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ABSTRACT

Skeletal sequence data, as a widely employed representation of human actions,
are crucial in Human Activity Recognition (HAR). Recently, adversarial attacks
have been proposed in this area, which exposes potential security concerns, and
more importantly provides a good tool for model robustness test. Within this
research, transfer-based attack is an important tool as it mimics the real-world
scenario where an attacker has no knowledge of the target model, but is under-
explored in Skeleton-based HAR (S-HAR). Consequently, existing S-HAR attacks
exhibit weak adversarial transferability and the reason remains largely unknown.
In this paper, we investigate this phenomenon via the characterization of the loss
function. We find that one prominent indicator of poor transferability is the low
smoothness of the loss function. Led by this observation, we improve the transfer-
ability by properly smoothening the loss when computing the adversarial exam-
ples. This leads to the first Transfer-based Attack on Skeletal Action Recognition,
TASAR. TASAR explores the smoothened model posterior of pre-trained surro-
gates, which is achieved by a new post-train Dual Bayesian optimization strategy.
Furthermore, unlike existing transfer-based methods which overlook the tempo-
ral coherence within sequences, TASAR incorporates motion dynamics into the
Bayesian attack, effectively disrupting the spatial-temporal coherence of S-HARs.
For exhaustive evaluation, we build the first large-scale robust S-HAR benchmark,
comprising 7 S-HAR models, 10 attack methods, 3 S-HAR datasets and 2 defense
models. Extensive results demonstrate the superiority of TASAR. Our benchmark
enables easy comparisons for future studies, with the code available in the anony-
mous link and supplementary material.

1 INTRODUCTION

S-HAR has been an important research topic in computer vision. Recently, S-HAR classifiers have
been found to be susceptible to adversarial attack (Wang et al., 2021; Diao et al., 2021), suggesting
adversarial attack potentially provides a useful tool for robustness tests for S-HAR classifiers. But
not all attacks are equally practical. Existing S-HAR attacks are mainly proposed under white-box
settings (Liu et al., 2020a; Tanaka et al., 2022), where the attacker has full access to the victim
model’s architecture, weights, and training details, or under query-based black-box settings (Diao
et al., 2021; Kang et al., 2023b), where the attacker can make numerous queries (Diao et al., 2024a).
However, neither approaches are impractical in real-world scenarios (e.g. autonomous driving (Guo
et al., 2024), intelligent surveillance (Garcia-Cobo & SanMiguel, 2023) and human-computer in-
teractions (Wang et al., 2020)), where either accessing the victim model or numerous queries is
not attainable. Therefore, transfer-based attack, i.e. generating adversarial examples by attacking
a surrogate model and then transfer them to target black-box models, is proposed as a promising
alternative (Dong et al., 2018; Wang et al., 2021).

However, current transfer-based attack on S-HAR is far from ideal due to their generally poor and
unreliable performance. Recently, few studies have attempted to apply white-box S-HAR attacks
against black-box models via surrogate models (Wang et al., 2021; Liu et al., 2020a). However,
results show that their transfer success rate is highly determined by the specific choice of the S-HAR
surrogate, so that its general adversarial transferability is low (Wang et al., 2023; Lu et al., 2023),
also refereed to as low/weak transferability. Although similar research in other fields (Dong et al.,
2018; Huang et al., 2023; Diao et al., 2024b) has achieved success, a direct application of them on
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Figure 1: A high-level illustration of our proposed method. Results marked with a ‘check mark’ (
√

)
indicate superior performance compared to those marked with a ‘cross’ (×). Spatial attack: treats
each frame independently. Spatial-temporal Attack: integrates temporal motion gradients to disrupt
the spatial-temporal coherence of S-HAR models.

S-HAR still shows low transferability, raising doubt on the usefulness of adversarial transferability
in this domain (Lu et al., 2023). More importantly, the reason for this failure remains unclear.

We begin by investigating the underlying causes of the low transferability in S-HAR attacks. By
first systematically investigating the sensitivity of attack transferability on the choice of surrogates,
we compare the loss surface smoothness of the surrogates, inspired by (Wu & Zhu, 2020; Qin
et al., 2022). A visual comparison is shown in Figure 2, which gives a clear indication of high
correlations between loss smoothness and transferability. Consequently, we argue that the transfer-
based S-HAR attack should smoothen the surrogate’s loss during training. Various strategies aim
to achieve smoother loss landscapes, via e.g. regularization (Zhao et al., 2022; Foret et al., 2021) or
Bayesian learning (Izmailov et al., 2018; Nguyen et al., 2024; Maddox et al., 2019). We explore the
latter and use Bayesian Neural Networks (BNNs). This is because BNNs tend to have smooth loss
landscapes (Blundell et al., 2015; Izmailov et al., 2018; Nguyen et al., 2024). More importantly, it
enables us to attack the whole distributions of models, i.e. Bayesian attacks, which has been proven
to enhance the transferability in other fields (Li et al., 2023; Gubri et al., 2022).

However, it is not straightforward to design such a transferable Bayesian attack for S-HAR. First,
attacking a distribution of models requires sampling from the posterior distribution. But S-HAR
classifiers contain at least several millions of parameters (Liu et al., 2020b), which makes sampling
computationally expensive. Second, most prior transferable attacks are specifically designed for
static data, e.g. images. However, most S-HAR models learn the spatial-temporal features because
skeletal data contains rich motion dynamics. A naive adaptation of them ignores the spatial-temporal
coherence during attack, leading to either lower transferability or excessive attack which raises sus-
picion. How to incorporate the motion dynamics in Bayesian attacks has not been explored.

To tackle these challenges, we propose the first Transfer-based Attack specifically designed for
Skeletal Action Recognition, TASAR, with key novelties shown in Figure 1. First, our post-train
Bayesian strategy keeps a pre-trained surrogate intact by appending lightweight Bayesian compo-
nents behind it, without the need for re-training of the pre-trained surrogate. Second, we propose
a novel dual Bayesian optimization for smoothed posterior sampling, which effectively smoothens
the rugged loss surface. Finally, unlike previous transfer-based attacks that treat each frame inde-
pendently, overlooking the temporal dependencies between sequences, we integrate the temporal
motion gradient in a Bayesian manner to disrupt the spatial-temporal coherence of S-HAR models.
For exhaustive evaluation, we build the first comprehensive robust S-HAR evaluation benchmark
RobustBenchHAR. RobustBenchHAR consists of 7 S-HAR models with diverse GCN structures and
latest Transformer structures, 10 attack methods, 3 datasets and 2 defense methods. Extensive ex-
periments demonstrate the superiority and generalizability of TASAR.
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2 RELATED WORK

Skeleton-Based Human Action Recognition. Early S-HAR research employed convolutional neu-
ral networks (CNNs) (Ali et al., 2023) and recurrent neural networks (RNNs) (Du et al., 2015) to
extract motion features in the spatial domain and temporal domains, respectively. However, skele-
ton data, inherently a topological graph, poses challenges for feature representation using traditional
CNNs and RNNs. Recent advances with graph convolutional networks (GCNs) (Kipf & Welling,
2016) have improved performance by modeling skeletons as topological graphs, with nodes cor-
responding to joints and edges to bones (Yan et al., 2018). Subsequent improvements in graph
designs and network architectures include two-stream adaptive GCN (2s-AGCN) (Shi et al., 2019a),
directed acyclic GCN (DGNN) (Shi et al., 2019b), multi-scale GCN (MS-G3D) (Liu et al., 2020b),
channel-wise topology refinement (CTR-GCN) (Chen et al., 2021) and auxiliary feature refinement
(FR-HEAD) (Zhou et al., 2023). Alongside advancements in GCN-based models, recent studies
have explored temporal Transformer structures for S-HARs (Do & Kim, 2024; Qiu et al., 2022; Guo
et al., 2024), but their vulnerability remains unexplored. Recently, robust S-HAR against adversarial
noise have emerged as an important research topic. Diao et al. (2024a) explores the sophisticated dis-
tributions of on/off-manifold adversarial samples in adversarial training, simultaneously improving
robustness and accuracy. Tanaka et al. (2024) apply Fourier analysis to investigate the robustness of
S-HAR. BEAT (Wang et al., 2023) employs a post-train Bayesian strategy to achieve full Bayesian
treatment on clean data, adversarial distribution and classifier. Although post-train Bayesian strat-
egy is suggested to be more robust (Wang et al., 2023), its application in S-HAR attacks has not
been explored. To address this, we introduce a new post-train Dual Bayesian strategy to improve
adversarial transferability.

