

000 PROOF-CARRYING NUMBERS (PCN): A PROTO- 001 COL FOR TRUSTWORTHY NUMERIC ANSWERS FROM 002 LLMs VIA CLAIM VERIFICATION 003

004 **Anonymous authors**
 005

006 Paper under double-blind review
 007

008 ABSTRACT 009

010 Large Language Models (LLMs) as stochastic systems may generate numbers
 011 that deviate from available data, a failure known as *numeric hallucination*. Existing
 012 safeguards—retrieval-augmented generation, citations, and uncertainty estimation—improve
 013 transparency but cannot guarantee fidelity: fabricated or misquoted values may still be displayed as if correct.
 014 We propose **Proof-Carrying Numbers (PCN)**, a presentation-layer protocol
 015 that enforces numeric fidelity through mechanical verification. Under
 016 PCN, numeric spans are emitted as *claim-bound tokens* tied to structured
 017 claims, and a verifier checks each token under a declared policy (e.g., exact
 018 equality, rounding, aliases, or tolerance with qualifiers). Crucially, PCN
 019 places verification in the *renderer*, not the model: only claim-checked numbers
 020 are marked as verified, and all others default to unverified. This separation
 021 prevents spoofing and guarantees fail-closed behavior. We formalize
 022 PCN and prove soundness, completeness under honest tokens, fail-closed
 023 behavior, and monotonicity under policy refinement. PCN is lightweight
 024 and model-agnostic, integrates seamlessly into existing applications, and
 025 can be extended with cryptographic commitments. By enforcing verification
 026 as a mandatory step before display, PCN establishes a simple contract
 027 for numerically sensitive settings: *trust is earned only by proof*, while the
 028 absence of a mark communicates uncertainty.
 029

030 1 INTRODUCTION 031

032 Large Language Models (LLMs) are emerging as powerful interfaces for accessing knowledge
 033 in domains ranging from healthcare and finance to economics and international development.
 034 Their fluency makes them attractive to a wide range of users—from policymakers and re-
 035 searchers to clinicians, financial analysts, and the public—but their usefulness is constrained
 036 by their stochastic nature: they may generate **numeric hallucinations**.

037 Even when given correct input, LLMs may still produce plausible but incorrect val-
 038 ues—sometimes citing the right dataset while presenting the wrong figure (Ji et al., 2023;
 039 Banerjee et al., 2024; Xu et al., 2025; Kalai et al., 2025). For example, Wu et al. (2025a)
 040 showed that when provided a perturbed drug dosage, an LLM sometimes “corrected” it to
 041 a different value. In another case, a model might state that the Philippines’ GDP growth in
 042 2024 was 6% when the official figure published by The World Bank (2025) was 5.7%. Small
 043 deviations like these can erode trust and cascade into flawed medical guidance, misinformed
 044 policy, or reputational risks for institutions.

045 Existing safeguards only partially address this problem. Retrieval-augmented generation
 046 (Lewis et al., 2020) grounds answers in source text, while citations and attribution frame-
 047 works (Wu et al., 2025a; Zhang et al., 2025) increase transparency. However, both remain
 048 probabilistic: users often assume a cited number is faithful even when it has been misquoted
 049 or fabricated (Wu et al., 2025b; Hakim et al., 2025). Similarly, uncertainty estimation (Man-
 050 akul et al., 2023) and self-verification approaches can flag suspicious values but offer no
 051 binding guarantee.

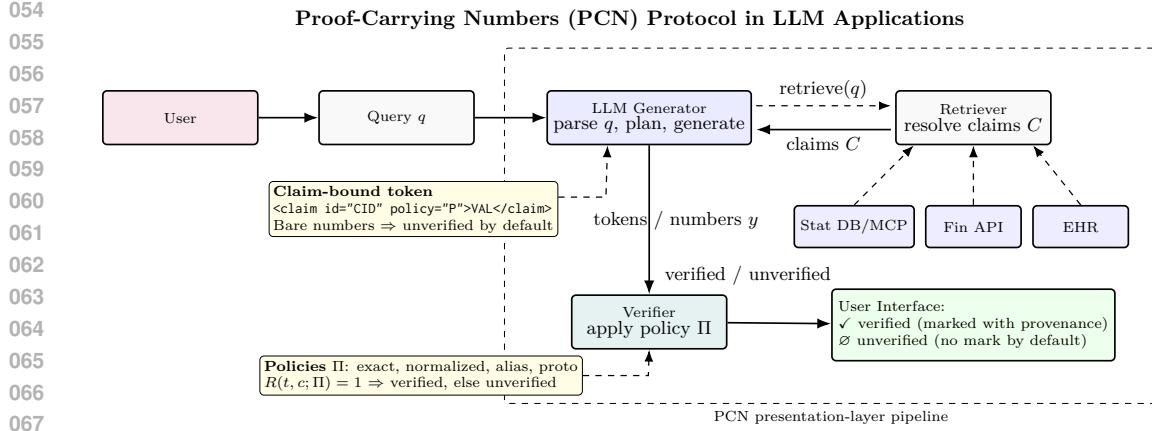


Figure 1: PCN-compliant architecture with LLM-initiated retrieval. The LLM first parses the query and *requests* claims from the retriever (dashed top lane); the retriever returns the claim set C on a separate solid lane. The LLM emits claim-bound tokens (or bare numbers). The verifier checks tokens under policy Π , and the UI renders verified values with provenance marks; absence of a mark implies unverified by default. External structured data sources feed the retriever via parallel dashed feeders.

We argue that numeric hallucination is best understood as a **presentation-layer problem**. Even when authoritative claims are retrieved, LLMs are unreliable at reproducing values faithfully (Banerjee et al., 2024; Xu et al., 2025), and user interfaces lack systematic safeguards against drift or fabrication.

To address this gap, we propose **Proof-Carrying Numbers (PCN)**, a protocol that requires every displayed number to be bound to an authoritative claim and verified before presentation. Loosely inspired by proof-carrying code (Necula, 1997), PCN embeds verifiability directly into the interface: verified numbers carry explicit provenance, while unverifiable ones are blocked, flagged, or corrected.

Our contributions are threefold:

1. We reframe numeric hallucination as a *presentation-layer problem*, showing why existing safeguards (retrieval, citations, uncertainty estimation) cannot provide binding guarantees.
2. We design the **Proof-Carrying Numbers (PCN)** protocol, specifying a claim schema, token syntax, and verifier policies that enforce a fail-closed contract at display time.
3. We show how PCN wraps inherently fallible LLM outputs in a deterministic contract: numeric spans are either *Verified* against authoritative claims with provenance, remain *Bare* if unclaimed, or are *Flagged* when verification fails.

