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Abstract

In marketing, customer segmentation is crit-001
ical for creating content tailored to specific002
consumer groups. The stability of these seg-003
ments, hinging on an algorithm’s ability to form004
similar groupings consistently, is essential for005
effective marketing strategies and higher con-006
version rates. Traditionally, segment stability007
can be improved by relying on structured data008
like age and purchase history and integrating009
this data with textual information, such as so-010
cial mnedia posts and product reviews. This011
study presents SIRIEMA, a multimodal frame-012
work deSIgned to enhance clusteRIng stabil-013
ity by fusing catEgorical, nuMericAl, and tex-014
tual data. Our proposal utilizes a transformer-015
based model for text, data fusion techniques,016
and generative models like variational autoen-017
coders and generative adversarial networks. Us-018
ing real-world datasets, SIRIEMA showed en-019
hanced clustering stability and quality com-020
pared to existing methods. This research repre-021
sents a novel approach to customer segmenta-022
tion and paves the way for future exploration023
of data fusion techniques in the context of mar-024
keting and other applications.025

1 Introduction026

Customer segmentation provides valuable insights027

into customer preferences and behaviors, allow-028

ing for a more refined understanding of distinct029

consumer groups (Varadarajan, 2020). By acquir-030

ing these insights, marketers can tailor content031

to address each segment’s unique needs and chal-032

lenges (Leung et al., 2022).033

A fundamental aspect of effective customer seg-034

mentation is clustering stability. This term refers035

to an algorithm’s ability to consistently generate036

similar customer segments across various runs or037

data subsets, a feature crucial for ensuring cus-038

tomer grouping based on enduring traits or behav-039

iors (Von Luxburg et al., 2010). Stable clustering040

not only bolsters the effectiveness of marketing041

campaigns but also significantly elevates conver- 042

sion rates (Cortez et al., 2021; Ray, 2019; Ko et al., 043

2022). Conversely, instability in clustering, even 044

with careful data preparation, can result in mis- 045

leading marketing strategies. This instability often 046

leads to campaigns that fail to connect with the 047

target audience, resulting in decreased revenue and 048

diminished customer satisfaction (Xie et al., 2016; 049

Akay and Yüksel, 2018; He and Yu, 2019). 050

The literature has proposed various methods to 051

enhance clustering stability, explicitly focusing 052

on structured data like categorical and numeric 053

data (Hajibaba et al., 2020; He and Yu, 2019; 054

Lee et al., 2022). A popular method is the Deep 055

Embedding Clustering With Mixed Data Using 056

Soft-Target Network (Mixed DEC + SU), an algo- 057

rithm that leverages a deep learning framework 058

for clustering (Lee et al., 2022). This method 059

uses a stacked autoencoder to learn latent feature 060

representations and perform a clustering task us- 061

ing a soft assignment procedure. Although the 062

Mixed DEC + SU strategy is quite effective, it 063

faces challenges when applied to multimodal data 064

encompassing structured and textual forms. 065

Building on this, existing research posits that 066

integrating textual data with structured data could 067

further enhance clustering stability in customer seg- 068

mentation (Balducci and Marinova, 2018; Fresneda 069

et al., 2021; Vo et al., 2021). Such integration is 070

supported by evidence showing that textual data of- 071

fer rich, contextual insights beyond what structured 072

data alone can provide (Tay et al., 2021; Vaswani 073

et al., 2017). The fusion of textual and structured 074

data holds promise for enhancing clustering stabil- 075

ity and providing a deeper, more nuanced insight 076

into customer segments (Balducci and Marinova, 077

2018). 078

Therefore, in this article, we introduce 079

SIRIEMA, a novel multimodal framework de- 080

signed to enhance clustering stability by fusing 081

categorical, numerical, and textual data. Our so- 082
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lution consists of three principal components: a083

