
Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Xu Wang 1 2 Yan Hu 2 Wenyu Du 1 Reynold Cheng 1 Benyou Wang 2 Difan Zou 1

Abstract
Fine-tuning significantly improves the perfor-
mance of Large Language Models (LLMs), yet
its underlying mechanisms remain poorly under-
stood. This paper aims to provide an in-depth in-
terpretation of the fine-tuning process through cir-
cuit analysis, a popular tool in Mechanistic Inter-
pretability (MI). Unlike previous studies (Prakash
et al., 2024; Chhabra et al., 2024) that focus on
tasks where pre-trained models already perform
well, we develop a set of mathematical tasks
where fine-tuning yields substantial performance
gains, which are closer to the practical setting.
In our experiments, we identify circuits at vari-
ous checkpoints during fine-tuning and examine
the interplay between circuit analysis, fine-tuning
methods, and task complexities. First, we find
that while circuits maintain high node similarity
before and after fine-tuning, their edges undergo
significant changes, which is in contrast to the pre-
vious work (Prakash et al., 2024; Chhabra et al.,
2024) that show circuits only add some additional
components after fine-tuning. Based on these ob-
servations, we develop a circuit-aware Low-Rank
Adaptation (LoRA) method, which assigns ranks
to layers based on edge changes in the circuits.
Experimental results demonstrate that our circuit-
based LoRA algorithm achieves an average per-
formance improvement of 2.46% over standard
LoRA with similar parameter sizes. Furthermore,
we explore how combining circuits from subtasks
can enhance fine-tuning in compositional tasks,
providing new insights into the design of such
tasks and deepening the understanding of circuit
dynamics and fine-tuning mechanisms.

1School of Computing and Data Science, The University of
Hong Kong 2School of Data Science, The Chinese University
of Hong Kong, Shenzhen. This work is done when Xu Wang
is working at The Chinese University of Hong Kong, Shenzhen
supervised by Dr. Yan Hu. Correspondence to: Difan Zou
<dzou@cs.hku.hk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Mechanistic Interpretability (MI) has become a powerful
approach for exploring the inner workings of machine learn-
ing models, particularly Large Language Models (LLMs)
(Rai et al., 2024). It provides valuable insights into how
information flows and transforms across different layers
(Ferrando et al., 2024). One of the most critical aspects
of deploying LLMs in real-world scenarios is fine-tuning
(Chung et al., 2024). However, the interpretability of how
pre-trained models improve during fine-tuning remains lim-
ited, and the underlying mechanisms enabling their success
across tasks require further investigation.

Many studies in MI regard models as computational graphs
(Geiger et al., 2021), where circuits are specific subgraphs
that perform identifiable functions (Wang et al., 2022). No-
tably, this framework has been successfully applied to vari-
ous LLMs, revealing emergent behaviors within attention
heads and Multi-Layer Perceptrons (MLPs) (Heimersheim
& Janiak, 2023; Burns et al., 2023; Hanna et al., 2023;
Gould et al., 2023). Moreover, circuits have recently been
leveraged to investigate the fine-tuning process of language
models, seeking to understand the mechanisms behind fine-
tuning (Prakash et al., 2024; Chhabra et al., 2024; Jain et al.,
2024). However, these studies often focus on tasks where
pre-trained models already perform well (e.g., GPT-2 (Rad-
ford et al., 2019) achieves around 98% accuracy on the IOI
task), or they use general data for fine-tuning rather than
domain-specific datasets (Prakash et al., 2024). Under such
conditions, fine-tuning mainly enhances existing mecha-
nisms (e.g., by adding some attention heads). Consequently,
their arguments may not be applicable in more practical
fine-tuning scenarios where models initially perform poorly
and require fine-tuning on domain data.

To better understand fine-tuning mechanisms in practical
settings, it is crucial to focus on tasks where fine-tuning
leads to performance improvements. In this work, we de-
sign a class of mathematical tasks on which pre-trained large
language models initially perform poorly with low accuracy,
yet demonstrates a performance boost after fine-tuned. We
employ the Edge Attribution Patching with Integrated Gra-
dients (EAP-IG) (Hanna et al., 2024) method to identify
circuits within both pre-trained and fine-tuned models. Sur-
prisingly, we observe that this approach consistently finds

1

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

circuits with high faithfulness, even though the two models
differ markedly in performance (see §3). To further vali-
date the stability of the discovered circuits, we introduce
another circuit metric, robustness, which measures the sta-
bility of identified circuits by assessing their edge similarity
under different perturbation ratios of the dataset. We show
that when compared with a randomly initialized transformer
model, the pre-trained model, despite exhibiting very low
prediction accuracy, can still achieve substantially higher
robustness. This finding further supports the validity of the
circuits discovered during the fine-tuning process, irrespec-
tive of their prediction performance.

Our Main Findings. Based on the circuits analysis tech-
niques and tasks introduced in §3, we provide a com-
prehensive interpretation of the key factors in the fine-
tuning process. Specifically, we focus on three central
research questions and summarize our main observations
as follows. The code and data are available at https:
//github.com/Xu0615/FinetuneCircuits.

1. (§4) How do circuits evolve during the fine-tuning
process? We use pythia-1.4B-deduped (Biderman
et al., 2023), gpt-neo-2.7B (Black et al., 2021), opt-
6.7B (Zhang et al., 2022) to fine-tune on five math tasks.
By extracting the circuits at each stage of the model
during fine-tuning and analyzing these circuits, the cir-
cuits identified by EAP-IG demonstrate high fidelity in
both pre-trained and fine-tuned models, despite signif-
icant performance differences. We observe that during
fine-tuning, circuits gradually converge as modifications
to nodes and edges decrease. Meanwhile, new circuits
emerge after fine-tuning, with edge changes playing a
more significant role in this process.

2. (§5) Can circuit insights enhance the fine-tuning pro-
cess? We develop a circuit-aware Low-Rank Adaptation
(LoRA) method, which assigns higher ranks to layers
that have more edge changes in the circuits. We demon-
strate across five different mathematical tasks that using
circuit insights to optimize the fine-tuning algorithm is
effective, significantly improving LoRA’s accuracy and
parameter efficiency. Our experiments highlight how
Mechanistic Interpretability enhances fine-tuning effi-
ciency, improving performance with fewer parameters
using circuit change insights.

3. (§6) How capable is the Union Circuit in performing
compositional tasks? To validate our hypothesis, we
design a two-step compositional task, such as ”(61 - 45)
* 45 =”. This compositional task was decomposed into
an addition/subtraction task and a multiplication/division
task and we use the union of the circuits from these sub-
tasks to approximate the circuit for the compositional
task. Our results indicate that the circuit for the combi-
nation task can be approximated by the union of subtask

circuits, enhancing the model’s performance on the com-
bination task during fine-tuning.

2. Related work
2.1. Mechanistic Interpretability

Mechanistic Interpretability investigates how components
in large language models process and represent informa-
tion (Wang et al., 2024). At present, many MI studies
have been applied in various fields of AI Safety. For in-
stance, oversimplified probes risk (Friedman et al., 2024),
unlearning fabricated knowledge (Sun et al., 2024), reducing
toxicity via alignment (Lee et al., 2024), mitigating hallu-
cinations by editing representations (Zhang et al., 2024),
and generating truthful outputs through inference-time in-
terventions (Li et al., 2023). Other studies explore how
local model edits propagate across tasks (Cohen et al., 2024;
Meng et al., 2023), Multi-Head Attention in-context learn-
ing (Chen et al., 2024; Chen & Zou, 2024) and enhance
influence-function sampling (Koh et al.). Specifically, our
study examines how circuits evolve during fine-tuning for
mathematical tasks, focusing on node and edge changes to
reveal mechanisms behind performance improvements.

2.2. Circuit Analysis and Fine-Tuning

One direction of Circuit Analysis focuses on building com-
plete circuits. Early work localizes factual associations in
mid-layer modules (Meng et al., 2022) and uses causal me-
diation to uncover biases (Vig et al., 2020; Hase et al., 2023).
Automated methods like Automated Circuit Discovery iden-
tify significant units (Conmy et al., 2023), while techniques
like attribution patching, and refine circuit extraction by
handling near-zero gradients (Syed et al., 2023; Hanna et al.,
2024). Edge pruning (Bhaskar et al., 2024) provide insights
into building the edge of the circuit. Another line of research
investigates the functional roles of circuit components, such
as Attention heads (Wu et al., 2024; McDougall et al., 2023;
Olsson et al., 2022; Gould et al., 2023; Cabannes et al.,
2024) and Feed Forward Networks (FFNs) / MLPs (Geva
et al., 2021; 2022; Bhattacharya & Bojar, 2024). Addition-
ally, circuits have been used to analyze specific tasks, such
as factual knowledge retrieval (Geva et al., 2023), arithmetic
computation (Stolfo et al., 2023), Greater Than task (Hanna
et al., 2023), and circuit recognition in Indirect Object Iden-
tification (Wang et al., 2022). Unlike these analyses, which
focus on smaller-scale tasks and models, our work offers
a new lens on how circuits evolve specifically during fine-
tuning on mathematical tasks, revealing crucial roles of edge
changes.

