHAP can also be manipulated [20,
21]. Anchors provide rules with precision guarantees
[43] but not vector attributions, making per-feature
shift metrics ill-posed. Thus, we utilise SHAP and
keep analyses within model, checking whether pat-
terns replicate across models rather than comparing
raw magnitudes.

Counterfactual explanation via DiCE. Coun-
terfactual explanations ask how a model’s prediction
would change if certain features were altered. DiCE
[12] proposes nearby points =’ that flip the decision,
while supporting feasibility, sparsity, and actionabil-
ity constraints. Unlike purely causal approaches
that require a structural model [44, 45], DiCE op-
erates directly on data and the trained predictor.
CF's need not be single-feature interventions, so cor-
related features may change jointly. We therefore
interpret SHAP shifts as explanation sensitivity un-
der plausible, identity-preserving edits, rather than
as causal effects. For each query instance x, we gen-
erate CF candidates under multiple seeds, pool, and
deduplicate them, and retain the K nearest CFs in
a standardised feature space.

Why DiCE (vs. other CF generators). Our
protocol needs a CF generator that is model-agnostic
across logistic regression (LR), decision trees, and
multi-layer perceptrons (MLPs), practical on tabular
data without auxiliary generative models, compati-
ble with distance control and seed pooling, and able
to encode simple feasibility constraints. DiCE [12]
satisfies these via random/gradient search with
distance-based objectives. Alternatives trade off
properties we do not require here: optimization-only
CFs are flexible but sensitive to hyperparameters
and slower on deep models [28]. Graph-based FACE
assumes a reliable manifold and can be computa-
tionally heavier [29]. The contrastive explanations
method [46] introduces autoencoders and model-
specific tuning. Thus, we use DiCE as a probe of
plausible variation and mitigate seed sensitivity via
pooled, deduplicated, K-nearest candidates.

Attribution protocol. We explain the model’s
margin/logit £(x) (decision function when available)
rather than probability to avoid probability-scale
compression and to preserve additivity. Throughout
we use interventional SHAP with an independent
masker: features outside a coalition are sampled
independently from a fixed background B drawn
from the training split. For each dataset, the same
background B is shared across all models to ensure
a consistent attribution protocol. All stability anal-
yses are conducted within each model family and we
additionally report whether patterns replicate across
models. Implementation details are in Section 4.

Multi-seed, distance-controlled counterfac-
tual set. For every query instance x, and for seeds
r=1,..., R, let C.(x) be the set of DiCE candidates
that flip the decision. We pool candidates across
seeds and deduplicate them afterwards, i.e.,

R
C(x) = dedup (U C’r(x)> .

r=1
Let T be the per-feature standardisation map (con-
tinuous j: Tj(u) = (u; — pj)/0; using train mean p;
and std o;; one-hot categoricals remain unchanged),
and define the distance
D(u,v) = ||T(u) — T(U)HQ.

We then select the K counterfactuals in C(x) that
are closest to the query z according to D(-,):

Sk (z) = KNNg(z;C(z), D).

The size of this set is denoted as Keg(z) = |Sk ()]
and we report the coverage as the fraction of in-
stances with at least one selected CF Keg(z) > 0:

1
coverage = — Z 1{K.g(x) > 0}.
|X| TEX



Note that Keg(z) = min{K,|C(z)|} < K as the
generator can yield less CFs. This multi-seed (seed-
pooled), distance-controlled selection mitigates gen-
erator stochasticity while focusing on comparable,
nearby edits. Conditioned on the fixed set Sk (x)
and a fixed SHAP background B, the subsequent cal-
culation of attribution-shift is deterministic. As the
number of seeds R increases, dependence on any sin-
gle seed correspondingly diminishes. This mitigates
known sources of instabilities and the susceptibility
of hill-climbing CF methods to manipulation [5].

Explanation-shift measures. Let ¢(z) € R?
denote the SHAP vector for ¢(x). For any counter-
factual z € Sk (x), define per-feature shifts

Aj(z,2) = |¢j(x) — ¢5(2)],

We summarise the typical shift per feature by the
median across the selected counterfactuals,

j=1,...,d

Aj(x) = median, e s, (z) Aj(z, 2)
and aggregate to an instance-level instability via
b@) =A@,

In summary, I, measures the total typical move-
ment of attributions emphasising “spikes”’—a
few large shifts—due to its quadratic weighting.
Units coincide with SHAP values on the logit
scale, so comparisons of I, are made within each
model/dataset, rather than across them. Lower
values correspond to more stable explanations under
plausible counterfactual perturbations, while higher
values indicate fragility.