By embedding verification into the presentation pipeline, PCN bridges the gap between LLM fluency and the trustworthiness required in high-stakes numeric applications.

2 BACKGROUND AND RELATED WORK

Hallucination in large language models (LLMs)—the generation of fluent but incorrect content—poses serious challenges across domains (Ji et al., 2023; Banerjee et al., 2024; Xu et al., 2025). Of particular concern is *numeric hallucination*, where even small deviations (e.g., reporting 6.0% instead of 5.7%) can undermine high-stakes applications in policy, healthcare, and finance (Kim et al., 2025; Kang & Liu, 2023).

108 One stream of work grounds model outputs in retrieved content. Retrieval-augmented generation (Lewis et al., 2020) and citation frameworks (Wu et al., 2025a; Schreieder et al., 2025; Zhang et al., 2025) improve transparency by linking generated text to sources. However, fabricated values may still appear alongside credible references, creating the illusion of fidelity (Wu et al., 2025b; Hakim et al., 2025).

113 Another line of research focuses on post-hoc verification. Frameworks such as FEVER (Thorne et al., 2018), FEVEROUS (Aly et al., 2021), TabFact (Chen et al., 2020), and SciFact (Wadden et al., 2022) decompose outputs into claims and check them against evidence. 116 Recent tools like AttributionBench (Li et al., 2024) and SourceCheckup (Wu et al., 2025a) 117 extend this approach to LLMs. While useful for auditing, these methods are retrospective: 118 they may flag erroneous outputs but cannot prevent unverified numbers from being 119 displayed. Uncertainty-based methods (Manakul et al., 2023) similarly attempt to detect 120 hallucinations using entropy (Farquhar et al., 2024), calibration (Manakul et al., 2023), or 121 self-consistency (Kadavath et al., 2022), but confident models may still produce incorrect 122 values with low uncertainty.

123 Structured decoding and symbolic grounding introduce additional constraints (Geng et al., 124 2023). Schema-constrained decoding enforces well-formed outputs, while symbolic methods 125 such as SymGen (Hennigen et al., 2024) interleave generated text with explicit references to 126 underlying data. These annotations reduce the burden of manual validation and make provenance 127 more interpretable, but they stop short of guaranteeing fidelity: fabricated numbers 128 can still appear structurally “valid” without being faithful.

129 At the data level, provenance frameworks like W3C Verifiable Credentials (W3C) use public 130 key infrastructure to certify origin. While effective for data ingress, these assurances are 131 lost once values are processed by an LLM, which may alter or fabricate outputs without 132 detection.

133 In summary, prior work has improved transparency and auditing but cannot guarantee that 134 the number ultimately displayed to the user is the one retrieved from an authoritative source. 135 Proof-Carrying Numbers (PCN) addresses this gap by shifting from *annotation* and *detection* 136 to *machine-enforced verification*. Under PCN, a number is marked as “verified” only if it is 137 bound to an authoritative claim and passes deterministic checks at the presentation layer.

139 3 PROBLEM FORMALIZATION

141 3.1 CONTEXT

143 Numeric hallucination is often framed as a retrieval problem, but many failures arise at the 144 *presentation layer*: even when correct values are accessible, the number ultimately shown 145 to the user may drift. PCN enforces a simple contract: a displayed numeric span is either 146 VERIFIED—because it can be mechanically matched to a structured claim under a declared 147 policy Π —or it remains unverified (as *Bare* or *Flagged*). Verified marks thus provide positive 148 guarantees, while their absence communicates uncertainty without suppressing content.

149 3.2 SETTING

151 Consider a user query q to an AI application that integrates structured data through a 152 database, API, or Model Context Protocol (MCP) server (Anthropic). The application 153 resolves q into a finite claim set

$$155 \quad C = \{c_1, c_2, \dots, c_n\},$$

157 where each claim c has the form

$$158 \quad c = \langle \text{claim_id}, \text{indicator}, \text{entity}, \text{time}, v^*, u, m \rangle.$$

160 Here $v^* \in \mathbb{R}$ is the reference value, u the unit, and m metadata (e.g., dataset version). Claims 161 may optionally be cryptographically signed, though PCN does not assume a particular trust model.

162 3.3 CLAIM-BOUND TOKENS AND BARE NUMBERS
163164 An LLM generates an output sequence $y = (y_1, \dots, y_T)$ that may contain numeric spans.
165 PCN requires numeric values to be emitted as *claim-bound tokens* (t):166

```
<claim id="CID" policy="P">VAL</claim>
```

167 where CID links to some $c \in C$, VAL is the displayed number, and P optionally specifies a
168 verification policy. Such tokens bind surface text to structured claims.
169170 By contrast, a *Bare number* is emitted without a claim tag. Since it cannot be linked to
171 any $c \in C$, it is always treated as unverified. Bare numbers may still appear in text, but
172 never carry a verification mark.173 3.4 VERIFICATION RELATION AND POLICIES
174175 To decide whether a token t matches a claim c , PCN defines a verification relation $R(t, c; \Pi)$.
176 Let \hat{v} be the numeric payload of t normalized into the claim's unit u . Verification modes
177 supported by Π include:
178

- **Exact match:** $R_{\text{exact}}(t, c) = 1 \iff \hat{v} = v^*$.
- **Rounded match:** for decimal precision d ,

$$R_{\text{round}}^{(d)}(t, c) = 1 \iff \text{round}_d(\hat{v}) = \text{round}_d(v^*).$$

- **Alias equivalence:** for sanctioned scale/alias set S (e.g., $\{10^3, \text{K}, \text{thousand}\}$),

$$R_{\text{alias}}(t, c) = 1 \iff \exists s \in S : \hat{v} \cdot s = v^*.$$

- **Tolerance with qualifiers:** for tolerance parameters (δ, ρ) and qualifier set Q
(e.g., {"about", "approximately"}),

$$R_{\text{tol}}^{(\delta, \rho)}(t, c) = 1 \iff \hat{v} \in [v^* - \max(\delta, \rho|v^*|), v^* + \max(\delta, \rho|v^*|)]$$

190 and t includes a qualifier in Q .