As pre-trained language models scale, fine-tuning methods
have emerged, optimizing only a small subset of param-
eters (Ding et al., 2023). Parameter-efficient fine-tuning

2

https://github.com/Xu0615/FinetuneCircuits
https://github.com/Xu0615/FinetuneCircuits

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

(PEFT) methods, such as LoRA (Hu et al., 2021), reduce
computational costs while preserving functionality (Ding
et al., 2023). Advances in LoRA, including pruning (Zhou
et al., 2024) and adaptive budget allocation (Zhang et al.,
2023; Liu et al., 2022; Lialin et al., 2024), further improve
efficiency. In our study, we introduce a circuit-aware LoRA
approach that adaptively assigns higher ranks to layers with
more edge changes, boosting efficiency and accuracy in
mathematical tasks, and further illustrates how combining
circuits from subtasks can enhance performance in compo-
sitional tasks during fine-tuning.

3. Circuit Discovery and Task Design
3.1. Circuit Discovery: EAP-IG

Attribution patching is a technique for identifying circuits
using two forward passes and one backward pass (Syed
et al., 2023). In our experiments, we use Edge Attribution
Patching with Integrated Gradients (EAP-IG) (Hanna et al.,
2024), which addresses computational inefficiency in large
models and resolves zero-gradient issues with KL diver-
gence. EAP-IG computes importance scores by integrating
gradients along the path between clean and corrupted acti-
vations, making it our method of choice. The formula for
scoring each edge is:

∆L(E) ≈
∣∣∣∣(ecorr − eclean)

⊤ 1

m

m∑
k=1

∇ek
L(x)

∣∣∣∣,
where eclean and ecorr denote the activations in the circuit
under the clean and corrupted inputs, respectively. m is
the total number of interpolation steps, and k represents
the index of a specific step. ∇ek

L(x) denotes the gradient
of the loss function L(x) with respect to the interpolated
activations ek.

In this study, we choose m = 5 based on Hanna et al.’s
(2024) recommendations (Hanna et al., 2024).

3.2. Circuit Evalutaion: Faithfulness and Robustness

Faithfulness. Faithfulness serves as a key metric to evaluate
the reliability of circuits discovered in MI and it quantifies
how closely a circuit replicates the behavior of the original
model (Wang et al., 2022; Chhabra et al., 2024; Prakash
et al., 2024). We adopt Kullback-Leibler divergence (KL-
divergence) as the metric, following Conmy et al. (Conmy
et al., 2023). Let M denote the model and C the discovered
circuit. Faithfulness is defined as the percentage of the
model’s performance captured by the circuit. The formula
for faithfulness is:

Faithfulness =
(
1− |F (M)− F (C)|

F (M)

)
× 100%,

where F (M) represents the performance of the full model
M and F (C) represents the performance of the circuit C.

Robustness. To evaluate the stability of the identified cir-
cuit, we propose a robustness score based on its robustness
under dataset perturbations. Taking addition and subtraction
tasks as an example, perturbations include numeric noise
(e.g., changing 7 + 12 to 7 + 15), and operator noise (e.g.,
replacing 12 + 7 with 12− 7). And we conduct robustness
calculations on these perturbed datasets, applying noise at
varying levels to create noisy datasets.

The robustness score is computed using the Jaccard Sim-
ilarity (Jaccard, 1912) between the initial circuit G0 and
perturbed circuits Gp. The formula is:

Robustness(p) = JE(G0, Gp),

where JE(G0, Gp) represents the Jaccard Similarity for
edges between the initial circuit G0 and the perturbed circuit
Gp, and p denotes the perturbation level.

This modification focuses on edge similarity, as it better re-
flects structural integrity. A high robustness score indicates
that the perturbed circuits maintain a similar edge structure
to the original, with a score closer to 1 reflecting a robust
circuit structure.

3.3. Tasks Design

To examine the effect of fine-tuning on circuit dynamics, we
construct a suite of challenging mathematical tasks in which
pre-trained models initially perform poorly. As shown in
Figure 1, these tasks help reveal the underlying fine-tuning
mechanisms that drive significant performance gains during
the process.

Addition and Subtraction (Add/Sub). This task evaluates
the model’s ability to perform basic addition and subtraction
operations. Corrupted data involves altering the arithmetic
operation. The task includes five subtasks categorized by
the range of numbers involved within 100, 200, 300, 400,
and 500. Each subtask contains 5,000 instances.

Multiplication and Division (Mul/Div). This task assesses
the model’s capability to handle multiplication and division
accurately. Corrupted data involves changing the opera-
tion between multiplication and division. A total of 2,000
instances are included in this task.

Arithmetic and Geometric Sequence (Sequence). This
task measures the model’s ability to recognize and extend
arithmetic or geometric sequences. Corrupted data involves
altering one term in the sequence. The dataset for this task
contains 5,000 instances.

Least Common Multiple (LCM). This task tests the
model’s ability to calculate the Least Common Multiple
(LCM) of two integers. Corrupted data involves changing

3

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Pre-trained

Model

Add/Sub: 95 - 60 =

Sequence: 9, 18, 27, 36,

LCM: LCM(13, 66) =

Function: y=5x+74. Given x=1,2,3,4, y=79,84,89,

Mul/Div: 26 * 15 =

Fine-tuned

Model

Tasks

Initial Circuit Final Circuit

Fine-tuning

Find

Circuit

Find

Circuit

Low accuracy

Difference

Understand

Figure 1. The workflow of understanding fine-tuning mechanisms using circuits. The initial pre-trained model shows low accuracy on
tasks. The corresponding circuits were found in both the pre-trained model and the fine-tuned model, and the fine-tuning mechanism was
understood by comparing the changes in the circuits before and after.

the input numbers or the conditions of the LCM calculation.
The task includes 2,500 instances.

Function Evaluation (Function). This task focuses on
the model’s ability to compute values for linear functions,
typically of the form y = mx+ b. Corrupted data involves
altering the constant term in the function. The dataset con-
tains 5,000 instances.

For each task, we ensure a strict separation between the
dataset used for fine-tuning and the dataset used for circuit
analysis. Specifically, 80% of the dataset is allocated for
fine-tuning, and the remaining 20% is reserved for identify-
ing circuits and evaluating the model’s and circuit’s accura-
cies. This separation guarantees that performance evaluation
is conducted on data unseen during fine-tuning.

4. How Do Circuits Evolve During the
Fine-Tuning Process?

4.1. Model Accuracy, Circuit Faithfulness, and
Robustness Analysis

To analyze circuit evolution, we first evaluate model accu-
racy across fine-tuning checkpoints. We use LoRA (Hu
et al., 2021) to fine-tune the Pythia-1.4B model (Biderman
et al., 2023) on five different mathematical tasks. The exper-
imental settings for fine-tuning are shown in Appendix A.
The left panel of Figure 2 depicts the accuracy dynamics

of the model on five mathematical tasks during fine-tuning.
We track the model’s accuracy at various training stages
across different tasks, revealing consistent improvements in
performance throughout the fine-tuning process.

Next, we explore the faithfulness of the circuits found at
each stage of fine-tuning. Prior work (Hanna et al., 2024)
achieved over 85% faithfulness by selecting 1–2% of edges.
Given our more complex tasks and larger model, we se-
lect 5% of edges to ensure reliable circuits (faithfulness
>70%). As shown in the middle panel of Figure 2, circuit
faithfulness consistently exceeds 80% across most tasks,
both before fine-tuning (Checkpoint 0) and throughout fine-
tuning (Checkpoints 1–10). The only exception is Add/Sub
task, where faithfulness is 77.52% before fine-tuning. These
results confirm high circuit faithfulness in both pre-trained
and fine-tuned models across all tasks.

Finally, we conduct robustness analysis on the circuits iden-
tified by EAP-IG. We evaluate the robustness of circuits in
the pre-trained model, the fine-tuned model, and a randomly
initialized model. In this section, we present the robustness
analysis for the Add/Sub (100), with analysis for other tasks
provided in Appendix C. As discussed in Section 3.2, we
perturb the original dataset by 10% to 90% and identify the
circuit of three models in perturbed datasets with varying
noise levels. Then, we compute the robustness score of
Fine-tuned, Pre-trained, and Random models under differ-
ent perturbation levels. Results in the right part of Figure 2

4

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

0 1 2 3 4 5 6 7 8 9 10
Checkpoints

20

40

60

80

100

M
od

el
 A

cc
ur

ac
y

(%
)

Add/Sub
Mul/Div
Sequence
LCM
Function

0 1 2 3 4 5 6 7 8 9 10
Checkpoints

60

70

80

90

100

Fa
it

hf
ul

ne
ss

 (
%

)

Add/Sub
Mul/Div
Sequence
LCM
Function

10 20 30 40 50 60 70 80 90
Perturbation Level (%)

0.6

0.7

0.8

0.9

1.0

Ro
bu

st
ne

ss
 S

co
re

Fine-tuned Model
Pre-trained Model
Random Model

Figure 2. Circuit Accuracy, Faithfulness, and Robustness during Fine-tuning. Left: Training progress of the model accuracy across
different mathematical tasks, showing continuous improvement over checkpoints. Middle: Evolution of faithfulness metrics during
training, demonstrating consistently high faithfulness across five mathematical tasks. Right: Robustness analysis for the Add/Sub task.
Robustness evaluation under different perturbation levels, comparing Fine-tuned, Pre-trained, and Random models.

reveal that circuits identified by EAP-IG demonstrate high
fidelity in both pre-trained and fine-tuned models, despite
significant performance differences.