Population and group summaries. Let X =
{x;}™_, be the evaluation set of query instances, a
subset of the test inputs. For g € {1,2} we define
Xy = {z; | gi = g}, where g; is the group label
derived from the sensitive attributes. We report the
distribution of Iz(x;) over X and compute feature-
wise averages

1 -
= m Z A]‘(’JZ),

reX

A;

For group g, the feature-wise average is

Within each model, we compare groups using ro-
bust summaries. We report the group medians
of I and their difference Apeq = median{ls(z) |
9=1} — median{l>(x) | g=0}. Alongside the me-
dians we show the interquartile range (IQR), de-
fined as Q3 — @1, as a robust measure of spread.
We also report Cliff’s 4, a nonparametric effect

size that quantifies stochastic dominance between
groups. Let A denote the instability scores for group
g =1 and B for group g = 0. Cliff’s § is given by
d = Pr(A > B) — Pr(A < B) which ranges over
[-1,1], with § = 0 indicating no stochastic domi-
nance. By convention |§| € [0.147,0.33) is consid-
ered a small effect, [0.33,0.474) a medium effect,
and > 0.474 a large effect. All reported differences
and effect sizes include 95% bootstrap confidence in-
tervals. We compute these by resampling instances
with replacement within each group (and within
proximity bins when applicable) for 1,000 replicates
and taking the corresponding percentile interval. Be-
cause Sk (x) is multi-seed and distance-controlled,
the resulting disparities are less confounded by coun-
terfactual search variance and more indicative of
genuine model behaviour.

Proximity and equal-width binning for diag-
nostics. To diagnose how instability varies with
decision difficulty and to enable a fair comparisons
between groups under the same conditions—so that
the differences aren’t due to confounders—we re-
quire a simple notion of proximity to the decision
boundary and a robust way to condition on it. For
each evaluation point x we define a prozimity score
r(z) = |[¢(x)] if the model exposes a margin/logit
£(z) or median,cg, () ||z — z[|2 otherwise as a CF
distance proxy. The larger r(x) is, the farther x is
from the decision boundary. We partition the range
[Pmins "max) into m bins with equal width and edges

Ak = Tmin T+ ﬁ (Tmax - Tmin)a k= 07 sy M
m

We then assign each point to a bin b(z) = min{k—1:
r(x) < ax}. Within each bin, we summarise insta-
bility using the median and IQR of Iy(z), and by
analysing groups we determine the per-group me-
dians and their gap. Binning provides us a non-
parametric control for boundary proximity, avoiding
functional-form assumptions. It enables “apples-to-
apples” group comparisons at the same distance
scale and we get equal-width (vs. quantile) bins that
preserve the horizontal axis in units of distance, mak-
ing trends and tails directly interpretable. Also the
per-bin medians/IQRs are more robust to outliers.
We use m € {6,8} by default and bins with very
small counts are reported but interpreted cautiously.

Fairness and explanation stability. Classical
fairness metrics (e.g., demographic parity, equalized
odds, counterfactual fairness) evaluate disparities
in outcomes across groups [23, 47], typically distin-
guished into a “protected” and “unprotected” group.
They do not consider whether the reasoning process
leading to those outcomes is consistent. Procedu-
ral fairness foregrounds the process itself: similar
individuals should be treated through a decision



mechanism that is consistent, transparent, and im-
partial [17, 24, 48, 49].

We operationalise a procedural stability check.
For an individual x, small and plausible counter-
factuals z € Sk () should not radically change the
explanation ¢(z). Our instance-level quantity Ix(z)
summarises how much the attributions move un-
der identity-preserving variation. Lower values in-
dicate a more consistent reasoning process. At the
population level, we compare the distribution of
Ir(z;) across X within each model across groups
derived from the sensitive attribute. Systematically
larger instability for a minority group, particularly
when the most volatile features are strong predictors
of the sensitive attribute (proxies), is a potential
procedural-fairness risk signal.

This assessment is diagnostic rather than disposi-
tive. It does not assert normative fairness by itself.
The independent masker can mischaracterise depen-
dence structure, and instability can increase near
the decision boundary even for well-behaved mod-
els. To mitigate confounding, we distance-match
CFs, report boundary proximity via |£(x)|, inspect
proxy features, and include coverage and Keg so
that group comparisons are not driven by generator
anomalies. Within these caveats, persistent group
gaps in Io(x) together with proxy volatility provide
actionable evidence of process inconsistency aligned
with procedural-fairness concerns.

4 Experimental Setup

We study the stability of post-hoc attributions by
measuring how SHAP values change between an
instance x and nearby, feasible counterfactuals. The
goal is to assess whether the explanations remain
consistent under realistic edits while controlling for
in the counterfactual search.

Datasets & preprocessing. We evaluate on four
tabular fairness benchmarks: Adult (Census In-
come) [50], Adult Reconstruction [25], Compas
(recidivism) [26], and Dutch [51], following prior
work [27]. All datasets are split into 70% train and
30% test with stratification on the label. All prepro-
cessing transformations are fit on the training split
only and applied to the test set and the generated
counterfactuals. Heavy-tailed continuous features
such as capital-gain and capital-loss undergo a
loglp transform followed by MinMax scaling. Other
continuous features such as age, hours-per-week,
and educational-num are MinMax scaled while
categorical variables are one-hot encoded. Across
datasets we keep the sensitive attribute binary in
the transformed feature space and apply one-hot en-
coding only to non-sensitive categoricals. Detailed
dataset notes appear in Appendix A.3.

Table 1. Test classification accuracy/F1/AUC [%)].

