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Figure 1: (a) Previous state-of-the-art (Edstedt et al., 2023a) struggles to achieve accurate dense matching in
equirectangular projection (ERP) images due to inherent distortions. (b) The ERP image can be transformed
into a cubemap image, which consists of six perspective images. However, this approach demands multiple
independent iterations of inference for each pair of perspective images, increasing computational complexity
and losing the global information in the ERP image. (c) Our proposed method, EDM, leverages the spherical
camera model, rendering it robust against distortions. Warp refers to results obtained by multiplying the warped
image with the predicted certainty map, demonstrating that our method yields more accurate dense matches.

ABSTRACT

We introduce the first learning-based dense matching algorithm, termed Equirect-
angular Projection-Oriented Dense Kernelized Feature Matching (EDM), specifi-
cally designed for omnidirectional images. Equirectangular projection (ERP) im-
ages, with their large fields of view, are particularly suited for dense matching
techniques that aim to establish comprehensive correspondences across images.
However, ERP images are subject to significant distortions, which we address by
leveraging the spherical camera model and geodesic flow refinement in the dense
matching method. To further mitigate these distortions, we propose spherical po-
sitional embeddings based on 3D Cartesian coordinates of the feature grid. Addi-
tionally, our method incorporates bidirectional transformations between spherical
and Cartesian coordinate systems during refinement, utilizing a unit sphere to im-
prove matching performance. We demonstrate that our proposed method achieves
notable performance enhancements, with improvements of +26.72 and +42.62 in
AUC@5° on the Matterport3D and Stanford2D3D datasets, respectively.

1 INTRODUCTION

Omnidirectional images, also known as 360° images, provide significant advantages owing to their
expansive fields of view, offering more contextual information and versatility (Xu et al., 2020;
Zhang et al., 2023a; Matzen et al., 2017; da Silveira et al., 2022; Guerrero-Viu et al., 2020). These
spherical images enable a comprehensive representation of environments, facilitating a deeper un-
derstanding of spatial information. Their utility extends to aiding robot navigation (Winters et al.,
2000; Menegatti et al., 2004) and autonomous vehicle driving (Pandey et al., 2011) by minimizing
blind spots. 360° images also can be utilized in a diverse range of applications, from creating immer-
sive AR/VR experiences to practical uses in interior design (Amalia & Fitriyansah, 2023), tourism
(Saurer et al., 2010), and real estate photography (Chang et al., 2017). Integrating omnidirectional
images into virtual house tours allows customers to experience an immersive view, enabling them
to fully engage themselves in the service. Moreover, the adoption of omnidirectional images con-
tributes to more efficient data collection. By replacing the need for multiple perspective images,
omnidirectional images can reduce both the cost and time associated with data scanning. The large
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field of view provided by 360° images has also demonstrated superiority over narrower views in 3D
motion estimation (Nelson & Aloimonos, 1988; Lee et al., 2000; Fermüller & Aloimonos, 2001).

Feature matching plays a critical role in numerous 3D computer vision tasks, including mapping and
localization. Traditionally, Structure from Motion (SfM) (Schonberger & Frahm, 2016) leverages
feature matching to estimate relative poses. Recent advancements have introduced semi-dense or
dense approaches for feature matching such as LoFTR (Sun et al., 2021b) and DKM (Edstedt et al.,
2023a), which demonstrate superior performance in repetitive or textureless environments compared
to keypoint-based methods (Lowe, 2004; Rublee et al., 2011; DeTone et al., 2018; Sarlin et al., 2020;
Li et al., 2022a). These methods have been mainly developed for perspective 2D images and videos,
but encounter challenges when applied to omnidirectional images. For example, to adapt match-
ing methods for spherical images, two prevalent approaches for sphere-to-plane projections are the
equirectangular projection (ERP) and the cubemap projection (Xu et al., 2020). ERP images exhibit
significant distortions, particularly near the pole regions, which hinder the effective application of
perspective methods. On the other hand, the cubemap format, consisting of six perspective images,
can be processed independently without such distortions. However, this approach involves the costly
computation of multiple inferences for each pair of perspective images, resulting in the loss of global
information from a single spherical image and diminishing feature matching capabilities due to the
reduced field of view in each perspective image. These challenges are shown in Fig. 1 (a) and (b).

