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Abstract

Photorealistic Codec Avatars (PCA), which generate high-fidelity human face ren-
derings, are increasingly being used in Virtual Reality (VR) environments to enable
immersive communication and interaction through deep learning—based generative
models. However, these models impose significant computational demands, mak-
ing real-time inference challenging on resource-constrained VR devices such as
head-mounted displays (HMDs), where latency and power efficiency are critical.
To address this challenge, we propose an efficient post-training quantization (PTQ)
method tailored for Codec Avatar models, enabling low-precision execution without
compromising output quality. In addition, we design a custom hardware accelerator
that can be integrated into the system-on-chip (SoC) of VR devices to further
enhance processing efficiency. Building on these components, we introduce ESCA,
a full-stack optimization framework that accelerates PCA inference on edge VR
platforms. Experimental results demonstrate that ESCA boosts FovVideoVDP
quality scores by up to +0.39 over the best 4-bit baseline, delivers up to 3.36 x
latency reduction, and sustains a rendering rate of 100 frames per second in end-
to-end tests, satisfying real-time VR requirements. These results demonstrate the
feasibility of deploying high-fidelity codec avatars on resource-constrained devices,
opening the door to more immersive and portable VR experiences. Paper website
can be found at https://zmzfpc.github.io/ESCA/.

1 Introduction

Photorealistic telepresence [29, 41]] in VR requires real-time transmission and rendering of facial
expressions with lifelike fidelity. Photorealistic Codec Avatars (PCA) have emerged as a promising
solution by leveraging variational autoencoder (VAE) models to compress and reconstruct human
faces for remote interactions [30]]. In this framework, an inward-facing camera on the sender’s VR
device captures the user’s facial expressions, and an encoder generates a compact latent representation.
This latent code is transmitted wirelessly to the receiver, where a decoder reconstructs a high-quality
facial image and 3D avatar. Although the pipeline supports efficient streaming of photorealistic facial
data, achieving the combination of high visual fidelity and ultra-low latency on mobile VR hardware
continues to pose a significant technical challenge [33]].

A primary source of processing latency in Codec Avatars is the decoder network, which relies heavily
on transposed convolution layers to synthesize high-resolution facial images. While effective for
generating high-quality visuals, these layers are computationally demanding and introduce significant
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latency. This poses a major obstacle to real-time performance, as delivering a seamless user experience
typically requires sustaining 90 frames per second [14}, [18].

To address this bottleneck, neural network quantization has been widely explored in prior work
as a means to enable low-latency execution of deep models [9, 43} |5, 27, 8]. However, two key
challenges arise in the context of Codec Avatars: First, due to the large scale of these networks,
applying quantization-aware training (QAT) across the entire model is to train computationally
impractical. Second, activation outliers greatly exacerbate quantization errors, especially in low-
precision regimes, resulting in pronounced degradation of visual quality. This issue is most evident in
transposed convolution layers, where stochastic latent codes and the absence of normalization induce
long-tailed activation distributions with pronounced spikes, as illustrated in Figure[T} Because these
outliers dominate the value range, they diminish quantization precision and cause frame-dependent
errors. This manifests as temporal artifacts in the reconstructed facial image, including flickering,
checkerboard patterns, and unstable shading [38]].

Recent advances have proposed effective strategies for g 200
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Figure 1: The left panel shows the maximum
activation value of each channel of a sample
input. The right part shows the aggregated
activation distribution over all spatial loca-

or channel scaling, as these modifications would alter tions and channels.
the model’s outputs. Consequently, existing outlier-
smoothing techniques are incompatible with the PCA decoder architecture, leaving efficient 4-bit

quantization for high-fidelity facial generation as an open challenge.

Beyond algorithmic challenges, VR HMDs remain resource-constrained, which makes execution
of the computationally intensive PCA decoder slow. While some devices incorporate GPUs and
NPUs [34], these units must also support concurrent tasks such as rendering [32], image process-
ing [36], and other Al workloads [48] 26, [16]]. Addressing this constraint calls for a dedicated
hardware accelerator integrated as a plug-in module within the SoC to manage Codec Avatar infer-
ence. Yet, the decoder’s reliance on transposed convolution layers poses a unique difficulty, as their
intrinsic structured sparsity severely limits accelerator utilization and efficiency.

To overcome these challenges, we propose a comprehensive quantization and acceleration framework
for Codec Avatars, enabling real-time inference on resource-constrained VR devices. Our approach
introduces several novel techniques to maintain visual quality under low-bit quantization and a
co-designed hardware solution to meet strict latency requirements. In summary, our contributions are:

* Input Channel-wise Activation Smoothing (ICAS): We introduce a novel input channel-wise
smoothing module inserted during training to alleviate extreme inter-channel activation dis-
parities in the VAE decoder. By reducing outlier activations, ICAS diminishes quantization
error and prevents aberrations when the model is later quantized to low bit-widths.