Adversarial Attacks on S-HAR. Adversarial attacks (Szegedy et al., 2013) highlight the suscep-
tibility of deep neural networks and have been applied across different data types. Recently, at-
tacks on S-HAR have garnered increasing attention. CIASA (Liu et al., 2020a) proposes a con-
strained iterative attack via GAN (Goodfellow et al., 2014a) to regularize the adversarial skeletons.
SMART (Wang et al., 2021) proposes a perception loss gradient. Tanaka et al. (2022) suggest only
perturbing skeletal lengths. These methods are all white-box attacks, requiring full knowledge of the
victim model. Different from existing white-box attacks leverage dynamics or physical constraints
to preserve visual naturalness within white-box settings, we focus on disrupting spatial-temporal
coherence to improve adversarial transferability. In contrast, BASAR (Diao et al., 2021; 2024a)
proposes motion manifold searching to achieve the query-based black-box attack. FGDA-GS (Kang
et al., 2023a) estimates gradient signs to further reduce query numbers. Compared to white-box and
query-based attacks, transfer-based attacks (Liu et al., 2016) pose a more practical threat as real-
world HAR scenarios typically cannot access white-box information or extensive querying. While
existing white-box S-HAR attacks (Wang et al., 2021; Liu et al., 2020a) can be adapted for transfer-
based scenarios, they suffer from low transferability and sensitivity to surrogate choices. Lu et al.
(2023) proposes a no-box attack for S-HAR, but it also fails in transfer-based attacks. Various type
of transfer-based attacks, including gradient-based (Dong et al., 2018; Ma et al., 2023; Ge et al.,
2023), input transformation (Xie et al., 2019; Zhu et al., 2024; Wang et al., 2024), and ensemble-
based methods (Xiong et al., 2022; Li et al., 2023; Tang et al., 2024), exhibit high transferability
across various tasks but struggle in skeletal data (Lu et al., 2023). Therefore, there is an urgent need
to develop a transferable attack for skeleton-based action recognition.

3 METHODOLOGY

3.1 PRELIMINARIES

We denote a clean motion x ∈ X and its corresponding label y ∈ Y . Given a surrogate action
recognizer fθ parametrized by θ, fθ is trained to map a motion x to a predictive distribution p(y |
x, θ). The white-box attack aims to find adversarial examples x̃ within the neighborhood Bϵ(x) =
{x̃ : ∥x̃− x∥p ≤ ϵ} that misleads the target model fθ:

argmin
∥x̃−x∥p≤ϵ

p(y | x̃, θ), (1)
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where ϵ is the perturbation budget. ∥ · ∥p is the lp norm distance. The procedure of transfer-based
attack is firstly crafting the adversarial example x̃ by attacking the surrogate model, then transferring
x̃ to attack the unseen target model. In Equation (1), since the transferable adversarial examples are
optimized against one surrogate model, the adversarial transferability heavily relies on the surrogate
model learning a classification boundary similar to that of the unknown target model. While possible
for image classification, it proves unrealistic for S-HAR (Wang et al., 2023; Lu et al., 2023).

3.2 MOTIVATION

Existing S-HAR attacks have shown outstanding white-box attack performance but exhibit low
transferability (Wang et al., 2023). Similarly, previous transfer-based attacks (Dong et al., 2018;
Xiong et al., 2022), successful on image data, also show poor transferability when applied to skele-
tal motion (Lu et al., 2023). Naturally, two questions occur to us: (1) Why do existing adversarial
attacks fail to exhibit transferability in skeletal data? (2) Do transferable adversarial examples truly
exist in S-HAR?

To answer these questions, we start by generating adversarial examples using various surrogate
skeletal recognizers and then evaluate their adversarial transferability. Obviously, in Table 1, the
transferability is highly sensitive to the chosen surrogates, e.g. CTR-GCN (Chen et al., 2021) as
the surrogate exhibits higher transferability than ST-GCN (Yan et al., 2018). This observation mo-
tivates us to further investigate the differences between surrogate models. Previous research (Wu
& Zhu, 2020; Qin et al., 2022) has proven that adversarial examples generated by surrogate models
with a less smooth loss landscape are unlikely to transfer across models. Therefore, we investigate
the smoothness of the loss landscape across different surrogate models. In Figure 2, we visualize
the loss landscape of ST-GCN and CTR-GCN trained on the skeletal dataset NTU-60 (Shahroudy
et al., 2016), and compare their smoothness to the ResNet-18 (He et al., 2016) trained on CIFAR-
10 (Krizhevsky et al., 2009). More landscape visualizations can be found in Appendix C. By ana-
lyzing the loss surface smoothness, we have two findings: (1) The loss surface of models trained on
skeletal data is much sharper than those trained on image data, leading to a relatively low transfer-
ability. This suggests that adversarial examples within a sharp local region are less likely to transfer
across models in S-HAR, potentially explaining our first question. (2) CTR-GCN has a flatter loss
landscape compared to ST-GCN, making it a more effective surrogate for higher transferability.
Consequently, we argue that using a surrogate with a smoothed loss landscape will significantly
enhance adversarial transferability in S-HAR.

In this work, motivated by evidence that Bayesian neural networks (BNNs) exhibit low sharpness
and good generalization (Blundell et al., 2015; Maddox et al., 2019), we aim to construct a Bayesian
surrogate by sampling from the model posterior space to smoothen the rugged loss landscape. From
a Bayesian perspective, Equation (1) can be reformulated by approximately minimizing the Bayesian
posterior predictive distribution:

argmin
∥x̃−x∥p≤ϵ

p(y | x̃,D) = argmin
∥x̃−x∥p≤ϵ

Eθ∼p(θ|D)p (y | x̃, θ) , (2)

where p(θ | D) ∝ p(D | θ)p(θ), in which D is the dataset and p(θ) is the prior of model weights.

3.3 A POST-TRAIN BAYESIAN PERSPECTIVE ON ATTACK

Unfortunately, directly sampling from the posterior distribution of skeletal classifiers is not a
straightforward task due to several factors. First, directly sampling the posterior is intractable for
large-scale skeletal classifiers. Although approximate methods such as MCMC sampling (Welling &
Teh, 2011) or variational inference (Blei et al., 2017) are possible, sampling is prohibitively slow and
resource-intensive due to the high dimensionality of the sampling space, which typically involves
at least several million parameters in skeletal classifiers. In addition, skeletal classifiers normally
contain a large number of parameters and are pre-trained on large-scale datasets (Liu et al., 2019).
Consequently, it is not practical for end-users to re-train the surrogate in a Bayesian manner, as the
training process is time-consuming.

To solve the above issues, we propose a new post-train Bayesian attack. We maintain the integrity
of the pre-trained surrogate while appending a tiny MLP layer gθ′ behind it, connected via a skip
connection. Specifically, the final output logits can be computed as: logits = gθ′(fθ(x)) + fθ(x).
In practice, we adopt Monte Carlo sampling to optimize the appended Bayesian model:
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Figure 2: Comparison of loss landscapes of trained models.The x and y axis represent two random
direction vectors sampled from a Gaussian distribution, which are added to the model’s parameter
space along these directions. These random direction vectors are used to assess the sensitivity of
the model’s loss function. The z axis represents the loss value. More details can be found in Li
et al. (2018). BA means the Bayesian Attack proposed by Li et al. (2023). PB means the post-train
Bayesian optimization, and P-DB means the improved post-train Dual Bayesian optimization. The
loss landscape optimized by post-train Dual Bayesian is significantly smoother than those of vanilla
post-train Bayesian and baseline methods. More visualizations can be found in Appendix C.

max
θ′

Eθ′∼p(θ′|D,θ)p
(
y | x, θ, θ′

)
≈ max

θ′
k

1

K

K∑
k=1

p
(
y | x, θ, θ′k

)
, θ′k ∼ p(θ′ | D, θ), (3)

where K is the number of appended models. To train such a Bayesian component, the posterior
distribution p(θ′ | D, θ) needs to be sampled, where p(θ′ | D, θ) ∝ p(D | θ, θ′)p(θ′) and p(θ′) is
the prior of appended model weights. Correspondingly, Equation (2) can be approximately solved
by performing attacks on the ensemble of tiny appended models:

argmin
∥δ∥p≤ϵ

1

K

K∑
k=1

p (y | x̃, θ, θ′k) , θ′k ∼ p(θ′ | D, θ). (4)

Our post-train Bayesian attack offers two advantages. First, the appended models are composed
of tiny MLP layers, getting a similar memory cost to a single surrogate. Second, by freezing fθ,
our post-train Bayesian strategy keeps the pre-trained surrogate intact, avoiding re-training the pre-
trained surrogate. More importantly, training on gθ′ is much faster than on fθ due to the smaller
model size of gθ′ .