Model Adult Adult Rec Compas  Dutch

Majority Vote ~ 75/00/50 75/00/50  53/00/50 52/00/50
LR 84/64/89 84/64/90  T73/70/80 84/83/91
MLP 80/65/88 81/66/89  69/66/76 83/83/91
Tree 81/62/76 82/62/77  67/66/67 81/80/85
Random Forest 84/65/89 84/66/89  74/70/80 83/81/90
HGBT 87/70/92 87/71/92  72/69/80 84/83/92

Models. We report results for a logistic regression,

a small multilayer perceptron, a decision tree, a ran-
dom forest (RF), and a histogram-based gradient
boosting (HGBT) tree. In practice, Monte Carlo
estimation of SHAP and a finite background B in-
troduce small sampling error; the bound then holds
up to an additional estimation term that vanishes as
the number of background and evaluation samples
increases. Stability statistics are interpreted within
each model; any cross-model remarks concern repli-
cation of patterns rather than magnitudes. Details
on the models are provided in Appendix A.1 and
Table 1 reports on performance metrics.

Attribution configuration (masker, output
scale). We explain the model’s margin or logit
¢(z) rather than the probability. This avoids
probability-scale compression near 0 and 1 and pre-
serves SHAP additivity on a consistent unit. Con-
cretely, £(z) = w' z + b for logistic regression, £(x)
is the pre-sigmoid logit for multilayer perceptrons,
and ¢(x) = logit(p(z)) = log% for models that
expose only p(x) such as standard trees.

We use interventional SHAP with an independent
masker. For any coalition S C {1,...,d} the fea-
tures in the complement S are imputed by drawing
rows from a fixed background set B taken from the
training split. To make explanations comparable
within a dataset, we fix a single B = |B| and reuse it
across all models for that dataset. The background
acts as a Monte Carlo sample for the interventional
expectation. Its sampling error decreases on the
order of O(1/v/B) while runtime and memory grow
with B. We form B by label- and group-stratified
random subsampling of the training inputs with
a fixed seed and a fixed budget B = 1000. This
ensures that B is in-sample, represents both out-
come classes and sensitive-attribute groups, and re-
moves background-induced variation by reusing the
same B. All stability analyses are conducted within
each model family and we do not assume cross-model
comparability of raw SHAP magnitudes.

Counterfactual generation details (K, R).
We randomly sample Ncandidates = 1000 query in-
stances from the test set, except for RF on Compas,
where we only sample ten. For each query instance z,
we generate Kgon = 5 counterfactual candidates with
DiCE under R = 5 random seeds (yielding up to



5-5 = 25 candidates per x), pool across seeds, dedu-
plicate in the standardised input space, and retain
the K = 5 nearest by standardised Euclidean dis-
tance to x. Unless stated otherwise, the sensitive
attribute is not frozen during generation. We com-
pute coverage (fraction with Kog(z) > 0) and the
effective set size Kog(x) = |Sk(x)| as diagnostics to
ensure results are not driven by CF search anomalies.

Evaluation metrics and implementation
details. Instance-level instability is summarised
from per-feature SHAP shifts between z and its
selected counterfactuals Sk () by taking the median
per feature and aggregating with the Lo norm. We
also compute coverage as the fraction of individuals
with Keg(z) > 1 and the distribution of Keg(x). To
separate generator anomalies from model behaviour
we stratify by counterfactual distance, report bound-
ary proximity through |¢(z)|, measure diversity
within Sk (z) using pairwise standardised distances,
and compute a local outlier factor rate [13] on
counterfactual deltas. Sampling, model training,
counterfactual generation, and explanation runs all
use fixed seeds per dataset and hyperparameters are
held constant across datasets unless otherwise noted.

5 Experiments

We study whether SHAP attribution remain stable
under plausible counterfactual and whether instabil-
ity differs across sensitive groups once we control the
proximity to the decision boundary. All results are
reported within a model family since raw SHAP mag-
nitudes are not comparable across groups. We use
the multi-seed, distance controlled counterfactual set
Sk () defined in Section 3. For each query point x,
we collect multi-seed candidates, deduplicate them,
and retain the K = 5 nearest counterfactuals. Insta-
bility for an instance is summarised by A;(z) and
I>(z) as explained in Section 3. Lower I2(x) means
a more stable explanation under plausible edits.

Counterfactual SHAP: Sanity and Diagno-
sis.  We compute coverage Pr (Keg(z) > 0) and
the distribution of Keg(x) = |Sk(x)| to ensure that
results are not driven by search artifacts. Across
datasets and models, we observe that coverage is
high and the median K.g matches the target K in
both groups: median K.g = 5 and Coverage = 1.0
across all dataset-model pairs. This indicates that
group comparisons are not confounded by systematic
failures of the CF search.

Figure 1 shows the distribution of I5(z) for each
dataset-model pair using Sk (z) in a violin plot.
These plots quantify how much explanations move
under nearly feasible edits across the full evaluation
set. We observe clear model-family effects. Trees
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Figure 1. Instability > distributions per dataset (col-
umn) and model (row).

show a higher median I and a broader IQR than
the logistic regression or the MLP, with a heavier
upper tail indicating more frequent extreme instabil-
ities. This matches the piecewise-constant structure
of tree paths, where small edits can switch leaves
and flip several attribution terms at once. Logistic
regression exhibits intermediate stability, while the
MLP is the most stable, consistent with a smoother
logit in the transformed space. Dataset effects are
also visible. One hot heavy datasets such as Adult
and Dutch produce broader I because many small
attribution shifts accumulate in the ¢ norm. We
therefore perform a proximity-conditioned analysis
to separate boundary effects from other sources of
instability. Search anomalies are unlikely to drive
these shapes: counterfactuals are pooled across
seeds, deduplicate candidates, and the K = 5 near-
est moves are retained. Coverage and the effective
set-size are high in our runs, so the distributions pri-
marily reflect model and explainer behaviour rather
than counterfactual search noise. These experiments
answer the baseline question “are explanations more
fragile for one group” before any boundary control.
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Figure 2. Instability I» distributions per dataset and
model separated by the sensitive attribute.