* Facial-Feature-Aware Smoothing (FFAS): We develop a region-aware smoothing strategy
that uses facial masks to identify key areas like the eyes and mouth. Based on the activation
variance in these regions, FFAS selectively skips smoothing for the channels most critical to
fine details, preserving important textures while still smoothing less sensitive regions.

* UV-weighted Hessian-Based Weight Quantization: We propose a weight quantization
scheme guided by a UV-mapping weighted Hessian. This method computes second-order
sensitivity and weights it by the UV importance of each face region, thereby concentrating
on the precision of weights that most affect critical facial features.

* Customized Hardware Accelerator: We co-design a specialized hardware accelerator to
support our quantized Codec Avatar model with high-throughput 4-bit and 8-bit operations.
The accelerator features an input-combining mechanism to exploit the structured sparsity of
the activation matrix. Moreover, an optimized end-to-end pipeline is applied to deliver over
100 FPS inference on an VR headset ensuring smooth, real-time avatar rendering.
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Figure 2: VAE Framework of Codec Avatar models.
2 Background and Related Works

2.1 Codec Avatar and Photorealistic Pipeline

PCA are neural face models that enable authentic telepresence in VR by rendering lifelike 3D avatars
of users in real-time [21}30]. They are typically implemented as a variational autoencoder (VAE) [29]]
framework that transmits facial expressions efficiently between users. Figure [2]illustrates the overall
stucture of Codec Avatar models. This VAE-based approach has been demonstrated on VR headsets
(e.g. Meta Quest Pro) as a feasible solution for real-time face-to-face communication, achieving a
convincing sense of social presence while drastically reducing transmitted data compared to raw
video [33]].

Figure 3] (a) decomposes the end-to-end execution pipeline of the Codec Avatar application, which
can be divided into five main stages: Sensoring, Encoding, Transmission, Decoding, and Rendering.
As illustrated in Figure [3] (b), the VR device comprises several hardware modules, primarily the
CPU, GPU, front-facing camera, and memory subsystem. To gauge the limits of current commercial
platforms, we profile the Snapdragon XR2 Gen 2 SoC [39]] powering Meta’s Quest 3. Running the full
Codec Avatar model on Qualcomm AI Hub [40] yields a median inference latency of 39.6 ms, only
25.25 FPS, even before accounting for Sensoring, Transmission, and Rendering overheads. Offloading
to cloud servers is likewise untenable due to added latency and privacy concerns [33]]. Thus, to enable
truly immersive telepresence, Codec Avatar must execute on-device within the available compute
budget [46} [7]]. Moreover, running the PCA module continuously consumes additional VR hardware
resources, leaving fewer computational resources for other applications to operate effectively. This
motivates the development of custom hardware accelerator as a plug-in of the VR SoC to handle
Codec Avatar decoding. Prior works have shown that specialized architectures for generative models
can vastly improve efficiency [20]. For instance, an FPGA-based transposed-convolution engine
achieved up to 3x better performance-per-watt than a GPU on similar tasks [4]. In summary, a
full-stack approach that co-designs the Codec Avatar with hardware support is essential to reach 90
FPS real-time photorealistic telepresence [[14}|18]] on power-constrained VR devices.

2.2 Post-Training Quantization

Post-training quantization (PTQ) [35} 12} 142152} (3, 122| [28| 51]] converts a pre-trained floating-point
network to low-precision integers without retraining, making it an attractive deployment strategy
for resource-constrained VR hardware. Classic weight-only PTQ schemes such as AdaRound [35],
GPTQ [12], and OmniQuant [42]] minimize layer-wise reconstruction error by solving local opti-
mization problems, while recent activation-aware methods further suppress outliers to unlock 4-bit
inference for language models. SmoothQuant [52]] migrates per-channel activation magnitude into the
weights via learned scaling factors, where QuaRot [3]], DuQuant [22] and SpinQuant[28]] apply orthog-
onal rotations to jointly smooth activations and weights in a Hessian-aware manner. Given Y = XW,
they insert a matrix R where RT R = I and rewrite the product as Y = XW = (XR)(RTW),
thereby smoothing X R without changing the network output. The new weight R W is folded offline,
while the rotated activation is absorbed into the preceding layer, so inference cost is unchanged.

These techniques are effective because Transformer layers [47] are dominated by matrix multi-
plications, whose linear properties remain intact under such transformations. However, directly
applying these methods to convolution-based codec-avatar decoders is non-trivial. First, convolu-
tional generators utilize 4-D kernels and 3-D activations, violating the 2-D matrix assumptions that
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Figure 3: (a) Execution pipeline of the entire Codec Avatar system. (b) Architecture of normalized VR
headset SoC. (c) [llustration of transposed convolution. Purple squares represent non-zero activation,
and white squares represent zero activation.

underpin SmoothQuant’s channel-wise scaling. Second, our decoder extensively employs transposed
convolutions followed by non-linear activations (e.g., LeakyReLU [53]]), rendering any offline weight
rotation invalid once activations pass through these non-linear transformations. In summary, existing
PTQ methods are ill-suited to the architectural and signal-processing peculiarities of codec-avatar
decoders, leaving efficient 4-bit quantization of high-fidelity face generators an open problem.