transformer-based embedding model, a data fusion084

component, and a generative-based model.085

The transformer-based embedding model is es-086

sential for converting textual data into meaningful087

embeddings, capturing intricate patterns and rela-088

tionships. The data fusion component fuses the089

derived embeddings with categorical and numer-090

ical data to form a comprehensive feature space.091

Taking its output, a generative-based model, such092

as Variational Autoencoder (VAE) or Generative093

Adversarial Network (GAN), is then employed to094

refine the clustering process further. By captur-095

ing the intricate relationships within the data, gen-096

erative models ensure that clusters are cohesive097

and consistent, reducing variance and leading to098

more stable clustering outcomes (Yang et al., 2020;099

Harshvardhan et al., 2020).100

We employed five established stability measures101

to evaluate its effectiveness: Adjusted Rand In-102

dex (ARI), Adjusted Mutual Information Score103

(AMIS), BagClust (BG), Hierarchical Agglomera-104

tive Nesting (HAN), and Optimal Transport Align-105

ment (OTA) — each one renowned for assessing106

cluster stability across varied contexts (Liu et al.,107

2022; Peyvandipour et al., 2020; Lall et al., 2021).108

The Davies–Bouldin Score (DBS) metric also eval-109

uates cluster quality and separation. We selected110

the K-means algorithm for our evaluations, due to111

its straightforward nature and acknowledged insta-112

bility when juxtaposed with other methods, such as113

hierarchical techniques (Zhou et al., 2022).114

In our evaluation, we used real-world datasets,115

namely: Yelp Dataset (Dataset, 2014), Melbourne116

Airbnb dataset (Xie, 2019), PetFinder.my (Kag-117

gle and PetFinder.my, 2019), and Women’s cloth-118

ing reviews (Brooks, 2017). To assess the robust-119

ness of our model, we benchmarked it against120

four prevailing strategies. The first strategy, Struc-121

tured, strictly employs numerical and categorical122

data. The second, Textual, focuses exclusively on123

text embeddings. The third approach, Combined124

Dataset - Structure Textual (CD-ST), integrates125

both structured and textual datasets, while the126

fourth, Mixed DEC + SU, assimilates mixed data127

categories to enhance convergence stability (Lee128

et al., 2022).129

Our main contributions are as follows:130

• We introduce SIRIEMA, a novel framework131

that effectively integrates categorical, numer-132

ical, and textual data, significantly enhanc-133

ing clustering stability in multimodal environ- 134

ments; 135

• We demonstrate that by integrating categorical 136

and numerical data with textual data within 137

our multimodal framework, we can signifi- 138

cantly improve the stability of clustering algo- 139

rithms; 140

• We achieve state-of-the-art clustering stability 141

with our multimodal framework, advancing 142

the field of multimodal learning through en- 143

hanced data integration techniques; 144

• To the best of our knowledge, we are the first 145

to integrate categorical, numerical, and textual 146

data in a multimodal framework, significantly 147

enhancing clustering stability. 148

The remainder of this article is organized as fol- 149

lows. Section 2 presents a state-of-the-art synthe- 150

sis and discussions. Section 3 presents SIRIEMA. 151

Section 4 details the experimental evaluations con- 152

ducted. Section 5 contains our discussion. Finally, 153

Section 6 presents the conclusions and directions 154

for future work. 155

2 Related Work 156

Methods have been proposed in the literature to 157

improve clustering stability with emphasis on cat- 158

egorical, numeric, and text data (Hajibaba et al., 159

2020; He and Yu, 2019; Lee et al., 2022; Prasad 160

et al., 2015). 161

A discussion on clustering mixed panel datasets 162

using Gower’s distance and k-prototypes algo- 163

rithms is offered in Akay’s study (Akay and Yüksel, 164

2018). Panel datasets are commonly used in eco- 165

nomics to analyze complex economic phenomena. 166

The panel data matrix is constructed by combining 167

data from different periods and different individ- 168

uals or entities. The clustering method is applied 169

to panel data analysis to solve the heterogeneity 170

question of the dependent variable, which belongs 171

to panel data, before the analysis. However, they 172

need to consider incorporating textual data into 173

the clustering process, such as customer reviews, 174

which can offer valuable insights and enhance the 175

clustering results, particularly in domains where 176

sentiment or opinion analysis is crucial (Balducci 177

and Marinova, 2018). 178

An Evolutionary K-Means (EKM) algorithm 179

that uses clustering stability to evaluate partitions, 180

namely Clustering Stability-based Evolutionary 181
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KMeans (CSEKM), was proposed by He and Yu182

(2019). It addresses the initiation problem of K-183

Means by suggesting using at least one initial cen-184

ter from each underlying cluster. It uses cluster185

stability to evaluate partitions, making it more ro-186

bust to noise and challenging clusters. However,187

while CSEKM focuses on addressing the initiation188

problem and incorporating clustering stability, it189

does not explicitly consider integrating multimodal190

data. Multiple modalities may capture richer pat-191

terns and relationships, improving clustering sta-192

bility and potentially more accurate and reliable193

clustering results (Balducci and Marinova, 2018).194

The development of a strategy to increase the195

stability of market segmentation solutions derived196

from binary empirical consumer data was proposed197

by Hajibaba et al. (2020). Through the combination198

the variable selection method proposed by Brusco199

(2004) and the global stability analysis introduced200

by Dolnicar and Lazarevski (2009), the strategy201

simultaneously selects the segmentation variables202

and the number of segments leading to high global203

stability levels. Although binary data can provide204

simplicity and ease of analysis, it may not convey205

the complexity and subtleties of consumer behav-206

ior; by restricting the analysis to binary variables,207

it is possible to neglect valuable information or sub-208

tleties in consumer preferences or attitudes. This209

could lead to a less comprehensive understanding210

of market segments and potentially suboptimal mar-211

keting strategy decision-making.212

A novel non-linear Deep Encoder-Decoder213

framework to capture the cross-domain informa-214

tion for mixed data types is proposed by Sahoo215

and Chakraborty (2020). The authors discuss the216

challenge of representing data that contain mixed217

variable types, such as numerical and categorical218

variables. The joint distribution of mixed variables219

lies in a complex non-linear product space, making220

it challenging to represent the data in a suitable221

feature space. The representation of the data points222

can be carried out in a supervised or unsupervised223

manner. However, the proposed model’s non-linear224

space can introduce complexities when dealing225

with cross-domain information, particularly when226

incorporating unstructured text data. This com-227

plexity can hinder the overall performance of the228

model (Balducci and Marinova, 2018).229

A method called Deep Embedded Clustering230

(DEC) that simultaneously learns feature represen-231

tations and cluster assignments using deep neural232

networks was proposed by Xie et al. (2016). The233

method learns a mapping from the data space to 234

a lower-dimensional feature space in which it it- 235

eratively optimizes a clustering objective. The ex- 236

perimental evaluations on image and text corpora 237

significantly improve over state-of-the-art meth- 238

ods. However, if the difference between soft as- 239

signment and target values is significant, DEC ap- 240

plications may suffer from convergence problems. 241

To overcome these limitations, it was proposed 242

by Lee et al. (2022) a deep embedded clustering 243

framework, called Mixed DEC + SU, that can uti- 244

lize mixed data to increase the convergence stability 245

using soft-target updates derived from an enhanced 246

deep Q-learning algorithm utilized in reinforce- 247

ment learning. Integrating diverse data modalities 248

and enhanced representation learning capabilities 249

can provide a more accurate and reliable foundation 250

for clustering analysis, resulting in better cluster 251

assignments and more insightful clustering results, 252

which are not seen in these works. 253

A new algorithm called uCLUST, which iden- 254

tifies clusters in unstructured data by capturing 255

pattern similarity among objects was proposed 256

by Prasad et al. (2015). The results demonstrate 257

that uCLUST effectively clusters unstructured data 258

and can be used in various fields such as libraries, 259

insurance, and the world wide web. However, the 260

proposed work considers only the frequency of 261

words to calculate the similarity measure; language 262

semantics and context of terms are not considered 263

for clustering the document. 264

The strengths and weaknesses of these studies 265

defined our approach. In particular, SIRIEMA im- 266

proves upon these efforts by incorporating cate- 267

gorical, numerical, and textual features, resulting 268

in a more complete representation of the data and 269

significantly enhanced clustering stability. 270

3 Enhancing Clustering Stability in 271

Multimodal Data Environments 272

This section introduces SIRIEMA, a framework 273

that integrates a transformer-based model, a data 274

fusion component, and a generative-based model 275

to optimize data clustering. 276

3.1 Multimodal Framework 277

SIRIEMA has three key components: a 278

transformer-based model, a data fusion com- 279

ponent, and a generative-based model. Figure 1 280

provides a visualization of our framework. 281

We describe in detail each component that fol- 282
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Figure 1: SIRIEMA combines text data with categorical
and numerical features for enhanced clustering stability.
It uses the Bidirectional Encoder Representations for
Transformers (BERT) model for text features and adds
a data fusion component to merge the BERT model’s
output with categorical and numerical features. These
enriched features are then used within a VAE model.

lows:283

1. Transformer-based Model Component:284

This component employs a pre-trained285

transformer-based model, including, but not286

limited to, BERT1, GPT-3.52, Llama3, and287

others4. Without specialized heads, these288

models are exclusively for embedding pur-289

poses, leveraging their extensive pre-existing290

knowledge. We denote the output of this pro-291

cess as x, which provides our framework with292

robust encoding capabilities for textual infor-293

mation, thereby delivering significant advan-294

tages (Lin et al., 2022).295

2. Data Fusion Component: This component296

receives the transformer-based model com-297

ponent’s output (x), along with categorical298

(c) and numerical (n) features as input, and299

produces an output denoted by m, which any300

generative-based model then receives.301

We explored eight methods to integrate these302

features, each addressing the unique char-303

acteristics of their respective feature spaces.304

Drawing inspiration from the recent advance-305

ments in multimodal data fusion (Gao et al.,306

2020), these methods span from straight-307

forward strategies such as simple concate-308

1huggingface.co/docs/transformers/model_doc/bert#
transformers.BertModel.