3.4 POST-TRAIN DUAL BAYESIAN MOTION ATTACK

In our preliminary experiments, we found that a naive application of post-train Bayesian attack
(Equation (4)) already surpassed the adversarial transfer performance of existing S-HAR attacks,
which demonstrates the effectiveness of smoothening the loss surface of surrogates. However, its
performance remains slightly inferior to the Bayesian attack via re-training a Bayesian surrogate (Li
et al., 2023)(Equation (2)). This performance gap is understandable, as we avoid the prohibitively
slow process of sampling the original posterior distribution θ ∼ p(θ | D) by using a tiny Bayesian
component for post-training instead. To further eliminate the trade-off between attack strength and
efficiency, we propose a novel post-train dual Bayesian optimization for smoothed posterior sam-
pling, to sample the appended models with high smoothness for better transferability (Figure 2).
Moreover, unlike previous transfer-based attacks that assume each frame is independent and ignore
the temporal dependency between sequences, we integrate motion dynamics information into the
Bayesian attack gradient to disrupt the spatial-temporal coherence of S-HAR models. We name our
method Post-train Dual Bayesian Motion Attack.
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3.4.1 POST-TRAIN DUAL BAYESIAN OPTIMIZATION

This motivation is based on the view that models sampled from a smooth posterior, along with the
optimal approximate posterior estimating this smooth posterior, have better smoothness (Nguyen
et al., 2024). To this end, we aim for proposing a smooth posterior for learning post-train BNNs,
hence possibly possessing higher adversarial transferability. Specifically, inspired by the observation
that randomized weights often achieve smoothed weights update (Izmailov et al., 2018; Dziugaite &
Roy, 2017; Jin et al., 2023), we add Gaussian noise to smooth the appended network weights. This
is achieved by a new post-train dual Bayesian optimization:

max
θ′

Eθ′∼p(θ′|D,θ)E∆θ′∼N(0,σ2I)p
(
y | x, θ, θ′ +∆θ′

)
. (5)

For any appended model sampled from the posterior, Equation (5) ensures that the neighborhood
around the model parameters has uniformly low loss. We further use dual Monte Carlo sampling to
approximate Equation (5):

min
θ′
k
∼p(θ′|D,θ)

1

MK

K∑
k=1

M∑
m=1

L
(
x, y, θ, θ′k +∆θ′km

)
, ∆θ′km ∼ N

(
0, σ2I

)
, (6)

where L is the classification loss. Considering dual MCMC samplings computationally intensive, we
instead consider the worst-case parameters from the posterior, followed by Li et al. (2023). Hence
Equation (6) can be equivalent to a min-max optimization problem, written as:

min
θ′
k
∼p(θ′|D,θ)

max
∆θ′∼N(0,σ2I)

1

K

K∑
k=1

L
(
x, y, θ, θ′k +∆θ′

)
, p(∆θ′) ≥ ξ. (7)

The confidence region of the Gaussian posterior is regulated by ξ. We discuss the sensitivity to ξ in
the Appendix C. The entanglement between θ′ and ∆θ′ complicates gradient updating. To simplify
this issue, we utilize Taylor expansion at θ′ to decompose the two components:

min
θ′
k
∼p(θ′|D,θ)

max
∆θ′∼N(0,σ2I)

1

K

K∑
k=1

[L
(
x, y, θ, θ′k

)
+∇θ′

k
L
(
x, y, θ, θ′k

)T
∆θ′], p(∆θ′) ≥ ξ. (8)

Since ∆θ′ is sampled from a zero-mean isotropic Gaussian distribution, the inner maximization can
be solved analytically. We introduce the inference details, mathematical deduction and algorithm
in Appendix B. As shown in Figure 2, the loss landscape optimized by post-train Dual Bayesian is
significantly smoother than vanilla post-train Bayesian.

3.4.2 TEMPORAL MOTION GRADIENT IN BAYESIAN ATTACK

Post-train Dual Bayesian Motion Attack can be performed with gradient-based methods such as
FGSM (Goodfellow et al., 2014b):

x̃ = x+ α · sign(
K∑

k=1

M∑
m=1

∇L
(
x, y, θ, θ′k +∆θ′km

)
), (9)

where α is the attack step size. Meanwhile, for notational simplicity, we notate the classification loss
L (x, y, θ, θ′k +∆θ′km) as L (x). Assume a motion with t frames x = [x1, x2, · · · , xt], this attack

gradient consists of a set of partial derivatives over all frames∇L(x) =
[
∂L(x)
∂x1

, ∂L(x)
∂x2

, · · · , ∂L(x)
∂xt

]
.

The partial derivative ∂L(x)
∂xt

assumes each frame is independent, ignoring the dependency between
frames over time. This assumption is reasonable for attacks on static data such as PGD (Madry et al.,
2017) while infeasible for skeletal motion attacks. In skeletal motion, most S-HAR models learn the
spatial-temporal features (Yan et al., 2018), hence considering motion dynamics in the computing of
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attack gradient can disrupt the spatial-temporal coherence of these features, leading to more general
transferability. To fully represent the motion dynamics, first-order (velocity) gradient (∇L (x))d1
and second-order (acceleration) gradient information (∇L (x))d2 should also be considered. To this
end, we augment the original position gradient with the motion gradient, then Equation (4) becomes:

x̃ = x+ α · sign(
K∑

k=1

M∑
m=1

2∑
n=0

wn(∇L (x))dn),

2∑
n=0

wn = 1, (10)

where (∇L (x))d0 = ∇L(x). Motion gradient can be computed by explicit modeling (Xia et al.,
2015) or implicit learning (Tang et al., 2022). Given that implicit learning requires training an
additional data-driven model to learn the motion manifold, which increases computational overhead,
we opt for explicit modeling. Inspired by Lu et al. (2023), we employ time-varying autoregressive
models (TV-AR)(Bringmann et al., 2017) because TV-AR can effectively estimate the dynamics of
skeleton sequences by modeling the temporary non-stationary signals (Xia et al., 2015). We first use
first-order TV-AR(fd1) and second-order TV-AR(fd2) to model human motions respectively:

fd1 : x̃i
t = At · x̃i

t−1 +Bt + γt, (11)

fd2 : x̃i
t = Ct · x̃i

t−1 +Dt · x̃i
t−2 + Et + γt, (12)

where the model parameters β1
t = [At, Bt] and β2

t = [Ct, Dt, Et] are all time-varying parameters
and determined by data-fitting. γt is a time-dependent white noise representing the dynamics of
stochasticity. Using Equation (11), the first-order motion gradient can be derived as:

(
∂L(x̃i)

∂x̃i
t−1

)
d1

=
∂L(x̃i)

∂x̃i
t−1

+
∂L(x̃i)

∂x̃i
t

·At. (13)

Similarly, second-order dynamics can be expressed as below by using Equation (12):

(
∂L(x̃i)

∂x̃i
t−2

)
d2

=
∂L(x̃i)

∂x̃i
t−2

+
∂L(x̃i)

∂x̃i
t−1

· Ct−1 +
∂L(x̃i)

∂x̃i
t

· (Dt + Ct · Ct−1) , (14)

where Ct =
∂x̃i

t

∂x̃i
t−1

and Dt =
∂x̃i

t

∂x̃i
t−2

. After computing x̃i
t−1 = Ct−1 · x̃i

t−2 + Dt−1 · x̃i
t−3 +

Et−1 + γt−1, we can compute Ct−1 =
∂x̃i

t−1

∂x̃i
t−2

. Overall, the high-order dynamics gradients

over all sequences can be expressed as (∇L (x))d1 =
[(

∂L(x)
∂x1

)
d1

,
(

∂L(x)
∂x2

)
d1

, · · · ,
(

∂L(x)
∂xt

)
d2

]
and

(∇L (x))d2 =
[(

∂L(x)
∂x1

)
d2

,
(

∂L(x)
∂x2

)
d2

, · · · ,
(

∂L(x)
∂xt

)
d2

]
.