Main Results In this paper, we propose EDM, a distortion-aware dense feature matching method
for omnidirectional images, addressing challenges that existing detector-free approaches (Sun et al.,
2021b; Edstedt et al., 2023a;b) struggle to overcome. To the best of our knowledge, EDM is the
first learning-based method designed for dense matching and relative pose estimation between two
omnidirectional images. As seen in Fig. 1, our method defines feature matching in 3D coordinates,
specifically addressing the challenges posed by distortions of ERP images. We accomplish this
based on the integration of two novel steps: a Spherical Spatial Alignment Module (SSAM) and
specific enhancements in Geodesic Flow Refinement. The SSAM leverages spherical positional em-
beddings for ERP images and incorporates a decoder to generate the global matches. Furthermore,
the Geodesic Flow Refinement step employs coordinate transformation to refine the residuals of
correspondences. Compared to both recent sparse and dense feature matching methods (Zhao et al.,
2015; Gava et al., 2023; Edstedt et al., 2023a;b), our approach results in significant performance
improvement of +26.72 and +42.62 AUC@5° in relative pose estimation for spherical images on the
Matterport3D (Chang et al., 2017) and Stanford2D3D (Armeni et al., 2017) datasets. Additionally,
we evaluate our method qualitatively on the EgoNeRF (Choi et al., 2023) and OmniPhotos (Bertel
et al., 2020) datasets, demonstrating robust performance across diverse environments. The main
contributions of this paper are summarized as follows:

• We introduce a novel approach for estimating dense matching across ERP images using
geodesic flow on a unit sphere.

• We propose a Spherical Spatial Alignment Module that utilizes Gaussian Process regres-
sion and spherical positional embeddings to establish 3D correspondences between omni-
directional images. In addition, we use Geodesic Flow Refinement by enabling conversions
between coordinates to refine the displacement on the surface of the sphere.

• With azimuth rotation for data augmentation, we achieve state-of-the-art performance in
dense matching and relative pose estimation between two omnidirectional images.

2 RELATED WORK

Omnidirectional Images The popularity of consumer-level 360° cameras has led to increased
interest in spherical images, which offer comprehensive coverage of the field of view from a single
vantage point. These images are often represented using equirectangular projection (ERP) (Xu
et al., 2020), facilitating their utilization in various computer vision tasks. Recent advancements in
computer vision have leveraged ERP images for diverse tasks such as object detection (Coors et al.,
2018; Su & Grauman, 2017), semantic segmentation (Jiang et al., 2019; Zhang et al., 2019), depth
estimation (Jiang et al., 2021; Wang et al., 2020; Shen et al., 2022; Li et al., 2022b; Rey-Area et al.,
2022; Li et al., 2021; Yun et al., 2022), omnidirectional Simultaneous Localization and Mapping
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Figure 2: Coordinate system.


Sx = sin(θ) cos(ϕ)

Sy = sin(ϕ)

Sz = cos(θ) cos(ϕ)


θ = arctan(

Sx

Sz
)

ϕ = arcsin(
Sy

|S|
)

(1)

(Won et al., 2020), scene understanding (Sun et al., 2021a), and neural rendering (Choi et al., 2024;
Kim et al., 2024; Ma et al., 2024; Li et al., 2024).

Despite the utility of ERP images, their unique geometry presents several challenges in visual repre-
sentation. As ERP images are obtained through projecting a sphere onto a plane, a single spherical
image can be expressed by multiple distinct ERP images. Additionally, ensuring perfect align-
ment of their left and right extremities is essential. While some research methods have introduced
rotation-equivariant convolutions (Cohen et al., 2018; Esteves et al., 2018) to address these issues,
their implementation often demands increased computational resources. To mitigate this constraint,
we propose an azimuth rotation approach for data augmentation, under the assumption that maintain-
ing the downward orientation of scanned omnidirectional images parallel to gravity offers benefits
(Bergmann et al., 2021).

Feature Matching Local feature matching has relied on detector-based methods, encompassing
both traditional hand-crafted techniques (Lowe, 2004; Rublee et al., 2011) and learning-based ap-
proaches (DeTone et al., 2018; Revaud et al., 2019; Li et al., 2022a; Liu et al., 2019; Tyszkiewicz
et al., 2020). These methods typically involve detecting keypoints, computing descriptor distances
between paired keypoints, and performing matching via mutual nearest neighbor search. SuperGlue
(Sarlin et al., 2020) introduces a learning-based paradigm, optimizing visual descriptors using an
attentional graph neural network and an optimal matching layer. However, detector-based methods
face limitations in terms of accurately detecting keypoints, particularly in repetitive or indiscrimina-
tive regions. In contrast, detector-free or dense methods (Sun et al., 2021b; Melekhov et al., 2019;
Truong et al., 2020; 2021; Edstedt et al., 2023a;b) offer a solution to the keypoint detection issue,
providing dense feature matches at the pixel level.

While the aforementioned methods are tailored for perspective images, they often fail to address
the unique challenges of spherical cameras. SPHORB (Zhao et al., 2015), an extension of ORB
(Rublee et al., 2011), mitigates distortion in ERP images using a geodesic grid and local planar
approximation (Eder et al., 2020). Similarly, learning-based matching methods such as SphereGlue
(Gava et al., 2023; 2024) and PanoPoint (Zhang et al., 2023b) adapt keypoint matching techniques
for spherical imagery. CoVisPose (Hutchcroft et al., 2022; Nejatishahidin et al., 2023) explores
layout features for estimating camera poses over large baselines yet remains constrained by detected
feature information. Therefore, we propose a novel dense matching method that extracts all matches
without keypoint detection in spherical images.