2.3 Transposed Convolution and Im2col Transformation

Modern Codec Avatar decoders rely on transposed convolution (ConvTranspose) layers, also known as
deconvolutions, to upsample low-resolution feature maps into high-resolution images or textures [[29|
30, [13]. The transposed convolution expands the spatial dimensions by inserting zeros between and
around input pixels before applying a convolution kernel, effectively spreading the feature map. The
output width W’ of the activation after this pre-processing can be computed as:

W =W+2(K-—P—-1)+(W-1)(S—-1) (1)

where W denotes the original width of the activation map, and K, P, and S represent the kernel size,
padding, and stride, respectively. The activation maps and kernels are assumed to be square, meaning
the width and height are equal. For example, considering the first layer of the decoder, the activation
widthis W=2and K=4,S =2, P=1. According to the equation, the activation width after inserting
zero becomes 2+ 2 x (4 —1—1)+ (2—1) x (2— 1) = 7. As illustrated in Figure[3|(c), one zero is
inserted between every adjacent activation (interpolation), and two layers of zeros are padded around
the boundary. Thus a 2 x 2 feature map turns into 7 x 7 after applying zero-inserting.

To leverage the high throughput of a systolic-array-based accelerator, the convolution operations
are typically transformed into general matrix-matrix multiplication (GEMM) [11]]. This requires
flattening high-dimensional activations and weights into two-dimensional matrices using the im2col
transformation [0, [1]. However, due to the zero-inserting introduced during transposed convolution,
the resulting im2col-transformed activation matrix becomes extremely sparse. As shown in Figure
(c), this manifests as a checkerboard-like sparsity pattern, with more than 85% of the elements being
zero. This high degree of sparsity significantly degrades the efficiency of the hardware accelerator [20],
as the majority of multiply-accumulate (MAC) operations become redundant (multiplication by zero),
wasting both compute cycles and memory bandwidth [54].

3 Methods

Our pipeline tackles the twin challenges of low-bit quantization and real-time deployment of Codec
Avatar decoders through four tightly-coupled components: (a) Channel-wise Activation Smooth-
ing; (b) Facial-Feature-Aware Smoothing; (c) UV-Weighted Post-Training Quantization; (d) Input-
combined DNN hardware accelerator. Together, the techniques shown in Figure ] and [5] deliver
artifact-free 4/8-bit inference while boosting avatar-decoder throughput on our prototype accelerator.

3.1 Input Channel-wise Activation Smoothing

We introduce Input Channel-wise Activation Smoothing (ICAS) to equalize the scale of activation
across channels in each transposed convolution which aims to reduce the quantization difficulty of
activations. Our method is inspired by SmoothQuant [52], which migrates the quantization difficulty
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Figure 4: Convert the Codec Avatar decoder to a quantized model. The pipeline consists of three main
components: (a) The original Codec Avatar decoder, (b) the UV-Weighted Post-Training Quantization,
and (c) the decoder layer after Input Channel-wise Activation Smoothing. The smooth operation is
designed to reduce the difficulty of quantizing activations, while the UV-PTQ method uses a UV
weight map to guide the quantization process. Together, these techniques enable efficient and accurate
quantization of the Codec Avatar decoder for real-time inference on VR headsets.

from activations to weights through a mathematically equivalent transformation in transformers

models. For a linear layer Y = XW = (Xdiag(s) ") - (diag(s)W) it introduces scaling factors s to
smooth activations.

We adapt this principle to transposed convolutions. For a ConvTranspose layer with input tensor
X € REnxHinxWin and weight W € REn*CoutxKnxKu et g = (s1,59,...,5c,,) be a set of
positive smooth factors, one for each input channel. Specifically, let X denote the scaled input,
where each channel c is multiplied by its corresponding scale factor s.. In other words, X [e,::] =
sc - X|e, 1, ] for every channel ¢ € C;,, effectively scaling the activations of each channel by s..
To preserve the output activations, define W as the adjusted weight tensor for this layer, where the
filter corresponding to input channel c is scaled by 1/s.. Formally, for each 1nput channel index c,
Wie,: ] =+ —Wie,:,:,:]. The proof of the equivalence between Y=Xs«WandY = X « W is
pr0V1ded in Appendlx@, where * denotes the convolution operation. This formulation introduces
a pair of transformations s. and 1 for each channel. These transformations offset each other with
respect to the layer output. The scale values are carefully determined using the calibration dataset
to yield activations that are more suitable for quantization, consistent with observations from prior
post-training smoothing methods [52} 13} 22} 23]].