2huggingface.co/spaces/yizhangliu/chatGPT.
3huggingface.co/meta-llama/Llama-2-7b.
4huggingface.co/docs/transformers/index.

nation to more intricate techniques leverag- 309

ing Multilayer Perceptron (MLP). Table 1 310

presents all those methods. 311

3. Generative-based Model Component: This 312

component processes the output m from the 313

data fusion component. It employs well- 314

established generative models, such as VAEs 315

and GAN, to foster more cohesive and stable 316

clustering solutions by deeply understanding 317

the underlying data distributions. With this 318

approach, we aim to establish robust clusters 319

that capture subtle patterns and relationships 320

within the data, ensuring consistent and repro- 321

ducible outcomes across various data scenar- 322

ios. 323

3.2 Datasets 324

We employed datasets encompassing various do- 325

mains, including social media, tourism, pet ser- 326

vices, and e-commerce. 327

The first dataset is from the Yelp public dataset 328

challenge5, which is a collection of user reviews 329

and other related details from the Yelp platform. It 330

involves structured features such as user-generated 331

numerical details, including review counts and 332

average ratings, and unstructured elements repre- 333

sented by the review texts. Next is the Melbourne 334

Airbnb Open dataset6, which gives a detailed in- 335

sight into Airbnb listings in Melbourne, Australia. 336

It encompasses structured details like price, num- 337

ber of reviews, review scores, and unstructured 338

data in the listing descriptions and host informa- 339

tion. Following this, the PetFinder.my Adoption 340

Prediction dataset7 offers structured information 341

detailing the numerical and categorical characteris- 342

tics of pet listings, in addition to unstructured data 343

captured in the pet descriptions penned by the care- 344

takers. Lastly, the Women’s E-Commerce Clothing 345

Reviews dataset8 comprises customer reviews and 346

ratings of women’s clothes sold online, including 347

structured data such as age, rating, and categorical 348

details like department and class name. It also con- 349

tains unstructured data, which comes as detailed 350

review texts. 351

5www.kaggle.com/datasets/yelp-dataset/yelp-dataset.
6www.kaggle.com/datasets/tylerx/melbourne-airbnb-

open-data.
7www.kaggle.com/competitions/petfinder-adoption-

prediction.
8www.kaggle.com/datasets/nicapotato/womens-

ecommerce-clothing-reviews.
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# Method Equation
1 text only m = x

2 concatenation m = (x, c,n)

3 MLP on categorical then concatenate m = (x, MLP (c), n)

4 individual MLP on categorical and
numerical features then concatenate m = (x,MLP (c),MLP (n))

5 MLP on concatenated categorical and
numerical features then concatenate m = (x,MLP (c,n))

6 attention on categorical and
numerical features

m = αx,xWxx + αx,cWcc + αx,nWnn
αi,j =

exp(LeakyReLu(aT (Wixi,Wjxj)))∑
k∈{x,c,n} exp(LeakyReLu(aT (Wixi,Wkxk)))

7 gating on categorical and
features and then sum (Rahman et al., 2020)(Gating)

m = x + αh
h = gc ⊙ (WcC) + gn ⊙ (Wnn) + bh
α = min( ∥x∥2

∥h∥2 ) ∗ β, 1)
gi = R(Wgi(i, x) + bi)
where β is a hyperparameter and R is an activation function

8 weighted feature sum on text, categorical,
and numerical features (Weighted Sum) m = x + wc ⊙ Wcc + wn ⊙ Wnn

Table 1: Feature integration methods. Uppercase bold letters represent 2D matrices, lowercase bold letters represent
1D vectors, and non-bold, lowercase letters are scalar values.

The richness and diversity of these datasets pro-352

vide a solid ground for performing a robust stability353

analysis.354

3.3 Evaluation355

To assess the model’s effectiveness, we used five356

stability measures: ARI, AMIS, BG, HAN, and357

OTA. The ARI and AMIS measure clustering sim-358

ilarity, with ARI adjusting for chance in paired ele-359

ment clustering and AMIS based on mutual infor-360

mation. BG evaluates clustering consistency across361

data subsets, while HAN applies bootstrap tech-362

niques to estimate cluster stability. Lastly, OTA,363

the Optimal Transport Alignment algorithm, com-364

pares clusterings using the theory of optimal trans-365

port. These measures provide a multifaceted view366

of our model’s performance, emphasizing cluster-367

ing stability and effectiveness. Additionally, DBS368

was used to evaluate clustering compactness and369

separation.370

This approach is further complemented by em-371

ploying the K-means algorithm for cluster compu-372

tation. We compared four distinct strategies across373

two sample sizes: 500 and the entire dataset. The374

strategies include Structured, which incorporates375

only numerical and categorical data, and Textual,376

which utilizes embeddings derived from text. For377

generating embeddings for all datasets, the bert-378

base-uncased model9 is employed. Additionally, 379

CD-ST employs a concatenation of structured and 380

textual data; Mixed DEC + SU utilizes mixed data 381

from categorical and numerical features to increase 382

convergence stability using soft-target updates. 383

3.4 Experimental Settings 384

This section provides a detailed account of imple- 385

menting our multimodal framework. Central to this 386

framework is the BERT model, serving as the foun- 387

dational model for text features and tokenization10. 388

It incorporates a data fusion component that com- 389

bines the BERT model output with categorical and 390

numerical features, generating specific multimodal 391

attributes. We used these enriched features as the 392

final model within a VAE model. 393

The loss function merges reconstruction loss 394

with Kullback-Leibler (KL) divergence, adding 395

structure to the latent space for better generaliza- 396

tion. The VAE was designed with layers of 768, 397

500, 300, and 200 units. The training was con- 398

ducted for 15 epochs at a 3x10−3 learning rate 399

using the AdamW optimizer. These adjustments en- 400

able the model to effectively manage complex cate- 401

gorical, numerical, and textual data clustering, en- 402

suring stable and reliable performance (Lim et al., 403

2020). We divided the entire dataset into 80% for 404

9huggingface.co/bert-base-uncased.
10huggingface.co/docs/transformers/model

_doc/bert#transformers.BertModel.
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training, 10% for validation, and 10% for testing.405

