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Abstract

Contemporary machine learning studies tackle
the drug—drug interaction forecast problem by
featurizing drugs using graph neural networks
(GNNs). This automated featurization allows to
avoid laborious handcrafting chemical features.
We demonstrate here that a simple neural net-
works using Morgan fingerprints of the drugs out-
performed these more complicated GNN models
while spending only a small fraction of the time
in training. Furthermore, to improve training, we
curated and made available a novel dataset with
negative drug—drug interaction examples derived
from a very large electronic health records dataset.

1. Introduction

Drug—drug interactions (DDIs), or non-additive action
of multiple co-administered medications, also known as
polypharmacy problem, is a significant source of adverse
medical outcomes (Zitnik et al., 2018). The major difficulty
in identifying and anticipating DDIs is the combinatorial
explosion of potential drug interactions that renders clinical
testing of all pairs impractical. Machine learning models
trained on expert-curated databases and electronic health
records have since provided a tractable solution to identify-
ing potential drug interactions.

Earlier work on DDI (Gottlieb et al., 2012; Vilar et al., 2012;
2014; Cheng & Zhao, 2014) primarily computed similarity
measures between a combination of various handpicked
chemical properties and structural fingerprints of drugs to
predict new drug-drug interactions. One drawback to these
DDI approaches is that they use fixed feature representations
of the drugs that may not be optimal for predicting drug
interactions.

More recent approaches rely on graph neural networks
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(GNNs) (Battaglia et al., 2018) automatically learning the
molecular representation of the drugs to produce the in-
teraction prediction. Zitnik et al. (2018) proposed one of
the earlier approaches to use GNNs as encoders to featur-
ize representation of molecules. Similar approaches for
learning graph representations for the drugs was proposed
by Yin et al. (2022) and Wang et al. (2022). They use
a concatenation of handpicked chemical features and the
learned features from applying graph neural network layers
(Velickovic et al., 2018; Kipf & Welling, 2017) layers on the
molecular structure of the pair of drugs. Model suggested
by Nyamabo et al. (2021) applies multiple graph attention
layers on the individual drugs and aggregates their inter-
mediate graph representations with co-attention to produce
the output class predictions. Other works cast the problem
as a knowledge graph learning problem Lin et al. (2020).
The advantage of these GNN approaches is that they are
able to learn feature representations for the drugs that are
adapted to the classification task at hand without the need
for explicit manual feature selection.

While the end-to-end GNN approach has proven to be effec-
tive on a variety of DDI benchmark tasks, we believe that
fingerprint based approaches still have merit. In our experi-
ments, we show that neural networks that operate on just 2D
Morgan fingerprints outperform GNN models and achieve
these improved results with simpler model architectures that
were much faster than the GNN baselines. Moreover, a cen-
tral concern about neural networks is that they are opaque
and hard to interpret. The benefit to fingerprint based neural
networks is that we retain the flexibility of a neural network
that can learn useful nonlinear combinations of our features
while still retaining a level of intepretability by virtue of
using fingerprints as our input representations.

Our contributions in this work are two-fold:

1. We curated a new dataset that augments the DrugBank
dataset with negative examples derived from a large
commercial insurance dataset;

2. We demonstrated that the use of Morgan fingerprints
with simple neural network architectures achieved
SOTA performance, outperforming GNN architectures.
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2. Problem Setup

To formalize our problem, let D denote the set of drugs
encoded by their DrugBank IDs. Our dataset is then a

collection of triplets: {(dgl),d,@),li)} , where I; €
‘ i=1

{1,2,..., K} denotes the interaction between the pair of

drugs (dl(-l), d§2)> € D x D. We treat the learning task as

a multi-class classification over K classes. So our objective
is to learn a classification function

f:DxD—{1,2,..., K}

where f has low cross entropy loss over the training set.
In the DDI literature, we also commonly see the prob-
lem cast as a binary classification task over the triplets
(dgl), dl(.2), lz)) where one predicts if the given label is in
fact a true observed interaction between the pair of drugs.
In both the multiclass classification setting and the binary
classification setting, practictioners often augment the ob-
served DDI data with negative examples to make the models
more robust. This is because we care not just about the pres-
ence of interaction but also the absence thereof when screen
drugs for “safe” combinations.