3 PRELIMINARIES

3.1 SPHERICAL AND CARTESIAN COORDINATE

Although ERP images are displayed in 2D space, they actually represent a collection of flattened rays
normalized to a unit scale within a spherical camera model. Thus, we can express the coordinate
conversion equation u = π(S) between the spherical coordinates u = (θ, ϕ) and the 3D Cartesian
coordinates S = (Sx, Sy, Sz) as shown in Fig. 2. Each value of θ ∈ [−π, π] and ϕ ∈ [−π

2 ,
π
2 ]

indicates the longitude and latitude. We utilize this coordinate transformation π(·) in Section 4.1
and Section 4.2 to handle the spherical camera model effectively.

3.2 DENSE KERNELIZED FEATURE MATCHING

Dense matching is the task of finding dense correspondence and estimating 3D geometry from two
images (IA, IB). Recently, DKM (Edstedt et al., 2023a) introduced a kernelized global matcher and
warp refinement, formulating this problem as finding a mapping f → u where u are 2D spatial

3
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coordinates. First, DKM extracts multi-scale features using a ResNet50 encoder (He et al., 2016),

{f l
A}Ll=1 = Encoder(IA), {f l

B}Ll=1 = Encoder(IB), (2)
where the strides are defined as elements of the set l ∈ {20, ..., 2L−1}. Coarse features are associated
with stride {32, 16}, and fine features correspond to {8, 4, 2, 1}.
At the coarse level, it consists of a kernelized regression to estimate the posterior mean µA|B using
a Gaussian Process (GP) formulation. GP regression generates a probabilistic distribution using the
feature information conditioned on frame B to estimate coarse global matches. The normalized 2D
feature grid f grid

B ∈ Rh×w×2, where h and w denote the resolution of the feature grid, is embedded
into χB with an additional cosine embedding (Snippe & Koenderink, 1992) to induce multimodality
in GP. The embedded coordinates are processed by an exponential cosine similarity kernel K to
calculate µA|B,

µA|B = KAB(KBB + σ2
nI)

−1χcoarse
B , (3)

Kmn = exp

(
τ

(
fm · fn√

(fm · fm)(fn · fn) + ε
− 1

))
,

χcoarse
B = cos(Wf grid

B + b),

(4)

where τ = 5, ϵ = 10−6, and the standard deviation of the measurement noise σn = 0.1 in the
experiments. W and b are the weights and biases of a 1×1 convolution layer. Then, CNN embedding
decoder (Yu et al., 2018) yields the initial global matches ûcoarse

A→B and confidence of matches ĉ coarse
A→B

from the concatenation of the reshaped estimated posterior mean µgrid
A|B and the coarse features,

(ûcoarse
A→B, ĉ

coarse
A→B ) = Decoder(µgrid

A|B ⊕ f coarse
A ). (5)

At the fine level, the warp refiners estimate the residual displacement using the previous matches
and feature information. The process is described as follows,(

△ûl+1
A→B, △ĉ l+1

A→B
)
= Refinerl+1

(
f l+1
A ⊕ f l+1

B→A ⊕ Corrl+1
Ωk
⊕ ûl+1

A→B − ul+1
A
)
, (6)

f l+1
B→A = fB⟨ûl+1

A→B⟩, f l+1
B→A, Ωk

= fB⟨Ωk, (û
l+1
A→B)⟩,

Corrl+1
Ωk

=
∑

channel

f l+1
A f l+1

B→A, Ωk
, (7)

where Ωk(u) = u + p (∥p∥∞ ≤ k) is the patch sized k, ⟨·⟩ means the bilinear interpolation
function, Corrl+1

Ωk
represents local correlation between the features, and ul+1

A indicates the grid in
f l+1
A . Finally, it recursively updates the matching points and confidence by adding the residuals to

the previous information and upsampling until reaching the same resolution as the input images,
ûl
A→B = ûl+1

A→B +△ûl+1
A→B, ĉ l

A→B = ĉ l+1
A→B +△ĉ l+1

A→B. (8)

4 OUR PROPOSED METHOD
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Figure 3: Overview of our approach. It consists of three steps:
Multi-scale Feature Extraction, Spherical Spatial Alignment
Module (Sec.4.1), and Geodesic Flow Refinement (Sec.4.2).