We treat these as descriptive views, since instability
also varies with distance to the decision boundary.
For a distance-stability diagnosis, we first ask
whether explanation instability increases with how
far the counterfactuals move an instance. Figure B.2
depicts the median I>(x) against equal-width bins
of proximity (either |¢(z)| when available, or the
median Ly distance to the selected counterfactuals),
with IQR bands for the models. Across datasets we
observe a monotone increase of Iy(z) with respect
to the distance to the decision boundary for MLPs
in Figure B.2. Analogous trends hold for the other
models in the Figures B.1, B.3, B.4, and B.5.

Groupwise instability diagnosis Figure 2
shows, for each dataset-model pair, separated vi-
olins of the seed-pooled instability Iy(z) for the
protected and unprotected groups. Across models,
the overall level and spread of Iz(x) differs markedly:
tree models exhibit the largest medians and widest
violins (heavy upper tails), logistic regression is in-
termediate, and MLPs are the most concentrated
around low values. Within datasets, visible group

gaps are present in several panels: on Adult and
Adult-Recon, the protected group’s violin is shifted
to the right with a higher median; on Compas the
two halves broadly overlap with only minor shifts; on
Dutch the protected group tends to show a modest
right shift for LR/MLP, while tree spreads dominate
any group difference. These plots establish empirical
disparities in explanation instability at the popula-
tion level: for some dataset-model combinations one
group experiences larger typical changes in SHAP un-
der plausible edits. We next condition on proximity
to the decision boundary to separate boundary-mix
effects from systematic group differences.

For a distance-stability diagnosis across groups,
we examine the curves within the same bin to de-
tect difference in the explanation instability (Sec-
tion B.2). For example, for the dataset Compas and
MLP model, instability increases with distance, con-
sistent with the diagnosis that larger edits change
reasons more. After proximity control, the curve for
the White group lies above the curve for the Black
group in several mid-to-high bins, and its ribbon is
also slightly higher. This indicates that, for similarly
distant moves, White individuals tend to receive less
stable explanations by a small but consistent margin.

Quantifying gaps. For a detailed analysis of
group gaps, we follow the setup in Sections 3 and 4.
Let r(x) = |¢(z)] if available (or the median Lo
distance from z to the selected CF). We partition
the support of r(-) into M = 8 equal-width can-
didate bins. After discarding low-support bins, let
Mgupp < M be the number of supported bins, and
write € b when x falls in bin b € {1,..., Mgypp}-
For each bin b (see bins under Section 3), we define
the median gap A, = median (Iz(z)|g =1,z € b) —
median (I2(z)|g = 0,2 € b) where g € {0, 1} denotes
the sensitive groups. A nonparametric 95% boot-
strap confidence interval for Ay is obtained by resam-
pling within bin b stratified by group. We mark bin b
as flagged, when A, > 0 and the interval excludes 0,
i.e., group 1 exhibits higher instability in that prox-
imity range. We report m /M, the number of flagged
bins out of M, omitting bins with very small per-
group counts treated as low-support. To aggregate
across proximity while removing level differences,
we subtract a bin fixed effect from each observation
L) = () — median (I5(z) | € b(z;)), where
b(x;) is the containing (x;). The global residual
gap is the median difference between groups A=
median (I>(z;) | g; = 1) — median (fg(:z:z) | g =0),
with 95% stratified bootstrap confidence interval
(resampling within bins). A confidence interval
excluding 0 indicates a residual group effect beyond
proximity. On the proximity-controlled residuals
I(x;) we compute Cliff’s 4.

We illustrate how to read the results in Table 2
with two representative pairs. For the Adult dataset



Table 2. Proximity-matched group gaps counts bins
where Ay, > 0 and the bootstrap CI excludes 0 (group 1
above group 0). The global gap uses residuals after
removing per-bin medians.

Dataset-Model flagged_bins  global_gap cilo cithi  cliffs_delta
Adult-LR 0/6 0.000 -0.020 0.000 -0.034
Adult-NN 0/5 -0.172  -0.245 -0.121 -0.305
Adult-Tree 0/6 -0.921  -1.739 -0.300 -0.117
Adult-RF 0/5 -0.476  -0.703 -0.188 -0.159
Adult-HGBT 0/5 -0.469  -0.640 -0.296 -0.234
Adult Rec-LR 0/7 -0.219  -0.336 -0.169 -0.040
Adult Rec-NN 0/7 -0.118  -0.158 -0.077 -0.271
Adult Rec-Tree 0/7 -0.635  -1.948  0.089 -0.108
Adult Rec-RF 0/5 -0.804 -0.991 -0.497 -0.251
Adult Rec-HGBT 0/5 -0.550  -0.737 -0.426 -0.298
Compas-LR 0/6 0.000 -0.027  0.024 0.024
Compas-NN 3/7 0.003  -0.001  0.009 0.038
Compas—Tree 0/5 0.262 -0.256  0.738 0.033
Compas-RF 0/0 -0.321  -0.547  0.226 -0.583
Compas-HGBT 1/6 0.279 0.106 0.507 0.127
Dutch-LR 0/3 0.000 0.000  0.000 -0.109
Dutch-NN 0/3 -0.041  -0.052 -0.030 -0.285
Dutch-Tree 0/7 0.106  -0.343  0.677 0.000
Dutch-RF 0/6 -0.069 -0.214  0.033 -0.030
Dutch-HGBT 0/3 -0.181  -0.341 -0.103 -0.196

