
Accelerated On-Device Forward Neural Network
Training with Module-Wise Descending Asynchronism

Xiaohan Zhao1

xiaotuzxh@gmail.com
Hualin Zhang2

zhanghualin98@gmail.com
Zhouyuan Huo∗

huozhouyuan@gmail.com

Bin Gu2,3†

jsbugin@gmail.com

1 Nanjing University of Information Science and Technology, China
2 Mohamed bin Zayed University of Artificial Intelligence, UAE

3 School of Artificial Intelligence, Jilin University, China

Abstract

On-device learning faces memory constraints when optimizing or fine-tuning on
edge devices with limited resources. Current techniques for training deep models
on edge devices rely heavily on backpropagation. However, its high memory
usage calls for a reassessment of its dominance. In this paper, we propose forward
gradient descent (FGD) as a potential solution to overcome the memory capacity
limitation in on-device learning. However, FGD’s dependencies across layers
hinder parallel computation and can lead to inefficient resource utilization. To
mitigate this limitation, we propose AsyncFGD, an asynchronous framework that
decouples dependencies, utilizes module-wise stale parameters, and maximizes
parallel computation. We demonstrate its convergence to critical points through
rigorous theoretical analysis. Empirical evaluations conducted on NVIDIA’s AGX
Orin, a popular embedded device, show that AsyncFGD reduces memory con-
sumption and enhances hardware efficiency, offering a novel approach to on-device
learning.

1 Introduction

Deep learning models have increasingly gained attraction in a multitude of applications, showcasing
exceptional predictive capabilities. Nevertheless, their rapidly expanding size [19] poses a formidable
challenge for resource-limited edge devices, such as mobile phones and embedded systems. These
devices are pervasive in our society and continuously generate new data. To attain model customiza-
tion, user privacy, and low latency, these devices necessitate on-device learning, involving training
and fine-tuning models on freshly gathered data [46]. However, the restricted memory capacity of
these devices emerges as a significant hindrance. For example, the Raspberry Pi Model A, introduced
in 2013, only featured 256 MB of memory [17], while the more recent Raspberry Pi 400, released in
2020, modestly increased this capacity to a mere 4 GB.

Various techniques have been proposed to address this issue, encompassing quantized training, effi-
cient transfer learning, and rematerialization. Quantized training curtails memory consumption by
utilizing low-precision network representation [22, 15, 42, 43, 8]. Efficient transfer learning dimin-
ishes training costs by updating merely a subset of the model [20, 5, 2, 44]. Lastly, rematerialization

∗Author Zhouyuan Huo is currently at Google. No work performed at Google.
†Corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

1 2 3 4

1 2

A

A

B

C

B C
𝑨
𝒕

𝑨
𝒕

𝑨
𝒕ା𝟐

𝑨
𝒕ା𝟐

𝑩
𝒕

𝑩
𝒕

𝑪
𝒕

𝑪
𝒕

𝑩
𝒕ା𝟏

𝑩
𝒕ା𝟏

𝑪
𝒕

𝑪
𝒕

Broadcast

𝑪
𝒕Host:

Client:
Find local
tangent ௧

Worker JVP
Forward

𝑨
𝒕

𝑨
𝒕

Activation,
JVP value𝒉𝑨

𝒕 , 𝒐𝑨
𝒕 2 Time

Stamp
Message
Passing

𝒕 𝒕ା𝟏 𝒕ା𝟐

Client:

𝑨
𝒕

𝑨
𝒕 𝒕

Update with

஺
௧ ௧

Figure 1: Comparison of Vanilla FGD and AsyncFGD, where A, B, and C signify workers in the
system. Through the allocation of tasks from varying iterations, AsyncFGD breaks forward locking
in FGD, thereby maximizing worker utilization.

conserves memory at the expense of time by discarding and recomputing intermediate variables
[3, 7, 16, 35].

Although most of these techniques can be applied irrespective of the optimization strategy, they
are frequently employed in tandem with backpropagation in deep learning. Due to the reciprocal
nature of backpropagation (i.e., activations from the forward pass are preserved for the subsequent
backward pass), the training of deep models utilizing backpropagation typically commands a memory
footprint that is 3-4× larger than the number of parameters involved. Consequently, reexamining
backpropagation within the context of surpassing the memory capacity barrier is crucial due to its
elevated memory consumption.

The recent revival of interest in the forward-forward algorithm proposed by [10], along with other
algorithms predicated on forward computation [39, 28, 1, 33], has prompted a reevaluation of
backpropagation. The question persists: is it essential to store intermediate variables and pause
to propagate gradients? An alternative, forward gradient descent (FGD), leverages the Jacobian-
vector product (JVP) under automatic differentiation [37, 1, 33] to assess the effect of a stochastic
perturbation in conjunction with the forward pass, yielding an unbiased approximation of the true
gradient. FGD offers benefits in terms of memory consumption and biological plausibility[31], as it
solely employs forward passes and substantially reduces the storage of intermediate variables [31].
Moreover, FGD can be combined with other existing techniques, such as quantized training and
efficient transfer learning, potentially further diminishing memory costs.

Nonetheless, the intrinsic locking mechanism within FGD, more specifically, the layer-by-layer
sequential computation during the forward pass, poses an impediment to parallel computation across
disparate layers as shown in Fig. 1. In response to these challenges, this paper aims at training deep
models on edge devices with memory constraints from an optimization perspective, while improving
resource utilization by breaking the lock inside the forward pass with provable convergence. Thus,
we propose AsyncFGD, an asynchronous version of Forward Gradient Descent with module-wise
asynchronism in the forward pass to disentangle its dependencies, allowing simultaneous computation
on different workers. The induced module-wise decreasing and bounded staleness in the parameters
not only accelerates prediction and training but also provides theoretical guarantees in convergence.
We empirically validate our method across multiple architectures and devices, including CPUs, GPUs,
and embedded devices. Our results indicate that AsyncFGD reduces memory consumption and
improves hardware efficiency, achieving efficient training on edge devices.

2 Related Works

2.1 Forward Gradient with Reinforcement Learning

This research builds upon the concept of forward-mode automatic differentiation (AD) initially
introduced by [37]. It has since been applied to learning recurrent neural networks [39] and calculating

2

Hessian vector products [28]. However, exact gradient computation using forward-mode AD requires
the complete and computationally expensive Jacobian matrix. Recently, Baydin et al. [1] and Silver
et al. [31] proposed an innovative technique for weight updating based on directional gradients along
randomly perturbed directions. These algorithms have connections to both reinforcement learning
(RL) and evolution strategies (ES), since the network receives global rewards in each instance. RL and
ES have been successfully utilized in specific continuous control and decision-making tasks in neural
networks [38, 34, 32, 4]. Clark et al. [4] observed that global credit assignment performs well in
vector neural networks with weights between vectorized neuron groups. However, in forward-model
AD methods, much like in evolution strategies, the random sampling approach can lead to high
variance in the estimated gradient, particularly when optimizing over a large-dimensional parameter
space [31].

2.2 Parallel Strategies and Asynchronous Approaches

Various parallel frameworks have been developed to accelerate computations by utilizing multiple
workers. These frameworks include data parallelism [21], pipeline parallelism [12, 30, 23, 14], and
tensor parallelism [29, 24]. Each approach leverages different dimensions of data - batch dimension
for data parallelism, layer dimension for pipeline parallelism, and feature dimension for tensor
parallelism - to improve computational efficiency.

However, in edge computing environments, data is often collected and processed frame-by-frame
rather than in batches. This is particularly true for scenarios requiring real-time adaptation and
streaming data learning. In such contexts, edge models must quickly adapt to newly acquired data
in real-time, leaving limited scope for collecting, fetching, and batching historical data. Therefore,
algorithms that do not depend on batch size are preferable.The ability to align with this pipeline and
train the model on the fly with incoming data is crucial. Therefore, our research specifically focuses
on pipeline parallelism.