4 EXPERIMENTS

4.1 RobustBenchHAR SETTINGS

To our best knowledge, there is no large-scale benchmark for evaluating transfer-based S-HAR attacks. To fill
this gap, we build the first large-scale benchmark for robust S-HAR evaluation, named RobustBenchHAR. We
briefly introduce the benchmark settings here, with additional details available in Appendix D.

(A) Datasets. RobustBenchHAR incorporates three popular S-HAR datasets: NTU 60 (Shahroudy et al., 2016)
, NTU 120 (Liu et al., 2019) and HDM05(Müller et al., 2007). Since the classifiers do not have the same data
pre-processing setting, we unify the data format following (Wang et al., 2023). For NTU 60 and NTU 120, we
subsampled frames to 60. For HDM05, we segmented the data into 60-frame samples.

(B) Evaluated Models. We evaluate TASAR in three categories of surrogate/victim models. (1) Normally
trained models: We adapt 5 commonly used GCN-based models, i.e., ST-GCN (Yan et al., 2018), MS-G3D (Liu
et al., 2020b), CTR-GCN (Chen et al., 2021), 2s-AGCN (Shi et al., 2019a), FR-HEAD (Zhou et al., 2023), and
two latest Transformer-based models SkateFormer(Do & Kim, 2024) and STTFormer(Qiu et al., 2022). To our
best knowledge, this is the first work to investigate the robustness of Transformer-based S-HARs. (2) Ensemble
models: an ensemble of ST-CGN, MS-G3D and DGNN (Shi et al., 2019b). (3) Defense models: We employ
BEAT (Wang et al., 2023) and TRADES (Zhang et al., 2019a), which all demonstrate their robustness for
skeletal classifiers.
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Table 1: The attack success rate(%) of untargeted transfer-based attacks on NTU60 and NTU120.
’Ave’ was calculated as the average transfer success rate over all target models except for the surro-
gate.’SFormer’ represents SkateFormer and MI stands for MI-FGSM.

Surrogate Method
Dataset: NTU60
Target Models Ave

Dataset: NTU120
Target Models Ave

STGCN 2sAGCN MSG3D CTRGCN FRHEAD SFormer STGCN 2sAGCN MSG3D CTRGCN FRHEAD SFormer

STGCN

IFGSM 99.26 11.76 8.33 14.22 16.42 15.44 13.23 96.81 8.82 7.10 13.97 16.42 24.75 14.21
MI 100.00 17.76 27.20 14.95 26.59 11.76 19.65 99.63 18.75 28.18 15.07 20.22 23.03 21.05

SMART 93.28 5.62 2.19 6.88 7.19 10.08 6.39 94.06 8.28 7.66 11.09 10.16 16.12 10.66
CIASA 100.00 3.43 3.43 7.60 9.80 8.33 6.52 100.00 4.16 4.41 9.07 8.08 14.95 8.13

MIG 99.50 25.49 39.60 19.80 36.50 18.14 27.91 98.01 17.45 23.01 15.22 23.76 21.53 20.19
DIM 77.97 20.54 34.03 12.13 28.83 13.11 21.73 75.61 10.76 12.25 12.75 16.21 23.01 15.00

TASAR 99.29 42.55 64.60 20.33 49.41 17.22 38.82 99.26 19.60 19.37 15.28 22.79 25.24 20.46

MSG3D

IFGSM 25.49 22.79 100.00 20.10 24.75 16.66 21.96 26.96 16.42 100.00 15.20 18.38 27.20 20.83
MI 22.42 13.72 100.00 14.83 20.22 12.25 16.69 25.49 12.25 100.00 14.46 16.78 22.30 18.26

SMART 21.66 8.96 100.00 12.50 13.54 12.09 13.75 31.25 13.96 100.00 16.04 17.92 23.38 20.51
CIASA 17.40 5.88 100.00 11.27 11.51 11.76 11.56 22.79 5.88 100.00 11.03 12.50 19.11 14.26

MIG 31.92 39.65 100.00 24.44 36.15 23.06 31.04 32.17 27.22 100.00 23.27 31.18 33.54 29.48
DIM 28.58 47.27 100.00 17.82 35.27 17.69 29.33 30.94 38.24 100.00 19.43 30.19 29.82 29.72

TASAR 48.87 51.18 99.61 41.49 40.14 23.90 41.11 41.16 47.28 100.00 28.83 40.60 40.37 39.65

CTRGCN

IFGSM 27.45 16.54 13.72 95.22 44.97 20.71 24.68 33.33 14.95 14.33 97.30 31.00 31.49 25.02
MI 25.36 23.52 36.51 99.02 51.34 19.85 31.32 30.14 19.73 29.16 99.26 29.16 28.30 27.30

SMART 15.00 5.00 4.69 99.69 15.31 9.27 9.85 19.75 5.84 4.63 99.60 9.27 17.13 11.32
CIASA 14.70 4.65 5.88 99.75 15.93 9.31 10.09 19.60 5.88 4.65 99.75 10.53 16.91 11.51

MIG 28.86 35.34 48.19 93.55 53.46 21.04 37.38 30.94 24.75 32.67 94.18 34.03 29.45 30.37
DIM 23.01 14.97 15.59 53.16 34.71 17.51 21.16 29.51 19.49 24.87 62.31 25.37 23.63 24.57

TASAR 33.76 52.31 66.74 97.06 58.32 21.07 46.44 33.59 26.22 33.82 92.89 35.78 32.84 32.45

STFormer

IFGSM 23.03 15.19 11.27 14.95 16.42 13.48 15.72 26.26 13.97 12.99 15.44 20.83 24.50 19.00
MI 18.13 12.29 19.36 12.25 19.36 10.78 15.36 26.22 21.07 32.35 15.20 22.54 23.77 23.53

SMART 21.77 6.04 6.04 11.29 10.08 10.88 11.02 23.79 9.27 4.43 9.27 12.90 21.37 13.51
CIASA 18.62 6.37 5.39 10.54 10.78 10.78 10.41 24.01 10.53 6.61 11.03 15.19 22.30 14.95

MIG 22.31 21.44 18.89 16.77 23.44 16.77 19.94 30.54 20.32 21.88 16.46 21.25 24.87 22.55
DIM 23.39 33.04 32.67 15.47 28.71 14.72 24.67 29.82 15.84 14.72 13.99 19.05 24.50 19.65

TASAR 26.44 54.32 42.78 16.35 37.98 18.38 32.71 34.61 34.61 46.63 19.71 32.21 26.92 32.45

(C) Baselines. We compare with state-of-the-art (SOTA) S-HAR attacks, i.e. SMART (Wang et al., 2021) and
CIASA (Liu et al., 2020a). We also adopt the SOTA transfer-based attacks as baselines, including gradient-
based, i.e., I-FGSM (Kurakin et al., 2018), MI-FGSM (Dong et al., 2018) and the latest MIG (Ma et al., 2023),
input transformation method DIM (Xie et al., 2019), and ensemble-based/Bayesian attacks, i.e., ENS (Dong
et al., 2018), SVRE (Xiong et al., 2022) and BA (Li et al., 2023). For a fair comparison, we ran 200 iterations
for all attacks under l∞ norm-bounded perturbation of size 0.01. For TASAR, we use the iterative gradient
attack instead of FGSM in Equation (10).