In our initial experiments, we assessed the per-406

formance of data fusion component methods using407

two sample sizes: 500 and the entire dataset. Ta-408

ble 2 shows each method’s mean validation loss409

and 95% confidence interval, highlighting key re-410

sults with underlining. This comprehensive testing411

is essential to determine the most effective method412

of integration suited to the diverse characteristics413

of the data.414

We excluded methods 3 (MLP on categorical415

then concatenate) and 4 (individual MLP on cate-416

gorical and numerical features then concatenate)417

for the Yelp dataset due to their lack of categorical418

features. During our evaluation, method 7 (gating)419

emerged as the optimal approach for both the Yelp420

and Airbnb datasets, whereas method 5 (MLP on421

concatenated categorical and numerical features,422

then concatenate) and method 6 (attention on cate-423

gorical and numerical features) performed best for424

the PetFinder.my and Women’s Clothing Reviews425

datasets, respectively.426

In the second phase of our experiments, we se-427

lected the most effective method from the data fu-428

sion component for each dataset, taking into ac-429

count various sample sizes. Following this selec-430

tion, we performed a comprehensive evaluation of431

our multimodal model’s results, which involved a432

comparative analysis of four distinct strategies by433

applying the five stability metrics we had estab-434

lished earlier.435

The model was developed using PyTorch11 and436

is made available at a GitHub repository12. It ran437

on a system equipped with two Titan X Graphics438

processing unit (GPU)s, each having 12 GiB of439

Random Access Memory (RAM). The architecture,440

including the methods in data fusion component,441

was inspired by Gu and Budhkar (2021).442

4 Experimental Results443

Table 3 presents the stability metric results for the444

test dataset, using both the 500 sample size and the445

entire dataset with strategies as follows: A: Struc-446

tured; B: Textual; C: CD-ST; D: Mixed DEC + SU;447

and E: SIRIEMA. Underlined values highlight the448

best outcomes, whereas bold values denote results449

from SIRIEMA. We performed the experiment ten450

times for each sample and metric and reported451

11pytorch.org.
12anonymous.4open.science/r/SIRIEMA-

6AD3/README.md. (note: this link will be replaced
by the GitHub one in the case of paper’s acceptance.)

the mean results with a 95% confidence interval. 452

For the Yelp dataset, SIRIEMA excelled in ARI 453

and AMIS metrics for 500 samples and the en- 454

tire dataset, showing robust clustering of multi- 455

modal data. It also outperformed in BG, HAN, 456

and OTA metrics, emphasizing its proficiency in 457

larger datasets. In the Airbnb dataset, SIRIEMA 458

demonstrated superior performance and consis- 459

tency across ARI, AMIS, BG, HAN, and OTA 460

metrics for 500 samples and the entire dataset, 461

highlighting its precision and adaptability. For the 462

PetFinder.my dataset, SIRIEMA outshone alterna- 463

tives in ARI, AMIS, BG, and HAN for both 500 464

samples and the entire dataset while ranking second 465

in the OTA metric for 500 samples. In the Women’s 466

Clothing reviews dataset, SIRIEMA showed robust 467

scalability and robustness in ARI and AMIS for 468

500 samples and the entire dataset. It also main- 469

tained superiority in BG, HAN, and OTA metrics, 470

confirming its effectiveness in handling complex 471

datasets. 472

Table 4 presents the DBS for each strategy across 473

different sample sizes; underlined scores are the 474

best in each row, while bold ones highlight the 475

results of SIRIEMA. In the Yelp dataset, the Struc- 476

tured strategy reached a DBS score of 0.66 ± 0.08 477

for the entire dataset, while SIRIEMA excelled 478

with a score of 0.20 ± 0.01, indicating high efficacy. 479

In the Airbnb dataset, the CD-ST method achieved 480

its highest score of 2.79 ± 0.19 for 500 samples. 481

SIRIEMA showcased notable performance with a 482

mean score of 0.10 ± 0.01 over the entire dataset, 483

demonstrating its effectiveness in grouping sim- 484

ilarity. For the PetFinder.my dataset, SIRIEMA 485

consistently decreased the DBS as the sample size 486

grew, nearly reaching optimal clustering at the en- 487

tire dataset level, signifying excellent adaptability 488

and efficient cluster separation. SIRIEMA demon- 489

strated superior clustering efficiency and reliability 490

in the Clothing dataset, indicated by the lowest 491

and most consistent DBS scores across both 500 492

samples and the entire dataset. 493

5 Discussion 494

SIRIEMA demonstrated superior effectiveness in 495

the metrics of the ARI and AMIS, consistently 496

outperforming alternatives for 500 samples and 497

the entire dataset. These consistently high scores 498

highlight the model’s robustness and precision, es- 499

pecially in handling large, complex multimodal 500

datasets, making it ideal for applications requiring 501
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Yelp Airbnb PetFinder.my Clothing

Method 500 s. Entire
dataset 500 s. Entire

dataset 500 s. Entire
dataset 500 s. Entire

dataset
1 246.73 ± 7.37 239.41 ± 5.35 158.05 ± 7.76 136.27 ± 4.51 70.29 ± 6.59 66.05 ± 7.84 35.97 ± 9.04 38.58 ± 4.17

2 241.86 ± 5.49 232.5 ± 3.71 149.78 ± 9.83 122.78 ± 7.45 82.82 ± 8.62 77.45 ± 5.88 48.27 ± 5.5 44.63 ± 9.23

3 - - 144.79 ± 4.68 119.92 ± 5.87 94.66 ± 3.59 88.82 ± 9.31 20.73 ± 6.72 23.77 ± 6.4

4 - - 146.71 ± 6.7 120.18 ± 3.93 80.22 ± 7.34 80.54 ± 6.72 19.28 ± 8.24 17.64 ± 3.97

5 243.54 ± 5.13 237.57 ± 7.94 151.6 ± 7.76 123.6 ± 3.58 45.28 ± 8.94 42.29 ± 8.28 48.6 ± 8.44 50.10 ± 6.78

6 241.55 ± 3.46 231.79 ± 3.88 155.11 ± 5.15 129.63 ± 6.01 60.99 ± 5.46 57.34 ± 4.91 14.88 ± 5.11 16.55 ± 6.79

7 189.09 ± 8.22 185.7 ± 5.25 107.1 ± 3.54 85.23 ± 3.84 70.05 ± 6.18 66.59 ± 6.28 56.06 ± 5.62 54.21 ± 8.58

8 245.43 ± 9.09 239.57 ± 9.62 125.17 ± 8.52 105.86 ± 7.59 74.4 ± 6.86 68.59 ± 8.35 63.04 ± 8.37 62.25 ± 9.7

Table 2: The mean validation loss, accompanied by a 95% confidence interval, is provided for all methods in the
data fusion component across all sample sizes for all datasets, with the best results underlined.