Importantly, ICAS incurs no runtime overhead, as the scale s and its inverse are precomputed and
fused into the network parameters using offline operation. Specifically, for a transposed convolution
followed by nonlinear functions (e.g. LeakyReLU [53]), we fuse the scales into adjacent layers to
avoid explicit multiplication at inference. For example, consider two consecutive layers L; and L,
with a non-linear activation function o between layers.

x (+1) — 0({/{/(1') * X 4 B(i)), x(i+2) — U(w(i-H) w X 0D B(i+1)) )

where X () is the input to L;, W*) and B are its weights and bias, respectively. Specifically, we
have the following observation:

XD = 50 X1 = (s @ o (WO, 5, ]« XO 4 BO) 3)

where ® represents the elementwise product. Continuing with the Codec Avatar model, we adopt the
LeakyReLU activation function [33], defined as o(x) = max(«x, x), where « denotes the negative
slope. For any channel ¢ and scaling factor s. > 0, it follows that o (s, - X|c,:,:]) = s. - 0(X|e, 5, 1]).
Hence, ~

X0 = o((s@ WO, )« XO 4+ s @ BY) )
where s @ WU )[ ., :] denotes the fused weight of layer L;. The detailed proof is provided in
Appendix l Based on this formulation, the scales s, can be incorporated into the weight W (%) of
the preceding layer by scaling each output channel of W(*) and the corresponding bias B(Y) with
the associated factor. We enforce s. > 0 for all channels c to preserve the sign of activations under
smoothing. This eliminates explicit scaling operations during inference, as the calibrated scales are
pre-fused into the convolutional weights during the offline calibration stage.



Inspired by the migration strategy of SmoothQuant [52]], we determine the smoothing factor for each
channel by balancing the dynamic ranges of the original activations and corresponding weights.

(maxmn|X[c7 m, n |)°‘
(maxco,k,h|W[cv Co, k7 h’] |)1—a

Se =

&)

The exponent « € [0, 1] serves as a migration-strength hyperparameter. In practice, we sweep over
different values of « and select the optimal value of 0.8. Here, m and n denote the spatial dimensions
of the activation X; k and h represent the kernel dimensions of the weight filters; and ¢ and ¢,
correspond to the input and output channels of the activations and filters, respectively.

3.2 Facial-Feature-Aware Smoothing

While ICAS uniformly scales all channels, certain feature channels correspond to critical facial
details that should be preserved. We propose Facial-Feature-Aware Smoothing (FFAS) as a targeted
refinement to ICAS. In a Codec Avatar decoder, outputs are often mapped to a texture space repre-
senting the face. We leverage predefined facial region masks to identify which feature maps carry
high-frequency details in those regions. Concretely, for each channel c in a given layer [ with input
feature map of size H' x W' in texture space, we compute the activation variance within the important
facial regions. Let R!. C {1,..., H'} x {1,...,W!} denote the set of texture pixels belonging to a
particular facial region of interest. We measure the pixel-wise variance of channel c over that region,

1
2/ply — l 1y)2
oc(Re) = @( E):ERZ (X7le,m,n] — pe(R.)) ©)

where X![c, i, j] is the activation value of channel c at spatial location (7, 7) and p1.(R.) is the mean
activation over region R!. A large o2(R.) indicates that channel c exhibits significant variation
within facial region. We rank all channels by o2 and identify the top-k% channels with highest
variance in critical regions. FFAS exempts these top-k% channels from ICAS smoothing, % is a
hyperparameter. For channels in this set, we effectively set s, = 1 so that their activations remain
at full magnitude. The remaining channels still receive smooth facotr determined by ICAS. By
skipping smoothing on the most detail-sensitive feature maps, FFAS preserves high-frequency facial
details like eye wrinkles and lip creases that might otherwise be attenuated by ICAS. Notably, this
selection is data-driven and region-specific. In our experiments, integrating FFAS on the top of
ICAS framework effectively mitigated over-smoothing in critical facial regions such as the eyes and
mouth. This approach preserved essential expression details, reduced global artifacts, and enhanced
the overall visual quality of the generated avatars.

3.3 UV-Weighted Post-Training Quantization

To preserve perceptually critical facial details under low-bit weight quantization, we propose a
UV-mapping Weighted Post-Training Quantization (UV-Weighted PTQ) that uses view-dependent
UV coordinates to guide a mask-weighted error minimisation. In computer graphics, UV coordinates
denotes the 2-dimension texture domain onto which a 3-D surface mesh is parametrically unwrapped.
Each vertex of the face mesh stores fixed (u, v) coordinates, allowing the decoder to output a flat
texture map that is later sampled during rendering. Consequently, pixels in UV regions corresponding
to salient facial areas (eyes, mouth, nose) are perceptually critical, whereas others may be invisible or
less important in the final view [[10]].

We compute per-feature UV coordinates by leveraging the existing rendering pipeline of the pretrained
VAE decoder. The decoder outputs a 3D mesh M € RV*3 where V is the number of vertices in
the mesh. We then rasterize M onto the 2-D grid of feature map with H x W to obtain barycentric
coordinates for each grid location. Assume ¢,, ,, and ¢,, ,, are the UV coordinates of pixel p, weight
wy = rasterize(M H X W), [bups bvpl = Zzwi;‘i% Using these weights, we interpolate the per
vertex UV coordinates ®,, € [0,1]? to each pixel. Then, we map the normalized coordinates to

integer texel indices on the 2-D texture map of resolution H x W, and accumulate a hit-count map
A € NHXW We normalize A, apply a upper bound w4, and broadcast across channels to form the



soft importance weight W, € [0, Wyq0] S X HXW,

Alm,n] .
Wl m,n] = 4 M) Cmaz if Alm,n] #0 %)
0 if Ajm,n] =0
where A[m,n| = Z;le L((|PupH], P pW]) = (m,n)), L(-) is the indicator function and |- | is
the round function. For each layer [ in the decoder, we downsample UV weight to match layer’s input
size H; x W,.