191 A policy Π specifies which relations are permitted. Formally,

$$R(t, c; \Pi) = 1 \iff \exists \text{ allowed mode in } \Pi \text{ such that it holds.}$$

194 If t has no claim reference or $R(t, c; \Pi) = 0$, the number is treated as unverified.

196 3.5 RUNNING EXAMPLE

198 Suppose C contains

$$c = \langle \text{"clm_7ef6"}, \text{GDP growth, PHL, 2024, 5.7, \%}, m \rangle.$$

200 If the LLM emits

202

```
<claim id="clm_7ef6" policy="round1">5.7</claim>
```

203 and Π allows rounding to one decimal, verification succeeds since $\text{round}_1(5.7) = 5.7$. If the
204 LLM emits

205

```
<claim id="clm_7ef6" policy="int">6</claim>
```

206 and Π allows rounding to the nearest integer, verification again succeeds since $\text{round}_0(5.7) =$
207 6. By contrast, if the LLM emits 6.0 or even 5.7 without a claim tag, the number is *Bare*
208 and displayed without a verification mark.

209 3.6 PROBLEM STATEMENT

211 Given a query q , a claim set C , and an output sequence y with numeric spans $\{t_j\}$, the
212 system must ensure

214 $\forall t_j \in y, t_j$ is either verified against some $c \in C$ under policy Π , or surfaced as unverified.

215 The objective is to close the **presentation-layer verification gap**: every displayed number
is either verifiably linked to a claim under Π or left unverified by default.

216 4 PROPOSED APPROACH: PROOF-CARRYING NUMBERS
217218 We introduce **Proof-Carrying Numbers (PCN)**, a protocol that enforces numeric fidelity
219 by requiring that values shown to users carry verifiable links to structured claims. Building
220 on the formalization in Section 3, PCN is not a decoding constraint but a *presentation-layer*
221 *contract*: every displayed number is either mechanically verified against a claim or presented
222 as unverified. This section describes PCN’s architecture, verification policies, user contract,
223 and possible extensions.224 4.1 CONCEPTUAL OVERVIEW
225226 PCN integrates verification into the rendering pipeline. Numeric spans generated by an
227 LLM are annotated with claim references, checked against structured data, and rendered
228 with explicit status indicators. This design closes the fidelity gap: LLMs can generate fluent
229 text, but only numbers that pass verification are displayed with verified badges, while all
230 others remain Bare or Flagged.232 4.2 SYSTEM ARCHITECTURE
233234 As illustrated in Figure 1, PCN consists of four lightweight components:
235236 1. **Retriever:** resolves a query q into a set of structured claims $C = \{c_1, \dots, c_n\}$ from
237 a data source such as a statistical database, financial API, medical record service,
238 or MCP server.
239 2. **Generator:** produces an output sequence y that may include claim-bound tokens
240 (Section 3.3). Bare numbers may also appear, but they carry no proof.
241 3. **Verifier:** checks each token against the claim set under policy Π , succeeding if
242 $R(t, c; \Pi) = 1$ and otherwise labeling the value as Bare or Flagged.
243 4. **User Interface:** renders Verified numbers with explicit provenance marks (e.g.,
244 a badge and hoverable metadata). Bare numbers appear without a mark, while
245 Flagged values are shown with a warning indicator. The absence of a mark *by*
246 *default* communicates that a number is not guaranteed.
247248 This architecture is modular and lightweight, making PCN applicable to any system that
249 integrates LLMs with structured data, regardless of retrieval protocol or model choice.
250251 4.3 VERIFICATION POLICIES
252253 Applications require different levels of strictness. PCN supports a range of policies, as
254 defined in Section 3.4, including exact equality, rounding to specified decimal places,
255 alias equivalence (e.g., “K” for thousands), and tolerance with qualifiers (e.g., “about,”
256 “roughly”). Policies encode an explicit trade-off: stricter rules provide higher trust but
257 lower coverage, while permissive ones expand coverage at the cost of precision. This explicit
258 policy layer distinguishes PCN from schema-based decoding, which constrains format but
259 not correctness.260 4.4 USER CONTRACT
261262 PCN enforces a *fail-closed* contract. Users can rely on two guarantees:
263264 1. Values marked as Verified have been mechanically checked against a claim under
265 policy Π and are displayed with provenance.
266 2. Values without such a mark are not verified, whether Bare (unclaimed) or Flagged
267 (failed verification), and should be interpreted with caution.268 This shifts the default assumption: current applications implicitly present all numbers
269 as trustworthy, while PCN makes trust explicit and earned. This subtle change in user

270 experience is critical: it enables end-users—whether policymakers, clinicians, or financial
 271 analysts—to rely on verified numbers, distinguishing them from potential hallucinations.
 272

273 **4.5 EXTENSIONS: CRYPTOGRAPHIC PROOFS**
 274

275 PCN can be extended to settings requiring stronger provenance. Claims may embed cryp-
 276 tographic commitments such as Merkle proofs for large tables or PKI signatures for multi-
 277 provider trust chains. In such cases, verification not only checks numeric fidelity but also
 278 validates claim authenticity. These extensions strengthen tamper-evidence without altering
 279 the core contract: a number is verified only if it is mechanically tied to an authoritative
 280 claim.

281 **5 CORRECTNESS GUARANTEES**
 282

283 We analyze the guarantees provided by PCN, given a generated sequence y , structured claim
 284 set C , acceptance policy Π , and verification relation $R(t, c; \Pi) \in \{0, 1\}$. The acceptance
 285 function is defined as:

$$286 A(y, C; \Pi) \mapsto \{(t_j, \text{label})\}_j$$

287 which labels each numeric span $t_j \in y$ as either **VERIFIED** or **UNVERIFIED**.
 288

289 **5.1 CORE PROPERTIES**
 290

291 **Theorem 5.1** (Soundness). *If $A(y, C; \Pi)$ labels t as **VERIFIED**, then there exists a claim
 292 $c \in C$ such that $R(t, c; \Pi) = 1$.*

293 *Proof sketch.* By construction, the verifier only assigns **VERIFIED** if it finds such a claim.
 294 Hence no fabricated value can be marked as **VERIFIED**. \blacksquare

295 **Theorem 5.2** (Completeness under honest tokens). *If the generator emits a claim-bound
 296 token t referencing some $c \in C$ and $R(t, c; \Pi) = 1$, then A labels t as **VERIFIED**.*

297 *Proof sketch.* Determinism of the verifier ensures all policy-compliant tokens are accepted.
 298 \blacksquare