Pipeline parallelism can be categorized into synchronous and asynchronous pipelines, which divide
computations into sequential stages and align well with the data stream on edge devices. However,
in edge devices with limited computational power, potential idle workers due to synchronization in
synchronous pipelines like [12] are not optimal.

Asynchronous parallelism, which allows non-simultaneous task execution to enhance resource
utilization, is particularly relevant to our method. [23, 14] parallelize tasks by executing them from
different iterations. However, the additional memory overhead of storing replicate copies to handle
staleness in [23] and the use of multiple activations for backpropagation make the algorithm memory
inefficient. This memory overhead is mitigated in strategies such as “rematerialization” [40, 13]
and weight estimation [41]. However, these strategies were originally designed for backpropagation,
while our focus is on FGD, which has distinct computational characteristics, rendering the existing
“1B1F” strategy for work scheduling in [40, 13, 41, 23] unsuitable.

3 Preliminaries

Gradient-based Method. We commence with a succinct introduction to gradient-based methods
deployed in neural networks. Envision the training of a L-layer feedforward neural network, where
each layer l ∈ 1, 2, . . . , L accepts hl−1 as an input, generating an activation hl = Fl(hl−1;wl) with
weight wl ∈ Rdl . We represent all parameters by w = [w1

⊺, w2
⊺, . . . , wL

⊺]⊺ ∈ Rd and the output of
the network by hL = F (h0, w), where h0 symbolizes the input data x. Given a loss function f and
targets y, the objective problem is as follows:

min
w

f(F (x;w), y) (1)

Here, we use f(x;w) in subsequent sections for the sake of brevity.

Gradient-based methods are widely used to optimize deep learning problems. At iteration t, we feed
data sample xi(t) into the network, where i(t) signifies the sample’s index. As per the principles of
stochastic gradient descent (SGD), we define the network parameters as follows:

wt+1
l = wt

l − γt∇fl,xi(t)
(wt), ∀l ∈ {1, 2, . . . , L} (2)

Here, γt ∈ R is the stepsize and ∇fl,xi(t)
(wt) ∈ Rdl is the gradient of the loss function with respect

to the weights at layer l and data sample xi(t).

3

The crux of the matter is obtaining ∇fl,xi(t)
(wt). Both scientific and industrial sectors lean towards

backpropagation underpinned by automatic differentiation (AD). However, FGD could be another
alternative, because it can approximate the true gradient without bias by using forward-mode AD,
and importantly has low memory consumption as it only preserve the intermediate variable passed
from previous layer, while backpropagation need to store intermediate variable in each layer.

Forward Gradient Descent. Let JFl
represent the Jacobian matrix of layer l while uwl

represent
the random perturbation on wl (more precisely, tangent vector around wl), we can calculate the JVP
value ol, in each layer sequentially by

hl = Fl(hl−1;wl) ∈ Rdhl , (3)

ol = JFl
(hl−1, wl)ul ∈ Rdhl , where ul = [ol−1

⊺, uwl

⊺]⊺ ∈ Rdhl−1
+dl (4)

Mathematically, ol is the directional derivative of Fl along ul; intuitively, ol can be interpreted as
the influence of the perturbation uwl

on function value hl (we set o0 to be 0 since we don’t need
to calculate the JVP value with respect to the input data). This process can be arranged within
the forward pass such that (3), (4) are computed in the same pass. Also, since we don’t need to
propagate backward, hl−1 and ol−1 are thrown away right after the computation of hl and ol. Then
we can approximate the true gradient ∇f(x;w) unbiasedly (Lemma 3.1) by

(
∂f
∂hL

oL

)
u, where

u = [uw1
⊺, . . . , uwL

⊺]⊺.
Lemma 3.1. Let uwl

∈ Rdl , l ∈ {1, 2, . . . , L} be a normally distributed random Gaussian vectors,
then the forward gradient computed through Eq.(3), (4) is an unbiased estimate of the true gradient

∇f(x;w) = Eu

[(
∂f

∂hL
oL

)
u

]
.

More specifically, each layer l receives oL from the last layer and updates its own parameters locally
by using Euwl

(uwl
· oL). We can then rewrite (2) as :

wt+1
l = wt

l − γt

((
∂f

∂hL
otL

)
ut
wl

)
(5)

Forward Locking. It is evident from Eq.(4) that the computation in layer l depends on the activation
and JVP value hl−1, ol−1 from layer l − 1. This dependency creates a "lock" that prevents all layers
from updating before receiving the output from dependent layers, thus serializing the computation in
the forward pass (refer to Figure 1 for illustration).

4 AsyncFGD

In this section, we propose an innovative approach that utilizes module-wise staleness to untether
the dependencies inherent in FGD. This method, which we’ve named AsyncFGD, facilitates the
simultaneous execution of tasks originating from disparate iterations. Suppose a L-layer feedforward
neural network is divided into K modules, with each module comprising a set of consecutive
layers and their respective parameters. Consequently, we have a configuration such that w =
[wG(0)

⊺, wG(1)
⊺, · · · , wG(K−1)

⊺]⊺, with G(k) denoting the layer indices in group k.

Now, let’s delve into the details of how AsyncFGD untethers iteration dependencies and expedites
the training process.

4.1 Detaching Iteration Dependency

Forward. At the timestamp t, the data sample xi(t) is pumped to the network. In contrast to
sequential FGD [1], AsyncFGD permits modules to concurrently compute tasks, each originally
belonging to a distinct iteration. All modules, with the exception of the last, operate using delayed
parameters. We designate the activation and its JVP value originally ascribed to iteration t in Eq.(3),
(4) as ôtl , ĥ

t
l respectively. Though the superscript t is no longer time-dependent, it maintains its

role in indicating sequential order. Consider Lk ∈ G(k) as the final layer in module k and fk as
the activation of this last layer. The computation in module k ∈ 0, 1, · · · ,K − 1 at timestamp t is
defined recursively as follows:

ĥt−k
Lk

=fk

(
ĥt−k
Lk−1

;wt−2K+k+2
G(k)

)
(6)

4

ôt−k
Lk

=Jfk

(
ĥt−k
Lk−1

;wt−2K+k+2
G(k)

)
ut−k
G(k), where ut−k

G(k) =
[
ôt−k⊺
Lk−1

, ut−k⊺
wG(k)

]⊺
. (7)

Concurrently, each module receives and stores output from its dependent module for future computa-
tions.

Update. The update phase in AsyncFGD parallels that in FGD [1]. The final module broadcasts its
JVP value, triggering each module to perform local updates to their parameters. To summarize, at
timestamp t, we execute the following update:

wt−K+2 = wt−K+1 − γt−K+1

(
ôt−K+1
LK−1

ut−K+1
w

)
(8)

Staleness. We measure the time delay in Eq.(6), (7) with g(k) = K − 1 − k, and g(K − 1) = 0
indicates that last module employs up-to-date parameters.

This approach effectively disrupts the "lock-in" characteristic of FGD, facilitating a parallel forward
pass. A comparative illustration of the execution details in sequential FGD and AsyncFGD is provided
in Figure 1.

4.2 Stochastic AsyncFGD Alogrithm

To better illustrate the working state of AsyncFGD, we make the following definitions:

wt−K+1 :=

{
w0, t−K + 1 < 0

wt−K+1, otherwise
; and ĥt−k

Lk
, ôt−k

Lk
:=

{
0, 0, t− k < 0

ĥt−k
Lk

, ôt−k
Lk

, otherwise
(9)

Unlike FGD, AsyncFGD forwards the JVP value and activations by parameters in different time
delays, which can be concluded as f

(
xi(t−2K+2);w

t−2K+2
G(0) ;wt−2K+3

G(1) ; · · · ;wt−K+1
G(K−1)

)
. A detailed

illustration of the AsyncFGD with K = 3 is shown in Appendix G.2. We summarize the proposed
algorithm in Algorithm 1 by example of sampling one tangent vector per iteration.