Yelp Airbnb PetFinder.my Clothing

500 s. Entire
Dataset 500 s. Entire

Dataset 500 s. Entire
Dataset 500 s. Entire

Dataset

ARI

A 0.56 ± 0.08 0.55 ± 0.10 0.77 ± 0.02 0.89 ± 0.02 0.50 ± 0.02 0.52 ± 0.05 0.54 ± 0.05 0.99 ± 0.00
B 0.84 ± 0.02 0.96 ± 0.00 0.93 ± 0.00 0.95 ± 0.00 0.51 ± 0.02 0.67 ± 0.07 0.67 ± 0.06 0.89 ± 0.03
C 0.51 ± 0.10 0.54 ± 0.10 0.80 ± 0.02 0.88 ± 0.02 0.49 ± 0.03 0.56 ± 0.03 0.60 ± 0.02 0.90 ± 0.03
D 0.30 ± 0.02 0.93 ± 0.03 0.52 ± 0.03 0.79 ± 0.01 0.49 ± 0.02 0.52 ± 0.01 0.46 ± 0.07 0.70 ± 0.01
E 0.96 ± 0.01 1.00 ± 0.00 0.87 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

AMIS

A 0.53 ± 0.07 0.52 ± 0.10 0.71 ± 0.02 0.83 ± 0.02 0.55 ± 0.01 0.58 ± 0.04 0.53 ± 0.06 0.98 ± 0.00
B 0.78 ± 0.02 0.93 ± 0.01 0.89 ± 0.01 0.91 ± 0.00 0.60 ± 0.02 0.73 ± 0.05 0.63 ± 0.05 0.84 ± 0.03
C 0.48 ± 0.10 0.51 ± 0.11 0.74 ± 0.01 0.83 ± 0.02 0.56 ± 0.02 0.63 ± 0.02 0.58 ± 0.02 0.85 ± 0.03
D 0.26 ± 0.03 0.88 ± 0.03 0.59 ± 0.01 0.73 ± 0.01 0.57 ± 0.02 0.60 ± 0.02 0.40 ± 0.07 0.67 ± 0.01
E 0.93 ± 0.02 0.99 ± 0.00 0.84 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 1.00 ± 0.01

BG

A 0.92 ± 0.02 1.00 ± 0.0 0.93 ± 0.01 0.95 ± 0.05 0.72 ± 0.02 0.73 ± 0.13 0.79 ± 0.02 0.76 ± 0.06
B 0.97 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.72 ± 0.02 0.83 ± 0.02 0.93 ± 0.01 0.97 ± 0.02
C 0.89 ± 0.04 0.94 ± 0.04 0.95 ± 0.01 0.97 ± 0.01 0.71 ± 0.02 0.76 ± 0.09 0.90 ± 0.01 0.97 ± 0.02
D 0.76 ± 0.02 0.99 ± 0.01 0.69 ± 0.02 0.94 ± 0.02 0.68 ± 0.02 0.78 ± 0.04 0.82 ± 0.02 0.83 ± 0.03
E 0.99 ± 0.01 1.00 ± 0.00 0.97 ± 0.00 0.97 ± 0.01 0.79 ± 0.04 0.85 ± 0.02 0.90 ± 0.02 0.97 ± 0.05

HAN

A 0.85 ± 0.07 0.97 ± 0.08 0.87 ± 0.01 0.94 ± 0.00 0.61 ± 0.03 0.63 ± 0.03 0.84 ± 0.03 0.92 ± 0.05
B 0.92 ± 0.01 0.98 ± 0.00 0.96 ± 0.00 0.97 ± 0.00 0.61 ± 0.03 0.77 ± 0.01 0.86 ± 0.01 0.95 ± 0.01
C 0.79 ± 0.04 0.81 ± 0.05 0.90 ± 0.01 0.94 ± 0.01 0.55 ± 0.03 0.63 ± 0.03 0.81 ± 0.03 0.95 ± 0.02
D 0.61 ± 0.01 0.96 ± 0.01 0.58 ± 0.02 0.90 ± 0.01 0.54 ± 0.03 0.62 ± 0.04 0.70 ± 0.04 0.85 ± 0.02
E 0.99 ± 0.0 1.00 ± 0.00 0.94 ± 0.02 1.00 ± 0.00 0.85 ± 0.02 0.86 ± 0.02 1.00 ± 0.00 1.00 ± 0.00

OTA

A 0.49 ± 0.01 0.50 ± 0.00 0.70 ± 0.05 0.73 ± 0.00 0.17 ± 0.03 0.13 ± 0.00 0.40 ± 0.08 0.40 ± 0.01
B 0.73 ± 0.00 0.73 ± 0.01 0.80 ± 0.01 0.80 ± 0.01 0.37 ± 0.04 0.48 ± 0.02 0.60 ± 0.04 0.67 ± 0.03
C 0.65 ± 0.05 0.50 ± 0.00 0.74 ± 0.01 0.73 ± 0.00 0.16 ± 0.05 0.45 ± 0.01 0.59 ± 0.04 0.67 ± 0.02
D 0.54 ± 0.04 0.67 ± 0.00 0.20 ± 0.01 0.09 ± 0.01 0.25 ± 0.03 0.15 ± 0.05 0.59 ± 0.03 0.57 ± 0.01
E 0.88 ± 0.02 0.89 ± 0.00 0.77 ± 0.01 0.88 ± 0.01 0.60 ± 0.06 0.77 ± 0.23 0.64 ± 0.25 0.89 ± 0.01

Table 3: Comparing the stability metrics of various strategies across different sample sizes on four distinct datasets
on the test dataset. Underlined scores are the best in each row, while bold ones highlight the results of SIRIEMA.
The strategies are as follows: A: Structured; B: Textual; C: CD-ST; D: Mixed DEC + SU; and E: SIRIEMA.