During quantization, our goal is to minimize the quantization error between the original and quantized
weights. To achieve this, we utilize approximate second-order information by calibrating the weights
using the Hessian matrix. When computing this matrix, the activations X' are pre-multiplied by the
downsampled UV importance weights W., .

S
1
Hyy = Y _(2(Wi, - X0 (Wy, - XOT) + A1 ®)
s=1

where S is the number of samples, X! is the s-th sample of the input to layer /, and ) is a small
regularization term. Given the weighted Hessian H!,, we follow the GPTQ [12] greedy quantization

procedure. For each layer [ with unfold weight W' € R(CinKnKuw)xCout e quantize weights
column-by-column. For r-th column, we have

W, r] = quant(W'[:,r]), e, = W[, 7] — W', 7] )
where quant(-) maps weights to the nearest quantized value. The quantization error e, is then
compensated across remaining unquantized columns using the inverse Hessian.

l

) ) H I, ] )
l: l: J— L’ 1
WL gl WP, ] L ] Vj>r (10)

The UV-weighting in H',, ensures that errors affecting critical facial regions are penalized heavily.

3.4 Input-Combining Mechanism for PCA Accelerator and Optimized Pipeline

As discussed in Section[I} VR head-mounted displays (HMDs) are typically resource-constrained,
making the execution of PCA computationally expensive and slow. Moreover, performing PCA
on the GPU or NPU within the HMD can heavily consume hardware resources and degrade the
performance of other concurrently running VR applications. To address this issue, we design a
dedicated hardware accelerator for efficient PCA execution. As illustrated in Figure[5](a), the core
of the accelerator is a 16 x 16 systolic array [19]], a dataflow architecture consisting of a grid of
interconnected processing elements (PEs). Each PE performs multiply—accumulate (MAC) operations
and transmits intermediate results to neighboring PEs in a rhythmic, wave-like manner. This structure
is highly efficient for matrix multiplication tasks. In our design, we employ a weight-stationary
systolic array configuration, where weights are preloaded into the array and remain fixed during
computation, while activations are streamed in from bottom to top in a staggered sequence. Partial
sums flow horizontally from left to right and are collected from the rightmost column of PEs.

As detailed in Section[2.3] the transposed convolution and im2col transformation introduce extreme
sparsity into the activation maps, leading to severe underutilization of the hardware accelerator.
To mitigate this inefficiency, following the prior work [20], we propose an optimization technique
called input-combining to compress the activation input and enhance hardware utilization. As shown
in Figure 5] (b), the activation map is first partitioned into 4 x4 tiles. These tiles are then categorized
into two types: (1) tiles with checkerboard-like sparsity patterns; and (2) tiles that are entirely zero.
We discard the fully zero tiles and vertically stack the remaining tiles to form a compact representation.
This eliminates a significant portion of zero activations without loss of useful information.

To implement this combined input format, we modify the PE design as illustrated in Figure [5] (c).
Every PE preloads two weights and accepts two activations per cycle, one of which would be zero.
Two multiplexers are used to select the non-zero activation and its corresponding weight, allowing
each PE to perform a single MAC operation per cycle. This lightweight enhancement enables the
accelerator to bypass most zero activations, focusing computation only on non-zero data with minimal
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Figure 5: (a) Architecture of the proposed hardware accelerator for Codec Avatar inference. (b)
Input-combining tiling scheme applied to the activation matrix. Red lines partition the input activation
into smaller tiles. Purple/white squares denote non-zero/zero activations, and yellow squares are zero
but can be assumed non-zero for simplicity. (c) Internal architecture of the proposed PE.

hardware overhead. In the ideal case, this strategy can reduce the number of operations by up to 75%,
delivering significant latency improvements, as shown in the experiment results in Section [4.5]

As described in Section [2.1] and Figure 3] (a), the complete pipeline of Codec Avatar consists of
five stages. To further reduce end-to-end latency, we propose an optimized execution pipeline. As
illustrated in Figure[6] (b), Transmission and Decoding are performed in parallel, and multiple frames
are processed in an overlapped fashion. Two scheduling constraints must be satisfied: (1) Decoding
can only start after Encoding finishes, since both are executed on the same hardware accelerator; (2)
Decoding must wait until the corresponding Transmission completes to receive the latent code from
the remote user. This pipeline design fully exploits inter-frame parallelism and significantly improves
overall throughput. The resulting end-to-end latency and frame rate are analyzed in Section 4.5

4 Experiments

4.1 Experimental Setup

We extensively evaluate the proposed quantization methods on PCA decoding, focusing on visual
quality and system performance under 4-bit and 8-bit settings. We evaluate our quantization method on
the MultiFace dataset [S0]. This dataset provides high-quality captures 65 scripted facial expressions,
along with ground-truth textured 3D face meshes. For each expression, we use the provided 3D
geometry and texture map (1024 x 1024 UV atlas) to render the avatar from three camera viewpoints:
one front and two approximately 45° side views.