Algorithm 1 AsyncFGD-SGD

Initialize: Stepsize sequence {γt}T−1
t=K−1, weight w0 =

[
w0

G(0), · · · , w
0
G(K−1)

]
∈ Rd

1: for t = 0, 1, · · · , T − 1 do
2: for k = 0, 1, · · · ,K − 1 in parallel do
3: Read ĥt−k

Lk−1
, ôt−k

Lk−1
from storage if k ̸= 0

4: Compute ĥt−k
Lk

, ôt−k
Lk

5: Send ĥt−k
Lk

, ôt−k
Lk

to next worker’s storage if k ̸= K − 1
6: end for
7: Broadcast ôt−K+1

LK−1

8: for k = 0, 1, · · · ,K − 1 in parallel do
9: Compute ∆wt−K+1

G(k) = ôt−K+1
LK−1

ut−K+1
wG(k)

10: Update wt−K+2
G(k) = wt−K+1

G(k) − γt−K+1∆wt−K+1
G(k)

11: end for
12: end for

Additionally, the procedure in line 5 could overlap with the operations in line 7,9 and 10. We can also
apply this approximation algorithm to gradient-based methods like Adam [18] with little modification
to the original. Details can be found in Appendix G.1.
Tangent checkpoint. However, some workers, especially those which are closer to the input, store
duplicated tangent vectors. To tackle this issue, we use tangent checkpoint,i.e., storing the seed of
tangent vectors and reproducing them in the update stage.
Integration with Efficient Transfer Learning Although AsyncFGD offers several advantages
over backpropagation, it shares a common challenge with random Zeroth-Order Optimization and
Evolution Strategy methods: the variance of the approximation increases with the dimension of
random perturbations[25]. Reducing the learning rate can help but may result in slower convergence.
However, we observe that deploying models on edge devices typically involves fine-tuning rather

5

than training from scratch. Our method can flexibly incorporate the principles of efficient transfer
learning by introducing a scaling factor α ∈ [0, 1] to the randomly sampled tangent:

u′
wl

= uwl
· αwl

The modified u′
wl

still supports an approximation of the true gradient, with the expectation of the
modified estimator being α2

wl
∇f(x;wl). When αwl

is set to 0, the corresponding parameter is
"frozen," resulting in no perturbation or updates and a transparent transmission of JVP values. By
adjusting α to various values, we can either fix or reduce the influence and learning of specific layers,
aligning our approach with the objectives of efficient transfer learning.

4.3 Acceleration of AsyncFGD

Method Training Progress (=3)
Computation
Time

FGD

Sync
FGD

Async
FGD

F UF F

F
U

F
F

U
U

F
F
F U

U
U F

F
F U

U
U …

U
F Forward

Update Idle

Figure 2: Comparison of computation time and training process when
the network is deployed across K workers. Since TF is much larger
than TU , AsyncFGD can achieve considerable speedup.

When K = 1 the AsyncFGD is reduced to
vanilla FGD without any time delay in param-
eters. When K ≥ 2, we can distribute the net-
work across multiple workers. Figure 2 shows
the computational time of different algorithms in
ideal conditions (i.e. the network is evenly dis-
tributed and the communication is overlapped
by computation and update). TF denotes the
time for forward pass and TU denotes the time
for updates. It is easy to see that AsyncFGD
can fully utilize the computation resources, thus
achieving considerable speedup.

5 Convergence Analysis

In this section, we provide the convergence guarantee of Algorithm 1 to critical points in a non-convex
setup. We first make the following basic assumptions for nonconvex optimization:
Assumption 5.1. The gradient of f(w) is Lipschitz continuous with Lipschitz constant L > 0, i.e.,

∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.
Assumption 5.2. The second moment of stochastic gradient is bounded, i.e., there exist a constant
M ≥ 0, for any sample xi and ∀w ∈ Rd:

∥∇fxi
(w)∥2 ≤ M.

Lemma 5.3 (Mean and Variance). Let t′ = t − K + 1 and diagonal matrices
I0, · · · , Ik, · · · , IK−1 ∈ Rd×d such that all the principle diagonal elements of Ik in G(k) are
1, and all the principle diagonal elements of Ik in other than G(k) are 0. Then we can obtain the
mean value and the variance of the forward gradient as follows,

Eut′
wG(k)

(
ot

′

LK−1
· ut′

wG(k)

)
= ∇fG(k),xi(t′)

(
wt′−K+k+1

)
, (10)

Eut′
w

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)

∥∥∥∥∥
2

≤ (d+ 4)

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k),xi(t′)

(
wt′−K+k+1

)∥∥∥∥∥
2

. (11)

Remark 5.4. Note that, from modules 0 to K − 1, the corresponding time delays are from
K − 1 to 0. Specifically, in timestamp t′, when k = K − 1, Eut′

wG(K−1)

(
ot

′

L · ut′

wG(K−1)

)
=

∇fG(K−1),xi(t′)

(
wt′
)

indicates that the forward gradient in module K − 1 is an unbiased esti-
mation of the up-to-date gradient.

Under Assumption 5.1 and 5.2, we obtain the following descent lemma about the objective function
value:
Lemma 5.5. Assume that Assumption 5.1 and 5.2 hold. In addition, let t′ = t − K + 1, σ :=
maxt′

γmax{0,t′−K+1}
γt′

, MK = KM + σK4M and choose γt′ ≤ 1
L . The iterations in Algorithm 1

satisfy the following descent property in expectation, ∀t′ ∈ N:

E
[
f(wt′+1)

]
− f(wt′) ≤− γt′

2
∥∇f(wt′)∥2 + 4(d+ 4)Lγ2

t′MK , (12)

6

Theorem 5.6. Assume Assumption 5.1 and 5.2 hold and the fixed stepsize sequence {γt′} satisfies
γt′ = γ ≤ 1

L , ∀t′ ∈ {0, 1, . . . , T − 1}. In addition, we assume w∗ to be the optimal solution to f(w)

and let t′ = t − K + 1, σ = 1 such that MK = KM + K4M . Then, the output of Algorithm 1
satisfies that:

1

T

T−1∑
t′=0

E∥∇f(wt′)∥2 ≤ 2(f(w0)− f(w∗))

γT
+ 4(d+ 4)LγMK . (13)

Theorem 5.7. Assume Assumption 5.1 and 5.2 hold and the diminishing stepsize sequence {γt′}
satisfies γt′ = γ0

t′+1 ≤ 1
L . In addition, we assume w∗ to be the optimal solution to f(w) and let

t′ = t−K+1, σ = K such that MK = KM+K5M . Let ΓT =
∑T−1

t′=0 γt′ , the output of Algorithm
1 satisfies that:

1

ΓT

T−1∑
t′=0

γt′E∥∇f(wt′)∥2 ≤
2
(
f(w0)− f(w∗)

)
ΓT

+

∑T−1
t′=0 4(d+ 4)γ2

t′LMK

ΓT
(14)

Remark 5.8. Since the stepsize sequence γt = γ0

t+1 satisfies that limT→∞
∑T−1

t=0 γt = ∞,

limT→∞
∑T−1

t=0 γ2
t < ∞, when T → ∞, the RHS of Eq.(14) will converges to 0. Let ws

be randomly chosen from {wt′}T−1
t′=0 with probabilities proportional to {γt′}T−1

t′=0, then we have
lims→∞ E∥∇f(ws)∥2 = 0.