with logistic regression, no proximity bin is flagged
(0/6). The global residual gap is 0.000 with 95%
confidence interval [—0.020, 0.000], which includes
0, and Cliff’s 6 = —0.034 showing that the overall
difference favours group 1 slightly (negative means
group 1 is more stable) and the interval touches
0. Therefore, we find no evidence of group-specific
instability. The near-zero negative sign suggests
that group 1 may be more stable, but this effect is
not statistically distinguishable from zero.

In contrast, for the Compas dataset with the
histogram-based gradient boosting tree (HGBT),
one out of six supported proximity bins shows that
group 1 (White) has significantly higher median in-
stability than group 0 (Black). The global residual
gap is 0.279 with a 95% CT of [0.106,0.507], indicat-
ing a positive gap that is statistically different from
0. Therefore, group 1 has less stable explanations
overall. Cliff’s § = 0.127 indicates a small effect size.
Thus, for this dataset-model pair, there is a small
but consistent procedural-fairness risk signal.

Takeaways. (i) Instability increases with distance
to the decision boundary across models and datasets,
with trees consistently exhibiting higher instability.
(ii) We identify actionable procedural-fairness
risk signals in specific dataset-model pairs (e.g.,
Compas-MLP), where, after proximity matching, one
group’s explanations are systematically less stable.
Other pairs show no residual gap, indicating no flag.
(iii) Coverage and effective set size are high and
comparable across groups, making search anomalies
an unlikely explanation for the observed patterns.

6 Limitations

Diagnostic, not normative. Our audit produces
a procedural-fairness risk signal from explanation

stability; it does not by itself establish normative
(legal or ethical) unfairness. High Iy or protected-
reference gaps indicate process inconsistency under
our setup, but interpretation should consider con-
text, domain policy, and stakes.

Dependence on counterfactual generation.
We probe stability using DiCE-generated edits that
flip the decision under user-specified feasibility con-
straints. Although we pool across seeds and dedu-
plicate, results still depend on the constraint set
(mutable features, bounds, sparsity), DiCE’s search
objective, hyperparameters, and the model class. If
the constraint set is too loose or too tight, the in-
duced neighbourhood may be unrealistic or empty.
Coverage and K.g mitigate, but do not eliminate,
this dependence.

Boundary effects and conditioning. Instabil-
ity naturally increases near the decision boundary.
Our equal-width binning by |¢(z)| (or CF distance
proxy) reduces, but may not fully remove, boundary
confounding, especially when logits saturate or are
noisy. Residual gaps should be interpreted alongside
per-bin counts and IQRs.

Scope of methods. Our analysis focuses on lo-
cal, additive attributions (SHAP) and tabular mod-
els (LR, trees, MLPs). Other explanation forms
(rules, concepts, counterfactual sets) or modalities
may exhibit different behaviours.

7 Conclusion

We audited explanation stability by pairing interven-
tional SHAP on the margin/logit with a multi-seed,
distance-controlled counterfactual neighbourhood.
For each instance, we pooled and deduplicated DiCE
candidates, retained the K nearest, and summarized
instability via Iy from per-feature SHAP shifts,
alongside coverage, Kog, and proximity diagnostics.
Across four tabular fairness benchmarks and three
model families, we observed instability increases
with distance to the decision boundary. Tree-based
models were generally less stable than LR/MLP;
after proximity control, most dataset-model pairs
showed overlapping group distributions, while a few
exhibited small but systematic protected-reference
gaps, i.e., procedural-fairness risk signals under
our setup. The audit was model-agnostic and
practical (batched inference, shared background)
and complemented accuracy and outcome fairness
by evaluating whether similar individuals receive
stable explanations. In our setup, a procedural
fairness risk is flagged whenever one group exhibits
significantly higher explanation instability after
proximity matching. This implies that, despite com-
parable outcomes, similar cases in that group receive
less consistent reasons. As a diagnostic (rather than
normative) tool, it helped prioritise remediation.
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A Experimental Details
Al

We use scikit-learn [52] to implement almost
all models: logistic regression, decision tree, ran-
dom forest, and histogram-based gradient boosting
(HGBT) tree. For the logistic regression model, we
use the solver liblinear for a maximum of 100 it-
erations. The neural network/MLP is implemented
using PyTorch [53]. The MLP consists of one 32-
dimensional hidden layer with a ReLLU activation
and an output layer with a sigmoid activation. The
loss function is binary cross entropy. We train the
MLP for 100 epochs with a batch size of 100 using
Adam with a learning rate of le-4 and a learning
rate schedule with a v = 0.99. To compute counter-
factuals, we use the Python package dice ml? [12]
and to compute SHAP values we use the package
shap” [1]. All experiments run on an Intel Xeon
machine with 28 cores with 2.60 GHz and 256 GB
of memory.