The overall process is illustrated in Fig.
3. Following the approach outlined in
Section 3.2, we first utilize ERP images
IA and IB as input and extract multi-
scale features fA and fB. Different from
(Edstedt et al., 2023a), we reformulate
the problem as finding a mapping f →
S using 3D Cartesian coordinates. We
introduce the Spherical Spatial Align-
ment Module, a global matcher utiliz-
ing a spherical camera system to com-
pensate for distortions caused by sphere-
to-plane projection in ERP images. We
then formalize the geodesic flow on a unit
sphere and establish projections between

equirectangular and spherical spaces to refine matches. In addition, to enhance the robust accuracy
of our method, we leverage randomized azimuth rotation during the training process.
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Figure 4: Our Spherical Spatial Alignment Module. We present Spherical Positional Embedding (red dotted
box). The embedding decoder generates the global matches Ŝcoarse

A→B. Here, the gray curved lines represent the
geodesic flow between SA and SB. ⊕ denotes concatenation, ⊗ means reshape and matrix multiplication. We
provide the matrix dimensions of intermediate features for reference.
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Figure 5: Our proposed Geodesic Flow Refinement. Refining the displacement along curved lines on the
spherical surface presents significant challenges. To address this, we project the displacement into the ERP
space for refinement (Cartesian to spherical) and subsequently unproject it back onto the spherical surface for
further refinement (spherical to Cartesian).

4.1 SPHERICAL SPATIAL ALIGNMENT MODULE

Our Spherical Spatial Alignment Module (SSAM) conducts global matching at a coarse level
through Gaussian Process (GP) regression, depicted in Fig. 4. GP predicts the posterior mean
µA|B from the embeddings as in Eq. 3. Due to the pronounced distortions in the polar regions of
ERP images, spherical positional embedding/encoding is frequently employed to mitigate this chal-
lenge (Chen et al., 2022; Li et al., 2023a;b). Here, we explicitly apply positional embeddings with
3D Cartesian coordinates, derived from the 2D spherical feature grid and the inverse transformation
function π−1(·),

χcoarse
B = cos(Wπ−1(f grid

B ) + b). (9)
Our proposed positional embedding facilitates the utilization of embedded coordinates χcoarse

B to pro-
mote distortion awareness within the ERP images. Additionally, this embedding ensures structural
consistency along the boundaries of ERP images by leveraging relative spatial information within
the 3D Cartesian grid. The outputs of the subsequent embedding decoder provide the initial global
matches Ŝcoarse

A→B on the unit sphere and the ERP certainty map ĉcoarse
A→B,(

Ŝcoarse
A→B, ĉ

coarse
A→B

)
= Decoder(µA|B ⊕ f coarse

A ). (10)

4.2 GEODESIC FLOW REFINEMENT

In our SSAM approach, as the geodesic flow must reside on the unit sphere, directly defining warp
refinement on the surface of the sphere makes it impossible to update the residuals linearly. Thus,
we circumvent this problem by enabling a conversion between the 3D Cartesian coordinates and the
2D equirectangular space, as illustrated in Fig. 5,

ûl+1
A→B = π(Ŝl+1

A→B). (11)

After following all the processes outlined in Eq. 6 for refinement, we update the residuals as de-
scribed in Eq. 8. As this refinement stage iterates repeatedly, the predicted ûl

A→B is back-projected
into 3D Cartesian coordinates,

Ŝl
A→B = π−1(ûl

A→B). (12)
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𝑾𝒐𝒓𝒍𝒅

𝑻

𝑻 𝒂𝒖𝒈
𝜽𝒂𝒖𝒈

Figure 6: Maintaining consistent geometry, ERP can
produce multiple visual representations based on θaug.


IA ← IA

〈
π
(
T aug
A π−1(Igrid

A )
)〉

DA ← DA

〈
π
(
T aug
A π−1(Dgrid

A )
)〉

TA ← TA T aug
A

(13)

4.3 AUGMENTATION

A single omnidirectional image can be transformed into multiple distinct ERP images, as shown
in Fig. 6. This transformation is feasible by capturing the full spectrum of rays and ensuring a
seamless representation in the spherical input image, which facilitates the generation of diverse
ERP images while maintaining consistent geometric properties in the world space. Consequently,
we define a horizontal rotation matrix T aug

A with a randomly selected azimuth angle θaug
A ∈ [0, 2π]

during training. Based on T aug
A , we rotate and redefine the ERP image IA, the depth map DA, and the

pose TA as specified in Eq. 13. Notably, this transformation adjusts TA and DA together, ensuring
consistent geometry in the world space. The same process is applied to the counterpart frame B.