6 Experiments

This section embarks on a meticulous examination of our proposed method, AsyncFGD. We as-
sess its performance through three distinct facets: memory consumption, acceleration rate, and
accuracy. We initiate our analysis by outlining our experimental setup. To validate the efficacy of
applying directional derivatives and utilizing module-wise stale parameters, we contrast AsyncFGD
with an array of alternative methods encompassing backpropagation, conventional FGD, and other
backpropagation-free algorithms. Subsequently, our focus shifts towards scrutinizing the potential
of AsyncFGD within the sphere of efficient transfer learning, conducting experiments on prevalent
efficient networks. Memory consumption represents another cardinal aspect that we explore, bench-
marking AsyncFGD against popular architectures and unit layers like fully-connected layers, RNN
cells, and convolutional layers. Concluding our empirical investigation, we assess the speedup of our
method relative to other parallel strategies under a diverse set of conditions across multiple platforms.

6.1 Experimental Setup

Methods. We contrast our proposal’s memory footprint with Backpropagation, Sublinear [3],
Backpropagation through time, and Memory Efficient BPTT [7]. Accuracy-wise, we compare with
backpropagation-free methods: Feedback Alignment (FA) [27], Direct Feedback Alignment (DFA)
[26], Direct Random Tangent Propagation, and Error-sign-based Direct Feedback Alignment (sDFA)
[6]. We also apply parallelization to FGD through FGD-DP (data parallelism) and FGD-MP (model
parallelism).
Platform. Experiments utilize Python 3.8 and Pytorch, primarily on nVidia’s AGX Orin. Additional
results on alternate platforms are in the appendix.
Training. Batch size is 64 unless noted. The optimal learning rate (chosen from {1e − 5, 1e −
4, 1e− 3, 1e− 2} with Adam optimizer [18]) is based on validation performance. The parameter α is
initially set to 1 for the classifier, with others at 0 for the first 10 epochs. Subsequently, α is gradually
increased to 0.15 for specific layers. More details are in the appendix.

6.2 Effectiveness of Directional Derivative and Asynchronism

This section documents our experimentation on the effectiveness of using random directional deriva-
tive to approximate the true gradient by contrasting it with other BP-free algorithms. Furthermore,
we demonstrate that the consistency remains intact when using module-wise stale parameters to
uncouple the dependencies, comparing AsyncFGD with vanilla FGD. Results in Table 1 indicate that
AsyncFGD can produce results closely aligned with vanilla FGD. Notably, FGD and AsyncFGD yield

7

Table 1: Comparison for AsyncFGD with other BP-free methods. ConvS and FCS refers to small
convlutional network and full-connected network while ConvL and FCL refers to their slightly bigger
couterpart. Different activation functions are marked as subscript. Details of network architecutre
can be found in Appendix H.2

Dataset Model BP
BP-free

FA DFA sDFA DRTP FGD Async

MNIST

ConvSTanh 98.7 88.1 95.9 96.8 95.4 94.6 94.4
ConvSReLU 99.2 12.0 11.5 13.8 13.6 95.5 95.5
ConvLTanh 99.3 8.7 92.2 93.4 92.6 94.4 94.2
ConvLReLU 99.3 89.7 93.0 93.1 93.2 93.0 93.2

FCSTanh 98.9 83.2 95.6 94.2 94.5 94.4 94.3
FCSlReLU 98.5 8.8 10.0 10.8 9.9 93.6 93.7
FCLTanh 98.8 89.8 93.0 92.0 92.4 95.2 95.4
FCLReLU 99.3 86.3 93.8 94.3 94.1 94.8 95.3

CIFAR-10

ConvSTanh 69.1 33.4 56.5 57.4 57.6 46.5 46.0
ConvSReLU 69.3 12.0 11.5 10.8 12.0 40.0 39.7
ConvLTanh 71.0 40.4 42.0 43.6 44.1 47.3 47.3
ConvLReLU 71.2 40.4 42.0 43.6 44.1 44.2 44.1

FCSTanh 47.8 46.2 46.4 46.0 46.2 42.0 42.3
FCSReLU 52.7 10.2 12.0 10.0 10.3 43.7 43.6
FCLTanh 54.4 17.4 44.0 44.3 45.5 47.2 47.2
FCLReLU 55.3 40.4 42.0 43.6 44.1 46.0 46.7

the most optimal outcomes when the network is more complex, or when we employ ReLU as the
activation function devoid of batchnorm layers (results from ConvSReLU and FCSReLU), situations
where FA, DFA and sDFA often fail to propagate an effective error message. Backpropagation results
are also furnished solely as a reference to true gradient results. However, when the network grows
larger, all BP-free algorithms grapple with variance. The use of larger networks results in only minor
improvements compared to BP. We try to address this challenge through efficient transfer learning in
the subsequent section.

50 100 150 200 250
Number of Layers

101

102

103

Ex
tra

 M
em

or
y

Co
ns

um
pt

io
n

(M
B)

Async
Async
BP
JVP
Sublinear

(a) FC Layers

500 1000 1500 2000 2500
Number of Time Steps

103

2 × 102

3 × 102

4 × 102

6 × 102

Async
BPTT
JVP
Sublinear

(b) RNN Cell

1000 2000 3000 4000 5000
Memory Consumption

70

75

80

85

90

95

Ac
cu

ra
cy

EfficientNet
MobileNet
ResNet
MnasNet
ShuffleNet
FGD
Async *

BP

(c) Popular Efficient Architectures

Figure 3: Memory footprint comparison across methods. Async† is AsyncFGD without tangent
checkpoint while Async∗ refers to AsyncFGD using efficient training strategy. (a) FC layer memory
vs. layer count; (b) RNN memory vs. sequential length; (c) Accuracy vs. memory on efficient
architectures.

6.3 Efficacy of Efficient Transfer Learning

In this segment, we delve into the efficacy of amalgamating AsyncFGD with efficient transfer
learning, focusing on popular architectures like ResNet-18(Res-18) [9]; MoblieNet (Mobile)[11];
MnasNet(Mnas)[36] and ShuffleNet(Shuffle)[45] with their lightweight counterpart. The models
are fine-tuned with weights pre-trained on Imagenet. AsyncFGD† denotes AsyncFGD utilizing
the efficient training strategy. As can be observed from Table 2, the application of an efficient
transfer learning strategy brings about substantial performance enhancement, yielding superior results

8

compared to training with perturbation on the full model. Ablation studies on α provided in Appendix
I.1 also shows that, compared to optimizing subset of the model, FGD suffers more from variance.

6.4 Memory Footprint

As illustrated in Fig 3(c), when we plot accuracy against memory consumption, it is evident that
AsyncFGD employs approximately one-third of the memory while maintaining close accuracy.
Further experimentation on memory consumption with respect to the computing unit reveals, as
shown in Fig 3(a) and Fig 3(b), that the additional memory consumption in AsyncFGD mainly serves
as placeholders for random tangents, while the JVP computation consumes a negligible amount of
additional memory. Memory consumption of other basic units like CNN and batch norm layers, are
provided in Appendix.

6.5 Acceleration on Input Stream

In this final section, we assess the acceleration of ResNet-18 with varying K. In this setting, the batch
size is set to 4 to better reflect the mechanism of streamlined input on edge device. As demonstrated in
4, AsyncFGD, by detaching dependencies in the forward pass, can outperform other parallel strategies
in terms of acceleration rate. While pipeline parallelism is fast, the locking within the forward pass
still induces overhead for synchronization, ultimately leading to lower hardware utilization and speed.
Results pertaining to different network architectures and other platforms like CPU and GPU as well
as more generalized case for larger batch size can be found in the Appendix I.2.

Table 2: Results for different algorithms in transfer
learning. Async∗ refers to using efficient transfer
learning strategy.