(D) Implementation Details. Our appended model is a simple two-layer fully-connected layer network. Unless
specified otherwise, we use K = 3 and M = 20 in Equation (10) for default and explain the reason in the
ablation study later. More implementation details can be found in Appendix D.

4.2 EVALUATION ON NORMALLY TRAINED MODELS

Evaluation of Untargeted Attack. As shown in in Table 1, TASAR significantly surpasses both S-HAR
attacks and transfer-based attacks under the black-box settings, while maintaining comparable white-box attack
performance. Specifically, TASAR achieves the highest average transfer success rate of 35.5% across different
models and datasets, surpassing SMART (Wang et al., 2021) (the SOTA S-HAR attack) and MIG (Ma et al.,
2023) (the SOTA transfer-based attack) by a large margin of 23.4% and 8.1% respectively. Moreover, TASAR
shows consistent transferability across all surrogate models, target models and datasets. These improvements
break the common belief that transfer-based attacks in S-HAR suffer from low transferability and highly rely
on the chosen surrogate (Lu et al., 2023).

Evaluation of Targeted Attack. In this section, we focus on targeted attacks under the black-box setting.
Improving targeted attack transferability on S-HAR is generally more challenging than untargeted attacks. This
is primarily due to the significant semantic differences between the randomly selected class and the original
one. Attacking a ‘running’ motion to ‘walking’ is generally easier than to ‘drinking’. This is why targeted
attacks have lower success rate than untargeted attacks. However, Table 2 shows TASAR still outperforms the
baseline under most scenarios. Moreover, TASAR can successfully attack the original class to a target with an
obvious semantic gap without being detected by humans. The visual examples can be found in Figure 4.

4.3 EVALUATION ON ENSEMBLE AND DEFENSE MODELS

Evaluation on Ensemble Models. TASAR benefits from the additional model parameters added by the ap-
pended Bayesian components. For a fair comparison, we compare it with SOTA ensemble-based methods, i.e.,
ENS Dong et al. (2018) and SVRE Xiong et al. (2022), and the Bayesian Attack (BA) Li et al. (2023), because
they also benefit from the model size. ENS and SVRE take three models ST-GCN, MS-G3D and DGNN as
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Table 2: The targeted attack success rate (%)
of targeted transfer-based attack on NTU60.

Surrogate Method Target AveSTGCN 2sAGCN MSG3D CTRGCN FRHEAD

STGCN
MI 27.45 3.06 2.32 1.71 1.71 2.20

SMART 28.02 1.20 1.81 1.41 1.81 1.56
TASAR 28.79 6.06 6.06 8.33 6.82 6.82

MSG3D
MI 2.08 3.31 32.72 1.83 2.45 2.42

SMART 0.80 0.60 44.95 1.01 1.01 0.86
TASAR 9.09 9.09 57.58 9.85 9.33 9.34

CTRGCN
MI 3.06 3.30 2.81 29.53 4.53 3.43

SMART 1.61 1.61 1.61 43.95 1.81 1.66
TASAR 8.33 9.09 8.33 22.73 9.09 8.71

2sAGCN
MI 1.47 98.61 1.83 1.83 1.47 1.65

SMART 2.21 53.02 1.20 2.62 2.21 2.06
TASAR 10.61 76.52 4.56 10.61 8.33 8.53

Table 3: The untarget attack success rate (%)
against defense models on HDM05 (top) and
NTU 60 (bottom).

Surrogate Method TRADES BEAT
STGCN MSG3D CTRGCN STGCN MSG3D CTRGCN

STGCN
MI-FGSM 3.95 3.75 3.54 96.45 22.29 16.45
SMART 2.81 3.13 1.88 80.13 3.34 2.90
TASAR 3.92 4.17 2.94 92.19 60.16 39.84

MSG3D
MI-FGSM 3.02 3.02 2.42 36.89 100.00 30.64
SMART 2.50 3.13 3.13 6.69 82.36 4.01
TASAR 12.26 10.29 12.25 59.38 100.00 58.59

STGCN
MI-FGSM 16.05 5.51 8.46 95.83 30.39 16.05
SMART 12.50 5.78 9.06 73.95 4.68 8.28
TASAR 12.50 10.22 12.50 97.98 52.34 19.53

MSG3D
MI-FGSM 23.4 7.59 13.11 28.06 97.54 16.54
SMART 19.45 7.42 11.72 26.71 79.68 13.82
TASAR 19.79 14.58 17.71 40.63 100.00 32.29

Figure 3: Comparisons with ensemble and
Bayesian attacks. We calculate the model size
and evaluate the average white-box (WASR) and
black-box attack success rate (BASR) on the
HDM05, NTU60, and NTU120 datasets, respec-
tively.

Figure 4: The ground truth label ‘Throw’
can be misclassified as ‘Lie down’ on tar-
geted attack by TASAR. The semantic differ-
ences between ground truth labels and target
labels are large.

an ensemble of surrogate models, while BA and TASAR only take MS-G3D as the single substitute architec-
ture. Unlike BA re-training the surrogate into a BNN, TASAR instead appends a small Bayesian component
for post-training. We choose ST-GCN, 2s-AGCN, MS-G3D, CTR-GCN, FR-HEAD as the target models, and
evaluate the average white-box attack success rate (WASR), average black-box attack success(BASR) and the
number of parameters in Figure 3. We can clearly see that TASAR (blue line) achieves the best attack perfor-
mance under both white-box and black-box settings, with an order of magnitude smaller model size. When
using MSG3D (12.78M) as the surrogate model, the Bayesian components appended by TASAR only increase
0.012M parameters of the surrogate size, resulting in a memory cost comparable to that of a single surrogate.
In contrast, the Bayesian surrogate model used by BA has 15 times more parameters (255.57M) than the single
surrogate.

Since both BA and TASAR are Bayesian-based attacks, we compare the smoothness of their loss landscape in
Figure 2. It can be seen that both BA and TASAR exhibit the ability to smoothen the loss landscape, providing
empirical evidence for the Bayesian surrogate’s effectiveness in smoothening the loss surface. Further, TASAR
and BA achieve the top-2 performance in transfer-based attacks, highlighting the high correlations between loss
smoothness and transferability. Compared to BA, TASAR exhibits a significantly flatter loss landscape, aligning
with the higher transfer success rate than BA. The key difference between BA and TASAR is that TASAR
samples from a smoothed posterior, which shows the benefit of smoothed posterior sampling for improving
adversarial transferability.

Evaluation on Defense Models. As BEAT shows high robustness against S-HAR white-box attack (Wang
et al., 2023), it is also interesting to evaluate its defense performance against black-box attack. We also em-
ploy the adversarial training method TRADES (Zhang et al., 2019a) as a baseline due to its robustness in
S-HAR (Wang et al., 2023). Obviously, in Table 3, TASAR still achieves the highest adversarial transferability
among the compared methods against defense models, further validating its effectiveness.
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4.4 ABLATION STUDY

Dual MCMC Sampling. TASAR proposes a new dual MCMC sampling in the post-train Bayesian formulation
(Equation (10)). To see its contribution, we conduct an ablation study on the number of appended models (K
and M in Equation (10)). To isolate the impact of the number of appended models, we employ TASAR
without motion gradient. The contribution of the motion gradient will be discussed in the subsequent ablation
experiment. As shown in Table 4, compared with vanilla Post-train Bayesian strategy (M=0), the dual sampling
significantly improves the attack performance. Furthermore, although TASAR theoretically requires intensive
sampling for inference, in practice, we find a small number of sampling is sufficient (K = 3 and M = 20).
More sampling will cause extra computation overhead. So we use K = 3 and M = 20 by default.

Table 4: Ablation Study on NTU 60 with
ST-GCN as the surrogate. M and K are the
number dual MCMC sampling.

K M
Target

ST-GCN 2s-AGCN MS-G3D CTR-GCN FR-HEAD

1
0 97.46 39.06 58.39 19.53 43.75

10 98.24 40.23 60.35 19.14 45.31
20 98.05 41.21 59.57 18.36 45.72

3
0 97.46 39.25 56.45 19.34 43.16

10 98.07 42.01 60.57 19.73 46.49
20 99.29 42.55 64.60 20.33 49.41

5
0 97.92 36.21 56.77 18.75 41.92

10 96.88 41.15 63.80 16.93 45.05
20 97.14 39.84 60.94 20.57 45.21

Figure 5: The ablation experiments of
motion gradient. ‘MG’/‘No MG’ means
whether using motion gradient in TASAR.