Classical full-reference metrics such as Peak Signal-to-Noise Ratio (PSNR) [45] and Structural
Similarity (SSIM) [49] measure absolute pixel-wise or local structural differences. Hence, they
correlate weakly with human perception when small mis-alignments or high-frequency phase shifts
are present, both of which are common in generative avatars [33]. We report the FovVideoVDP
(VDP) metric [31]], a full-reference perceptual metric that accounts for spatio-temporal human visual
sensitivity designed for wide field-of-view VR content. We also report LPIPS [56] metric which
compares feature activations of a pretrained network. All methods are evaluated on an NVIDIA A100
GPU and the hyperparameter k¥ = 75 in our experiment.

As for model inference, we choose Snapdragon XR2 Gen 2 SoC as the baseline against our proposed
hardware accelerator, because it is integrated within Meta Quest 3 headset, representing real-world
deployment constraints. And we perform the rendering process on NVIDIA Tesla T4 16GB GPU
(1590 Mhz clock, 2560 CUDA cores). The experiments are conducted under certain conditions to
mimic the performance of an edge device GPU, specifically NVIDIA Jetson Orin NX 16GB [37]
(918 MHz clock, 1024 CUDA cores), a mobile platform which has been frequently used in prior
research to model rendering latency in VR headsets [[L5} 17, 55]].

4.2 Baseline Methods

We compare the proposed quantization approach with several state-of-the-art baselines. Full Codec
Avator [50] is the original model with no quantization. AdaRound [35] is an adaptive weight



Table 1: VDP [31] and LPIPS [56] scores for different methods at 4-bit and 8-bit quantization. Gray
cells indicate our proposed methods. Best results are in bold.

Method | Precision | Front | i | Right

| | VDP+ LPIPS| | VDPt LPIPS| | VDPT LPIPS|
Full Model [50] | FP32 | 6.5364 0.21604 | 5.9480 0.21965 | 5.8625 0.20428
Adaround [35]+LSQ[9] 42531 022612 | 3.6143 0.24000 | 3.5606 0.22031
POCA [33] 5.2310 0.22200 | 4.3838 0.23643 | 4.3457 0.21347
2DQuant [25] 5.2987 0.22186 | 4.3948 0.23243 | 4.3712 0.21209
GPTQ [12] WaA4 54980 0.22048 | 4.5868 0.23085 | 4.5729 0.21256
ICAS (Ours) 5.5901 0.21981 | 4.7317 0.22783 | 4.7536 0.21127
UV-W (Ours) 5.7559 0.21778 | 4.8130 0.22699 | 4.8187 0.21062
ICAS-UV (Ours) 5.6438 0.21941 | 49145 0.22650 | 4.9057 0.20840
FFAS-UV (Ours) 5.8541 0.21746 | 4.9795 0.22649 | 4.9605 0.20719
Adaround [35]+LSQ[9] 6.2106 0.21667 | 5.5004 0.22135 | 5.4381 0.20601
POCA [33] 6.4827 0.21612 | 5.8511 0.22048 | 5.7565 0.20408
2DQuant [25] 6.4983 0.21645 | 5.8313 0.22088 | 5.7497 0.20436
GPTQ [12] WSAS 6.2359 0.21687 | 5.6188 0.22101 | 5.3613 0.20546
ICAS (Ours) 5.6007 0.21748 | 5.3913 0.22973 | 5.0762 0.20840
UV-W (Ours) 6.5271 0.21610 | 5.9101 0.22036 | 5.7610 0.20543
ICAS-UV (Ours) 6.3690 0.21682 | 5.6615 0.22091 | 5.5989 0.20541
FFAS-UV (Ours) 6.5241 0.21605 | 5.8589 0.22068 | 5.8071 0.20441

rounding technique for post-training quantization. LSQ (Learned step size quantization)[9] is a
method that learns the quantization scaling size for each layer during training. POCA (Post-training
Quantization with Temporal Alignment) is a recent method tailored for codec avatars [33]]. We also
adapt 2DQuant [23]], a two-stage PTQ method originally proposed for 4-bit image super-resolution
models, to our avatar decoder. GPTQ [12] is a Hessian-based quantization method that uses layer-wise
Hessian information to optimize weight updates. We also include a UV-only quantization method
that applies quantization without any smoothing(UV-W), a smooth-only method that only applies
Channel-wise Activation Smoothing without UV guidance (ICAS) and a smooth-UV method without
Facial-Feature-Aware Smoothing (ICAS-UV).