299 **Theorem 5.3** (Fail-Closed). *Any span that (i) lacks a valid claim reference, (ii) references
 300 a non-existent claim, or (iii) fails verification under Π is labeled **UNVERIFIED**.*

301 *Proof sketch.* The acceptance function defaults to **UNVERIFIED** unless an explicit match is
 302 found. \blacksquare

303 **Lemma 5.4** (Monotonicity under policy refinement). *If $\Pi_1 \preceq \Pi_2$ (i.e., Π_1 is stricter),
 304 then:*

$$305 \{t : \text{VERIFIED}_{\Pi_1}(t)\} \subseteq \{t : \text{VERIFIED}_{\Pi_2}(t)\}.$$

306 *Proof sketch.* Tightening policies reduces coverage but never introduces false positives. \blacksquare

307 **Implications.** Applications can expose multiple presets (e.g., *strict*, *rounded*, *approximate*)
 308 with predictable effects on the **Verified** set. Tightening a policy cannot introduce
 309 false positives; relaxing a policy cannot demote a previously verified token.
 310

311 **5.2 ROBUSTNESS TO SPOOFING**
 312

313 **Theorem 5.5** (Renderer robustness). *If verification status is computed by the renderer
 314 rather than text tokens, then adversarial attempts to inject symbols (✓, “verified”, HTML
 315 tags) into y cannot cause A to mislabel an **UNVERIFIED** token as **VERIFIED**.*

316 *Proof sketch.* Verified status is derived solely from $R(t, c; \Pi)$. Spoofed tokens are ignored
 317 by the parser and remain **UNVERIFIED**. \blacksquare

324 This property ensures that the mark itself is trustworthy and cannot be faked by prompt
 325 injection or adversarial text formatting.
 326

327 **5.3 EFFICIENCY**
 328

329 **Proposition 5.6** (Linear-time verification). *Let $n \leq |y|$ be the number of numeric spans and
 330 $m = |C|$ the size of the claim set. If claims are indexed by identifier, then PCN verification
 331 runs in $O(n)$ time.*
 332

333 *Proof sketch.* Each span lookup reduces to a hash-table access in $O(1)$. Policy checks are
 334 constant-time (rounding, alias lookup, tolerance check). \blacksquare
 335

336 This ensures PCN verification remains negligible compared to LLM generation latency.
 337

339 **5.4 CRYPTOGRAPHIC TAMPER-EVIDENCE (EXTENSION)**
 340

341 **Theorem 5.7** (Unforgeability of provenance). *Assuming EUF-CMA security of the sig-
 342 nature scheme and collision resistance of the hash, no adversary can cause A to label a
 343 tampered claim as VERIFIED except with negligible probability.*
 344

345 *Proof sketch.* Verification requires a valid signature or Merkle proof. Forging this reduces
 346 to breaking standard cryptographic assumptions. \blacksquare
 347

348 **5.5 SUMMARY**
 349

350 Together, these results show that PCN provides:
 351

- 352 • **Correctness:** Verified numbers always correspond to claims (5.1–5.4).
- 353 • **Robustness:** Verification marks cannot be spoofed (5.5).
- 354 • **Efficiency:** Verification cost is negligible (5.6).
- 355 • **Security:** Tamper-evidence is cryptographically guaranteed (5.7).

358 Unlike heuristic methods, PCN requires no probabilistic confidence scoring. Fidelity follows
 359 deterministically from the protocol’s construction.
 360

361 **6 DISCUSSION AND LIMITATIONS**
 362

363 Proof-Carrying Numbers (PCN) reframes numeric hallucination not as a question of whether
 364 the model “knows” the right value, but of what the user interface is permitted to display.
 365 By enforcing a fail-closed contract, PCN ensures that numbers marked as “verified” are
 366 mechanically tied to authoritative claims, while all others are visibly unverified. This shift
 367 moves trust from probabilistic model behavior to deterministic verification at the presenta-
 368 tion layer.
 369

370 **6.1 SCOPE OF GUARANTEES**
 371

372 PCN’s guarantees are intentionally modest but powerful. It does not claim that a model’s
 373 reasoning is sound or that a dataset is “true.” Instead, it guarantees that displayed numbers
 374 are either (i) verifiably consistent with a claim under a policy Π , or (ii) explicitly unveri-
 375 fied. This closes one of the most dangerous loopholes in current AI systems: the undetected
 376 inclusion of fabricated numbers in fluent responses. In practice, this enables policymakers,
 377 clinicians, or analysts to treat verification marks as binding fidelity contracts, while
 interpreting unmarked numbers as provisional.

378 6.2 POLICY DESIGN AND USABILITY
379380 A defining feature of PCN is its *policy layer*, which governs how closely numeric spans
381 must match reference claims to receive verification. While applications may define their
382 own policies, data providers can also publish canonical rules (e.g., rounding conventions,
383 tolerances) alongside claims. This reduces the risk of arbitrary or inconsistent application-
384 level choices. For example:385

- **Clinical dosage:** providers may require exact equality, reflecting zero tolerance
386 for deviation.
- **Macroeconomic growth:** agencies may allow one-decimal rounding to match
387 dissemination practices.
- **Journalistic communication:** datasets may permit approximate expressions
388 (“about,” “roughly”) within a bounded tolerance.

389390 Policies strengthen provenance but raise challenges of interoperability and accountability:
391 strict rules may reduce coverage, while inconsistent ones across sources complicate multi-
392 provider verification. The monotonicity property (Theorem 5.4) ensures such trade-offs
393 remain predictable.
394397 6.3 RISKS AND THREATS
398400 PCN’s effectiveness depends on both human factors and adversarial resilience.
401402 **Verification coverage gaps.** PCN only verifies numbers that the LLM tags with claim-
403 bound tokens. If tagging recall is poor, many numeric spans will remain *Bare*—visible but
404 without verification marks. This can create the perception that the system is unreliable,
405 even though it reflects limitations in the LLM’s compliance rather than the verifier itself.
406 Improving prompting, fine-tuning, or constrained decoding is therefore essential to make
407 PCN useful in practice.
408409 **Policy misconfiguration.** Overly strict policies cause excessive verification failures, while
410 permissive ones dilute guarantees. Since policies directly shape user trust, misconfiguration
411 can either frustrate users or undermine fidelity. Clear presets (e.g., “strict,” “tolerant”)
412 mitigate this risk.
413414 **Overconfidence in scope.** PCN secures numeric fidelity only. Users may mistake badges
415 for guarantees of holistic correctness, when reasoning and non-numeric facts remain outside
416 its scope. Scope must be communicated explicitly.
417418 **Institutional responsibility.** Verification ties numbers to specific providers, strengthening
419 provenance but also shifting accountability. Custodians may hesitate to participate if
420 they fear liability. Adoption will require governance frameworks that distribute responsibil-
421 ity across model providers, developers, and institutions.
422423 **Adversarial considerations.** Common attack surfaces map directly onto PCN’s guar-
424 antees: fabricated values cannot be marked (fail-closed), spoofed symbols do not confer
425 verification (renderer robustness), and tampering with claim stores can be mitigated by
426 cryptographic commitments. Additional operational safeguards (e.g., version pinning, audit
427 logs) further reduce risk. Identifier abuse and privacy remain implementation-level consid-
428 erations.
429430 6.4 INTEGRATION AND OVERHEAD
431432 From an engineering standpoint, PCN is lightweight. Verification runs in $O(n)$ time over
433 numeric spans and adds negligible latency compared to model decoding. This makes it
434 practical as a drop-in module for RAG pipelines, LLM-based chatbots, or statistical portals.
435