Dataset Model BP FGD Async Async∗

MNIST

Res-18 98.5 90.6 90.4 96.4
Mobile 99.2 89.3 88.4 97.1

Efficient 99.2 90.4 90.1 95.9
Mnas 98.9 86.6 86.3 96.0

Shuffle 99.0 85.8 85.8 96.4

CIFAR

Res-18 93.0 71.2 71.2 87.8
Mobile 94.0 72.3 72.2 91.1

Efficient 94.9 70.2 70.1 90.2
Mnas 84.2 68.8 68.5 78.9

Shuffle 89.9 72.5 72.5 82.0

FMNIST

Res-18 94.2 80.2 80.2 88.0
Mobile 93.2 82.3 83.1 90.6

Efficient 92.8 79.8 79.8 90.4
Mnas 92.1 77.1 77.0 87.0

Shuffle 92.8 78.4 78.4 87.3

2 3 4
K

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ac

ce
le

ra
tio

n

1.54

2.15

2.84

1.03 1.02 1.031.11
1.34

1.88

1.23

1.65

2.11

Async
FGD-MP
FGD-DP
Sync

(a) Cluster with 4 GPUs

2 3 4
K

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ac
ce

le
ra

tio
n

1.41

1.95
2.1

1.01 1.02 1.031.02 1.02 1.04
1.2

1.55
1.75

Async
FGD-MP
FGD-DP
Sync

(b) Single Embedded Device

Figure 4: Comparison for acceleration of dif-
ferent parallel methods.

7 Limitations and Discussion

While AsyncFGD offers computational benefits, it is not without limitations. A key drawback is
its inferior performance compared to traditional Backpropagation (BP). This performance disparity
is largely attributed to the use of randomly sampled directional derivatives in the forward gradient
computation, aligning AsyncFGD with Zeroth-Order (ZO) optimization methods and evolutionary
strategies. This sampling introduces a significant source of gradient variance, a challenge that is part
of a larger problem in the field of stochastic optimization. However, we take encouragement from

9

recent advancements aimed at reducing this variance, some of which have even facilitated the training
of large-scale models [31].

Another constraint pertains to the availability of idle workers on edge devices—a condition that is
not universally applicable given the wide variety of edge computing environments. These can span
from IoT chips with limited computational resources, where even deploying a standard deep learning
model can be problematic, to high-capacity micro-computers used in autonomous vehicles.

Nevertheless, our experimental findings suggest that AsyncFGD is particularly beneficial for specific
edge computing scenarios. In such settings, it may serve as a viable alternative for reducing memory
usage while fully leveraging available computational resources.

8 Conclusion

In the present paper, we introduce AsyncFGD, an innovative approach designed to shatter the shackles
of locking within the forward pass in FGD. This is achieved by incorporating module-wise stale
parameters, simultaneously retaining the advantage of minimized memory consumption. In the
theoretical segment, we offer a lucid analysis of this partially ordered staleness, demonstrating that
our proposed method is capable of converging to critical points even in the face of non-convex
problems. We further extend our algorithm to efficient transfer learning by introducing a scale
parameter. Our experimental reveals that a sublinear acceleration can be accomplished, without
compromising accuracy as well as huge performance gain when utilizing efficient transfer learning
strategy. While the exploration of large models employing extensive datasets will undoubtedly
continue to rely on backpropagation [10], we assert that the potential of asynchronous algorithms
predicated on forward computation should not be overlooked. It offers a promising avenue for fully
harnessing limited resources in on-device learning scenarios.

10

References
[1] Atılım Güneş Baydin, Barak A Pearlmutter, Don Syme, Frank Wood, and Philip Torr. Gradients

without backpropagation. arXiv preprint arXiv:2202.08587, 2022.

[2] Han Cai, Chuang Gan, Ligeng Zhu, and Song Han. Tinytl: Reduce activations, not trainable
parameters for efficient on-device learning. arXiv preprint arXiv:2007.11622, 2020.

[3] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

[4] David Clark, LF Abbott, and SueYeon Chung. Credit assignment through broadcasting a global
error vector. Advances in Neural Information Processing Systems, 34:10053–10066, 2021.

[5] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge Belongie. Large scale fine-grained
categorization and domain-specific transfer learning. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4109–4118, 2018.

[6] Charlotte Frenkel, Martin Lefebvre, and David Bol. Learning without feedback: Fixed ran-
dom learning signals allow for feedforward training of deep neural networks. Frontiers in
neuroscience, 15:629892, 2021.

[7] Audrunas Gruslys, Rémi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-
efficient backpropagation through time. Advances in Neural Information Processing Systems,
29, 2016.

[8] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International conference on machine learning, pages
1737–1746. PMLR, 2015.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[10] Geoffrey Hinton. The forward-forward algorithm: Some preliminary investigations. arXiv
preprint arXiv:2212.13345, 2022.

[11] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam.
Searching for mobilenetv3, 2019.

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[13] Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural networks using features replay.
Advances in Neural Information Processing Systems, 31, 2018.

[14] Zhouyuan Huo, Bin Gu, Heng Huang, et al. Decoupled parallel backpropagation with conver-
gence guarantee. In International Conference on Machine Learning, pages 2098–2106. PMLR,
2018.

[15] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2704–2713, 2018.

[16] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Kurt Keutzer, Ion
Stoica, and Joseph E. Gonzalez. Checkmate: Breaking the memory wall with optimal tensor
rematerialization, 2020.

[17] Steven J Johnston and Simon J Cox. The raspberry pi: A technology disrupter, and the enabler
of dreams, 2017.

11

[18] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[19] Skanda Koppula, Lois Orosa, A Giray Yağlıkçı, Roknoddin Azizi, Taha Shahroodi, Konstantinos
Kanellopoulos, and Onur Mutlu. Eden: Enabling energy-efficient, high-performance deep neural
network inference using approximate dram. In Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, pages 166–181, 2019.

[20] Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages
2661–2671, 2019.

[21] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25, 2012.

[22] Hao Li, Soham De, Zheng Xu, Christoph Studer, Hanan Samet, and Tom Goldstein. Training
quantized nets: A deeper understanding. Advances in Neural Information Processing Systems,
30, 2017.

[23] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles, pages 1–15, 2019.

[24] Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary,
Vijay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
et al. Efficient large-scale language model training on gpu clusters using megatron-lm. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 1–15, 2021.

[25] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[26] Arild Nøkland. Direct feedback alignment provides learning in deep neural networks. Advances
in neural information processing systems, 29, 2016.

[27] Paul Orsmond and Stephen Merry. Feedback alignment: effective and ineffective links between
tutors’ and students’ understanding of coursework feedback. Assessment & Evaluation in
Higher Education, 36(2):125–136, 2011.

[28] Barak A Pearlmutter. Fast exact multiplication by the hessian. Neural computation, 6(1):147–
160, 1994.

[29] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[30] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent. Advances in neural information processing
systems, 24, 2011.

[31] Mengye Ren, Simon Kornblith, Renjie Liao, and Geoffrey Hinton. Scaling forward gradient
with local losses. arXiv preprint arXiv:2210.03310, 2022.

[32] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[33] David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, and Hado van Hasselt. Learning by
directional gradient descent. In International Conference on Learning Representations, 2022.

[34] Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting
topologies. Evolutionary computation, 10(2):99–127, 2002.

[35] Benoit Steiner, Mostafa Elhoushi, Jacob Kahn, and James Hegarty. Olla: Optimizing the
lifetime and location of arrays to reduce the memory usage of neural networks, 2022.

12

[36] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. Mnasnet: Platform-aware neural architecture search for mobile, 2019.

[37] Robert Edwin Wengert. A simple automatic derivative evaluation program. Communications of
the ACM, 7(8):463–464, 1964.

[38] Darrell Whitley, Stephen Dominic, Rajarshi Das, and Charles W Anderson. Genetic reinforce-
ment learning for neurocontrol problems. Machine Learning, 13:259–284, 1993.

[39] Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270–280, 1989.

[40] An Xu, Zhouyuan Huo, and Heng Huang. On the acceleration of deep learning model parallelism
with staleness. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2088–2097, 2020.