Key Observation 1: Circuits can be identified in
both pre-trained and fine-tuned models with high
faithfulness and robustness, regardless of their sig-
nificant performance differences.

4.2. Circuit is Converging During Fine-Tuning

We conjecture that as the model’s accuracy on the task con-
tinues to improve, the model’s internal circuits should con-
tinue to stabilize. To verify our hypothesis, we analyze the
change of nodes and edges across consecutive checkpoints.

First, we analyze node and edge changes across checkpoints.
The top right of Figure 3 illustrates three mathematical
tasks, corresponding to the model’s increasing accuracy
during fine-tuning. By tracking the number of node and
edge modifications between different checkpoints, we assess
whether circuit changes diminish over time and tend toward
convergence as the accuracy of the model improves. Details
for the remaining tasks are provided in Appendix D. As
shown in Figure 3, the number of node/edge state changes
decreases consistently over time, indicating stabilization
and convergence of the circuit.

Subsequently, we propose a new metric to measure the de-
gree of change of nodes and edges during fine-tuning. To
quantify the changes in edges and nodes during fine-tuning
across n checkpoints, we define a unified change rate:

∆S =
1

n

n−1∑
t=0

∆st→t+1

S0
× 100%,

where ∆st→t+1 denotes the number of nodes or edges that

change from checkpoint t to checkpoint t+1, and S0 denotes
the total number of nodes or edges in the initial circuit.

As shown in Figure 3, fine-tuning induces structural changes,
with ∆S (Edge) consistently exceeding ∆S (Node) by a
factor of 2–3 across three tasks. This underscores the pivotal
role of edges as the primary drivers of structural adaptation
during fine-tuning. For the other tasks, the change rates of
nodes and edges in the circuit are also shown in Appendix D.

Key Observation 2: Fine-tuning performs more sig-
nificant edge modifications than node modifications.

4.3. Reorganizing Circuit Edges to Form a New Circuit

As discussed in Section 3.1, each edge’s score is computed
as the dot product of the averaged loss gradients and acti-
vation difference, quantifying its influence on model pre-
dictions. To examine structural changes in circuits during
fine-tuning, we use the 95th percentile of edge scores as a
dynamic threshold. Edges in the initial and final circuits ex-
ceeding this threshold are retained, yielding sparser circuits
that capture the model’s core information flow. Experimen-
tal results for all other tasks are provided in Appendix E.

The distribution of added and deleted nodes and edges fol-
lows a distinct pattern. As illustrated in the left part of
Figure 3, added nodes are predominantly located in the
middle and later layers of the circuit, whereas added and
deleted edges are concentrated in the middle layers. The
shallow layers exhibit minimal changes, providing a stable
foundation for task-specific adaptations.

In order to prove our conclusions, we conduct investiga-
tions into how the circuit evolves under different fine-tuning
regimes. Specifically, Appendix F examines the circuit mod-
ifications resulting from various PEFT strategies, while Ap-

5

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Differences in Add/Sub Circuit

Checkpoint 0->10

Evolution of Circuits

Quantitative Change

&

Change Rate

Figure 3. The structural differences of Add/Sub(100) circuit (24 layers) and evolution of circuits across checkpoints in terms
of node and edge changes. Left: Differences of Add/Sub(100) circuit before and after fine-tuning. The layout organizes nodes
hierarchically from input to output (logits). Nodes and edges are color-coded based on their status: added (blue), removed (red), or
unchanged (grey/white). Darker grey nodes indicate higher degrees. Top Right: Node and edge changes between checkpoints during
fine-tuning in three tasks. The left chart depicts the number of node changes per transition, while the right chart focuses on edge changes.
Bottom Right: Change rate of Add/Sub, Sequence, LCM three tasks. Bars with diagonal lines represent the change rate of edges.

pendix G focuses on the changes induced by full-parameter
fine-tuning and LoRA. Finally, Appendix H provides a com-
parison of circuit changes observed under different LLMs.

5. Can Circuit Insights Enhance the
Fine-tuning Process?

In the previous section, we observe that while the nodes
in the model’s circuit exhibit minimal changes during fine-
tuning, the edges undergo significant modifications. This
observation raises an intriguing question: Can LoRA be
improved by fine-tuning the edges that change the most? We
would like to improve the fine-tuning algorithm from the
perspective of Mechanistic Interpretability.

5.1. Applying Circuit Edge Changes into LoRA
Fine-Tuning

Based on the score of edges and the result of section 3.1,
we assume that the most “active” edges play a key role in
the fine-tuning process. Also, considering that LoRA is
fine-tuned in layers of the model, we want to focus on the
layers where the most “active” edges are located.

We propose CircuitLoRA, a circuit-aware Low-Rank
Adaptation (LoRA) method that incorporates circuit-level

analysis to enhance fine-tuning efficiency and performance.
CircuitLoRA operates in two phases: first, the edges
with the largest score changes are analyzed to identify Criti-
cal Layers; second, higher-rank LoRA modules are assigned
to layers with more edge changes, while standard-rank mod-
ules are applied to other layers. The complete procedure is
detailed in Algorithm 1.

Our hypothesis is that this improved fine-tuning algorithm,
which leverages circuit-based analysis, can make better use
of the fine-tuning mechanism. In the subsequent section, we
investigate this hypothesis, designing experiments across
different mathmatical tasks to compare our strategy against
full parameter fine-tuning and LoRA baseline.

5.2. Improving Fine-Tuning Efficiency and Accuracy by
Circuit Insights

To verify our hypothesis, we perform experiments on a
range of arithmetic and mathematical reasoning tasks. The
experimental results of CircuitLoRA are summarized in
two tables. In our experiments, 5 Critical Layers are se-
lected. We compare CircuitLoRA against control groups
including LoRA and RandomLoRA (5 Critical Layers are
randomly selected). For each method in the experiment,
we report the final accuracy as the mean of five runs with

6

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Algorithm 1 CircuitLoRA: Improve LoRA Using
Circuit-Based Critical Layers Identification

Input: Pre-trained model M , Pre-finetuning circuit
Cbefore, Post-finetuning circuit Cafter, LoRA ranks ro,
rc, Scaling factors α, αcritical

Phase 1: Critical Layers Identification
Compute edge differences ∆e between Cbefore and
Cafter

Aggregate ∆e to layer scores ∆l and select critical layers
Lcritical

Phase 2: Module Replacement
for each layer l ∈ M do

if l ∈ Lcritical then
Replace l with EnhancedLoRALinear using rc
and αcritical

else
Replace l with LoRALinear using ro and α

end if
end for
Return: Updated model M∗

different random seeds.

As shown in Table 1, CircuitLoRA consistently outper-
forms baseline methods, including LoRA and Random-
LoRA, across all five tasks. For instance, in the ”within
300” task, CircuitLoRA (ro = 8, rc = 32) achieves
an accuracy of 82.70%, with fewer training parameters,
surpassing RadomLoRA and LoRA. When configured as
CircuitLoRA (ro = 32, rc = 64) reaches 83.10%, out-
performing RandomLoRA and LoRA. CircuitLoRA ex-
periments on other tasks refer to the Appendix I.

By focusing on the edges with the highest score during
fine-tuning, CircuitLoRA demonstrates significant im-
provements in both accuracy and parameter efficiency across
various mathematical tasks. The experimental results pre-
sented in this study provide a compelling answer to the
question posed in Section 5. This approach leverages in-
sights from Mechanistic Interpretability, identifying and
prioritizing Critical Layers where critical changes occur.

Key Observation 3: Circuits can in turn improve
fine-tuning with higher accuracy and parameter effi-
ciency across various mathematical tasks.

6. How Capable is the Union Circuit in
Performing Compositional Tasks?

In this section, we further explore the behavior of circuits
in compositional tasks, aiming to investigate whether these
tasks can be interpreted through the combination of circuits.

6.1. Compositional Tasks, Compositional Circuits and
Union Circuits

In the beginning, we first introduce a series of definitions
regarding the composition of tasks and circuits.

Compositional Tasks. A compositional task consists of a
sequence or combination of two or more simpler subtasks,
where the output of one subtask often serves as the input
to the next. For example, computing (61 − 45) × 45 first
requires solving the subtraction (61 − 45), then using its
result in a multiplication. By breaking complex reasoning
into these interrelated steps, we can isolate and analyze each
module’s contribution to overall performance.