432 Early experiments suggest that prompting or light fine-tuning enables models to emit claim
 433 tags with reasonable recall, though further empirical work is needed.
 434

435 **6.5 BROADER IMPLICATIONS**
 436

437 By decoupling fluency from fidelity, PCN reshapes incentives for trust in AI systems:
 438

- 439 • **Developers** can build applications where trust derives from the verification pipeline
 440 rather than the model itself.
- 441 • **Institutions** (e.g., central banks, ministries of health, or the World Bank) can act
 442 as trust anchors by supplying authoritative claims.
- 443 • **Users** gain a clear signal: trust is earned only by proof, and the absence of a mark
 444 is itself informative.

445 This reframing does not solve factuality in general, but it addresses the class of errors
 446 with the highest downstream risk: misrepresented numbers. Even small numeric drifts can
 447 cascade into reputational or policy harms; PCN offers a minimal but enforceable safeguard.
 448

449 **6.6 LIMITATIONS AND FUTURE WORK**
 450

451 PCN has clear boundaries: it cannot guarantee reasoning correctness, covers only structured
 452 claims, and depends on the availability of authoritative data sources. Its effectiveness also
 453 hinges on LLM cooperation in emitting claim-bound tokens. Future work should evaluate
 454 user behavior around verification marks, refine policy design trade-offs, extend PCN to
 455 derived values (e.g., ratios, aggregates) by verifying deterministic functions over atomic
 456 claims, and extend PCN to multi-provider cryptographic trust chains. Ultimately, PCN
 457 aims to make verification—not assumption—the default habit of numeric communication in
 458 AI.
 459

460

461 **7 CONCLUSION**
 462

463 We introduced *Proof-Carrying Numbers* (PCN), a protocol that makes numeric fidelity a
 464 presentation-layer property. PCN binds displayed numbers to structured claims and verifies
 465 each span under an explicit policy Π , yielding formal guarantees of soundness, completeness
 466 under honest tokens, and fail-closed behavior in which Bare or invalid spans never appear
 467 as VERIFIED. Unlike retrieval, citation, or schema-only approaches, PCN treats verification
 468 as a first-class, mechanical step between model outputs and the user interface. The result is
 469 a simple contract: *trust is earned only by proof*, while the absence of a mark communicates
 470 uncertainty without suppressing content.

471 PCN is domain-agnostic: claims may originate from statistical databases, clinical systems,
 472 financial APIs, or other structured sources. Its modular architecture (retriever, generator,
 473 verifier, UI) integrates with existing applications, and optional cryptographic commitments
 474 (signatures, Merkle proofs) strengthen provenance without altering the core contract.

475 The protocol’s scope is intentionally bounded. PCN guarantees correspondence to a chosen
 476 source, not ultimate truth, and it currently addresses atomic numeric spans rather than
 477 derived expressions or free-text facts. However, closing the verification gap at the pre-
 478 presentation layer offers a practical step toward trustworthy numeric communication in LLM
 479 applications.

480 Future work includes developing SDKs and reference implementations across application
 481 stacks, designing adaptive policies such as tolerances with guardrails, and studying how
 482 users interact with verification marks and provenance cues. PCN could also be extended
 483 to cover derived values (e.g., ratios and aggregates) through deterministic functions over
 484 atomic claims, and to multi-provider deployments secured by cryptographic trust chains.
 485 Taken together, these directions position PCN as a minimal yet extensible blueprint for
 deploying LLMs in numerically sensitive settings with explicit, inspectable guarantees.

486 REFERENCES
487

488 Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull, James Thorne, Andreas Vlachos, Chris-
489 tos Christodoulopoulos, Oana Cocarascu, and Arpit Mittal. FEVEROUS: Fact Extrac-
490 tion and VERification Over Unstructured and Structured information. June 2021. URL
491 <https://openreview.net/forum?id=h-f1VC1stW>.

492 Anthropic. Introducing the Model Context Protocol. URL <https://www.anthropic.com/news/model-context-protocol>.
493

494 Sourav Banerjee, Ayushi Agarwal, and Saloni Singla. LLMs Will Always Hallucinate, and
495 We Need to Live With This, September 2024. URL <http://arxiv.org/abs/2409.05746>.
496 arXiv:2409.05746 [stat].
497

498 Wenhui Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou
499 Zhou, and William Yang Wang. TabFact: A Large-scale Dataset for Table-based Fact
500 Verification, June 2020. URL <http://arxiv.org/abs/1909.02164>. arXiv:1909.02164 [cs].
501

502 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucina-
503 tions in large language models using semantic entropy. *Nature*, 630(8017):625–630, June
504 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07421-0. URL <https://www.nature.com/articles/s41586-024-07421-0>. Publisher: Nature Publishing Group.
505

506 Saibo Geng, Martin Josifoski, Maxime Peyrard, and Robert West. Grammar-Constrained
507 Decoding for Structured NLP Tasks without Finetuning. In Houda Bouamor, Juan Pino,
508 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in
509 Natural Language Processing*, pp. 10932–10952, Singapore, December 2023. Association
510 for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.674. URL <https://aclanthology.org/2023.emnlp-main.674/>.
511