Each baseline is applied to our pre-trained avatar decoder, and we evaluate both 8-bit (INT8) and 4-bit
(INT4) quantization settings for all methods. For fair comparison, all models including baselines and
our use the same pre-trained float32 decoder as a starting point and are calibrated on a small sample
set of avatar frames (512 frames). VDP provide a more faithful estimate of user-perceived quality
than PSNR/SSIM, and thus form the primary metrics in our study.

4.3 Low-bit Quantization Results

Table [T|demonstrates that our complete method achieves superior perceptual quality across all three
camera perspectives at 4-bit quantization, surpassing the best-performing baseline (GPTQ) with
improvements of +0.36/+0.39/+0.39 VDP for front/left/right views, respectively. These gains confirm
that combining channel smoothing, UV-guided calibration, and facial-feature protection is crucial for
perceptual realism. Ablations highlight complementary benefits: ICAS suppresses bursty channels,
UV-W reallocates error to less-visible texels, and FFAS preserves fine eye-mouth details, together
yielding the observed jump in temporal fidelity.

At 8-bit precision all methods converge to high quality, yet our methods still edges out the best
baseline by up to 0.06 VDP. The ICAS-only variants underperform compared to other methods at
8-bit precision. This suggests that excessive smoothing can degrade important high-frequency details,
leading to a reduction in VDP by 0.9 on the frontal view. When sufficient quantization levels are
available, aggressive rescaling is unnecessary and may even be detrimental to perceptual quality.
Moreover, our proposed method significantly reduces the quality gap between frontal and side views
The performance gap from front to left is 0.88 for ours vs. 1.21 for GPTQ, indicating improved
view-consistency. This property is particularly important for immersive VR applications, where users
frequently change their gaze direction and head pose.



Table 2: FovVideoVDP scores for spontaneous facial expressions at 4-bit quantization (W4A4).

Method \ Shushing \ Surprise \ Frowning
| Front  Left Right | Front Left Right | Front  Left  Right
GPTQ [12] 5.2911 4.4226 4.3828 | 5.4066 4.5072 4.4783 | 5.2713 4.4064 4.3877
FFAS-UV (Ours) | 5.7832 5.0065 5.0280 | 5.8486 5.0930 5.0989 | 5.8686 5.0210 5.0606
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Figure 6: (a) Inference latency of PCA on different hardware platforms. (b) Optimized PCA pipeline.

4.4 Spontaneous Facial Expression Results

To assess how well ESCA generalizes to spontaneous facial expressions, we evaluate three diverse
expressions from the MultiFace dataset’s 65 expressions: shushing, surprise, and frowning. These
expressions represent a range of facial dynamics including subtle mouth movements, wide-eye
surprise, and brow furrowing. Table 2] presents the FovVideoVDP scores computed against ground
truth across three viewpoints (front, left, and right) at 4-bit quantization. Our FFAS-UV method
consistently outperforms the best baseline (GPTQ) across all expressions and viewpoints, with
improvements ranging from +4-0.49 to +0.66 VDP. The results demonstrate that ESCA maintains high
visual fidelity for spontaneous expressions while preserving consistent performance across viewing
angles, confirming its robustness for real-world avatar applications.

4.5 Latency Results

We evaluate the latency improvement achieved by the proposed input-combining accelerator. The
results are shown in Figure [6] (a). For the encoder, which consists solely of standard convolution
layers, the inference latency is 3.05 ms under INT8 quantization and remains unchanged for baseline
and input-combining accelerators. For the decoder, which is dominated by transposed convolution, the
INTS baseline accelerator achieves a latency of 42.04 ms, while the input-combining design reduces
this to 12.51 ms, representing a 3.36x speedup. Under INT4 quantization, our input-combining
accelerator achieves a minimum latency of 3.13 ms.

We adopt latency references from prior VR research: camera sensor acquisition takes approximately 1
ms [2} 24} 144, while Wi-Fi 6 transmission requires around 5 ms under favorable conditions [57]. Our
accelerator executes both Encoding and Decoding in approximately 3 ms each. And Rendering on
GPU requires 9.5 ms under the configuration in Sectiond.1] With the optimized pipeline introduced
in Section[3.4] the effective per-frame latency, indicated by the interval between the two red dashed
lines in Figure[6](b), is determined by twice the Transmission delay, totaling 10 ms. Consequently,
the effective frame rate reaches 1000/10 = 100 FPS, achieving significant throughput improvement
and fully satisfying the real-time requirement for immersive Codec Avatar applications.