Compositional Circuits. A Compositional Circuit is the
end-to-end subnetwork of the model that directly imple-
ments a compositional task. It captures both the intra-
subtask pathways and the cross-step dependencies that arise
when information must flow from one operation (e.g. sub-
traction) into the next (e.g. multiplication). Extracting this
circuit requires running the discovery pipeline on the full
compositional task.

Union Circuits. A Union Circuit is formed by taking
the edge-union of individual subtask circuits without re-
extracting a dedicated compositional circuit. By merging
the critical edges and nodes from each primitive operation’s
circuit—while preserving edge counts for fair compari-
son—the Union Circuit approximates the full Compositional
Circuit at a fraction of the discovery cost.

To design the compositional tasks, we consider the two-step
operation, which involves the calculation of two different
types of mathematical problem, such as addition/subtraction
and multiplication/division. For instance, the compositional
task “(61− 45)× 45 =” involves two mathematical oper-
ations: (1) (Addition/Subtraction): “61 − 45 =”; and (2)
(Multiplication/Division): “16× 45 =”. More examples of
compositional tasks can be found in Appendix J.

Our intuition is that if the circuits can represent the mini-
mum calculation block for one tasks, then it is conjectured
that the Union Circuits of the two subtasks can exhibit the
power to represent the circuits for the compositional task.
In the following, we will investigate the conjecture through
two approaches: (1) we compare the similarities between
the Union Circuits and the Compositional Circuits; (2) we
use the Union Circuits to develop the CircuitLoRA algo-
rithm and evaluate whether the performance of the composi-
tional task can also be improved.

6.2. Efficient Single-Phase Fine-Tuning on
Compositional Task with Union Circuit

We conduct overlap analysis and fine-tuning experiments
on the two-step operation combination task. For a circuit

7

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Table 1. Performance metrics for Add/Sub (within 300) and four other math tasks: Mul/Div, Sequence, LCM, and Function across
different configurations. The control groups of CircuitLoRA (ro = 8, rc = 32) are LoRA (ro = 16) and RandomLoRA (ro = 8,
rc = 32), and the control groups of CircuitLoRA (ro = 32, rc = 64) are LoRA (ro = 32) and RandomLoRA (ro = 32, rc = 64).
Here, ro and rc represent the ranks used in CircuitLoRA, where rc is the rank for critical layer modules, and ro is the rank for
non-critical layer modules. Model Accuracy is expressed as percentages.

Method Parameter Ratio Add/Sub(300) Mul/Div Sequence LCM Function

Pre-trained 0% 18.30 39.75 15.70 18.80 32.00
Full FT 100% 79.20 95.75 91.50 91.40 100.00
LoRA (ro = 2) 0.1111% 72.60 90.00 67.10 86.40 84.10
LoRA (ro = 8) 0.4428% 78.30 94.25 79.60 91.20 96.80
LoRA (ro = 16) 0.8816% 78.40 95.50 83.40 91.20 97.30
LoRA (ro = 32) 1.7479% 80.50 96.25 92.70 92.80 98.60

CircuitLoRA (ro = 8, rc = 32) 0.7175% 82.70 96.00 92.20 92.60 99.40
RandomLoRA (ro = 8, rc = 32) 0.7175% 77.50 95.50 81.70 90.40 97.70
CircuitLoRA (ro = 16, rc = 64) 1.4248% 83.10 97.00 94.60 93.00 99.50
RandomLoRA (ro = 16, rc = 64) 1.4248% 79.10 95.75 92.10 92.00 98.50

Table 2. Overlap for Different Values of k in Circuit Compar-
isons. The table presents Overlapk between the Union Circuit and
the Combination Circuit. Additionally, circuits from the Add/Sub
task are compared with those from the Mul/Div and Sequence
tasks as control groups.

Circuit Comparison Overlapk
(
C1, C2

)
k = 100 k = 500 k = 1000

Union vs Compositional 69 259 470
Add/Sub vs Mul/Div 51 187 357
Add/Sub vs Sequence 42 156 286

C, we define a Topk(C) metric to quantify how many of the
top-k edges, ranked by their scores, are shared between two
circuits. Then we define the Overlap metric as follows:

Overlapk
(
C1, C2

)
=

∣∣Topk(C1) ∩ Topk(C2)
∣∣.

First, we calculate the Union Circuit and Combination Cir-
cuit under the two-step operation combination task.

Through overlap analysis, we prove the efficiency of Union
Circuit to a certain extent. Table 2 analyzes the overlap
for different values of k to evaluate the efficiency of the
Union Circuit. The results show that, regardless of the
value of k, the overlap between the Union Circuit and the
Compositional Circuit is consistently the highest. Compar-
isons are made between the addition/subtraction circuit and
circuits from control tasks, such as multiplication/division
and arithmetic/geometric sequences. The overlaps in these
cases are notably lower. These findings demonstrate that
the Union Circuit provides an approximate representation
of the Compositional Circuit.

Then, we use Union Circuit and Compositional Circuit
to identify the Critical Layers to further explore the “ap-

Table 3. Performance metrics for Two-Step Operations Task.
CircuitLoRAC represents using Compositional Circuit for Crit-
ical Layer Identification and CircuitLoRAU represents using
Union Circuit. Model Accuracy all expressed as percentages.

Method Parameter Ratio M.Acc.

Pre-trained / 0.90
LoRA (ro = 2) 0.1111% 59.60
LoRA (ro = 8) 0.4428% 60.50
LoRA (ro = 16) 0.8816% 61.10
LoRA (ro = 32) 1.7479% 64.70

CircuitLoRAC (ro = 8, rc = 32) 0.7175% 67.20
CircuitLoRAU (ro = 8, rc = 32) 0.7175% 65.50
RandomLoRA (ro = 8, rc = 32) 0.7175% 62.30

proximation ability” of Union Circuit. Table 3 summa-
rizes the performance of CircuitLoRA and LoRA on
the two-step operations task. Specifically, CircuitLoRA
with Compositional Circuit achieves the highest accuracy
of 67.20%. Surprisingly, when using the Union Circuit
for Critical Layer identification, CircuitLoRA achieves
65.50%, still exceeding the performance of LoRA except
the Compositional Circuit configuration.

This demonstrates we can use Union Circuit for single-phase
fine-tune. This means that for fine-tuning of the combination
task, if we want to use CircuitLoRA, we do not need to
find its combinational circuit first, but can replace it with
the union of the circuits of the subtasks that have been
discovered to some extent.

Key Observation 4: The composition of the circuits
can effectively represent the circuits of the composi-
tional task.

8

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

7. Conclusion and Future Work
In this paper, we build on circuit analysis to deepen our
understanding of fine-tuning and better leverage learned
mechanisms. Our findings show that fine-tuning primarily
modifying edges rather than merely introducing new com-
ponents to form new circuits. Building on this insight, we
develop a circuit-aware LoRA method. Across multiple
tasks, our results demonstrate that incorporating this MI
perspective enhances fine-tuning efficiency. Additionally,
we show that the composition of subtask circuits effectively
represents the circuit of compositional task.

Moving forward, we will explore the following directions.
Although our work focused on math tasks, applying circuit-
based methods to more tasks would further validate the
generality of our insights. Additionally, while our com-
positional experiments only explore two-step arithmetic,
extending this analysis to multi-step or more compositional
tasks could provide deeper insights into circuit interactions,
enhancing interpretability and fine-tuning efficiency.

Acknowledgements
This work was supported by the Shenzhen Doctoral Startup
Funding (RCBS20221008093330065), Shenzhen Science
and Technology Program (JCYJ20220818103001002),
Tianyuan Fund for Mathematics of National Natural Science
Foundation of China (NSFC) (12326608), Shenzhen Key
Laboratory of Cross-Modal Cognitive Computing (grant
number ZDSYS20230626091302006), and Shenzhen Sta-
bility Science Program 2023. Difan Zou acknowledges the
support from NSFC 62306252, Hong Kong ECS award
27309624, Guangdong NSF 2024A1515012444, and the
central fund from HKU IDS. Reynold Cheng and Wenyu
Du are supported by the Hong Kong Jockey Club Charities
Trust (Project 260920140), the University of Hong Kong
(Project 2409100399), the HKU Outstanding Research Stu-
dent Supervisor Award 2022-23, and the HKU Faculty Ex-
change Award 2024 (Faculty of Engineering).

Impact Statement
Our work provides concrete insights for advancing Mech-
anistic Interpretability. This deeper understanding of the
internal processes guiding model updates paves the way
for more efficient, accurate, and trustworthy AI systems.
We hope these findings inspire new methods and applica-
tions that take advantage of circuit-based analysis to unlock
greater transparency, reliability, and performance in LLMs
development, and to make better use of the learned mecha-
nisms in these models.

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be
specifically highlighted here.

References
Bhaskar, A., Wettig, A., Friedman, D., and Chen, D. Finding

transformer circuits with edge pruning. In Proceedings
of the 38th Conference on Neural Information Process-
ing Systems (NeurIPS), Spotlight, 2024. URL https:
//arxiv.org/abs/2406.16778. NeurIPS 2024
Spotlight.

Bhattacharya, S. and Bojar, O. Understanding the role of
ffns in driving multilingual behaviour in llms, 2024. URL
https://arxiv.org/abs/2404.13855.