4.4 LOSS

Utilizing dense ground truth depth maps and aligned camera poses, we can derive ERP depth DA→B
and matches SA→B during the warping process from frame A to B within the spherical coordinate
system. We adopt the certainty estimation method proposed by Edstedt et al. (2023a), which involves
finding consistent matches using relative depth consistency between frames A and B,

cA→B =

∣∣∣∣DA→B −DB

DB

∣∣∣∣ < α, (14)

where α is 0.05. The binary mask cA→B represents the ground truth certainty map. Diverging from
the approach outlined in Edstedt et al. (2023a), our method constrains the predicted matches Ŝl

A→B,
composed of 3D Cartesian coordinates, to reside on the surface of the unit sphere. This implies that
the predicted matches can be interpreted as the ray directions of the spherical camera. Instead of
defining the loss function based on the Euclidean distance between the predicted matches Ŝl

A→B
and the ground truth matches Sl

A→B, we use the angular difference between the ray directions.
Consequently, this approach ensures that Ŝl

A→B is optimized along the surface of the unit sphere.
We define our regression loss Ll

r using cosine similarity to measure the angular difference. For the
certainty loss Ll

c, we employ the binary cross-entropy function, as utilized in Edstedt et al. (2023a),

Ll
r =

∑
grid

clA→B ⊙ (1− ∥S
l
A→B · Ŝl

A→B∥
∥Sl

A→B∥∥Ŝl
A→B∥

), (15)

Ll
c =

∑
grid

clA→BlogĉlA→B + (1− clA→B)log(1− ĉlA→B). (16)

The total loss function comprises a weighted sum of the regression loss and the certainty loss, as
detailed in Zhou et al. (2021); Melekhov et al. (2019); Tan et al. (2022); Edstedt et al. (2023a), with
λ set at 0.01,

Ltotal =

L∑
l=1

Ll
r + λLl

c. (17)

5 EXPERIMENTS

5.1 EXPERIMENTS SETTINGS

Matterport3D Dataset Training our method requires ERP input images, ground truth depth maps,
and aligned poses. The Matterport3D dataset (Chang et al., 2017) encompasses 90 indoor scenes

6
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represented by 10,800 panoramas reconstructed as textured meshes. However, the dataset lacks pose
and depth information for skybox images, which are essential for creating ERP images. Previous
works have addressed this limitation by rendering both images and depth maps from the textured
mesh (Zioulis et al., 2018) or by employing 360° SfM to estimate poses (Rey-Area et al., 2022). In
our approach, we generate the poses for skybox images directly from the originally proposed camera
poses in Matterport3D. Through experimentation, we found that treating the 12th camera pose,
out of the 18 viewpoints (comprising 6 rotations and 3 tilt angles) in each panorama, identically
to the second skybox image did not result in any issues. We define the remaining poses for the
skybox images by rotating 90° in each direction from the second pose. We adhere to the official
benchmark split, utilizing 61 scenes for training, 11 for validation, and 18 for testing. For two-
view pose estimation, it is necessary to create pairs of overlapped images. We achieve this by
transforming ERP depth maps between frames within the spherical coordinate system. Pixels where
the depth difference is below a specified threshold, e.g. 0.1, are classified as inliers. Subsequently,
we compare the ratio of these inliers to the total number of pixels. We organize both the training
and testing datasets based on the overlap ratio of image pairs and the benchmark split. Specifically,
images with the overlap ratio exceeding 30% are distributed into respective training and testing
splits. As a result, the training set contains 44,700 pairs, while the test set comprises 4,575 pairs.
We resize the resolution of ERP images and depth maps to 640× 320.

Stanford2D3D Dataset Stanford2D3D (Armeni et al., 2017) consists of data scanned from six
large-scale indoor spaces collected from three distinct buildings. This dataset contains a relatively
small number of 1,413 panorama images and, therefore, is utilized exclusively for testing purposes.
We assess the overlap ratio between frames and include them in the test split if their ratio exceeds
50%. A total of 3,460 pairs are incorporated into the test set. During testing, we resize the resolution
to 640× 320.

EgoNeRF and OmniPhotos Dataset EgoNeRF (Choi et al., 2023) introduces 11 synthetic scenes
created with Blender (Community, 2018) and 11 real scenes captured with a RICOH THETA V
camera. OmniPhotos (Bertel et al., 2020) provides a dataset captured with an Insta360 ONE X
camera. Both datasets contain egocentric scenes captured with a casually rotating camera stick.
Consequently, their rotation axes, pole regions, or camera height change, resulting in different dis-
tortions compared to Matterport3D or Stanford2D3D. We present additional qualitative results from
these datasets to validate our method.

Implementation Details We employ the AdamW (Loshchilov & Hutter, 2017) optimizer with a
weight-decay factor of 10−2, a learning rate of 5 · 10−6 for multiscale feature extractor, and 10−4

for the SSAM and the Geodesic Flow Refiner. EDM is trained for 300,000 steps with a batch size
of 4 in a single RTX 3090 GPU, which takes approximately two days to complete. During evalua-
tion, the balanced sampling approach using kernel density estimation (Edstedt et al., 2023a) tends to
establish correspondences primarily in concentrated areas with high probability distributions, mak-
ing it unsuitable for omnidirectional images. Thus, we randomly sample up to 5,000 matches after
certainty filtering with a threshold of 0.8 to ensure correspondences cover the entire area.