Yelp Airbnb PetFinder.my Clothing

Strategy 500 s. Entire
dataset 500 s. Entire

dataset 500 s. Entire
dataset 500 s. Entire

dataset
Structured 2.51 ± 0.12 0.66 ± 0.08 3.38 ± 0.17 3.43 ± 0.17 1.88 ± 0.03 1.96 ± 0.09 1.88 ± 0.13 1.84 ± 0.11

Textual 3.10 ± 0.21 3.14 ± 0.09 2.59 ± 0.10 2.63 ± 0.12 2.89 ± 0.11 3.01 ± 0.17 2.85 ± 0.17 2.87 ± 0.17
CD-ST 0.64 ± 0.10 0.84 ± 0.14 2.79 ± 0.19 2.66 ± 0.11 3.46 ± 0.16 3.52 ± 0.11 3.1 ± 0.19 3.08 ± 0.22

Mixed DEC + SU 2.39 ± 0.28 0.71 ± 0.21 1.57 ± 0.06 0.61 ± 0.03 1.53 ± 0.04 0.82 ± 0.03 2.19 ± 0.17 1.28 ± 0.10
SIRIEMA 0.30 ± 0.03 0.20 ± 0.01 0.13 ± 0.01 0.10 ± 0.01 0.02 ± 0.01 0.01 ± 0.001 0.48 ± 0.07 0.32 ± 0.08

Table 4: The DBS metric for each strategy across different sample sizes. Underlined scores are the best in each row,
while bold ones highlight the results of SIRIEMA.
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stable clustering and accurate information retrieval.502

In the BG metric, SIRIEMA was proficient for the503

entire dataset, indicating its ability to provide reli-504

able and accurate clustering for extensive datasets.505

This performance affirms its effectiveness in sce-506

narios demanding effective cluster separation and507

robustness. Our model also showed consistent su-508

periority in the HAN metric for both 500 samples509

and the entire dataset. This underscores its capac-510

ity to generate stable and reliable clusters, proving511

its robustness and scalability and making it well-512

suited for various clustering tasks. In the OTA met-513

ric assessment, SIRIEMA emerged superior for the514

entire dataset, reaffirming its reliability and adapt-515

ability across different data volumes. Its consistent516

high OTA scores emphasize its suitability for main-517

taining clustering stability and agreement. Our518

proposed multimodal model displayed the lowest519

and most consistent DBS scores for 500 samples520

and the entire dataset, indicating its strong and con-521

sistent clustering patterns and making it a preferred522

choice for achieving clustering consistency and ef-523

ficacy.524

6 Conclusion525

This research presented SIRIEMA, an innovative526

approach to customer segmentation by integrating527

structured and textual data. Our findings enhanced528

clustering stability in heterogeneous data contexts529

by developing a novel multimodal model building530

on BERT and a unique data fusion component cou-531

pled with a VAE. This is a significant advancement532

in addressing the challenge of clustering instability,533

which has previously plagued traditional methods,534

even when preprocessing and normalizing the data.535

Our experiments employed real-world datasets536

such as Yelp, Melbourne Airbnb, PetFinder, and537

Women’s clothing reviews, demonstrating the flexi-538

bility and robustness of the proposed model across539

diverse contexts. We assessed the model’s effec-540

tiveness against five distinct stability measures541

and the DBS, revealing its superiority over con-542

ventional strategies, including the state-of-the-art543

Mixed DEC + SU method. By comparing four544

strategies, our results provide compelling evidence545

for our proposed model’s soundness in achieving546

enhanced clustering stability, quality, and separa-547

tion.548

Our proposed multimodal clustering model549

demonstrated superior effectiveness, showcasing550

its utility in various applications involving intricate551

and diverse datasets where reliable clustering is 552

paramount. Its adaptability across different sample 553

sizes makes it a versatile tool for scenarios with 554

varying data volumes, such as decision support sys- 555

tems, recommendation engines, and data-driven 556

insights. While our model outperforms alterna- 557

tives, further research can explore its applicability 558

to different multimodal datasets and assess its lim- 559

itations in specific contexts. Overall, our findings 560

emphasize the importance of multimodal cluster- 561

ing in effectively handling complex data and con- 562

tribute to advancing data analytics and clustering 563

techniques, opening new avenues for data-driven 564

decision-making and knowledge discovery. 565

Future work will further explore the optimiza- 566

tion of the model and its applicability across diverse 567

industries and contexts, including the potential in- 568

tegration of other types of unstructured data, such 569

as images and audio. This exploration will include 570

utilizing more Large Language Models (LLMs), 571

such as Generative Pre-trained Transformer (GPT) 572

and BERT variants, to enhance text processing and 573

semantic understanding. By continuing to refine 574

and expand this model, we aim to provide a versa- 575

tile and powerful tool that can adapt to the rapidly 576

evolving landscape of customer segmentation and 577

targeted marketing. 578

7 Limitations 579

The SIRIEMA framework, while providing sig- 580

nificant advancements in clustering stability for 581

multimodal data, has limitations that need to be 582

acknowledged. Integrating transformer-based mod- 583

els, data fusion techniques, and generative models 584

contributes to a complex architecture. This com- 585

plexity may lead to increased computational re- 586

quirements, including higher memory consumption 587

and longer processing times, posing challenges for 588

real-time applications or environments with con- 589

strained computational resources. Also, its effec- 590

tiveness is limited by how well models like BERT 591

and GPT-3.5 match the target data and domain. 592

Another aspect is the challenge of data fusion. 593

Effectively combining different data types, such 594

as textual, categorical, and numerical, remains 595

complex and may impact the clustering effective- 596

ness if not executed optimally. Furthermore, while 597

SIRIEMA shows promise, its ability to generalize 598

across diverse datasets and domains has yet to be 599

thoroughly validated, potentially limiting its effec- 600

tiveness with varying data characteristics. 601
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Scalability is another concern, as the frame-602

work’s performance with massive datasets, particu-603

larly those with high-dimensional multimodal in-604

puts, has yet to be extensively explored. There605

is a risk of overfitting on specific datasets, poten-606

tially harming generalization. Also, its robustness607

to data quality issues like missing values or noise608

still needs to be tested, affecting real-world appli-609

cability. Finally, hyperparameter tuning in the gen-610

erative model requires time-consuming experimen-611

tation with potentially inconsistent results. More-612

over, current stability measures may only partially613

reflect the framework’s effectiveness in complex614

multimodal situations.615

8 Ethical Considerations616

SIRIEMA’s usage of diverse datasets requires strin-617

gent data privacy and confidentiality measures, es-618

pecially for personal and sensitive information.619

Compliance with data protection laws through620

anonymization, de-identification, and necessary621

consent from data subjects is critical. Addressing622

bias in datasets and model outputs is also essen-623

tial. Proactive steps should be taken to identify624

and mitigate biases, ensuring fairness, particularly625

in multimodal environments. Transparency and626

explainability of complex models like transform-627

ers and generative are crucial. This includes clear628

documentation and the development of interpre-629

tative methods for model outputs. Additionally,630

SIRIEMA’s environmental impact, due to high en-631

ergy consumption and carbon emissions, necessi-632

tates improved computational efficiency and the633

use of green computing solutions.634

Code Availability635

The source code used to generate all the636

results presented in this paper is available637

at https://anonymous.4open.science/r/638

SIRIEMA-6AD3/README.md.639
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A Appendix 780