Biderman, S., Schoelkopf, H., Anthony, Q. G., Bradley,
H., O’Brien, K., Hallahan, E., Khan, M. A., Purohit, S.,
Prashanth, U. S., Raff, E., et al. Pythia: A suite for ana-
lyzing large language models across training and scaling.
In International Conference on Machine Learning, pp.
2397–2430. PMLR, 2023.

Black, S., Gao, L., Wang, P., Leahy, C., and Biderman, S.
Gpt-neo: Large scale autoregressive language modeling
with mesh-tensorflow. If you use this software, please
cite it using these metadata, 58(2), 2021.

Burns, C., Ye, H., Klein, D., and Steinhardt, J. Discov-
ering latent knowledge in language models without su-
pervision. In Proceedings of the International Confer-
ence on Learning Representations (ICLR), 2023. URL
https://arxiv.org/abs/2212.03827. ICLR
2023.

Cabannes, V., Arnal, C., Bouaziz, W., Yang, A., Charton,
F., and Kempe, J. Iteration head: A mechanistic study of
chain-of-thought, 2024. URL https://arxiv.org/
abs/2406.02128.

Chen, X. and Zou, D. What can transformer learn with vary-
ing depth? case studies on sequence learning tasks. In
Forty-first International Conference on Machine Learn-
ing, 2024.

Chen, X., Zhao, L., and Zou, D. How transformers utilize
multi-head attention in in-context learning? a case study
on sparse linear regression. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems,
2024.

Chhabra, V. K., Zhu, D., and Khalili, M. M. Neuroplasticity
and corruption in model mechanisms: A case study of
indirect object identification. In Proceedings of the ICML
2024 Workshop on Mechanistic Interpretability, 2024.
ICML 2024 Workshop on Mechanistic Interpretability.

9

https://arxiv.org/abs/2406.16778
https://arxiv.org/abs/2406.16778
https://arxiv.org/abs/2404.13855
https://arxiv.org/abs/2212.03827
https://arxiv.org/abs/2406.02128
https://arxiv.org/abs/2406.02128

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S., et al.
Scaling instruction-finetuned language models. Journal
of Machine Learning Research, 25(70):1–53, 2024.

Cohen, R., Biran, E., Yoran, O., Globerson, A., and Geva,
M. Evaluating the ripple effects of knowledge editing
in language models. Transactions of the Association for
Computational Linguistics, 12:283–298, 2024.

Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim,
S., and Garriga-Alonso, A. Towards automated circuit
discovery for mechanistic interpretability. In Oh, A., Nau-
mann, T., Globerson, A., Saenko, K., Hardt, M., and
Levine, S. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 16318–16352. Curran
Associates, Inc., 2023.

Ding, N., Qin, Y., Yang, G., Wei, F., Yang, Z., Su, Y., Hu,
S., Chen, Y., Chan, C.-M., Chen, W., et al. Parameter-
efficient fine-tuning of large-scale pre-trained language
models. Nature Machine Intelligence, 5(3):220–235,
2023.

Ferrando, J., Sarti, G., Bisazza, A., and Costa-jussà, M. R.
A primer on the inner workings of transformer-based
language models, 2024. URL https://arxiv.org/
abs/2405.00208.

Friedman, D., Lampinen, A., Dixon, L., Chen, D., and
Ghandeharioun, A. Interpretability illusions in the gen-
eralization of simplified models. In Proceedings of
the 41st International Conference on Machine Learning
(ICML), 2024. URL https://arxiv.org/abs/
2312.03656. ICML 2024.

Geiger, A., Lu, H., Icard, T., and Potts, C. Causal abstrac-
tions of neural networks. In Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P., and Vaughan, J. W. (eds.),
Advances in Neural Information Processing Systems,
volume 34, pp. 9574–9586. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.
cc/paper_files/paper/2021/file/
4f5c422f4d49a5a807eda27434231040-Paper.
pdf.

Geva, M., Schuster, R., Berant, J., and Levy, O. Trans-
former feed-forward layers are key-value memories.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
2021. URL https://arxiv.org/abs/2012.
14913. EMNLP 2021.

Geva, M., Caciularu, A., Wang, K. R., and Goldberg, Y.
Transformer feed-forward layers build predictions by pro-
moting concepts in the vocabulary space. In Proceedings
of the 2022 Conference on Empirical Methods in Natural

Language Processing (EMNLP), 2022. URL https:
//arxiv.org/abs/2203.14680. EMNLP 2022.

Geva, M., Bastings, J., Filippova, K., and Globerson, A.
Dissecting recall of factual associations in auto-regressive
language models. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing
(EMNLP), 2023. URL https://arxiv.org/abs/
2304.14767. EMNLP 2023.

Gould, R., Ong, E., Ogden, G., and Conmy, A. Succes-
sor heads: Recurring, interpretable attention heads in
the wild, 2023. URL https://arxiv.org/abs/
2312.09230.

Hanna, M., Liu, O., and Variengien, A. How does gpt-2
compute greater-than?: Interpreting mathematical abili-
ties in a pre-trained language model. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 76033–76060. Curran Associates,
Inc., 2023.

Hanna, M., Pezzelle, S., and Belinkov, Y. Have faith in
faithfulness: Going beyond circuit overlap when finding
model mechanisms. In Proceedings of the Conference
on Learning Mechanisms (COLM), 2024. URL https:
//arxiv.org/abs/2403.17806. COLM 2024.

Hase, P., Bansal, M., Kim, B., and Ghandeharioun, A. Does
localization inform editing? surprising differences in
causality-based localization vs. knowledge editing in lan-
guage models. In Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., and Levine, S. (eds.), Advances in
Neural Information Processing Systems, volume 36, pp.
17643–17668. Curran Associates, Inc., 2023.

Heimersheim, S. and Janiak, J. A circuit for
python docstrings in a 4-layer attention-only
transformer. URL: https://www. alignmentforum.
org/posts/u6KXXmKFbXfWzoAXn/acircuit-for-python-
docstrings-in-a-4-layer-attention-only, 2023.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jaccard, P. The distribution of the flora in the alpine zone. 1.
New phytologist, 11(2):37–50, 1912.

Jain, S., Kirk, R., Lubana, E. S., Dick, R. P., Tanaka, H.,
Grefenstette, E., Rocktäschel, T., and Krueger, D. S.
Mechanistically analyzing the effects of fine-tuning on
procedurally defined tasks, 2024. URL https://
arxiv.org/abs/2311.12786.

10

https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2405.00208
https://arxiv.org/abs/2312.03656
https://arxiv.org/abs/2312.03656
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/4f5c422f4d49a5a807eda27434231040-Paper.pdf
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2304.14767
https://arxiv.org/abs/2312.09230
https://arxiv.org/abs/2312.09230
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2403.17806
https://arxiv.org/abs/2311.12786
https://arxiv.org/abs/2311.12786

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Koh, J., Lyu, H., Jang, J., and Yang, H. J. Faithful and fast
influence function via advanced sampling. In ICML 2024
Workshop on Mechanistic Interpretability.

Lee, A., Bai, X., Pres, I., Wattenberg, M., Kummerfeld,
J. K., and Mihalcea, R. A mechanistic understanding of
alignment algorithms: A case study on dpo and toxic-
ity, 2024. URL https://arxiv.org/abs/2401.
01967.

Li, K., Patel, O., Viégas, F., Pfister, H., and Wattenberg, M.
Inference-time intervention: Eliciting truthful answers
from a language model. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, pp. 41451–41530. Curran Associates, Inc., 2023.

Lialin, V., Deshpande, V., Yao, X., and Rumshisky, A. Scal-
ing down to scale up: A guide to parameter-efficient
fine-tuning, 2024. URL https://arxiv.org/abs/
2303.15647.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. A. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems, 35:
1950–1965, 2022.

McDougall, C., Conmy, A., Rushing, C., McGrath, T.,
and Nanda, N. Copy suppression: Comprehensively
understanding an attention head, 2023. URL https:
//arxiv.org/abs/2310.04625.

Meng, K., Bau, D., Andonian, A., and Belinkov, Y. Locat-
ing and editing factual associations in gpt. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K.,
and Oh, A. (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 17359–17372. Curran
Associates, Inc., 2022.

Meng, K., Sharma, A. S., Andonian, A., Belinkov, Y., and
Bau, D. Mass-editing memory in a transformer, 2023.
URL https://arxiv.org/abs/2210.07229.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. arXiv
preprint arXiv:2209.11895, 2022.

Prakash, N., Shaham, T. R., Haklay, T., Belinkov, Y., and
Bau, D. Fine-tuning enhances existing mechanisms: A
case study on entity tracking. In Proceedings of the
International Conference on Learning Representations
(ICLR), 2024. URL https://arxiv.org/abs/
2402.14811. ICLR 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Rai, D., Zhou, Y., Feng, S., Saparov, A., and Yao, Z.
A practical review of mechanistic interpretability for
transformer-based language models, 2024. URL https:
//arxiv.org/abs/2407.02646.