Implementation Details

A.2 Procedure

A simplified outline of our procedure is as follows.

1. Preprocess train set and apply the
same transformation on test set

2. Train model on train set

3. Evaluate accuracy, F1, and AUC on
test set

4. Build SHAP background and explainer
using an IndependentMasker () and
PermutationExplainer ()

5. Build DICE object

6. Generate CFs across seeds and pool

7. Select K nearest CFs per instance in

standardised input space

8. SHAP of originals and CFs

9. Aggregate to instance level (feature
-wise median across CFs)

10. Return all metrics

A.3 Dataset Details

Adult Reconstruction [25] simulates real-world is-
sues where sensitive attributes and labels may suffer
from measurement bias and covariate shift. The raw
data contain 49,531 instances with 14 attributes. We
follow the cleaned subset used in prior work, yield-
ing 45,849 instances. The label is whether income
exceeds $50,000 per year. The protected attribute
is gender. We remove the original income column
when a binary target income_bin is present and
map text labels to {0,1}. We keep gender as a bi-
nary passthrough feature and one-hot encode other
categoricals.

2https://interpret.ml/DiCE/
Shttps://shap.readthedocs.io/en/

Adult (Census Income) [50] contains 48,842
rows with 14 demographic attributes. After re-
moving rows with missing entries and dropping
non-informative columns such as fnlwgt, we ob-
tain 45,222 examples. The task is to predict income
greater than $50,000. The sensitive attribute is
gender. The male to female ratio is about 66.9% to
33.1%. We apply the same column-wise transforms
as above, including loglp for capital-gain and
capital-loss.

Dutch (Census) [51] contains 60,420 samples
with 11 attributes describing aggregated census in-
formation. The binary task is to predict whether an
individual holds a high-prestige occupation. The
protected attribute is sex, which is close to balanced
in this dataset. We one-hot encode categoricals and
scale continuous features as described above.

Compas (recidivism) [26] includes 7,214 indi-
viduals with criminal history and demographic at-
tributes. We use the cleaned Compas subset with
6,172 individuals and seven features, and we predict
rearrest within two years two_year_recid. The pro-
tected attribute is race; the black to white ratio is
approximately 51.4% to 34%. Preprocessing follows
the same pattern as above. We note the known lim-
itations of this dataset and treat it as a stress test
for explanation stability rather than a gold standard
of social ground truth.

Reproducibility note. We drop the following
columns in Compas to prevent leakage and remove
identifiers:

to_drop = [
’id’,’name’,’first’,’last’,’dob’,
’c_case_number’,’r_case_number’,
’vr_case_number’,’c_charge_desc’,
’r_charge_desc’,’vr_charge_desc’,
’decile_score’,’decile_score.1’,
’v_decile_score’, ’score_text’,
’v_score_text’, ’type_of_assessment’,
’v_type_of_assessment’,’event’,
’r_days_from_arrest’,’r_jail_in’,
’r_jail_out’, ’r_offense_date’,
’r_charge_degree’, ’vr_offense_date’,
’vr_charge_degree’, ’in_custody’,
’out_custody’,’start’,’end’,
’is_recid’,’violent_recid’,
’is_violent_recid’,
’priors_count.1’,’age_cat’

B Additional Experiments

B.1 Runtimes

We report on the computational runtimes of our
approach in Table B.1.
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Table B.1. Computation times in seconds.

dataset model B t_train_eval t_dice t_build_shap t_dice_seeds t_fragility
adult logreg 1000 0.19 132848 0.0003 9559.66 52.82
adult nn 1000 168.46 797.67 0.0002 3740.08 66.36
adult tree 1000 0.31  1378.42 0.0003 6525.24 52.81
adult rf 1000 1.94 20042.55 0.0002 66504.66 1985.51
adult hgbt 1000 1.49  1940.14 0.0003 7122.67 110.38
adult_reconstruction logreg 1000 0.15  1041.49 0.0002 4877.53 56.05
adult_reconstruction nn 1000 183.30 500.08 0.0002 3046.08 53.97
adult_reconstruction tree 1000 0.29 1014.38 0.0002 4530.15 50.18
adult_reconstruction rf 1000 1.91  7870.75 0.0002 60351.63 1342.03
adult_reconstruction hgbt 1000 0.88 1170.84 0.0002 3669.90 80.50
compas_recid logreg 1000 0.02  4087.97 0.0003 20525.07 15.80
compas_recid nn 1000 20.20 2230.09 0.0003 10121.34 18.01
compas_recid tree 1000 0.04  4605.94 0.0003 22513.11 17.03
compas_recid rf 1000 N/A N/A N/A N/A N/A
compas_recid hgbt 1000 1.23  14306.68 0.0004 68963.22 110.79
dutch logreg 1000 0.32 492.96 0.0002 2184.19 38.08
dutch nn 1000 258.22 474.98 0.0003 1793.32 30.30
dutch tree 1000 0.26 564.52 0.0002 2787.92 31.77
dutch rf 1000 2.01 13578.26 0.0002 50287.27 1757.33
dutch hgbt 1000 0.93 730.18 0.0002 4819.22 69.00

B.2 Instability of /; per Dataset

For completeness, we now provide all instability I
results for all datasets and models. Figures B.1, B.2,
B.3, B.4, and B.5 show the results pooled among all
data points whereas Figures B.6, B.7, B.8, B.9 and
B.10 depict the results separated by the sensitive
attribute.