2.1. Dataset

The positive DDI examples came from the DrugBank dataset
(Wishart et al., 2018), while the negative examples came
from IBM MarketScan (IBM Watson Health, 2019), a
commercial insurance database containing > 150 million
unique subjects. The prescription (RX) records from Mar-
ketScan contained information on the identity of the drugs
encoded with National Drug Codes (NDCs), start date and
end date. Using the dates we identified potential interactions
as any overlap in the intervals of validity between any two
drugs using an interval tree (Cormen et al., 2022, §17.3).
Each row of data in this dataset corresponds to a pair of
drugs, represented by their DrugBank IDs and the associ-
ated target value, which is a label indicating the type of the
resulting interaction between the two drugs. The DrugBank
IDs can be mapped to the corresponding SMILES strings,
from which we constructed the Morgan fingerprints (FPs)
(Morgan, 1965) of the drugs using RDKit (Landrum et al.,
2006). For more information about the dataset, see Table 1.

# Drugs with SMILES 3,516
# DDI Pairs 1,457,198
# Interaction Types 256

Table 1. Dataset details

3. Model Architectures

We tested a variety of models on our new drug drug interac-
tion dataset. Our models follow the same general architec-
ture:

1. map the SMILES string to a numerical object e.g. a
binary fingerprint or matrices containing atom features
and connectivity information)

2. encode the pair of input drugs with an encoder network
(e.g.: a multilayer perceptron (MLP) or a graph neural
network (GNN))

3. construct a pair drug representation by concatenating
or adding the two individual drug representations

4. feed the pair drug representation through a final multi-
layer perceptron to produce a class output.

We also experimented with variants of the above architecture
where the two fingerprint vectors were aggregated before
being fed through an MLP instead of after step 2 above.

3.1. Molecular Fingerprint Model

Figure 1. Fingerprint based neural network for predicting the inter-
action between two input drugs

We first generated the Morgan fingerprints, which is a kind
of extended-connectivity fingerprint, from the SMILES
strings with RDKit using a radius of 2 (Rogers & Hahn,
2010). The fingerprints are 2048 dimensional binary vectors
which are passed through a multilayer perceptron (MLP).
The resulting representation vectors are aggregated (either
through concatenation or summation) to form a drug-pair
representation that is sent through a final multilayer per-
ceptron (MLP) to produce an output label. We applied the
LeakyReLU (Zhang et al., 2017) activation function in the
MLP layers.

3.2. Graph Neural Network Based Models

In the graph neural network based models, we extract
atom features and atom connectivity information from the
SMILES strings of the pair of drugs. The atom features,
edge features and connectivity are then used as input to a
graph neural network (GNN) applies multiple rounds of
message passing (Gilmer et al., 2017) to produce a molecu-
lar encoding. As in the FP network, the drug encodings are
aggregated and then passed through a final MLP to produce
the predicted output label.
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Figure 2. Graph neural network based architecture for predicting
the interaction between two input drugs.

3.3. Attention-Based Models

Figure 3. Co-attention architecture based off Nyamabo et al.
(2021)’s model with intermediate graph attention layers for pre-
dicting the interaction between two input drugs. The number of
GAT layers is a tunable hyperparameter.

We also compared our FP model against the SOTA co-
attention based model SSI-DDI-v2 that mostly follows the
architecture proposed in Nyamabo et al. (2021). This model
takes the two molecular graphs with atom features from
each drug in a pair as input and uses the Graph Attention
Network (GAT) (Velickovi¢ et al., 2018; Brody et al., 2021)
autoregressively to generate multiple layers of hidden repre-
sentations for each drug separately, which are subsequently
passed to an additive co-attention layer that outputs atten-
tion scores for reweighting the hidden representations (cf.
Figure 3) during aggregation. The final aggregated hidden
representation of the drug pair is then sent to an MLP to
produce the predicted output label. Other models making
use of self- and/or co-attention include Lin et al. (2022);
Nyamabo et al. (2022); Pang et al. (2022).