Stolfo, A., Belinkov, Y., and Sachan, M. A mechanistic
interpretation of arithmetic reasoning in language mod-
els using causal mediation analysis. In Proceedings of
the 2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2023. URL https:
//arxiv.org/abs/2305.15054. EMNLP 2023.

Sun, C., Miller, N. A., Zhmoginov, A., Vladymyrov, M.,
and Sandler, M. Learning and unlearning of fabri-
cated knowledge in language models. In Proceedings of
the ICML 2024 Workshop on Mechanistic Interpretabil-
ity, 2024. URL https://arxiv.org/abs/2410.
21750. ICML 2024 Workshop on Mechanistic Inter-
pretability.

Syed, A., Rager, C., and Conmy, A. Attribution
patching outperforms automated circuit discovery. In
Proceedings of the NeurIPS 2023 ATTRIB Workshop,
2023. URL https://arxiv.org/abs/2310.
10348. NeurIPS 2023 ATTRIB Workshop.

Vig, J., Gehrmann, S., Belinkov, Y., Qian, S., Nevo, D.,
Sakenis, S., Huang, J., Singer, Y., and Shieber, S. Causal
mediation analysis for interpreting neural nlp: The case
of gender bias, 2020. URL https://arxiv.org/
abs/2004.12265.

Wang, K., Variengien, A., Conmy, A., Shlegeris, B., and
Steinhardt, J. Interpretability in the wild: a circuit for
indirect object identification in gpt-2 small, 2022. URL
https://arxiv.org/abs/2211.00593.

Wang, M., Yao, Y., Xu, Z., Qiao, S., Deng, S., Wang, P.,
Chen, X., Gu, J.-C., Jiang, Y., Xie, P., Huang, F., Chen, H.,
and Zhang, N. Knowledge mechanisms in large language
models: A survey and perspective. In Proceedings of
EMNLP 2024 Findings, pp. 1–39, 2024. URL https:
//arxiv.org/abs/2407.15017. EMNLP 2024
Findings; 39 pages (v4).

Wu, W., Wang, Y., Xiao, G., Peng, H., and Fu, Y. Re-
trieval head mechanistically explains long-context factual-
ity, 2024. URL https://arxiv.org/abs/2404.
15574.

Zhang, Q., Chen, M., Bukharin, A., Karampatziakis, N.,
He, P., Cheng, Y., Chen, W., and Zhao, T. Adalora:
Adaptive budget allocation for parameter-efficient fine-
tuning. In Proceedings of the 11th International Confer-
ence on Learning Representations (ICLR), 2023. URL
https://arxiv.org/abs/2303.10512. ICLR
2023.

11

https://arxiv.org/abs/2401.01967
https://arxiv.org/abs/2401.01967
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2303.15647
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2310.04625
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2402.14811
https://arxiv.org/abs/2402.14811
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2410.21750
https://arxiv.org/abs/2410.21750
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2310.10348
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2211.00593
https://arxiv.org/abs/2407.15017
https://arxiv.org/abs/2407.15017
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2404.15574
https://arxiv.org/abs/2303.10512

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V., Mi-
haylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D.,
Koura, P. S., Sridhar, A., Wang, T., and Zettlemoyer,
L. Opt: Open pre-trained transformer language mod-
els, 2022. URL https://arxiv.org/abs/2205.
01068.

Zhang, S., Yu, T., and Feng, Y. Truthx: Alleviating halluci-
nations by editing large language models in truthful space.
In Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL), 2024. URL
https://arxiv.org/abs/2402.17811. ACL
2024 Main Conference.

Zhou, H., Lu, X., Xu, W., Zhu, C., Zhao, T., and Yang,
M. Lora-drop: Efficient lora parameter pruning based
on output evaluation, 2024. URL https://arxiv.
org/abs/2402.07721.

12

https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2402.17811
https://arxiv.org/abs/2402.07721
https://arxiv.org/abs/2402.07721

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

A. Experimental Setup of Fine-Tuning
Fine-tuning experiments were conducted across various arithmetic tasks, with configurations tailored to each. All tasks were
trained with a batch size of 8, gradient accumulation steps of 4, and a warmup of 50 steps, using a weight decay of 0.01.

Addition and Subtraction (Add/Sub) task, which includes subtasks with ranges of 100, 200, 300, 400, and 500, each
subtask consists of 5,000 samples. The 100-range subtask was trained for 2 epochs, while others were trained for 4 epochs.
LoRA experiments were performed with ranks r = 2, 8, 16, 32, using a learning rate of 3e-4, except for the 400-range
(r = 32, lr=2e-4). Full Parameter Fine-Tuning (FPFT) used learning rates of 8e-6 (100-range), 6e-6 (200-range), 5e-6
(400-range), and 4e-6 (500-range). CircuitLoRA applied higher learning rates (4e-4 or 5e-4) for Critical Layers and 3e-4
for non-Critical Layers.

Multiplication and Division (Mul/Div) task contains 2,000 samples and was trained for 2 epochs. LoRA used a learning
rate of 3e-4, FPFT used 4e-6, and CircuitLoRA used 2e-4 for Critical Layers and 3e-4 for non-Critical Layers.

Arithmetic and Geometric Sequence (Sequence) task includes 5,000 samples, trained for 4 epochs. LoRA experiments
used a learning rate of 3e-4, FPFT used 8e-6, and CircuitLoRA applied 6e-4 (r = 32) and 5e-4 (r = 64) for Critical
Layers, with 3e-4 for non-Critical Layers.

Least Common Multiple (LCM) task, which contains 2,500 samples and was trained for 2 epochs, LoRA used learning
rates of 3e-4 (r = 2, 8), 4e-4 (r = 16), and 2e-4 (r = 32). FPFT used 4e-6, and CircuitLoRA used 4e-4 (r = 32) and
6e-5 (r = 64) for Critical Layers, with 3e-4 for non-Critical Layers.

Function Evaluation (Function) task, with 5,000 samples trained for 2 epochs, used consistent LoRA learning rates of 3e-4
(r = 2, 8, 16, 32), FPFT with 8e-6, and CircuitLoRA with 4e-4 for Critical Layers and 3e-4 for non-Critical Layers.

B. Model Accuracy and Circuit Faithfulness on Other Tasks

0 1 2 3 4 5 6 7 8 9 10
Checkpoints

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
od

el
 A

cc
ur

ac
y

(M
.A

cc
.)

Model Accuracy

Add/Sub (200)
Add/Sub (300)
Add/Sub (400)
Add/Sub (500)

0 1 2 3 4 5 6 7 8 9 10
Checkpoints

40

50

60

70

80

90

100

Fa
it

hf
ul

ne
ss

 (
%

)

Faithfulness

Add/Sub (200)
Add/Sub (300)
Add/Sub (400)
Add/Sub (500)

Figure 4. Performance analysis of Add/Sub tasks across different checkpoints. Left: Model Accuracy (M.Acc.) shows the
performance trends of four tasks—Add/Sub (200), Add/Sub (300), Add/Sub (400), and Add/Sub (500) across checkpoints. Right:
Faithfulness scores measure the reliability of predictions for the same tasks across the same checkpoints.

The left part of Figure 4 presents the model’s accuracy for four task and the results indicate a consistent improvement in
accuracy across all tasks.

The right part of Figure 4 illustrates the faithfulness of circuits for the same tasks. Faithfulness scores remain above 70% for
all tasks. These results highlight both the accuracy improvements and the reliability of circuits throughout the fine-tuning
process.

13

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

C. Robustness Analysis Experiments on Other Tasks
Building on the results reported in the main text, this appendix details our additional robustness experiments conducted across
multiple arithmetic tasks. Following the methodology presented in Section 3.2, we systematically apply input perturbations
to Multiplication/Division, Arithmetic/Geometric Sequence, Least Common Multiple, and Function Evaluation tasks. Our
findings further corroborate the consistency and fidelity of circuits identified by EAP-IG, demonstrating their ability to adapt
under varying perturbation conditions while preserving core computational relationships.

Multiplication and Division Tasks Data perturbation in multiplication and division tasks involves altering one of the
operands within a specified range while maintaining the validity of the operation. This introduces variability without
disrupting the fundamental arithmetic relationship.

Example:

• Original: Calculate the result of the following arithmetic expression and
provide only the final answer: 26 * 15 =

• Perturbed: Calculate the result of the following arithmetic expression and
provide only the final answer: 26 * 20 =

Arithmetic and Geometric Sequence Tasks For arithmetic sequences, perturbation is achieved by uniformly shifting
each term by a fixed integer. In geometric sequences, the first term is adjusted, and subsequent terms are recalculated using
the original common ratio to preserve the sequence’s structure.

Example:

• Original: Derive the following sequence: 26, 66, 106, 146,

• Perturbed: Derive the following sequence: 21, 61, 101, 141,

Least Common Multiple (LCM) Tasks Data perturbation for LCM tasks involves regenerating the last LCM expression
using one of three strategies: generating multiples, coprimes, or pairs with common factors that are not multiples. This
ensures diversity and prevents redundancy in the dataset.