Temporal Motion Gradient. TASAR benefits from the interplay between temporal Motion Gradient (MG)
and Bayesian manner. We hence conduct ablation studies(MG/No MG) to show the effects of motion gradient
and report the results in Figure 5. Compared with TASAR without using motion gradient, TASAR with motion
gradient consistently improves the attack success rate in both white box and transfer-based attacks, which shows
the benefit of integrating the motion gradient into the Bayesian formulation.

4.5 SURROGATE TRANSFERABILITY

It is widely believed that transfer-based attacks in S-HAR are highly sensitive to the surrogate choice (Lu et al.,
2023; Wang et al., 2023; 2021). In this subsection, we provide a detailed analysis of the factors contributing to
this phenomenon. When looking at the results in Table 1 and the visualization of loss landscape in Figure 2 and
Appendix C, we note that loss surface smoothness correlates with the adversarial transferability. For example,
CTR-GCN, manifesting smoother regions within the loss landscape, demonstrates higher transferability than
ST-GCN and STTFormer. STTFormer trained on NTU 120 has a smoother loss surface than ST-GCN (see
Appendix C), resulting in higher transferability than ST-GCN. For NTU 60, STTFormer shows a similar loss
surface to that of ST-GCN and exhibits comparable transferability. Therefore, we suspect that the loss surface
smoothness plays a pivotal role in boosting adversarial transferability for S-HAR, potentially outweighing the
significance of gradient-based optimization techniques. Next, two-stream MS-G3D shows the highest transfer-
ability. Unlike other surrogates, which solely extract joint information, MS-G3D uses a two-stream ensemble
incorporating both joint and bone features, thereby effectively capturing relative joint movements. In conclu-
sion, we suggest that skeletal transfer-based attacks employ smoother two-stream surrogates incorporating both
joint and bone information.

5 CONCLUSION

In this paper, we systematically investigate the adversarial transferability for S-HARs from the view of loss
landscape, and propose the first transfer-based attack on skeletal action recognition, TASAR. We build Ro-
bustBenchHAR, the first comprehensive benchmark for robustness evaluation in S-HAR. We hope that Robust-
BenchHAR could contribute to the adversarial learning and S-HAR community by facilitating researchers to
easily compare new methods with existing ones and inspiring new research from the thorough analysis of the
comprehensive evaluations.
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icant practical threat to the current S-HAR models. However, we believe that in order to build a reliable and
robust action recognizer, it is of great necessity to investigate their vulnerability. Therefore, this paper can
raise awareness of vulnerability in existing S-HAR models, which greatly outweighs its risk. TASAR can be
employed to evaluate the robustness of skeletal classifiers in real-world applications or improve their robustness
through adversarial training.
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Reproducibility Statement. For the datasets used in our experiments, all the datasets used in this paper are open
dataset and are available to the public. We have provided a thorough description of the data processing steps in
the supplementary materials. For the novel model and algorithms presented in this work, we have included an
anonymous link to the downloadable source code and model checkpoint to use our proposed benchmark and
build our approach. The source code and model checkpoint can also be found in the supplementary materials.
Additionally, all inference details and mathematical deduction can be found in the Appendix B. This Repro-
ducibility Statement is intended to guide readers to the relevant resources that will aid in replicating our work,
ensuring transparency and clarity throughout.

B INFERENCE DETAILS

The detailed inference process for Post-train Dual Bayesian Motion Attack is outlined in Algorithm 1.

Post-train Dual Bayesian Optimization. The confidence region of the Gaussian posterior in Equa-
tion (8) regulated by ξ. As ∆θ′ is sampled from a zero-mean isotropic Gaussian distribution, the inner maxi-
mization can be solved analytically:

∆θ′∗ = λξ,σ∇θ′L
(
x, y, θ, θ′

)
/
∥∥∇θ′L

(
x, y, θ, θ′

)∥∥ . (15)

Then the gradient of∇θ′
k
L (x, y, θ, θ′k)

T
∆θ′ in Equation (8) becomes∇θ′

k
L (x, y, θ, θ′k) +H∆θ′∗, in which

H∆θ′∗ can be approximately estimated via the finite difference method:
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H∆θ′∗ ≈
1

γ

(
∇θ′

k

1

K

K∑
k=1

L
(
x, y, θ, θ′k + γ∆θ′∗

)
−∇θ′

k

1

K

K∑
i=1

L
(
x, y, θ, θ′k

))
, (16)

where γ is a small positive constant. Therefore, our final optimization objective is:

1

K

K∑
k=1

∇θ′
k
L
(
x, y, θ, θ′k

)
+ (1/γ)

(
∇θ′

k
L
(
x, y, θ, θ′k + γ∆θ′∗

)
−∇θ′

k
L
(
x, y, θ, θ′k

))
. (17)

Followed by Wang & Diao (2023), we use Stochastic Gradient Adaptive Hamiltonian Monte Carlo
(SGAHMC) (Springenberg et al., 2016) for the post-train dual Bayesian optimization. Our dual Bayesian
optimization assume θ′ is sampled from Gaussian posterior, which has a presumed isotropic covariance matrix.
In practice, we follow the suggestions from Li et al. (2023) to calculate the mean and the covariance from
data by using SWAG (Maddox et al., 2019), as SWAG can offer an improved approximation to the posterior
over parameters. While the posterior still relies on Gaussian approximation, it specifically incorporates the
SWA(Izmailov et al., 2018) solution as its mean, and decomposes the covariance into a low-rank matrix and a
diagonal matrix:

θ′k ∼ N
(
θ′k,SWA,ΣSWAG

)
,

ΣSWAG =
1

2
(Σdiag +Σlow-rank ) , (18)

where 1
2
(≥ 0) can be set to other coefficients, which represent the scaling factor of SWAG for disassociating the

learning rate of the covariance. Note that the posterior discussed in the preceding section is formulated based on
the worst cases, thus facilitating its effortless integration with SWAG to expand diversity and flexibility. Since
θk,SWA is unknown before training terminates, the dispersion of θ′k in the final Bayesian model originates from
the combination of two distinct independent Gaussian distributions, with their covariance matrices aggregated.
Consequently Equation (18) becomes:

θ′k ∼ N
(
θ′k,SWA,Σθ′

k

)
,

Σθ′
k
= α (Σdiag +Σlow-rank ) + βI, (19)

where β controls the covariance matrix of the isotropic Gaussian distribution mentioned before.

C ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

C.1 ADDITIONAL LANDSCAPE VISUALIZATIONS

To explore the sensitivity of transfer-based attacks to surrogate models (Lu et al., 2023; Wang et al., 2023;
2021), we present in Figure 6 and Figure 7 the loss landscapes of different surrogate models trained on NTU60
and NTU120. It is evident that both the post-train Bayesian optimization(PB) and the improved post-train Dual
Bayesian optimization(P-DB) can smooth the loss landscape; Notably, surrogates refined by P-DB display
smoother loss landscapes, leading to superior transferability over normally trained models and those optimized
by PB.