4. Experiments

We evaluated each of the models on our dataset using
80/10/10 training/validation/test split. Each of the net-
works produced a softmax probability distribution over all
the DDI classes for predicting the interaction between drug
pairs. We used the AdamW optimizer (Loshchilov & Hutter,
2017) to minimize the cross-entropy loss over each mini-
batch, with an early stopping A = 5 x 1072 and a tolerance
of 4 epochs on validation loss. All models were imple-
mented using Pytorch (Paszke et al., 2019) and Pytorch
Geometric (Fey & Lenssen, 2019).

4.1. Hyperparameter Tuning

We manually tuned the hyperparameters of all models
trained. Table 2 details the various hyperparameters we
used and experimented with.

Parameter Values
AdamW Learning Rate  {107°,107%,1073}
AdamW Weight Decay {0}

MLP Layers {3,4,5}
GNN Layers {3,4,5}

Minibatch size {128, 256, 512}

Table 2. Hyperparameter Values

5. Results and Discussion

Table 4 shows the results of our experiments. The FP model
achieved higher performance on all of the reported metrics
and converged in fewer training epochs with less time per
epoch than the graph neural network baseline methods (Ta-
ble 3). Thus, we now focus on more detailed comparison
between the FP model and SSI-DDI-v2. Figure 4 shows the
values of the metrics among classes that had at least 100
instances in the test dataset (56 classes), with decreasing
number of instances per class. Overall, FP and SSI-DDI-v2
had similar performance profile across the classes, achieving
full accuracy on class 226, corresponding to the interaction
string

The risk or severity of
tendinopathy can be increased
when Drugl is combined with
Drug2.

Figure 5 shows the difference in accuracy (5a) and weighted-
F} score (5b) between FP (reference) and SSI-DDI-v2. The
largest positive difference was found in class 193, corre-
sponding to the interaction string

The risk or severity of
myopathy, rhabdomyolysis, and
myoglobinuria can be increased
when Drugl is combined with
Drug?2.

On the other hand, the largest negative difference was found
in class 95, corresponding to the interaction string

The protein binding of Drugl can
be decreased when combined with
Drug?2.
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In this work, we evaluated various neural network models
on a novel DDI dataset. Our results showed that the ap-
propriate model architecture built on Morgan Fingerprints
outperformed graph neural network models for DDI predic-
tion.
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Additional Tables and Figures

Model Training epochs  Avg. time/epoch (min)
FP 15 1.37
GCNConv (Kipf & Welling, 2017) 34 4.09
GATConv (Velickovic et al., 2018) 27 5.00
GATv2Conv (Brody et al., 2021) 19 5.42
SSI-DDI (Nyamabo et al., 2021) 30 7.83
SSI-DDI-v2 (Nyamabo et al., 2021) 25 8.93

Table 3. Training information: number of epochs until convergence and time per epoch. SSI-DDI uses GATConv by default. SSI-DDI-v2
uses GATv2Conv instead. All GNN models used 4 layers.

Model Accuracy Macro-F;  Weighted-F;  AUROC

FP 0.9615 0.9213 0.9612 0.9989
GCNConv 0.8694 0.7144 0.8603 0.9793
GATConv 0.7958 0.6019 0.7763 0.9650

GATv2Conv  0.8696 0.7107 0.8622 0.9880
SSI-DDI 0.9422 0.8903 0.9415 0.9915
SSI-DDI-v2 0.9491 0.9047 0.9488 0.9923

Table 4. Test results on a hold-out set.

metric = Accuracy
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Figure 4. Direct comparison of metrics by class between FP and SSI-DDI-v2 for classes with at least 100 instances in the test dataset,
sorted by decreasing number of instances in each class
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Figure 5. Differences (FP vs. SSI-DDI-v2) in metrics by class for classes with at least 100 instances in the test dataset