B.3 Evaluating the Impact of B

Within the paper, we used a fixed background
size of B = 1000. To assess sensitivity, we
vary the independent-masker background B €
{5, 10,50, 100, 500, 10000}, while keeping the model,
seeds, CF selection, and preprocessing fixed. For the
Figures B.11, B.12, B.13, and B.14 we recomputed
the instability I, while keeping everything else fixed.
Across datasets and models, the distribution of I
is essentially unchanged as B grows. E.g., for lo-
gistic regression, the median and IQR is visually
indistinguishable across all B and datasets. How-
ever, for the multi-layer perceptron on the Dutch
dataset, we observe noticeable sensitivity for small
background-sizes B < 100.

Next, we discover how varying the
independent-masker background B €
{5, 10, 50,100, 500,1000,10000}  changes  our

proximity-matched conclusions in Table B.2, B.3,
B.4, and B.5. We observe that no dataset—model
pair gains or loses a significant residual gap when
B changes.

Overall we can observe, that B = 1000 is a safe
default. Typically B € [300,500] is sufficient, while
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B <100 can add variance.

B.4 Normalised Instability of /; per
Dataset

Finally, we consider the normalised instability and
obtain the following results Figure B.15. Across all
datasets, logistic regression and the MLP remain
the most stable. Tree based models are broader with
heavier upper tails even after normalisation.



Table B.2. Proximity-matched group gaps for the Adult
dataset counts bins where A > 0 and the bootstrap CI

excludes 0 (group 1 above group 0). The global gap uses adult (logreg, B=1000) — pooled
residuals after removing per-bin medians. 3.5 .
3.0 4 0/
Dataset-Model B flagged_bins  global_gap cilo cihi  cliffs_delta o/
254 o
Adult-LR 5 0/6 0.000 -0.020  0.000 -0.037 o
Adult-LR 10 0/6 0.000 -0.022  0.000 -0.037 N 204 ./
Adult-LR 50 0/6 0.000 -0.017  0.000 -0.034 g7
Adult-LR 100 0/6 0.000 -0.020  0.000 -0.035 2.5
Adult-LR 500  0/6 0.000 -0.020  0.000 -0.035 27 o
Adult-LR 10000 0/6 0.000 -0.020  0.000 -0.035 104
Adult-NN 5 0/5 -0.219 -0.279 -0.172 -0.295
Adult-NN 10 0/6 -0.137  -0.181 -0.078 -0.292 051
Adult-NN 50 0/5 -0.164 -0.220 -0.119 -0.322 &
Adult-NN 100 0/6 -0.200 -0.261 -0.151 -0.326 0.0 1
Adult-NN 500  0/6 -0.198  -0.236  -0.135 -0.364 Py o e 7o Y 3% Y
:331?};{26 éUOUO 8?2 :(1)322 :(1)32’17 :B;ig :8822 CF distance proxy (median L2 to selected CFs)
iguﬁ ?ee ég 8;2 ’(1)8(1)2 ’}Zg? 8322 ’8(1]2(8) adult_reconstruction (logreg, B=1000) — pooled
ult—1ree =090 -1.0 -U. =U. 2>
Adult-Tree 100 0/6 S1179 -2.026 -0.424 -0.085 P
Adult-Tree 500  0/6 -0.627 -1.710  0.036 -0.083 3.0 1 /-
Adult-Tree 10000 0/6 -0.800 -1.633 -0.101 -0.080 o
Adult-RF 5 0/6 -0.830 -1.095 -0.430 -0.202 2.5 1 /
Adult-RF 10 0/6 -0.524 -0.831 -0.288 -0.176 "
y < ] 3
Adult-RF 100  0/6 -0.444  -0.652 -0.252 -0.157 S, 20
Adult-RF 500  0/5 -0.528  -0.744 -0.250 -0.166 z
Adult-HGBT 5 0/5 -0.465 -0.648 -0.343 -0.240 £ 151
Adult-HGBT 10 0/5 -0.469 -0.619 -0.298 -0.231 £
Adult— -0. -0.690 0. -0. .0
dult-HGBT 50 0/5 0.510 -0.690 -0.317 0.241 1.0 —
Adult-HGBT 100  0/5 -0.451 -0.673 -0.298 -0.242
Adult-HGBT 500  0/5 -0.431  -0.648 -0.270 -0.234 0.5 4
Adult-HGBT 10000 0/5 -0.428 -0.670 -0.263 -0.241
004 ¢
05 10 15 2.0 25 30
CF distance proxy (median L2 to selected CFs)
compas_recid (logreg, B=1000) — pooled
3.0
Js —
. ./
« 201 - /
>
Table B.3. Proximity-matched group gaps for the 3 1s- _/
Adult Rec dataset counts bins where Ay > 0 and the 2 /
1.0
bootstrap CI excludes 0 (group 1 above group 0). The ©
global gap uses residuals after removing per-bin medians. 0.5 1 . /
0.0 o/
Dataset-Model B flagged_bins  global_gap cilo cihi  cliffs_delta T T T T T T
0.2 0.4 0.6 0.8 1.0 12
iguﬁ geC’£§ ‘;)0 8;; ’3;}3 ’8;25 ’8}23 ’88:11; CF distance proxy (median L2 to selected CFs)
1! ec -U. -U.. -U. -0.04
Adult Rec LR 50 0/7 0219 -0.342 -0.161 -0.041 dutch (logreg, B=1000) — pooled
Adult Rec-LR 100 0/7 0219 -0.342 -0.169 -0.043 4.0
Adult Rec LR 500 0/7 0219 -0.336 -0.169 -0.040 3
Adult Rec-LR 10000 0/7 0219 -0.336 -0.169 -0.040 354 /
Adult Rec-NN 5 0/7 20133 -0.163 -0.092 -0.260 "
Adult Rec-NN 10 0/6 <0136 -0.178 -0.055 -0.187 3.0 /
Adult Rec-NN 50 0/7 <0133 -0.158 -0.084 -0.294 o
Adult Rec-NN 100 0/6 <0135 -0.173  -0.104 -0.315 2257
Adult Rec-NN 500 0/6 <0139 -0.216 -0.073 -0.258 =
Adult Rec-NN 10000 0/6 <0237 -0.318 -0.185 -0.308 |7
Adult Rec-Tree 5 0/7 -1.086 -1.687 -0.604 -0.187 295
Adult Rec-Tree 10 0/7 1185 -2.065 -0.495 -0.178
Adult Rec-Tree 50 0/7 -1.622 2473 -0.165 -0.143 1.0 4
Adult Rec-Tree 100 0/7 21311 -2.154  -0.456 -0.141
Adult Rec-Tree 500 0/7 -1.075  -2.417  -0.233 -0.163 0.5 1 /_,/’
Adult Rec-Tree 10000 0/7 -1.080 -2.088 -0.217 -0.134 ood °
Adult Rec-RF 5 0/5 -0.752 -1.026  -0.460 -0.270 ) ! ! ik ! I ! !
Adult Rec-RF 10 0/5 -0.831 -1.165 -0.607 -0.289 025 050 075 100 125 150 175  2.00
Adult Rec-RF 50 0/5 -0.728  -1.048 -0.508 -0.292 CF distance proxy (median L2 to selected CFs)
Adult Rec-RF 100 0/5 -0.744  -1.145  -0.536 -0.279
Adult Rec RF 500  0/5 -0.808 -1.260 -0.565 -0.278
Adult Rec-HGBT 5 0/5 -0.624  -0.788  -0.480 0311 Figure B.1. Instability I per dataset for the logistic
Adult Rec-HGBT 10 0/5 -0.633 -0.812  -0.469 -0.308 .
Adult Rec-HGBT 50 0/5 0548 -0.747 -0.426 2304 Tegression model.
Adult Rec-HGBT 100 0/5 20595 -0.778 -0.462 -0.307
Adult Rec-HGBT 500  0/5 -0.598 -0.763 -0.455 -0.303
Adult Rec-HGBT 10000 0/5 20591 -0.738 -0.454 -0.312
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Figure B.4. Instability I» per dataset for the random
forest model.