C.2 ADDITIONAL RESULTS

The Sensitivity to ξ. In our Post-train Dual Bayesian optimization, we consider the worst-case parameters
from the posterior. The confidence region of the Gaussian posterior is regulated by p(∆θ′) ≥ ξ, influencing the
extent of exploration within the posterior distribution. Therefore, we investigate the relationship between the
sensitivity of ξ and the performance of TASAR. Based on our assumption of an isotropic Gaussian distribution,
we got the analytical solution of the worst case as below:

∆θ′∗ = λξ,σ∇θ′L
(
x, y, θ, θ′

)
/
∥∥∇θ′L

(
x, y, θ, θ′

)∥∥ . (20)

In Equation (20), ξ can be reparameterized as a hyper-parameter λξ,σ . Consequently, we conduct ablation
studies to investigate the relationship between the performance of our method and the sensitivity of the hyper-
parameter λξ,σ . We varied with λε,σ ∈ {0.001, 0.01, 0.05, 0.1, 1, 1.5, 2} on NTU120 dataset and show the
success rates of attacking victim models. We choose ST-GCN as the pre-trained model and the results are
shown in Table 5. We found that setting a small value of λε,σ achieves the best adversarial transferability
while maintaining a high benign accuracy. Hence we sample a collection of new surrogates near to the original
surrogates and set λε,σ = 0.001 as default.
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Algorithm 1: Inference for Post-train Dual Bayesian Motion Attack
1 Input: x: training data; Npost−train: the number of post-train iterations; Ndual: the number of

Post-train Dual Bayesian optimization iterations; Mθ′ : sampling iterations for θ′k; c: moment
update frequency; K:the number of appended models;I:attack iterations; θ: pre-trained
surrogate weights;

2 Output: {θ′1 +∆θ′11, . . . , θ
′
K +∆θ′KM}: appended surrogate weights; x̃: adversarial

examples;
// Post-train Bayesian

3 Init: randomly initialize {θ′1, . . . , θ′K};
4 for i = 1 to Npost−train do
5 for k = 1 to K do
6 Randomly sample a mini-batch data {x, y};
7 θ′ki

← θ′ki−1
− η∇θ′

ki
L (x, y, θ, θ′k));

8 for t = 1 to Mθ′ do
9 Update θ′k via SGAHMC;

10 end
11 end
12 end
// Post-train Dual Bayesian Optimization

13 each θ′k ← θ′k0
, θ′k

2 ← θ′k0

2;
14 for i = 1 to Ndual do
15 for k = 1 to K do
16 Randomly sample a mini-batch data {x, y};
17 θ′ki

← θ′ki−1
− η∇θ′

ki
L (x, y, θ, θ′k));

18 Compute ∆θ′∗ via Equation (15);
19 Solving outer min optimization in Equation (8) via Equation (17);
20 if MOD(i, c) = 0 then
21 n← i/c ;

22 θ′k ←
nθ′

k+θ′
ki

n+1 , θ′k
2 ← nθ′

k
2+θ′

ki

2

n+1 ;
23 end
24 end
25 end
26 θ′k,SWA = θ′k, Σdiag = θ′k

2 − θ′k
2
;

// Attack
27 Initialization:x̃0 = x;
28 obtain the time-varying parameters with TV-AR;
29 for i = 1 to I-1 do
30 models=[] for k = 1 to K do
31 for m = 1 to M do
32 Draw θ′k +∆θ′km in Equation (19);
33 models.append(θ′k +∆θ′km);
34 end
35 end
36 Obtain the ensemble gradient;

37 Calculate the motion gradient
(

∂L(x̃i)
∂x̃i

t−1

)
d1

and
(

∂L(x̃i)
∂x̃i

t−2

)
d2

with Equation (13) and

Equation (14);
38 Update x̃i+1 via Equation (10);
39 end
40 return {θ′1 +∆θ′11, . . . , θ

′
K +∆θ′KM},x̃;
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Figure 6: Loss landscapes of trained models with different methods on NTU60. The loss landscape
in each plot are generated from the same original data randomly selected from the test dataset of
NTU60.PB means the post-train Bayesian optimization, P-DB means the improved post-train Dual
Bayesian optimization. The first row, second row and third row represent the loss surface of CTR-
GCN, ST-GCN and STTFormer trained normally, as well as PB and P-DB, respectively, with the z
axis ranging from 0 to 16.

Figure 7: Loss landscapes of trained models with different methods on NTU120.The loss landscape
in each plot are generated from the same original data randomly selected from the test dataset of
NTU120. PB means the post-train Bayesian optimization, P-DB means the improved post-train
Dual Bayesian optimization.The first row, second row, and third row correspond to the loss surfaces
of CTR-GCN, ST-GCN, and STTFormer under normal training, PB and P-DB, respectively. For the
normally trained plots, the z axis ranges from 0 to 30, while for PB and P-DB, the range is from 0
to 20.

Perturbation Budget In this section, we analyze the impact of attack strength on adversarial transferabil-
ity. We increase the perturbation budget from 0.01 to 0.05, the results are shown in Figure 9. The general
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Figure 8: The ground truth label ‘Walk’ can be misclassified as ’Cartwheel’ on targeted attack by
TASAR. The semantic differences between ground truth labels and target labels are large.

Table 5: Comparsions attack success rate(%) with different λξ,σ . The surrogate model is uniformly
selected as ST-GCN on NTU120.

λξ,σ
Target AccuracyST-GCN 2s-AGCN MS-G3D CTR-GCN FR-HEAD

0.001 99.26 19.60 19.37 15.28 22.79 63.60
0.01 95.88 17.62 13.10 14.29 20.23 64.30
0.05 96.43 17.26 13.10 14.88 21.43 63.60
0.1 96.43 17.62 13.10 13.69 21.43 60.56
1 96.43 18.45 11.90 16.07 23.21 60.39

1.5 96.43 18.45 13.10 15.48 23.81 56.58
2 97.02 17.26 13.10 16.67 22.02 54.61

Figure 9: The success rate with different perturbation size. The surrogate model is uniformly chosen
as MSG-3D and the dataset is NTU60.

pattern of the lines aligns with the threshold setting, indicating that a larger perturbation budget consistently
enhances adversarial transferability across various surrogate models.

The Visual Quality of Targeted Adversarial Examples TASAR can successfully attack the original
class to a target with an obvious semantic gap without being detected by humans. We show an additional visual
example in Figure 8.

Comparsion with Different Training Strategies. We conducted additional experiments to compare the
performance of modeling p (θ′ | D, θ) , p(θ | D) and p (θ, θ′ | D). The default setting of TASAR corresponds
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to p (θ′ | D, θ), where θ′ is trainable while θ remains fixed. p(θ | D) represents a standard Bayesian neural
network without adding appended models. For this case, we train the Bayesian surrogates with a cyclical variant
of Stochastic Gradient Markov Chain Monte Carlo[1] to sample 3 models from the posterior distribution of
neural network weights. For p (θ, θ′ | D), 9 appended models are added behind BNNs and both θ and θ′ are
trainable. Due to the high optimization complexity(updating both θ and θ′), we use vanilla post-train Bayeian
optimization instead of improved post-train dual Bayesian optimization optimization for updating θ′.

Table 6: The attack success rate(%) of untargeted attacks on NTU60.

Surrogate Method NTU60
ST-GCN 2s-AGCN MS-G3D CTR-GCN FR-HEAD SFormer

ST-GCN
p(θ′|D, θ) (TASAR) 99.29 42.55 64.60 20.33 49.41 17.22

p(θ|D) 90.63 37.11 69.53 17.58 43.36 25.39
p(θ, θ′|D) 93.75 41.80 73.04 18.75 46.87 22.65

Table 7: Model Size and Training Time measurement on NTU60. ’MS’ means The Model Size(M)
and ’TT’ means The Training Time(hours).

Surrogate Method NTU60
MS TT

ST-GCN
p(θ′|D, θ) 3.54 0.65
p(θ|D) 9.30 5.7

p(θ, θ′|D) 9.36 6.4

The results are presented in Table 6. Compared to modeling p(θ | D) and p(θ, θ′|D), TASAR achieves supe-
rior performance in transfer attacks on three out of five black-box models and demonstrates the best white-box
attack performance on ST-GCN. This advantage arises from the use of improved post-training Dual Bayesian
optimization, which enables smoothed posterior sampling and improves adversarial transferability. Moreover,
unlike modeling p(θ | D) and p(θ, θ′|D), where averaging gradients from multiple surrogates diminish white-
box attack effectiveness, our post-training strategy preserves the pre-trained model intact, not reducing the
original white-box attack strength. Further, TASAR significantly reducing computational overhead and accel-
erating training process, as shown in Table 7.