5.2 EXPERIMENTAL RESULTS

We compare our proposed method EDM with four different methods: 1) SPHORB (Zhao et al.,
2015) is a hand-crafted keypoint-based feature matching algorithm. 2) SphereGlue (Gava et al.,
2023) is a learning-based keypoint matching method. Both SPHORB (Zhao et al., 2015) and
SphereGlue (Gava et al., 2023) are specifically designed for spherical images. 3) DKM (Edstedt
et al., 2023a) and 4) RoMa (Edstedt et al., 2023b) are state-of-the-art dense matching algorithms for
perspective images. To estimate the essential matrix and the relative pose for spherical cameras, So-
larte et al. (2021) proposed a normalization strategy and non-linear optimization within the classic
8-point algorithm. We adopt this for two-view pose estimation in all quantitative comparisons.

Table 1 shows the quantitative results of the pose estimation in Matterport3D. Despite SPHORB and
SphereGlue being designed for the ERP images, the presence of textureless or repetitive regions,
which are common in indoor environments of Matterport3D, leads to performance degradation in
the keypoint-based methods. SPHORB fails to estimate the essential matrix correctly due to the
limited number of matching points. EDM demonstrates significantly higher performance than all
the other methods.
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Figure 7: Qualitative results on Matterport3D. (a) The blue lines represent the results of matching points from
SPHORB; the green lines correspond to SphereGlue. Both (b) DKM and (c) EDM depict the outcomes of
multiplying the warped image with the certainty map. EDM can estimate dense and accurate matches even in
the presence of distortions and severe occlusions. The numbers beside the images represent the overlap ratio,
reflecting the difficulty of matching. Smaller numbers indicate more challenging scenes.

Table 1: Quantitative comparison on Matterport3D.
EDM improve AUC@5° by 26.72.

Method Image Feature AUC (%) ↑
@5° @10° @20°

SPHORB (Zhao et al., 2015) ERP sparse 0.38 1.41 3.99
SphereGlue (Gava et al., 2023) ERP sparse 11.29 19.95 31.10

DKM (Edstedt et al., 2023a) perspective dense 18.43 28.50 38.44
RoMa (Edstedt et al., 2023b) perspective dense 12.45 22.37 34.24

EDM (ours) ERP dense 45.15 60.99 73.60
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Figure 8: Performance relative to the overlap ratio.

Figure 7 illustrates the qualitative results in Matterport3D. The previous methods designed for per-
spective images, such as DKM and RoMa, exhibit good matching ability but encounter challenges
when confronted with the distortions of ERP. While SphereGlue and SPHORB perform well in
discriminative regions, their performance deteriorates as the overlap ratio decreases, resulting in
numerous false positive matches. In contrast, EDM can estimate dense correspondences regardless
of occlusion and textureless areas. Due to the similarity in results between DKM and RoMa, we
have only included the former to maintain a concise visualization. Experimental results in Fig. 8
depict the relationship between image overlap ratio and AUC@20° performance. As expected, a
decrease in the overlap ratio leads to severe performance degradation in the previous works. On the
other hand, our proposed method demonstrates robustness in more challenging scenes, maintaining
similar performance levels until the overlap decreases to 60%, compared to other methods.

For a fair comparison, we use another benchmark dataset, Stanford2D3D. We validate EDM using
a model trained on Matterport3D without additional training on Stanford2D3D. In Table 2, EDM
outperforms the previous works by a significant margin, especially in scenes with severe occlusion.
The certainty map demonstrates EDM’s robustness, particularly in handling occluded scenes. Ad-
ditionally, although the panorama images in Stanford2D3D contain missing regions in the upper
and lower parts of the sphere, the proposed spherical positional embedding enables the network to
predict matching correspondences accurately, as shown in Fig. 9.
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Table 2: Quantitative comparison on Stanford2D3D.
EDM improve AUC@5° by 42.62.

Method Image Feature AUC (%) ↑
@5° @10° @20°

SPHORB (Zhao et al., 2015) ERP sparse 0.14 1.01 4.08
SphereGlue (Gava et al., 2023) ERP sparse 11.25 22.41 36.57

DKM (Edstedt et al., 2023a) perspective dense 12.46 22.18 34.13
RoMa (Edstedt et al., 2023b) perspective dense 11.48 22.52 37.07

EDM (ours) ERP dense 55.08 71.65 82.72

Keypoint-based EDM (ours) Keypoint-based EDM (ours)

Figure 9: Qualitative results on Stanford2D3D. The
blue and green lines correspond to SPHORB and
SphereGlue.