[41] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher Aberger, and Christopher
De Sa. Pipemare: Asynchronous pipeline parallel dnn training. Proceedings of Machine
Learning and Systems, 3:269–296, 2021.

[42] Guandao Yang, Tianyi Zhang, Polina Kirichenko, Junwen Bai, Andrew Gordon Wilson, and
Chris De Sa. Swalp: Stochastic weight averaging in low precision training. In International
Conference on Machine Learning, pages 7015–7024. PMLR, 2019.

[43] Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training high-
performance and large-scale deep neural networks with full 8-bit integers. Neural Networks,
125:70–82, 2020.

[44] Elad Ben Zaken, Shauli Ravfogel, and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models. arXiv preprint arXiv:2106.10199,
2021.

[45] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices, 2017.

[46] Qihua Zhou, Zhihao Qu, Song Guo, Boyuan Luo, Jingcai Guo, Zhenda Xu, and Rajendra
Akerkar. On-device learning systems for edge intelligence: A software and hardware synergy
perspective. IEEE Internet of Things Journal, 8(15):11916–11934, 2021.

13

A Appendix

The organization of the Appendix is as follows: Appendix sections B to F provide detailed proofs of
the lemmas and theorems presented in the main text. This is followed by additional insights, including
operational specifics of working with Adam and details on how AsyncFGD can be extended for
parallel processing on recursive networks, covered in Appendix G. Lastly, Appendix H and I provide
a comprehensive view of the training process and additional experimental results, respectively.

B Proof of Lemma 3.1

According to the update rule of Eq.(3), (4), we have

h1 =F1(h0, w1) = F1(x,w1)

o1 =JF1
(h0, w1)[o

⊺
0 , u

⊺
w1

]⊺ = JF1
(h0)o0 + JF1

(w1)uw1
= JF1

(w1)uw1

h2 =F2(h1, w2)

o2 =JF2
(h1, w2)[o

⊺
1 , u

⊺
w2

]⊺ = JF2
(h1)o1 + JF2

(w2)uw2
= JF2

(h1)JF1
(w1)uw1

+ JF2
(w2)uw2

=JF2
(w1)uw1

+ JF2
(w2)uw2

· · ·

oL =

L∑
l=1

JFL
(wl)uwl

Then for any l ∈ {1, 2, . . . , L}, take expectation with respect to uwl
, we have

Euwl
(oL · uwl

) = Euwl

(JFL
(wl)uwl

) · uwl
+
∑
k ̸=l

(JFL
(wk)uwk

) · uwl


Note that

Euwl
[(JFL

(wl)uwl
) · uwl

] =Euwl




∂JFL,1

∂wl,1

∂JFL,1

∂wl,2
· · · ∂JFL,1

∂wl,dl
∂JFL,2

∂wl,1

∂JFL,2

∂wl,2
· · · ∂JFL,2

∂wl,dl

...
...

. . .
...

∂JFL,dhL

∂wl,1

∂JFL,dhL

∂wl,2
· · ·

∂JFL,dhL

∂wl,dl



uwl,1

uwl,2

...
uwl,dl

 · [uwl,1 uwl,2 · · ·uwl,dl]



=Euwl




∑dl

i=1

∂JFL,1

∂wl,i
· uwl,i∑dl

i=1

∂JFL,2

∂wl,i
· uwl,i

...∑dl

i=1

∂JFL,dhL

∂wl,i
· uwl,i

 · [uwl,1 uwl,2 · · ·uwl,dl]


=Euwl

(D),

where

Dm,n =

(
dl∑
i=1

∂JFL,m

∂wl,i
· uwl,i

)
uwl,n

=
∂JFL,m

∂wl,n
u2
wl,n

+
∑
k ̸=n

∂JFL,m

∂wl,k
uwl,k

uwl,n

with m ∈ {1, 2, . . . , dhL
}, n ∈ {1, 2, . . . , dl}. Since each uwl

∼ N(0, I), we have

Euwl
(Dm,n) =

∂JFL,m

∂wl,n
, Euwl

(D) = JFL
(wl).

Similarly, we can prove that Euwl

[∑
k ̸=l (JFL

(wk)uwk
) · uwl

]
= 0 ∈ RdhL

×dl . So we have,

E
(

∂f

∂FL
· oL · uwl

)
=

∂f

∂FL
JFL

(wl) = ∇l,xf(w) ∈ Rdl

14

C Proof of Lemma 5.3

Proof of Mean.

ĥt−K+1
1 = F1(h

t−K+1
0 , wt−2K+2

1) = F1(xi(t−K+1), w
t−2K+2
1)

ôt−K+1
1 = JF1

(ht−K+1
0 , wt−2K+2

1)[o⊺0 , u
t−K+1⊺
w1

]⊺ = JF1
(ht−K+1

0)o0 + JF1
(wt−2K+2

1)ut−K+1
w1

= JF1(w
t−2K+2
1)ut−K+1

w1

ĥt−K+1
2 = F2(ĥ

t−K+1
1 , wt−2K+2

2)

ôt−K+1
2 = JF2

(ht−K+1
1 , wt−K+1

2)[ot−K+1⊺
1 , ut−K+1⊺

w2
]⊺ = JF2

(ht−K+1
1)ot−K+1

1 + JF2
(wt−2K+2

2)ut−K+1
w2

= JF2(h
t−K+1
1)JF1(w

t−2K+2
1)ut−K+1

w1
+ JF2(w2)u

t−K+1

wt−2K+2
2

· · · · · ·

ôt−K+1
L0

=

L0∑
l=1

Jf0(w
t−2K+2
l)ut−K+1

wl
=
∑

l∈G(0)

Jf0(w
t−2K+2
l)ut−K+1

wl

· · · · · ·

ôt−K+1
Lt

=
∑

l∈G(0)

Jft(w
t−2K+2
l)ut−K+1

wl
+
∑

l∈G(1)

Jft(w
t−2K+3
l)ut−K+1

wl
+ · · ·+

∑
l∈G(t)

Jft(w
t−2K+t+2
l)ut−K+1

wl

=

t∑
k=0

∑
l∈G(k)

Jft(w
t−2K+k+2
l)ut−K+1

wl

· · · · · ·

ôt−K+1
LK−1

=

K−1∑
k=0

∑
l∈G(k)

JfK−1
(wt−2K+k+2

l) =

K−1∑
k=0

∑
l∈G(k)

Jf (w
t−2K+k+2
l)ut−K+1

wl

=

K−1∑
k=0

∑
l∈G(k)

∇fl,xi(t−K+1)
(wt−2K+k+2)⊺ut−K+1

wl

Take expectation with respect to ut−K+1
wl

, where l ∈ G(k), we have

Eut−K+1
wl

(ôt−K+1
LK−1

· ut−K+1
wl

) = ∇fl,xi(t−K+1)
(wt−2K+k+2)

So we have,

Eut−K+1
wG(k)

(ôt−K+1
LK−1

· ut−K+1
wl

) = ∇fG(k),xi(t−K+1)
(wt−2K+k+2)

Lemma C.1 ([25], Theorem 3). Let gu(x) = ⟨∇f(x), u⟩u, where u ∈ Rd is a normally distributed
Gaussian vector, then we have

Eu∥gu(x)∥2 ≤ (d+ 4)∥∇f(x)∥2

Lemma C.2. Let gu1,u2
(x) = ⟨∇f(x), u1⟩u2, where u1 ∈ Rd1 , u2 ∈ Rd2 are two i.i.d. normally

distributed Gaussian vectors, then we have

Eu1,u2∥gu1,u2(x)∥2 ≤ d2∥∇f(x)∥2

Proof.