In this Appendix Section, we present the hyper- 781

parameters used for the best model, validation re- 782

sults for all datasets and explain the approach we 783

adopted to determine the optimal number of clus- 784

ters for each dataset. 785

A.1 Hyperparameters 786

For the purpose of enhancing the reproducibility 787

of our research, we provide Table 5. This table 788

details the hyperparameters employed in the top- 789

performing model across various experiments. We 790

employed Grid Search13 to methodically assess a 791

range of hyperparameters, ensuring the selection 792

of the most effective combination for our model. 793

A.2 Stability analysis across validation 794

datasets 795

Table 6 showcases the performance results across 796

all validation dataset obtained using ARI, AMIS, 797

13https://scikit-learn.org/stable/modules/generated/
sklearn.model_selection.GridSearchCV.html

10

https://doi.org/10.18653/v1/2020.acl-main.214
https://doi.org/10.18653/v1/2020.acl-main.214
https://doi.org/10.18653/v1/2020.acl-main.214
https://doi.org/10.18653/v1/2020.acl-main.214
https://doi.org/10.18653/v1/2020.acl-main.214
https://www.kaggle.com/tylerx/melbourne-airbnb-open-data/version/7
https://www.kaggle.com/tylerx/melbourne-airbnb-open-data/version/7
https://www.kaggle.com/tylerx/melbourne-airbnb-open-data/version/7


Hyperparameters Value
Batch size 768
Maximum token length 768
Optimizer Adam
Weight decay 0.01
Adam ϵ 1e-8
Adam β [0.7, 0.9]
Learning rate schedule 1e-8
Maximum learning rate 4e-5
Minimum learning rate 1e-5
# Steps 2000

Table 5: Hyperparameters used in the fine-tuning pro-
cess.

BG, HAN, and OTA metrics. The evaluation strate-798

gies employed are delineated as follows: A: Struc-799

tured Approach; B: Textual Approach; C: CD-ST;800

D: Mixed DEC + SU; and E: SIRIEMA. We present801

the results as the mean, accompanied by a 95%802

confidence interval; underlined values highlight the803

best outcomes, whereas bold values denote results804

from our proposed multimodal model.805

The SIRIEMA model exhibited superior effi-806

cacy in multiple metrics in the Yelp dataset. In807

the ARI metric, it scored 0.94 ± 0.01 for 500808

samples and 1.0 ± 0.0 for the entire dataset. In809

AMIS, it registered 0.9±0.02 for 500 samples and810

0.99± 0.1 for the entire dataset, indicating robust811

mutual information alignment. For BG, the scores812

were 0.99 ± 0.0 for 500 samples and 1.0 ± 0.0813

for the entire dataset, showing stable clustering.814

In HAN, SIRIEMA scored 0.99 ± 0.01 for 500815

samples and 1.0± 0.0 for the entire dataset, outper-816

forming other models. Lastly, in OTA, it achieved817

0.86± 0.04 and 0.89± 0.01, demonstrating effec-818

tive handling of multimodal data. In the Airbnb819

validation dataset, our model achieved an ARI of820

0.91± 0.01 for 500 samples and demonstrated per-821

fect stability with 1.0 ± 0.0 for the entire dataset.822

It scored 0.88 ± 0.01 in AMIS for 500 samples,823

reaching 1.0± 0.0 for the full dataset. For BG, the824

model registered 0.98 ± 0.0 for 500 samples and825

0.97±0.01 overall. In HAN, it attained 0.96±0.01826

for 500 samples and 1.0±0.0 for the entire dataset.827

Lastly, the model showed improvement in the OTA828

metric, scoring 0.78 ± 0.01 for 500 samples and829

0.91± 0.01 for the full dataset. In the Pertinder.my830

dataset, our proposal achieved 1.0 ± 0.0 for 500831

samples and 0.79 ± 0.03 for the entire dataset in832

the ARI metric. In AMIS, it scored 0.98± 0.01 for833

500 samples and 0.90± 0.01 for the entire dataset. 834

The model showed strong performance in the BG 835

metric, reaching 0.98 ± 0.01, and in HAN, with 836

0.84 ± 0.05 for 500 samples, maintaining consis- 837

tent effectiveness for the entire dataset. In the OTA 838

evaluation, it scored 0.44± 0.13 for 500 samples 839

and 0.5 ± 0.13 for the entire dataset, reflecting 840

its adaptability and areas for improvement. In the 841

Clothing dataset, our model achieved perfect scores 842

in ARI and AMIS, with 1.0± 0.0 and 1.0± 0.01, 843

respectively, for both 500 samples and the entire 844

dataset. In the BG metric, it ranked third with 845

0.89± 0.01 for 500 samples but achieved the top 846

score of 1.0±0.01 for the entire dataset. The model 847

demonstrated robust clustering in the HAN metric, 848

achieving 1.0± 0.0 for both sample sizes. Finally, 849

in OTA, it scored 0.68± 0.23 for 500 samples and 850

0.89± 0.01 for the entire dataset. 851

A.3 Clustering analysis 852

We determined the optimal cluster count for each 853

strategy, using silhouette scores to analyze the clus- 854

tering of Yelp and Airbnb datasets with k ranging 855

from 2 to 9. Silhouette score, ranging from -1 to 1, 856

measures an object’s fit to its cluster versus others, 857

with higher values indicating better clustering. 858

Maximizing intra-cluster similarity and inter- 859

cluster dissimilarity, the two-cluster configuration 860

consistently showed the highest scores, indicating 861

robust and distinct clustering. Figure 2 displays 862

Silhouette scores for Yelp and Airbnb datasets, re- 863

flecting cluster quality and distinctiveness. 864

In contrast, we determined the optimal number 865

of clusters for PetFinder.my and Clothings through 866

their labels. The PetFinder.my dataset has same 867

day, 1-7 days, 8-30 days, 31-90 days, and more 868

than 100 days. Women’s E-Commerce clothing 869

reviews dataset has Not Recommended and Recom- 870

mended labels. 871
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Yelp Airbnb PetFinder.my Clothing