512 Joe B. Hakim, Jeffery L. Painter, Darmendra Ramcharan, Vijay Kara, Greg Powell, Paulina
513 Sobczak, Chiho Sato, Andrew Bate, and Andrew Beam. The need for guardrails with large
514 language models in pharmacovigilance and other medical safety critical settings. *Scientific
515 Reports*, 15(1):27886, July 2025. ISSN 2045-2322. doi: 10.1038/s41598-025-09138-0. URL
516 <https://www.nature.com/articles/s41598-025-09138-0>. Publisher: Nature Publishing
517 Group.
518

519 Lucas Torroba Hennigen, Zejiang Shen, Aniruddha Nrusimha, Bernhard Gapp, David Son-
520 tag, and Yoon Kim. Towards Verifiable Text Generation with Symbolic References. Au-
521 gust 2024. URL <https://openreview.net/forum?id=fib9qidCpY>.
522

523 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin
524 Bang, Andrea Madotto, and Pascale Fung. Survey of Hallucination in Natural Language
525 Generation. *ACM Comput. Surv.*, 55(12):248:1–248:38, March 2023. ISSN 0360-0300.
doi: 10.1145/3571730. URL <https://dl.acm.org/doi/10.1145/3571730>.
526

527 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
528 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, Scott John-
529 ston, Sheer El-Showk, Andy Jones, Nelson Elhage, Tristan Hume, Anna Chen, Yuntao
530 Bai, Sam Bowman, Stanislav Fort, Deep Ganguli, Danny Hernandez, Josh Jacobson,
531 Jackson Kernion, Shauna Kravec, Liane Lovitt, Kamal Ndousse, Catherine Olsson, Sam
532 Ringer, Dario Amodei, Tom Brown, Jack Clark, Nicholas Joseph, Ben Mann, Sam Mc-
533 Candlish, Chris Olah, and Jared Kaplan. Language Models (Mostly) Know What They
534 Know, November 2022. URL <http://arxiv.org/abs/2207.05221>. arXiv:2207.05221 [cs].
535

536 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why
537 language models hallucinate, September 2025. URL <https://cdn.openai.com/pdf/d04913be-3f6f-4d2b-b283-ff432ef4aaa5/why-language-models-hallucinate.pdf>.
538

539 Haoqiang Kang and Xiao-Yang Liu. Deficiency of Large Language Models in Finance: An
Empirical Examination of Hallucination, November 2023. URL <http://arxiv.org/abs/2311.15548>. arXiv:2311.15548 [cs].

540 Yubin Kim, Hyewon Jeong, Shan Chen, Shuyue Stella Li, Mingyu Lu, Kumail Alhamoud,
 541 Jimin Mun, Cristina Grau, Minseok Jung, Rodrigo Gameiro, Lizhou Fan, Eugene Park,
 542 Tristan Lin, Joonsik Yoon, Wonjin Yoon, Maarten Sap, Yulia Tsvetkov, Paul Liang,
 543 Xuhai Xu, Xin Liu, Daniel McDuff, Hyeonhoon Lee, Hae Won Park, Samir Tulebaev,
 544 and Cynthia Breazeal. Medical Hallucination in Foundation Models and Their Impact
 545 on Healthcare, March 2025. URL <https://www.medrxiv.org/content/10.1101/2025.02.28.25323115v1>. Pages: 2025.02.28.25323115.

546

547 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
 548 Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel,
 549 and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In
 550 *Proceedings of the 34th International Conference on Neural Information Processing Systems*,
 551 NIPS '20, pp. 9459–9474, Red Hook, NY, USA, December 2020. Curran Associates
 552 Inc. ISBN 978-1-71382-954-6.

553

554 Yifei Li, Xiang Yue, Zeyi Liao, and Huan Sun. AttributionBench: How Hard is Automatic
 555 Attribution Evaluation? In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
 556 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 14919–14935,
 557 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.
 558 18653/v1/2024.findings-acl.886. URL <https://aclanthology.org/2024.findings-acl.886/>.

559

560 Potsawee Manakul, Adian Liusie, and Mark Gales. SelfCheckGPT: Zero-Resource Black-Box
 561 Hallucination Detection for Generative Large Language Models. In Houda Bouamor, Juan
 562 Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods*
 563 *in Natural Language Processing*, pp. 9004–9017, Singapore, December 2023. Association
 564 for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.557. URL <https://aclanthology.org/2023.emnlp-main.557/>.

565

566 George C. Necula. Proof-carrying code. In *Proceedings of the 24th ACM SIGPLAN-SIGACT*
 567 *symposium on Principles of programming languages*, ACM Conferences, pp. 106–119.
 568 January 1997. ISBN 978-0-89791-853-4. doi: 10.1145/263699.263712. URL <https://dl.acm.org/doi/10.1145/263699.263712>.

569

570 Tobias Schreieder, Tim Schopf, and Michael Färber. Attribution, Citation, and Quotation:
 571 A Survey of Evidence-based Text Generation with Large Language Models, August 2025.
 572 URL <http://arxiv.org/abs/2508.15396>. arXiv:2508.15396 [cs] version: 1.

573

574 The World Bank. World Bank Open Data - World Development Indicators (WDI), 2025.
 575 URL <https://data.worldbank.org>.

576

577 James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER:
 578 a Large-scale Dataset for Fact Extraction and VERification. In Marilyn Walker, Heng
 579 Ji, and Amanda Stent (eds.), *Proceedings of the 2018 Conference of the North American*
 580 *Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)*, pp. 809–819, New Orleans, Louisiana, June 2018. Association for
 581 Computational Linguistics. doi: 10.18653/v1/N18-1074. URL <https://aclanthology.org/N18-1074/>.

582

583 W3C. Verifiable Credential Data Integrity 1.0. URL <https://www.w3.org/TR/vc-data-integrity/>.

584

585 David Wadden, Kyle Lo, Bailey Kuehl, Arman Cohan, Iz Beltagy, Lucy Lu Wang, and
 586 Hannaneh Hajishirzi. SciFact-Open: Towards open-domain scientific claim verification.
 587 In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Findings of the Association*
 588 *for Computational Linguistics: EMNLP 2022*, pp. 4719–4734, Abu Dhabi, United Arab
 589 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/
 590 2022.findings-emnlp.347. URL <https://aclanthology.org/2022.findings-emnlp.347/>.

591

592 Kevin Wu, Eric Wu, Kevin Wei, Angela Zhang, Allison Casasola, Teresa Nguyen, Sith
 593 Riantawan, Patricia Shi, Daniel Ho, and James Zou. An automated framework for
 assessing how well LLMs cite relevant medical references. *Nature Communications*,

594 16(1):3615, April 2025a. ISSN 2041-1723. doi: 10.1038/s41467-025-58551-6. URL
 595 <https://www.nature.com/articles/s41467-025-58551-6>. Publisher: Nature Publishing
 596 Group.