5.3 ADDITIONAL QUALITATIVE RESULTS

To demonstrate the robust performance of our method across diverse environments, we qualita-
tively validate EDM using additional datasets such as EgoNeRF and OmniPhotos. As it is primarily
trained on indoor environments (Chang et al., 2017) where the camera is oriented parallel to grav-
ity, severely slanted image pairs of rotational scenes or outdoor environments may cause EDM to
fail in accurately estimating correspondences. However, despite these differences in settings, EDM
demonstrates the ability to conduct dense feature matching robustly, as shown in Fig. 10.

5.4 ABLATION STUDY

DKM’s dependence on the pinhole camera model makes it inherently unsuitable for learning with
ERP images. To ensure the fair comparison, we modified the warping process in the loss function of
DKM to support spherical cameras, resulting in DKM∗. As shown in Table 3, this demonstrates the
structural effectiveness of our proposed bidirectional coordinate transformation. The proposed po-
sitional embeddings result in improvements based on the coordinate system of the spherical camera
model. We observe that utilizing a 3D grid input of Cartesian coordinates yields better performance
than 2D spherical ones. Additionally, in our method, positional embedding with a linear layer
slightly outperforms spherical positional encoding with sinusoidal (Li et al., 2023b). Table 3 also
confirms the advantage of our rotational augmentation. Through this augmentation technique, we
can effectively address the challenge of a limited number of datasets for omnidirectional images in
dense matching tasks.

Images Warp Image Warp

Figure 10: Qualitative results on EgoNeRF and Om-
niPhotos.

Table 3: Ablation study for the proposed method. DKM∗

indicates the DKM model trained on Matterport3D with
a modified loss function for ERP images. Compared to
DKM∗, our method enhances performance through the
proposed spherical positional embedding in SSAM, bidi-
rectional transformation via Geodesic Flow Refinement,
and rotational augmentation.

Method Positional Bidirectional Rotational AUC
Embedding Transformation Augmentation @5° @10° @20°

DKM∗ 2D linear - - 19.83 33.06 46.24
Ours 2D linear ✓ - 29.67 45.90 60.82
Ours 2D linear ✓ ✓ 35.03 51.14 65.07
Ours 3D linear ✓ - 34.64 50.82 65.16
Ours 3D linear ✓ ✓ 45.15 60.99 73.60
Ours 3D sinusoidal ✓ ✓ 42.39 58.27 70.98

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we present, for the first time, a novel dense feature matching method tailored for
omnidirectional images. Leveraging the foundational principles of DKM, we integrate the inher-
ent characteristics of the spherical camera model into our dense matching process using geodesic
flow fields. This integration instills distortion awareness within the network, thereby enhancing
its performance specifically for ERP images. However, it is important to note that our method is
predominantly trained on indoor datasets where the camera is vertically oriented, rendering it some-
what vulnerable to extreme rotations or outdoor environments. To address this limitation, future
endeavors will focus on diversifying the training data and data augmentation to encompass a wider
range of environments, fortifying the robustness of our network. Furthermore, we aim to extend
our method into downstream tasks, particularly for visual localization and mapping applications for
omnidirectional images.
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A 3D RECONSTRUCTION

We demonstrate that our method is applicable to various omnidirectional downstream tasks, includ-
ing pose estimation and 3D reconstruction. From the dense correspondences and the certainty map
produced by EDM, we can estimate the essential matrix and the relative pose. Using this predicted
relative pose and dense correspondences between a pair of omnidirectional images, we can construct
the dense 3D reconstruction through spherical triangulation. To address spherical triangulation, we
simply solve the closed-form expression (Eising, 2022),

S× (R(X−C)) = 0, (18)

where S = (Sx, Sy, Sz) is the 3D Cartesian coordinates, R ∈ SO(3) denotes the orientation of the
camera, X represents the target 3D point, and C indicates the camera position. The cross product
can be expressed using a skew-symmetric matrix, leading to the following equation,

Sxr3T(X−C)− Szr1T(X−C) = 0,

Syr3T(X−C)− Szr2T(X−C) = 0,

Sxr2T(X−C)− Syr1T(X−C) = 0,

(19)

where riT denotes the ith row of R. To determine the target 3D point X, we can estimate the
two-view geometry using the linear equation AX = b. This equation can be solved by the pseudo-
inverse method, considering two omnidirectional camerasM and N ,

A =



Sx
Mr3T

M − Sz
Mr1T

M

Sy
Mr3T

M − Sz
Mr2T

M

Sx
N r3T

N − Sz
N r1T

N

Sy
N r3T

N − Sz
N r2T

N


, b =



(Sx
Mr3T

M − Sz
Mr1T

M)CM

(Sy
Mr3T

M − Sz
Mr2T

M)CM

(Sx
N r3T

N − Sz
N r1T

N )CN

(Sy
N r3T

N − Sz
N r2T

N )CN


. (20)

The results of 3D reconstruction are shown in Fig. 11 and Fig. 12.