Example:

• Original: Calculate the least common multiple (LCM) of two numbers. LCM(189,
84) = 756, LCM(200, 400) =

• Perturbed: Calculate the least common multiple (LCM) of two numbers.
LCM(189, 84) = 756, LCM(75, 120) =

Function Evaluation Tasks In function evaluation tasks, perturbation involves modifying the constant term b in a linear
function y = ax+ b by a value within a specified range. The corresponding y-values are recalculated to reflect the change,
ensuring the functional relationship remains intact.

Example:

• Original: There is a function y=5x+201. Given x=1,2,3,4, y=206,211,216,

• Perturbed: There is a function y=5x+151. Given x=1,2,3,4, y=156,161,166,

In line with the observations for addition and subtraction, our experiments on LCM, Sequence, Multiplication/Division, and
Function Evaluation tasks demonstrate that circuits can be identified in both pre-trained and fine-tuned models with high
faithfulness and robustness. This finding holds true despite the significant performance gap between the two model states,
underscoring the reliability and stability of the discovered circuits across diverse arithmetic tasks.

14

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Figure 5. Robustness analysis across four additional tasks: LCM, Sequence, Mul/Div, and Function. Despite the varying perturbation
levels, both the pre-trained and fine-tuned models exhibit consistently high confidence scores compared to the randomly initialized model.

D. Node, Edge, and Change Rate Analysis on Other Tasks
This section combines the analysis of node and edge changes with the change rates for various tasks. By evaluating these
metrics together, we provide a comprehensive view of the structural and dynamic adjustments observed across different
tasks. The node and edge changes reflect the structural variations in the underlying data or models, while the change rate
quantifies the intensity of these changes, offering deeper insights into task-specific behaviors.

The Figure 6 presents an analysis of node and edge dynamics during fine-tuning across six tasks: Within 200, Within
300, Within 400, Within 500, Multiplication/Division, and Function Evaluation. It highlights how the interplay between
node, edge, and change rate metrics contributes to the overall task dynamics, ensuring a holistic understanding of the
transformations involved in each scenario.

E. Changes in Circuits Before and After Fine-Tuning in Other Tasks
In this section, we compare the circuits before and after fine-tuning for tasks involving addition and subtraction within the
ranges of 200, 300, 400, and 500, as well as tasks on Multiplication and Division, Arithmetic and Geometric Sequence,
Least Common Multiple, and Function Evaluation. Please refer to Figures 7, 8, 9, and 10 for the comparison results of all
tasks before and after fine-tuning.

Common Observations: The distribution of added and deleted nodes and edges follows a distinct pattern. Our analysis
reveals similarities with the findings from addition and subtraction tasks within the range of 100. Same as Figure 3 in
Section 4.3, added nodes predominantly appear in the middle and later layers of the circuit. Similarly, added and deleted
edges are concentrated in the middle layers. In contrast, the shallow layers exhibit minimal changes, serving as a stable
foundation for task-specific adaptations.

Trends with Increasing Number Ranges in Addition and Subtraction: We observe a distinct trend in the circuits
fine-tuned for addition and subtraction tasks as the number range increases. The edges in the fine-tuned circuits become
more concentrated, reflecting a refined structure to handle the broader numeric range efficiently.

15

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

2 4 6 8 10
Checkpoint Transition

0

10

20

30

40

50

60
N

od
e

Ch
an

ge
s

Within 200
Within 300
Within 400
Within 500
Mul/Div
Function

2 4 6 8 10
Checkpoint Transition

500

1000

1500

2000

2500

3000

Ed
ge

 C
ha

ng
es

Within 200
Within 300
Within 400
Within 500
Mul/Div
Function

0 5 10 15
Change Rate (%)

Within 200

Within 300

Within 400

Within 500

Mul/Div

Function

S (Node)
S (Edge)

Figure 6. Analysis of Node and Edge Changes Across Add/Sub Tasks, including Within 200, Within 300, Within 400, Within 500,
Multiplication/Division, and Function Evaluation. Left: Node changes during fine-tuning. Middle: Edge changes during fine-tuning.
Right: Change rates for nodes and edges across tasks.

Comparative Observations Across Tasks: Tasks such as Multiplication and Division, Arithmetic and Geometric Sequence,
Least Common Multiple, and Function Evaluation exhibit different circuit adaptations compared to addition and subtraction
tasks. As illustrated in Figures 9 and 10, these tasks utilize circuits that focus more on the later layers. This difference
indicates a shift in computational emphasis, highlighting the tailored adaptations of the circuit for distinct task requirements.

F. Circuit Changes During Fine-Tuning: A Comparison Across PEFT Methods
In this appendix, we compare three different PEFT methods—LoRA, AdaLoRA, and IA3 across various mathematical tasks
(e.g., addition/subtraction with 200, multiplication/division, Sequence, LCM, and Function). Figures 11 through 15 illustrate
the model accuracy, faithfulness, and the evolution of nodes and edges at each checkpoint, as well as the corresponding
change rates. By examining these metrics, we can observe how the internal circuits of each model evolve during fine-tuning
until they converge.

The three PEFT methods each create new circuits after fine-tuning on different mathematical tasks. Additionally, we draw
the following conclusions:

1. Across different PEFT methods (LoRA, AdaLoRA, IA3) and diverse math tasks, as model accuracy improves,
the circuits converge while edges undergo more significant modifications than nodes, consistent with previous
observations.

2. Moreover, IA3 has lower node and edge change rates compared to the other two PEFT methods, which can be
attributed to its smaller number of trainable parameters.

Hence, the choice among these three PEFT methods does not alter our primary conclusions that edges exhibit greater
changes than nodes, and that the circuits ultimately converge as accuracy increases.

G. Circuit Changes During Fine-Tuning: Full Parameter Fine-Tuning vs. LoRA
This appendix compares the circuit changes during fine-tuning between Full Parameter Fine-Tuning (Full-FT) and LoRA.
Figure 16 presents the model accuracy and faithfulness at different checkpoints, along with the node and edge modifications
and their respective change rates. By examining these metrics, we can observe the similarities and differences in circuit
evolution under these two fine-tuning approaches.

Full parameter fine-tuning and LoRA exhibit highly similar convergence trends in circuit evolution. Therefore, both
full parameter fine-tuning and parameter-efficient fine-tuning can create new circuit structures. In full parameter fine-tuning,
the changes in edges are significantly greater than those in nodes, which is consistent with the previous findings using LoRA.

16

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Graph Differences: Within 200 Graph Differences: Within 300

Added node Removed node Unchanged node Added edge Removed edge

Figure 7. Differences of Add/Sub(200) and Add/Sub(300) circuit (24 layers). Darker gray indicates a higher node degree.

H. Circuit Changes During Fine-Tuning: A Comparison Across Different Large Language
Models

In this appendix, we compare circuit changes across different large language models (LLMs), including pythia-1.4B-
deduped, gpt-neo-2.7B, and opt-6.7B. Figure 17 illustrates their accuracy and faithfulness during fine-tuning, as well as the
modifications of nodes and edges through the checkpoints and the corresponding change rates. By examining these metrics,
we can gain insights into how the internal circuits evolve under different model sizes and architectures.

Circuits in the addition/subtraction task converge across all models, with edge change rates consistently exceeding
node change rates. Fine-tuning in each model creates new circuits through significant reconfiguration of connections
among components.

Larger models exhibit higher node and edge change rates. As shown in Figure 17, the opt-6.7B model demonstrates the
largest change rates, while the faithfulness of its discovered circuit remains stable throughout fine-tuning.

Therefore, using different model architectures and sizes, we consistently observe the conclusions presented in Section 4.2
and Section 4.3: Circuit Convergence During Fine-Tuning and Reorganization of Circuit Edges to Form a New Circuit.

I. CircuitLoRA Performance on Other Tasks
In this appendix, we extend our investigation of CircuitLoRA to additional tasks beyond those discussed in the main
text. These tasks include a variety of numerical operations, such as addition and subtraction with varying ranges, to further
examine the performance and robustness of our circuit-aware fine-tuning approach. By testing CircuitLoRA on these
additional benchmarks, we aim to provide a more comprehensive evaluation, highlighting how incorporating circuit-based
insights can yield consistent gains across a broader set of mathematical tasks.

In summary, the results presented in Table 4 demonstrate that CircuitLoRA maintains its advantage over both LoRA and
RandomLoRA baselines across multiple configurations and numerical ranges. Even when the parameter ratio is constrained,

17

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Graph Differences: Within 400 Graph Differences: Within 500

Added node Removed node Unchanged node Added edge Removed edge

Figure 8. Differences of Add/Sub(400) and Add/Sub(500) circuit (24 layers). Darker gray indicates a higher node degree.

Table 4. Performance metrics for addition and subtraction across various configurations in different numerical ranges. The control
groups of CircuitLoRA (ro = 8, rc = 32) are LoRA (ro = 16) and RandomLoRA (ro = 8, rc = 32), and the control groups
of CircuitLoRA (ro = 32, rc = 64) are LoRA (ro = 32) and RandomLoRA (ro = 32, rc = 64). Here, ro and rc represent the
ranks used in CircuitLoRA, where rc is the rank for critical layer modules, and ro is the rank for non-critical layer modules. Model
Accuracy is expressed as percentages.