Quantification of Model Smoothness. We quantitatively measure the changes in loss as x is perturbed
along a random direction with varying magnitudes. Specifically, we first sample d from a Gaussian distribution
and normalize it onto the ℓ2 unit norm ball as d ← d

∥d∥F
. Then, we calculate the loss change (smoothness)

f(a) for different magnitudes a:

f(a) = |L(x+ a · d, y, θ)− L(x, y, θ)| . (21)

Table 8: Loss changes (f(a)) measurement for normally trained Surrogate and TASAR on HDM05.
”NT” means ”Normally Training”.

Surrogate Method Magnitude
-1.0 -0.8 -0.6 -0.4 0.4 0.6 0.8 1.0

ST-GCN NT 7.46 6.05 4.34 2.08 2.06 4.33 5.91 7.24
TASAR 2.66 1.70 1.03 1.77 2.27 1.40 1.65 2.31

We calculate f(a) 20 times with different randomly sampled d, and take the average results. For fair com-
parison, we use the same d each sampling in both ‘NT’ and ‘TASAR’. The experimental results reveal that
TASAR achieves a significantly smoother loss landscape compared to Normally Train (NT) across all magni-
tudes of perturbation. For large perturbations (|a| = 1.0), TASAR reduces the loss change by approximately
threefold compared to NT. Additionally, TASAR maintains a more uniform smoothness across different mag-
nitudes, while NT exhibits sharper variations, with larger loss changes. This indicates that TASAR effectively
smoothens the loss landscape, contributing to improved transferability.

D DETAILED RobustBenchHAR SETTINGS

Here we report the detailed experimental settings in our experiments. All experiments are conducted on one
NVIDIA GeForce RTX 3090 GPU.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(A) Datasets. We choose three widely adopted datasets: NTU60 (Shahroudy et al., 2016) , NTU120 (Liu
et al., 2019) and HDM05(Müller et al., 2007). The HDM05 dataset comprises 130 action classes and includes
2337 sequences performed by 5 non-professional actors. NTU60 offers 60 action classes, it comprises 56,880
videos captured from 40 subjects across 155 camera viewpoints. NTU120 extends NTU60 with 120 action
classes, it contains 114,480 videos from 106 subjects across 155 camera viewpoints. Due to variations in data
pre-processing settings among S-HAR classifiers (such as data requiring subsampling(Zhang et al., 2019b)),
we unify the data format following Wang et al. (2023). For NTU60 and NTU120, we subsample frames to 60.
For HDM05, we segment the data into 60-frame samples(Diao et al., 2021).

(B) Evaluated Models. We evaluate TASAR in three categories of surrogate/victim models.

(1) Normally trained models: We adapt 5 commonly used GCN-based models, i.e., ST-GCN(Yan et al., 2018),
2S-AGCN(Shi et al., 2019a), CTR-GCN(Chen et al., 2021), MS-G3D(Liu et al., 2020b), FR-HEAD(Zhou et al.,
2023) and 2 Transformer-based models, i.e., STTFormer(Qiu et al., 2022) and SkateFormer(Do & Kim, 2024).
Below we introduce the seven skeletal classifiers in details. ST-GCN (Yan et al., 2018) is the first time to apply
graph convolution to S-HAR, constructing nodes and edges in the topology using skeletal information. CTR-
GCN (Chen et al., 2021) improves the design of GCNs of ST-GCN and proposes to dynamically learn different
topologies by learning a shared topology as a common prior for all channels and refining it for each channel.
2s-AGCN (Shi et al., 2019a) enables the model to learn graph topologies end-to-end through self-attention. It
also incorporates a dual-stream framework to model first-order and second-order information simultaneously.
MS-G3D (Liu et al., 2020b) proposes a disentangled multi-scale aggregation scheme to eliminate redundant
dependencies between node features from different neighborhoods, thereby capturing global joint relationships
on human skeletons. FR-HEAD (Zhou et al., 2023) applies contrastive feature refinement at various stages of
GCNs to build multi-level feature extraction. This allows ambiguous samples to be dynamically discovered and
calibrated in the feature space. STTFormer (Qiu et al., 2022) divides the skeleton sequence into temporal tuples
to capture the relationships between different joints in consecutive and non-adjacent frames. SkateFormer (Do
& Kim, 2024) classifies essential skeletal-temporal relationships for S-HAR into four distinct categories and
utilizes self-attention in each partition to focus on key joints and frames crucial for recognition. To the best of
our knowledge, this is the first work to investigate the robustness of Transformer-based S-HARs.

(2) Ensemble model: An ensemble of ST-CGN, MS-G3D and DGNN (Shi et al., 2019b).

(3) Defense models: We employ BEAT (Wang et al., 2023) and TRADES (Zhang et al., 2019a), which all
demonstrate their robustness for skeletal classifiers. BEAT (Wang et al., 2023) proposes a black-box defense
framework, which transforms any pre-trained classifier into a more robust one by maximizing the joint proba-
bility of clean data, adversarial examples and the classifier through joint Bayesian treatments.TRADES (Zhang
et al., 2019a) is a white-box defense method that introduces a KL-divergence loss function for adversarial train-
ing. TRADES not only accounts for natural error but also incorporates adversarial error, balancing robustness
and accuracy.

(C) Baselines. Unlike images or videos, the space available for attacking skeletons is much smaller, mak-
ing adversarial perturbations on skeletons more easily detectable, here we choose two state-of-the-art attacks
against S-HAR: (1) SMART (Wang et al., 2021) ensures the imperceptibility of the attack by introducing an ad-
versarial attack perceptual loss function for S-HAR. (2) CIASA (Liu et al., 2020a)maintains the spatio-temporal
constraints of joint connections and skeletal bone lengths through spatial skeleton realignment and further en-
sures the anthropomorphic plausibility by utilizing GAN(Goodfellow et al., 2014a) for regularization.

Besides the attacks specifically designed for S-HAR, we also select general transfer-based attacks as baselines,
these attacks include (1) Gradient-based attacks, such as I-FGSM (Kurakin et al., 2018), an iterative fast gra-
dient method; MIFGSM (Dong et al., 2018), which integrates momentum into I-FGSM to stabilize the update
direction and prevent getting stuck in poor local maxima; and the latest MIG (Ma et al., 2023), which uses
integrated gradients to steer the generation of adversarial perturbations and adjusts them according to the mo-
mentum updating strategy. (2) Input transformation attacks, such as DIM (Xie et al., 2019), which improves the
transferability of adversarial examples by creating diverse input patterns. (3) Ensemble-based/Bayesian attacks,
including ENS (Dong et al., 2018), which attacks multiple models with fused logit activations; SVRE (Xiong
et al., 2022), which escapes poor local optima by computing an unbiased gradient estimate through variance
reduction for each iteration; and BA (Li et al., 2023), which fine-tunes the weights of the surrogate model in a
Bayesian manner, thereby creating an ensemble of infinitely many DNNs as surrogates.

For a fair comparison, we run 200 iterations for all attacks under l∞ norm-bounded perturbation of size 0.01.
For TASAR, we use the iterative gradient attack instead of FGSM.

(D) Implementation Details Of TASAR. Our appended model is a simple two-layer fully-connected
layer network. Unless specified otherwise, we use K = 3 and M = 20 in TASAR for default and explain the
reason in the ablation study later.
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During the post-train, we set a learning rate of 0.03 with five epochs. We use SGAHMC optimizers (Springen-
berg et al., 2016), within itτ is automatically chosen, the friction coefficient F = 10−5 and Mθ′ = 30 steps
for sampling.

During the dual Bayesian optimization, we set γ = 0.1/ ∥∆θ′∗∥2 and perform training for 5 epochs with a
learning rate of 0.03. Additionally, we always set λε,σ = 0.001.

During Inference, SWAG adjusts the covariance matrix using a constant multiplier to decouple the learning
rate from covariance(Maddox et al., 2019). Here we always use 1.5 as the rescaling factor. When performing
attacks, we set σ = 0.009 for models with SWAG. The w1,w2 and w3 are set as 0.8, 0.1 and 0.1.

(E) Computing Resource. The experimental platform used in this study is equipped with an AMD EPYC
7542 32-Core CPU operating at a clock speed of 2039.813 GHz, four NVIDIA GeForce RTX 3090 GPUs, and
24 GB of memory per GPU. The proposed method was implemented using the open-source machine learning
framework PyTorch.
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