Table B.4. Proximity-matched group gaps for the
Compas dataset counts bins where A, > 0 and the
bootstrap CI excludes 0 (group 1 above group 0). The
global gap uses residuals after removing per-bin medians.

Dataset-Model B flagged_bins  global_gap cido cichi cliffs_delta

Compas-LR 5 0/6 0.000 -0.026 0.026 0.025
Compas-LR 10 0/6 0.000 -0.024 0.024 0.025
Compas-LR 50 0/6 0.000 -0.026 0.026 0.025
Compas-LR 100 0/6 0.000 -0.026 0.024 0.025
Compas-LR 500 0/6 0.000 -0.026 0.026 0.024
Compas-NN 5 3/6 0.019  0.009 0.049 0.168
Compas-NN 10 1/6 0.005 -0.003 0.022 0.092
Compas-NN 50 1/7 0.002 -0.003 0.011 0.022
Compas-NN 100 3/6 0.033  0.005 0.044 0.138
Compas-NN 500 1/6 0.001 -0.004 0.010 0.046
Compas—Tree 5 0/5 -0.425 -1.068 0.110 0.013
Compas-Tree 10 0/5 -0.188  -0.753 0.414 0.007
Compas—Tree 50 0/5 -0.009 -0.599 0.514 0.012
Compas-Tree 100 0/5 0.176  -0.455 0.661 0.024
Compas-Tree 500 0/5 0.152  -0.372 0.669 0.009
Compas-HGBT 5 1/6 0.098 -0.024 0.263 0.089
Compas-HGBT 10  1/6 0.143  0.000 0.296 0.089
Compas-HGBT 100 2/6 0.269  0.105 0.480 0.125
Compas-HGBT 500 1/6 0.281  0.106 0.486 0.125
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Figure B.8. Instability I separated by sensit
tribute per dataset for the tree model.
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Figure B.10. Instability I separated by sensitive

attribute per dataset for the Histogram-based Gradient
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