597 Kevin Wu, Eric Wu, and James Zou. ClashEval: Quantifying the tug-of-war between an
 598 LLM’s internal prior and external evidence, February 2025b. URL <http://arxiv.org/abs/2404.10198>. arXiv:2404.10198 [cs].

600 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is Inevitable: An Innate
 601 Limitation of Large Language Models, February 2025. URL <http://arxiv.org/abs/2401.11817>. arXiv:2401.11817 [cs].

602 Jiajie Zhang, Yushi Bai, Xin Lv, Wanjun Gu, Danqing Liu, Minhao Zou, Shulin Cao, Lei
 603 Hou, Yuxiao Dong, Ling Feng, and Juanzi Li. LongCite: Enabling LLMs to Generate
 604 Fine-grained Citations in Long-Context QA. In Wanxiang Che, Joyce Nabende, Ekaterina
 605 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Compu-
 606 tational Linguistics: ACL 2025*, pp. 5098–5122, Vienna, Austria, July 2025. Association
 607 for Computational Linguistics. ISBN 9798891762565. doi: 10.18653/v1/2025.findings-acl.
 608 264. URL <https://aclanthology.org/2025.findings-acl.264/>.

609

610 **DISCLAIMER AND DISCLOSURE OF AI USE**

611

612 Microsoft Co-Pilot and ChatGPT were employed to enhance the manuscript’s readability
 613 and consistency. ChatGPT was also used to critique the previous versions of the manuscript
 614 for suggested improvements.

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

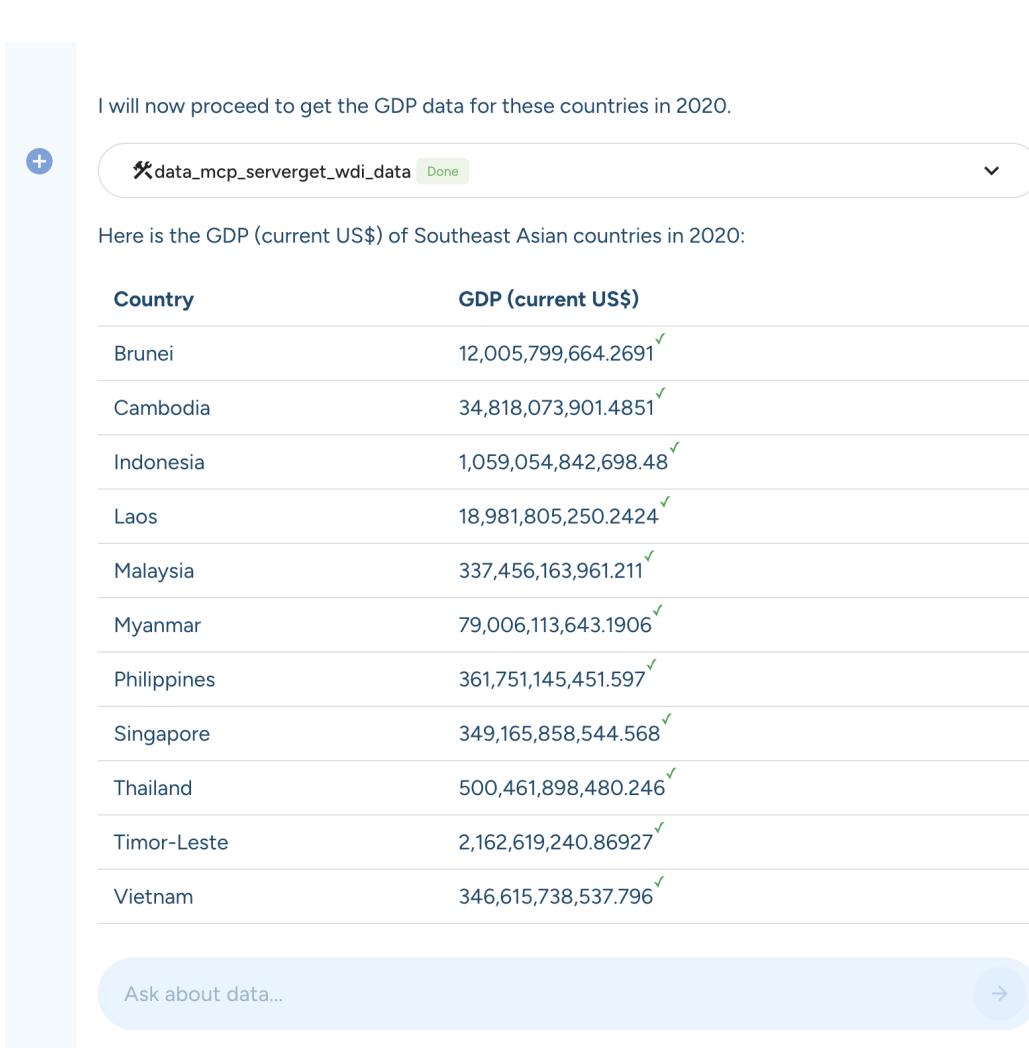
643

644

645

646

647

648 A APPENDIX
649650 A.1 USER INTERFACE IMPLEMENTING PCN
651

687 Figure 2: Implementation of the Proof-Carrying Numbers (PCN) protocol in an LLM chat
688 application. The LLM retrieves authoritative claims via an MCP server; the verifier applies
689 PCN policies; and the interface renders verified numbers with explicit badges.

690
691 A.2 SAMPLE IMPLEMENTATION
692

693 Suppose the user asks a question to the LLM: “What is the gdp growth of the Philippines
694 in 2024?”

695 The following shows how the Proof-Carrying Numbers (PCN) protocol works to provide an
696 answer to the user.

697 First, the LLM queries the data retriever, in this case, an MCP server that gets data from
698 the World Development Indicators. The MCP server implements the PCN protocol and
699 returns this PCN payload with the claim to the LLM generator.