Eu1,u2
∥gu1,u2

(x)∥2 =Eu1,u2
∥ ⟨∇f(x), u1⟩u2∥2 = Eu1,u2

(
⟨∇f(x), u1⟩2 ∥u2∥2

)
=Eu1

(
⟨∇f(x), u1⟩2

)
· Eu2

(
∥u2∥2

)
≤d2Eu1

(
⟨∇f(x), u1⟩2

)
= d2Eu1

(
d1∑
i=1

∇if(x)u1,i

)2

15

=d2Eu1

 d1∑
i=1

∇2
i f(x)u

2
1,i +

∑
i ̸=j

∇if(x)∇jf(x)u1,iu1,j


=d2∥∇f(x)∥2

where the first inequality is due to Lemma 1 in [25].

Proof of Variance.

Eut′
w

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)

∥∥∥∥∥
2

=Eut′
w

K−1∑
k=0

∥∥∥ôt′LK−1
· ut′

G(k)

∥∥∥2 = Eut′
w

K−1∑
k=0

∥∥∥∥∥∥
K−1∑

j=0

〈
∇fG(j),xi(t′)

(wt′−K+j+1), ut′

wG(j)

〉 · ut′

wG(k)

∥∥∥∥∥∥
2

=Eut′
w

K−1∑
k=0


K−1∑

j=0

〈
∇fG(j),xi(t′)

(wt′−K+j+1), ut′

wG(j)

〉2

·
∥∥∥ut′

G(k)

∥∥∥2


=Eut′
w

K−1∑
k=0

〈∇fG(k),xi(t′)
(wt′−K+k+1), ut′

wG(k)

〉2
+
∑
j ̸=k

〈
∇fG(j),xi(t′)

(wt′−K+j+1), ut′

wG(j)

〉2

+
∑
m ̸=n

〈
∇fG(m),xi(t′)

(wt′−K+m+1), ut′

wG(m)

〉
·
〈
∇fG(n),xi(t′)

(wt′−K+n+1), ut′

wG(n)

〉 ·
∥∥∥ut′

G(k)

∥∥∥2


=Eut′
w

K−1∑
k=0

〈∇fG(k),xi(t′)
(wt′−K+k+1), ut′

wG(k)

〉2
+
∑
j ̸=k

〈
∇fG(j),xi(t′)

(wt′−K+j+1), ut′

wG(j)

〉2 ·
∥∥∥ut′

G(k)

∥∥∥2


≤
K−1∑
k=0

(dk + 4)
∥∥∥∇fG(k),xi(t′)

(wt′−K+k+1)
∥∥∥2 +∑

j ̸=k

(
dk

∥∥∥∇fG(j),xi(t′)
(wt′−K+j+1)

∥∥∥2)


=

K−1∑
k=0

dk K−1∑
j=0

∥∥∥∇fG(j),xi(t′)
(wt′−K+j+1)

∥∥∥2 + 4
∥∥∥∇fG(k),xi(t′)

(wt′−K+k+1)
∥∥∥2


=

(
K−1∑
k=0

dk

)
K−1∑
j=0

∥∥∥∇fG(j),xi(t′)
(wt′−K+j+1)

∥∥∥2 + 4

K−1∑
k=0

∥∥∥∇fG(k),xi(t′)
(wt′−K+k+1)

∥∥∥2

=(d+ 4)

K−1∑
k=0

∥∥∥∇fG(k),xi(t′)
(wt′−K+k+1)

∥∥∥2 = (d+ 4)

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k),xi(t′)

(
wt′−K+k+1

)∥∥∥∥∥
2

,

where the inequality is due to Lemma C.1 and C.2.

D proof of Lemma 5.6

Proof. For the convenience of analysis, we denote t′ = t−K + 1, then the update rule of algorithm
1 can be rewritten as

wt′+1
G(k) = wt′

G(k) − γt′
(
ôt

′

L · ut′

wG(k)

)
Take expectation with respect to ut′

wG(k)
, we have

wt′+1
G(k) = wt′

G(k) − γt′Eut′
wG(k)

(
ôt

′

L · ut′

wG(k)

)
= wt′

G(k) −∇fG(k),xi(t′)

(
wt′−K+k+1

G(k)

)
16

Define diagonal matrices I0, · · · , Ik, · · · , IK−1 ∈ Rd×d such that all the principle diagonal elements
of Ik in G(k) are 1, and all the principle diagonal elements of Ik in other than G(k) are 0. Then we
have

ôt
′

L · ut′

w =

K−1∑
k=0

Ik · ôt
′

L · ut′

wG(k)

∇fxi(t′)

(
wt′−K+k+1

)
=

K−1∑
k=0

Ik∇fG(k),xi(t′)

(
wt′−K+k+1

G(k)

)
Since f(·) is L-smooth, the following inequality holds that:

f(wt′+1) ≤ f(wt′) +
〈
∇f(wt′), wt′+1 − wt′

〉
+

L

2
∥wt′+1 − wt′∥2

From the update rule of Algorithm 1, we take expectation with respect to all random variables on
both sides and obtain:

E[f(wt′+1)] ≤f(wt′)− γt′E

[
∇f(wt′)⊺

(
K−1∑
k=0

Ik · ôt
′

L · ut′

wG(k)

)]
+

Lγ2
t′

2
E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
ut′

wG(k)

∥∥∥∥∥
2

=f(wt′)− γt′
K−1∑
k=0

∇f(wt′)⊺Ik

(
∇fG(k)

(
wt′−K+k+1

)
−∇fG(k)

(
wt′
)
+∇fG(k)

(
wt′
))

+
Lγ2

t′

2
E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
ut′

wG(k)
−∇f(wt′) +∇f(wt′)

∥∥∥∥∥
2

=f(wt′)− γt′
∥∥∥∇f(wt′)

∥∥∥2 − γt′
K−1∑
k=0

∇f(wt′)⊺Ik

(
∇fG(k)

(
wt′−K+k+1

)
−∇fG(k)

(
wt′
))

+
Lγ2

t′

2

∥∥∥∇f(wt′)
∥∥∥2 + Lγ2

t′

2
E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)
−∇f(wt′)

∥∥∥∥∥
2

+ Lγ2
t′

K−1∑
k=0

∇f(wt′)⊺Ik

(
∇fG(k)

(
wt′−K+k+1

)
−∇fG(k)

(
wt′
))

=f(wt′)−
(
γt′ −

Lγ2
t′

2

)∥∥∥∇f(wt′)
∥∥∥2 + Lγ2

t′

2
E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)
−∇f(wt′)

∥∥∥∥∥
2

︸ ︷︷ ︸
Q1

−(γt′ − Lγ2
t′)

K−1∑
k=0

∇f(wt′)⊺Ik

(
∇fG(k)

(
wt′−K+k+1

)
−∇fG(k)

(
wt′
))

︸ ︷︷ ︸
Q2

,

Using the fact that ∥x+ y∥2 ≤ 2∥x∥2 + 2∥y∥2 and xy ≤ 1
2∥x∥

2 + 1
2∥y∥

2, we have

Q1 =
Lγ2

t′

2
E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)
−∇f(wt′)−

K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)

+

K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)∥∥∥∥∥
2

≤Lγ2
t′ E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)
−

K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)∥∥∥∥∥
2

︸ ︷︷ ︸
Q3

+

17

+ Lγ2
t′

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)
−∇f(wt′)

∥∥∥∥∥
2

︸ ︷︷ ︸
Q4

Q2 =− (γt′ − Lγ2
t′)

K−1∑
k=0

∇f(wt′)⊺Ik

(
∇fG(k)

(
wt′−K+k+1

)
−∇fG(k)

(
wt′
))

≤γt′ − Lγ2
t′

2

∥∥∥∇f(wt′)
∥∥∥2 + γt′ − Lγ2

t′

2

∥∥∥∥∥
K−1∑
k=0

Ik∇G(k)f(w
t′−K+k+1)−∇f(wt′)

∥∥∥∥∥
2

Using E∥ξ − E[ξ]∥2 ≤ E∥ξ∥2, we have

Q3 =E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)
−

K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)∥∥∥∥∥
2

≤E

∥∥∥∥∥
K−1∑
k=0

Ik · ôt
′

LK−1
· ut′

wG(k)