B FURTHER QUALITATIVE RESULTS

B.1 MATTERPORT3D

We proivde additional qualitative results for Matterport3D, as shown in Fig. 13 and Fig. 14. In Fig.
13, we present the results of RoMa (Edstedt et al., 2023b) instead of DKM, differing from the main
paper.

B.2 STANFORD2D3D

There are many occluded regions due to narrow corridors in the scenes. However, EDM, which
is trained on Matterport3D, has the capability to handle these regions with certainty estimation, as
shown in Fig. 15.

B.3 EGONERF AND OMNIPHOTOS

As the environments of EgoNeRF and OmniPhotos differ significantly from the Matterport3D
dataset, there is a slight performance degradation. However, comparable performance maintained
with certainty estimation, as shown in Fig. 16 and 17.
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Figure 11: 3D geometry of Matterport3D using matches and certainties produced by EDM. These point clouds
result from spherical triangulation with estimated poses between two omnidirectional images.
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Figure 12: 3D geometry of Stanford2D3D using matches and certainties produced by EDM. These point clouds
result from spherical triangulation with estimated poses between two omnidirectional images.
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Keypoint matching RoMa EDM (ours) Keypoint matching RoMa EDM (ours)

Figure 13: Qualitative results on Matterport3D. The blue lines represent the results of matching points from
SPHORB (Zhao et al., 2015); the green lines correspond to SphereGlue (Gava et al., 2023). EDM demonstrates
more robust performance compared to other methods.

Image Warp Image Warp

Figure 14: Qualitative results on Matterport3D.
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Image Warp Image Warp

Figure 15: Qualitative results on Stanford2D3D.
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Image Warp Image Warp

Figure 16: Qualitative results on EgoNeRF.

Image Warp Image Warp

Figure 17: Qualitative results on OmniPhotos.

Image Warp Image Warp

Figure 18: Failure cases.
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C THOROUGH DISCUSSION ON LIMITATIONS AND FUTURE WORK

In this section, we provide a thorough discussion of limitations and future work associated with
our study. As our work is the first to develop a dense feature matching method for omnidirectional
images, we believe this discussion will advance this research direction and offer deeper insights for
the 360° imaging research community.

C.1 RUNTIME EVALUATION

EDM’s runtime is almost the same as the DKM (Edstedt et al., 2023a) method because EDM in-
cludes an additional coordinate transformation between layers without requiring extra learning pa-
rameters. Both DKM and EDM take approximately 0.24 seconds per frame pair on a 3090 GPU.
Comparing the runtime between sparse matching, such as SphereGlue (Gava et al., 2023) and
dense matching is somewhat challenging due to differences in feature extraction and the number
of matches. Sparse matching requires feature extraction before matching, and SphereGlue involves
a local planar approximation to create multiple tangential images (perspective images) during fea-
ture extraction, which takes about 3.2 seconds. The inference speed for matching itself depends on
the number of extracted features. In most cases, the number of features is much smaller than in
dense matching, making it faster than 0.2 seconds.

C.2 ROTATIONAL DIVERSITY IN TRAINING DATA

Our primary training dataset, Matterport3D (Chang et al., 2017), consists of indoor scenes captured
with vertically fixed cameras. As a result, images with extreme rotations do not perform well in
EDM, as shown in Fig. 18. We believe this problem can be mitigated by collecting more diverse
training data, including images with various rotational angles, and by applying additional rotational
augmentation techniques during the training process. These steps would enhance the model’s ability
to handle a wider range of image orientations effectively.

C.3 ENCODER CHOICE AND DISTORTION COMPENSATION

In this paper, we use a ResNet encoder for multi-scale feature extraction. While distortion-aware
approaches (Jiang et al., 2021; Wang et al., 2020; Shen et al., 2022) exist, these methods did not
yield satisfactory results in our experiments and required significant computational resources. Con-
sequently, we employed ResNet with spherical positional embeddings to compensate for distortion
without adding extra trainable layers. This approach demonstrates promising results, however, fea-
ture extraction does not fully address distortion issues. In the future, we will extend our work to
develop more efficient encoders capable of handling distortions.

C.4 UTILIZATION OF FOUNDATION MODELS

In dense matching tasks for perspective images, leveraging foundation models for coarse features
(Edstedt et al., 2023b) has shown better performance compared to sharing coarse-fine features using
a ResNet encoder (Edstedt et al., 2023a). In this paper, our primary goal is to demonstrate the
potential of a dense matching method for omnidirectional images. We believe that adopting different
foundational models, as Edstedt et al. (2023b) did, could improve our framework. We plan to train
foundation models such as DINOv2 (Oquab et al., 2023) or CroCo (Weinzaepfel et al., 2022) on
omnidirectional images and integrate these into our approach.
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