500 s. Entire
Dataset 500 s. Entire

Dataset 500 s. Entire
Dataset 500 s. Entire

Dataset

ARI

A 0.61 ± 0.07 0.53 ± 0.06 0.55 ± 0.05 0.69 ± 0.05 0.55 ± 0.02 0.68 ± 0.08 0.47 ± 0.04 0.92 ± 0.08
B 0.84 ± 0.01 0.96 ± 0.00 0.92 ± 0.00 0.95 ± 0.01 0.47 ± 0.02 0.58 ± 0.02 0.58 ± 0.03 0.58 ± 0.14
C 0.53 ± 0.05 0.40 ± 0.07 0.73 ± 0.08 0.89 ± 0.02 0.42 ± 0.01 0.52 ± 0.04 0.67 ± 0.08 0.56 ± 0.08
D 0.25 ± 0.02 0.95 ± 0.01 0.51 ± 0.02 0.74 ± 0.02 0.53 ± 0.03 0.67 ± 0.04 0.52 ± 0.05 0.78 ± 0.02
E 0.94 ± 0.01 1.00 ± 0.00 0.91 ± 0.01 1.00 ± 0.00 1.00 ± 0.0 0.79 ± 0.02 1.00 ± 0.00 1.00 ± 0.00

AMIS

A 0.59 ± 0.06 0.49 ± 0.06 0.51 ± 0.04 0.63 ± 0.04 0.57 ± 0.02 0.68 ± 0.06 0.45 ± 0.04 0.89 ± 0.07
B 0.79 ± 0.01 0.93 ± 0.01 0.88 ± 0.01 0.92 ± 0.03 0.56 ± 0.02 0.65 ± 0.02 0.56 ± 0.04 0.55 ± 0.11
C 0.50 ± 0.04 0.37 ± 0.06 0.68 ± 0.08 0.83 ± 0.02 0.50 ± 0.01 0.59 ± 0.03 0.63 ± 0.07 0.53 ± 0.07
D 0.21 ± 0.02 0.91 ± 0.01 0.59 ± 0.02 0.69 ± 0.01 0.59 ± 0.02 0.69 ± 0.03 0.45 ± 0.05 0.74 ± 0.01
E 0.90 ± 0.02 0.99 ± 0.00 0.88 ± 0.01 1.00 ± 0.00 0.98 ± 0.01 0.90 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

BG

A 0.97 ± 0.01 0.99 ± 0.01 0.92 ± 0.01 0.94 ± 0.01 0.76 ± 0.01 0.81 ± 0.07 0.76 ± 0.02 0.77 ± 0.04
B 0.97 ± 0.01 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 0.69 ± 0.01 0.79 ± 0.05 0.92 ± 0.01 0.95 ± 0.03
C 0.89 ± 0.02 0.95 ± 0.04 0.96 ± 0.01 0.97 ± 0.00 0.66 ± 0.01 0.73 ± 0.02 0.94 ± 0.01 0.95 ± 0.03
D 0.72 ± 0.02 0.99 ± 0.00 0.73 ± 0.03 0.93 ± 0.02 0.70 ± 0.02 0.81 ± 0.10 0.83 ± 0.02 0.87 ± 0.02
E 0.99 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.97 ± 0.01 0.98 ± 0.01 0.79 ± 0.02 0.89 ± 0.01 1.00 ± 0.01

HAN

A 0.83 ± 0.07 0.99 ± 0.00 0.83 ± 0.03 0.84 ± 0.02 0.67 ± 0.01 0.77 ± 0.03 0.77 ± 0.03 0.91 ± 0.05
B 0.92 ± 0.01 0.98 ± 0.00 0.96 ± 0.00 0.98 ± 0.01 0.56 ± 0.02 0.68 ± 0.07 0.82 ± 0.02 0.88 ± 0.01
C 0.77 ± 0.06 0.78 ± 0.04 0.91 ± 0.02 0.95 ± 0.01 0.51 ± 0.02 0.59 ± 0.02 0.87 ± 0.02 0.86 ± 0.04
D 0.55 ± 0.02 0.97 ± 0.00 0.59 ± 0.03 0.85 ± 0.01 0.56 ± 0.03 0.70 ± 0.04 0.75 ± 0.02 0.86 ± 0.03
E 0.99 ± 0.01 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.84 ± 0.05 0.78 ± 0.04 1.00 ± 0.00 1.00 ± 0.00

OTA

A 0.50 ± 0.01 0.50 ± 0.00 0.68 ± 0.03 0.70 ± 0.01 0.26 ± 0.05 0.10 ± 0.07 0.49 ± 0.07 0.34 ± 0.13
B 0.73 ± 0.00 0.73 ± 0.00 0.78 ± 0.01 0.78 ± 0.01 0.43 ± 0.02 0.49 ± 0.00 0.53 ± 0.06 0.62 ± 0.21
C 0.66 ± 0.04 0.63 ± 0.01 0.74 ± 0.01 0.73 ± 0.01 0.28 ± 0.06 0.42 ± 0.26 0.61 ± 0.06 0.68 ± 0.01
D 0.52 ± 0.02 0.69 ± 0.01 0.26 ± 0.03 0.08 ± 0.03 0.28 ± 0.04 0.25 ± 0.03 0.61 ± 0.03 0.56 ± 0.12
E 0.86 ± 0.04 0.89 ± 0.01 0.78 ± 0.01 0.91 ± 0.00 0.44 ± 0.12 0.50 ± 0.10 0.68 ± 0.23 0.89 ± 0.01

Table 6: Comparing the stability metrics of various strategies across different sample sizes on four distinct datasets on
the validation dataset. Underlined scores are the best in each row, while bold ones highlight the results of SIRIEMA.
The strategies are as follows: A: Structured; B: Textual; C: CD-ST; D: Mixed DEC + SU; and E: SIRIEMA.
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(a) Structured - Yelp (b) Textual - Yelp (c) CD-ST - Yelp

(d) Mixed DEC + SU - Yelp (e) SIRIEMA - Yelp (f) Structured - Airbnb

(g) Textual - Airbnb (h) CD-ST - Airbnb (i) Mixed DEC + SU - Airbnb

(j) SIRIEMA - Airbnb

Figure 2: Silhouette score for Yelp and Airbnb datasets.
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