702 PCN compliant claim from the retriever
 703

```

704 {
705   "data": [
706     {
707       "indicator_id": "NY.GDP.MKTP.KD.ZG",
708       "indicator_name": "GDP growth (annual %)",
709       "data": [
710         {
711           "country": "Philippines",
712           "date": "2024",
713           "value": 5.69201612823412,
714           "claim_id": "0328"
715         }
716       ],
717       "note": {
718         "NY.GDP.MKTP.KD.ZG": ""
719       }
720     }
721   ]
722 }
```

721 The LLM, given the payload, will generate a response that attempts to answer the user's
 722 question using the retriever's data. At the same time the LLM is instructed to conform to
 723 the PCN protocol in generating the response.

724 The instruction given to the LLM and its PCN-compliant response are shown below.
 725

726 Example prompt to encourage PCN use by the LLM
 727

```

728 [... other instructions]
729
730 When you provide any numerical data or values obtained from the tools, you must
731   ↳ always enclose the numbers within a claim tag in the following format: `<claim
732   ↳ id="claim_id">value</claim>`. For example, "The GDP of the Philippines in
733   ↳ 2020 is <claim id="5e1f">361,751,145,451.597</claim> USD". This is mandatory.
734
735
```

736 PCN-compliant LLM response
 737

```

738 <p>The GDP growth rate of the Philippines in 2024 is projected to be <claim
739   ↳ id="0328">5.69%</claim> (annual %).</p>
740
741
```

742 In parallel, when the receiver returns the PCN claim requested by the LLM, a claim aggre-
 743 gation process is applied to capture the claim, which can be used during verification.

744 The TypeScript function below shows how the PCN payload from the retriever is aggregated
 745 to create a map of claims that the verifier can use to verify the claims in the response
 746 generated by the LLM.

747 Extraction of claims from the retriever component
 748

```

749 export function getClaims (messages: ResponseMessage[]): Record<string,
750   ↳ Record<string, any>> {
751   const claims: Record<string, Record<string, any>> = {}
752
753   for (const m of messages
754     .filter(m => m.role === 'tool')) {
```

```

756
757     const parsed = m.toolContent?.output?.parsed
758     if (!parsed?.data) {
759         continue
760     }
761
762     for (const indicator of parsed.data) {
763         for (const d of indicator.data) {
764             if (d.claim_id) {
765                 claims[d.claim_id] = {
766                     country: d.country,
767                     date: d.date,
768                     value: d.value,
769                     indicator_id: indicator.indicator_id,
770                 }
771             }
772         }
773     }
774
775     return claims
776 }
777
778

```

Now that the LLM has generated a response, we execute the PCN-verifier module to assess if claims have been made and then validate if any.

The TypeScript function below shows how the PCN protocol can be implemented to process the response generated by an LLM. This example implements the exact policy variant.

Processing of PCN claims in LLM content

```

781
782     const processPCNClaims = (content: string) => {
783         return content.replace(
784             /<claim id="[^"]+">(.*)<\/claim>/g,
785             (match, claimId: string, innerText: string) => {
786                 // Remove any existing verification markers to make this idempotent
787                 const cleanInner = innerText.replace(
788                     /<sup class="(?:verified-mark|verify-pending)" .*?<\/sup>/g,
789                     '',
790                 ).replace(
791                     /<span class="needs-verify".*?>(.*)<\/span>/g,
792                     '$1',
793                 )
794
795                 const claim = claims.value?.[claimId]
796                 if (!claim) {
797                     // No known claim for this id → mark as pending
798                     return `<claim id="${claimId}">${cleanInner}<sup class="verify-pending"
799                         ↪ title="Needs verification" role="img" aria-label="Needs
800                         ↪ verification">X</sup></claim>`
801
802                 // Normalize inner text & claim value (remove spaces/commas)
803                 const normalizedInner = String(cleanInner).replace(/[\s,]/g, '')
804                 const normalizedClaimValue = String(claim.value).replace(/[\s,]/g, '')
805
806                 if (normalizedInner === normalizedClaimValue) {
807                     // Verified
808                     return `<claim id="${claimId}">${cleanInner}<sup class="verified-mark"
809                         ↪ title="Verified data">OK</sup></claim>`
810                 }
811
812                 // Mismatch → needs verification
813             }
814         )
815     }
816
817

```

```

810
811     return `<claim id="${claimId}">${cleanInner}<sup class="verify-pending"
812         ↪ title="${toTitleAttr(claim.country, claim.date, String(claim.value))}"
813         ↪ role="img" aria-label="Needs verification">X</sup></claim>`  

814     },  

815   }
816

```

817 The verifier modifies the content by injecting verification signals into the response. In this
 818 case, since the policy is exact, and the LLM opted to return a rounded-off version of the
 819 actual value received from the receiver, then the verifier returns a warning signal indicating
 820 the policy constraint was not met.

821 Updated response by the verifier

```

824     <p>The GDP growth rate of the Philippines in 2024 is projected to be <claim
825         ↪ id="0328">5.69%<sup class="verify-pending" title="Country: Philippines
826             Date: 2024
827             Value: 5.69201612823412" role="img" aria-label="Needs verification">X</sup></claim>
828             ↪ (annual %).</p>
829

```

830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864
 865
 866
 867
 868
 869
 870
 871
 872 I found relevant indicators for GDP growth rate for the Philippines. The most relevant indicator for GDP
 873 growth (annual %) is "GDP growth (annual %)" with the indicator code NY.GDP.MKTP.KD.ZG.
 874
 875 Next, I will retrieve the GDP growth rate data for the Philippines for the year 2024 if available.

876
 877 Done
 878
 879 Arguments Parsed
 880
 881 {
 882 "indicator_ids": "NY.GDP.MKTP.KD.ZG",
 883 "country_codes_str": "PHL",
 884 "date": "2024",
 885 "per_page": 1
 886
 887 Output Parsed
 888
 889 {
 890 "data": [
 891 {
 892 "indicator_id": "NY.GDP.MKTP.KD.ZG",
 893 "indicator_name": "GDP growth (annual %)",
 894 "data": [
 895 {
 896 "country": "Philippines",
 897 "date": "2024",
 898 "value": 5.69201612823412,
 899 "claim_id": "0328"
 900 }
 901]
 902 }
 903],
 904 "note": {
 905 "NY.GDP.MKTP.KD.ZG": ""
 906 }
 907 }

908 The GDP growth rate of the Philippines in 2024 is projected to be 5.69% (annual %).

909
 910 Figure 3: Illustration of the Proof-Carrying Numbers (PCN) protocol in an LLM chat
 911 application, where the response of the LLM (5.69%) didn't meet the exact policy set in the
 912 verification. A clear warning mark is added that hints to users to review the output.

913
 914
 915
 916
 917