Method Parameter Ratio Add/Sub(100) Add/Sub(200) Add/Sub(400) Add/Sub(500)

Pre-trained 0% 46.90 24.90 12.20 9.90
Full FT 100% 96.80 90.50 75.30 63.60
LoRA (ro = 2) 0.1111% 94.40 82.90 68.90 55.60
LoRA (ro = 8) 0.4428% 95.40 86.40 73.10 64.30
LoRA (ro = 16) 0.8816% 96.70 87.80 77.90 68.30
LoRA (ro = 32) 1.7479% 97.40 90.30 78.20 69.70

CircuitLoRA (ro = 8, rc = 32) 0.7175% 96.90 90.40 77.90 70.60
RandomLoRA (ro = 8, rc = 32) 0.7175% 95.70 87.30 73.30 63.70
CircuitLoRA (ro = 32, rc = 64) 1.4248% 97.90 91.00 78.20 73.00
RandomLoRA (ro = 32, rc = 64) 1.4248% 97.00 89.60 77.70 64.20

CircuitLoRA effectively identifies and prioritizes Critical Layers, ensuring superior accuracy compared to methods that
allocate ranks uniformly or randomly. These findings further validate the effectiveness of circuit-based analysis in enhancing
fine-tuning efficiency and performance, reinforcing Key Observation 3: Circuits can improve fine-tuning by achieving
higher accuracy and parameter efficiency across various mathematical tasks. In the addition and subtraction task, we can
see that after using CircuitLoRA (ro = 8, rc = 32), we can achieve almost the same accuracy or even higher with half
the training parameters of LoRA (ro = 32).

18

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Graph Differences: Mul/Div Graph Differences: Sequence

Added node Removed node Unchanged node Added edge Removed edge

Figure 9. Differences of Mul/Div and Sequence circuit (24 layers). Darker gray indicates a higher node degree.

J. Examples of Compositional Task
Our compositional task involve two-step arithmetic operations, requiring reasoning across different mathematical operations.
This task requires the model to perform addition and subtraction operations first, and then multiplication and division
operations. The following examples demonstrate a diverse set of arithmetic problems designed for this purpose.

Example:

• Clean: Calculate the result of the following arithmetic expression and
provide only the final answer: (43 - 7) * 21 =

• Corrupted: Calculate the result of the following arithmetic expression and
provide only the final answer: (43 - 7) * 88 =

Example:

• Clean: Calculate the result of the following arithmetic expression and
provide only the final answer: (82 - 43) / 13 =

• Corrupted: Calculate the result of the following arithmetic expression and
provide only the final answer: (82 - 43) / 3 =

These tasks demonstrate each example in this task can be divided into two subtasks: addition and subtraction tasks and
multiplication and division tasks. The purpose of this task is to see whether the circuit in the combination task can be
approximately replaced by the union of the circuits of the two subtasks. This provides ideas and experimental basis for
exploring more complex combination tasks.

19

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Graph Differences: LCM Graph Differences: Function

Added node Removed node Unchanged node Added edge Removed edge

Figure 10. Differences of LCM and Function circuit (24 layers). Darker gray indicates a higher node degree.

K. Structural Dynamics of Nodes and Edges during Fine-Tuning
To achieve a fairer comparison, We quantify circuit evolution by tracking, for each task, the normalized change rates of
nodes and edges over all fine-tuning checkpoints:

∆node
S =

1

n

n−1∑
t=0

∆St→t+1

S0
× 100%, ∆edge

S =
1

n

n−1∑
t=0

∆St→t+1

S0
× 100%.

Here, N0, E0 are the initial counts of nodes and edges, and ∆Nt→t+1,∆Et→t+1 are their changes between consecutive
checkpoints.

Table 5 reports these rates for our five mathematical tasks.

Table 5. Normalized change rates of nodes and edges (∆S) during fine-tuning.

Task ∆node
S (%) ∆edge

S (%)

Add/Sub (100) 17.4 69.5
Mul/Div 23.2 76.9
Sequence 24.2 67.9
LCM 23.9 80.4
Function 15.4 65.8

In every task, edge change rates exceed node change rates by approximately 2–4×, indicating that fine-tuning predominantly
restructures edges rather than adding or removing nodes.

20

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Add/Sub (200)

Comparison of

Circuit Changes

(LoRA, AdaLoRA, IA3)

Figure 11. Comparison of Add/Sub (200) circuits during fine-tuning with LoRA, AdaLoRA, and IA3. Top: Model accuracy and
faithfulness across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of
nodes and edges during fine-tuning.

L. Comparison with Other PEFT Methods
To demonstrate the practical benefits of our circuit-aware adapter allocation, we compare CircuitLoRA against the
adaptive PEFT method AdaLoRA under similar parameter budgets. Table 6 shows final model accuracies on five tasks.

Table 6. Accuracy comparison between AdaLoRA and CircuitLoRA (ro = 16, rc = 64).

Method Param Ratio Add/Sub(300) Mul/Div Sequence LCM Function

AdaLoRA 1.7481% 76.70 92.75 90.10 89.80 98.20
CircuitLoRA (ro = 16, rc = 64) 1.4248% 83.10 97.00 94.60 93.00 99.50

Conclusion: Despite using smaller parameter budget, CircuitLoRA significantly outperforms AdaLoRA on every task,
highlighting the value of circuit-driven adapter rank allocation.

M. Effectiveness of Union Circuits in Compositional Tasks
We measure how well the Union Circuit—formed by merging top-scoring edges from each subtask—captures the structure
of the true Compositional Circuit by evaluating faithfulness across varying edge thresholds. Table 7 reports the percentage
of model behavior recovered by the Union Circuit when using the top p% of edges.

Table 7. Faithfulness of the Union Circuit vs. percentage of top edges used.

Top Edges Used 1% 2% 3% 4% 5% 6% 8% 10%

Faithfulness (%) 67.4 79.4 83.7 87.2 89.2 89.4 89.6 89.7

Key Observation: Even with only 5% of edges, the Union Circuit recovers 89.2% of the model’s behavior, demonstrating

21

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Mul/Div

Comparison of

Circuit Changes

(LoRA, AdaLoRA, IA3)

Figure 12. Comparison of Mul/Div circuits during fine-tuning with LoRA, AdaLoRA, and IA3. Top: Model accuracy and faithfulness
across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of nodes and edges
during fine-tuning.

its ability to approximate the Compositional Circuit without additional fine-tuning.

N. Top-5 Critical Layers Across Tasks
Table 8 lists the five layers with the largest aggregate edge-score changes (∆ℓ) for each task, as identified by CircuitLoRA.

Table 8. Top-5 critical layers ℓ per task (by descending ∆ℓ).

Task ℓ1 ℓ2 ℓ3 ℓ4 ℓ5

Add/Sub (100–500) 0 4 6 5 2
Mul/Div 0 3 4 11 13
Sequence 0 7 9 10 11
LCM 0 3 4 11 13
Function Evaluation 0 3 4 13 14

Insight: While layers 0, 3, 4 recur across tasks, each task also has unique critical layers, suggesting both shared and
task-specific adaptation locations.

22

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Sequence

Comparison of

Circuit Changes

(LoRA, AdaLoRA, IA3)

Figure 13. Comparison of Sequence circuits during fine-tuning with LoRA, AdaLoRA, and IA3. Top: Model accuracy and
faithfulness across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of
nodes and edges during fine-tuning.

LCM

Comparison of

Circuit Changes

(LoRA, AdaLoRA, IA3)

Figure 14. Comparison of LCM circuits during fine-tuning with LoRA, AdaLoRA, and IA3. Top: Model accuracy and faithfulness
across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of nodes and edges
during fine-tuning.

23

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Function

Comparison of

Circuit Changes

(LoRA, AdaLoRA, IA3)

Figure 15. Comparison of Function circuits during fine-tuning with LoRA, AdaLoRA, and IA3. Top: Model accuracy and
faithfulness across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right: Change rate of
nodes and edges during fine-tuning.

Sequence

Comparison of

Circuit Changes

· Full fine-tuning

· LoRA

Figure 16. Comparison of circuit changes during fine-tuning between Full Parameter Fine-Tuning (Full-FT) and LoRA. Top:
Model accuracy and faithfulness across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom Right:
Change rate of nodes and edges during fine-tuning.

24

Towards Understanding Fine-Tuning Mechanisms of LLMs via Circuit Analysis

Add/Sub(100)

Comparison of

Circuit Changes

· pythia-1.4B-deduped

· gpt-neo-2.7B

· opt-6.7B

Figure 17. Comparison of circuit fine-tuning changes between different LLMs (pythia-1.4B-deduped, gpt-neo-2.7B, opt-6.7B).
Top: Model accuracy and faithfulness across checkpoints. Bottom Left: Node and edge changes across checkpoint transitions. Bottom
Right: Change rate of nodes and edges during fine-tuning.

25