5 Conclusion

We have presented ESCA, a comprehensive framework that co-optimizes neural network algorithms
and hardware design to enable real-time PCA inference on VR devices. ESCA combines two
smoothing techniques (ICAS and FFAS) with a UV-weighted Hessian-based quantization strategy to
achieve high fidelity at 4-bit precision, and it includes a custom accelerator optimized for transposed
convolutions that yields a 3.36 x reduction in decoder latency. Despite these promising results, several
limitations remain. It relies on accurate facial UV priors and only accelerates the decoding stage,
leaving other parts of the pipeline unoptimized. Future work will aim to reduce dependence on UV
maps and extend co-optimization to the full avatar pipeline for more seamless systems.
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For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:[Yes]
Justification: GitHub link offered in supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Details are summarized in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We attach the training log in supplemental material.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We offer these details in Section ]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and understood the code of ethics; and have done our best to
conform.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include a dedicated Broader Impacts paragraph on Section ] that describes
positive applications of Codec Avatars in telepresence and remote collaboration.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide an anonymized GitHub repository (URL included in the supple-
mental material) that contains all newly introduced code and scripts.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification:
Guidelines: The paper does not involve crowdsourcing nor research with human subjects.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Scaling Invariance

Let the convolution layer take an input tensor X € RE»*HXW and a weight tensor W €
RCut X Cinxknxkw For clarity we fix a single output channel and suppress the output-channel index;
the argument is identical for every output filter. With the usual definition of discrete convolution (),
the pre-activation output is

Cin
Y =Y Wld*X[d, (11)

c=1

where Wc] € RF»*Fe and X[c] € RE*W denote the c-th input-channel kernel and feature map,
respectively.

Choose positive scalars s1, .. ., sc,,. Define the scaled activations and the compensated weights
5 = 1
Xlc] = s X|c], Wi = — W|d], c=1,...,Cy (12)
Sc

For any scalar o € R and tensors A, B of compatible shape, convolution is bilinear:

(dd)* B=a(A*B), Ax(aB)=a(AxB) (13)

Using Equation[13|with o« = s. and o = 1 /s,

(LW(c]) * (s X|c]) = Si Se (Wle] x X[e]) = W] x X|[c] (14)

Sc c

Summing Equation [T4]over all input channels reproduces Equation [T T}

_ Cin ~ ~ Cin
V=Y WdxX[d=>Y Wdx*X[]=Y (15)

Channel-wise scaling of activations, paired with the reciprocal scaling of the corresponding kernels,
leaves the convolution output unchanged. Hence Y =Y, proving the scale invariance claim.

B Proof of Fusing Scaling into Previous Layer Weights

Let
X(l) GRC;HXHXW’ W(l) GRC‘)“lXCi"th’ka, B(l) ERCOUl (16)

and define the
X@ —w® e x® 4 gl (17)

Lets € Rgg‘ be a per-output-channel scale, and write s ® 1" for broadcast Hadamard multiplication
along all trailing dimensions of a tensor 7' whose first index has size Cy,.

Claim. ~

X@ = ®X(2)[, L =(s® W(l)[:,,:, 1) * XM 4 5@ BW (18)
Fix an output channel ¢ € {1,..., Cyy} and spatial index (¢, j). By definition of convolution with
bias,

Cin kn—1ky—1
(2 _ 1 (1) 1
Xeig =22 20 D Wk Xonicu o + B (19)

m=1 u=0 v=0

Multiply Equation[I9)by the scalar s,
se X2 = 3 (se WY, L) XS + 5. BV (20)

c,i,] c,m,u,v m,i—u,j—v
m,u,v
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The summation term in Equationis exactly the (c, 4, j)-entry of the convolution (s @ W (1)) % X (1),
while the final term is the (c, ¢, j)-entry of s ® B @) (broadcast spatially). Since (2) holds for every
c,1,j, we obtain

sX® =(soW®)x XV 450 BY (21)
which proves the claim.

Scaling each output channel by s can be equivalently implemented by scaling the corresponding
output-channel kernels in W) before convolution. In quantization or inference-time fusion, this
lets us absorb channel-wise activation rescaling into the layer’s weights, avoiding an extra runtime
operation.

C Proof of scaling invariance before and after im2col

Let X € RE>*HuxW e the activation tensor feeding a ConvTranspose2d layer. im2col(-) convert
its argument to a 2-D matrix in which every column is the receptive-field patch that contributes to
one output location.

Xeot = im2col(X) € R(CinKnkuw)xN (22)
where N = Hy, Wy is the number of spatial sites produced by the layer.
W € ROnxCouxKnxKu be the kernel of the transposed convolution, reshaped into
Wmat — reShape(W) c R(Ci7LK}LKw)><(COut) (23)

After im2col, transposed convolution is a plain matrix multiply followed by col2im accumulation

chol = Wyz;atXcol (24)
then Y = col2im(Y.y;).
Let the per-channel scale vector be s = [s1, ..., s¢,] | withs. > 0. Define Syc = diag(s)® Ik, k., »

where Ik, i, is the identity matrix of size K} X K. The Kronecker product @ constructs a block-
diagonal matrix Sy, and Sue € R(CinKnKuw)x(CinKnKuw) Every column block belonging to
channel c is multiplied by the same scalar s..

We scale activations and invert-scale the weights Xeot = Suct Xeor and Woar = ST W,

act

Propagating the scaled quantities through the same algebra as (24).

Y;ol = W’y—yl;atXCOl = (Sa_c}fW'mat)T(SactXcol) (25)
From S, is diagonal, S} = S, 7.
Yeor = W a1SaetSact Xeot = Wigi Xeot =Y (26)
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