∥∥∥∥∥
2

≤(d+ 4)

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k),xi(t′)

(
wt′−K+k+1

)∥∥∥∥∥
2

=(d+ 4)

K−1∑
k=0

∥∥∥∇fG(k),xi(t′)
(wt′−K+k+1)

∥∥∥2
≤(d+ 4)KM,

where the second inequality is due to Lemma 5.3. Then we bound Q4,

Q4 =

∥∥∥∥∥
K−1∑
k=0

Ik∇fG(k)

(
wt′−K+k+1

)
−∇f(wt′)

∥∥∥∥∥
2

=

K−1∑
k=0

∥∥∥∇fG(k)(w
t′−K+k+1)−∇fG(k)(w

t′)
∥∥∥2

≤
K−1∑
k=0

∥∥∥∇f(wt′−K+k+1)−∇f(wt′)
∥∥∥2

≤L2
K−1∑
k=0

∥∥∥wt′ − wt′−K+k+1
∥∥∥2

=L2
K−1∑
k=0

∥∥∥∥∥∥
t′−1∑

j=max{0,t′−K+k+1}

(wj+1 − wj)

∥∥∥∥∥∥
2

= L2
K−1∑
k=0

∥∥∥∥∥∥
t′−1∑

j=max{0,t′−K+k+1}

γj(ô
j
LK−1

· uj
w)

∥∥∥∥∥∥
2

≤L2γ2
max{0,t′−K+1}

K−1∑
k=0

K

t′−1∑
j=max{0,t′−K+k+1}

(d+ 4)

∥∥∥∥∥
K−1∑
k=0

∇fG(k),x(j)
(wt′−K+k+1)

∥∥∥∥∥
2

≤(d+ 4)KLγt′
γmax{0,t′−K+1}

γt′

K−1∑
k=0

t′−1∑
j=max{0,t′−K+k+1}

∥∥∥∥∥
K−1∑
k=0

∇fG(k),x(j)
(wt′−K+k+1)

∥∥∥∥∥
2

≤(d+ 4)Lγt′σK
4M,

where the second inequality is from Assumption 5.1, the third inequality is due to Lemma 5.3, the
fourth inequality follows from Lγt′ < 1, the last inequality follows from the inequality of arithmetic
and geometric means, Assumption 5.2 and σ := maxt′

γmax{0,t′−K+1}
γt′

. Integrating the upper bound
together, we have

E
[
f(wt′+1)− f(w′)

]
≤− γt′

2

∥∥∥∇f(wt′)
∥∥∥2 + (d+ 4)Lγ2

t′KM +
γt′ + Lγ2

t′

2
(d+ 4)Lγt′σK

4M

18

≤− γt′

2

∥∥∥∇f(wt′)
∥∥∥2 + 2(d+ 4)Lγ2

t′(KM + σK4M)

=− γt′

2

∥∥∥∇f(wt′)
∥∥∥2 + 2(d+ 4)Lγ2

t′MK ,

where we let MK = KM + σK4M .

E Proof of Theorem 5.6

Proof. Let γt = γ be a constant, taking total expectation in Lemma 5.5, we have

E
[
f(wt′+1)

]
− E

[
f(wt′)

]
≤ −γ

2
E∥∇f(wt′)∥2 + 2(d+ 4)Lγ2MK ,

where σ = 1 and Mk = KM +K4M . summing the above inequality from t′ = 0 to T − 1 we have

E[f(wT)]− f(w0) ≤ −γ

2

T−1∑
t′=0

E∥∇f(wt′)∥2 + 2T (d+ 4)γ2LMK

Then we have

1

T

T−1∑
t′=0

E∥∇f(wt′)∥2 ≤ 2(f(w0)− f(w∗))

γT
+ 4(d+ 4)LγMK .

F Proof of Theorem 5.7

Proof. Let {γt′} be a diminishing sequence and γt′ =
γ0

t′+1 , such that σ < K and MK = KM +

K5M . Taking expectation in Lemma 5.5 and summing it from t′ = 0 to T − 1, we have

E[f(wT)]− f(w0) ≤ −1

2

T−1∑
t′=0

γtE∥∇f(wt′)∥2 +
T−1∑
t′=0

2(d+ 4)γ2
t′LMK .

Letting ΓT =
∑T−1

t′=0 γt′ , then we have

1

ΓT

T−1∑
t′=0

γt′E∥∇f(wt′)∥2 ≤
2
(
f(w0)− f(w∗)

)
ΓT

+

∑T−1
t′=0 4(d+ 4)γ2

t′LMK

ΓT

G Details of AsyncFGD

G.1 Working with Adam

We provide example for AsyncFGD working with Adam in Algorithm 2. Minimal changes are made
on Adam by substituting the gradient the estimator using Forward Gradient.

G.2 Execution Details

Details are presented in Figure 5. By pipelining over time dimension, we can preserve buffer for
input in only one timestamp and still achieve parallel computation.

19

Algorithm 2 AsyncFGD-Adam

Initialize: Stepsize sequence {γt}T−1
t=K−1, weight w0 =

[
w0

G(0), · · · , w
0
G(K−1)

]
∈ Rd,mG(k) =

0, vG(k) = 0, β1 = 0.9, β2 = 0.999, η = 1e− 8
1: for t = 0, 1, · · · , T − 1 do
2: for k = 0, 1, · · · ,K − 1 in parallel do
3: Read ĥt−k

Lk−1
, ôt−k

Lk−1
from storage if k ̸= 0

4: Compute ĥt−k
Lk

, ôt−k
Lk

5: Send ĥt−k
Lk

, ôt−k
Lk

to next worker’s storage if k ̸= K − 1
6: end for
7: Broadcast ôt−K+1

LK−1

8: for k = 0, 1, · · · ,K − 1 in parallel do
9: Compute ∆wt−K+1

G(k) = ôt−K+1
LK−1

ut−K+1
wG(k)

10: Update mG(k) = β1∆wt−K+1
G(k) + (1− β1)mG(k)

11: Update vG(k) = β2∆wt−K+1
G(k) + (1− β2)vG(k)

12: Compute m̂G(k) = mG(k)/β
t
1

13: Compute v̂G(k) = vG(k)/β
t
2

14: Update wt−K+2
G(k) = wt−K+1

G(k) − γt−K+1m̂G(k)/v̂G(k)
15: end for
16: end for

�̂�𝑠𝐿𝐿1
0 , �𝑜𝑜𝐿𝐿1

0

Initialize

Module
2

Module
3

𝑤𝑤𝐿𝐿1
1

𝑡𝑡 = 1

�̂�𝑠𝐿𝐿1
1 , �𝑜𝑜𝐿𝐿1

1𝑤𝑤𝐿𝐿1
1

𝑡𝑡 = 2

�̂�𝑠𝐿𝐿1
2 , �𝑜𝑜𝐿𝐿1

2𝑤𝑤𝐿𝐿1
1

𝑡𝑡 = 3

�̂�𝑠𝐿𝐿1
3 , �𝑜𝑜𝐿𝐿1

3𝑤𝑤𝐿𝐿1
2 �̂�𝑠𝐿𝐿1

5 , �𝑜𝑜𝐿𝐿1
5 𝑤𝑤𝐿𝐿1

5

0, 0𝑤𝑤𝐿𝐿2
1

0, 0𝑤𝑤𝐿𝐿3
1 0, 0𝑤𝑤𝐿𝐿3

1

�̂�𝑠𝐿𝐿2
0 , �𝑜𝑜𝐿𝐿2

0𝑤𝑤𝐿𝐿2
1

�̂�𝑠𝐿𝐿3
0 , �𝑜𝑜𝐿𝐿3

0𝑤𝑤𝐿𝐿3
1

�̂�𝑠𝐿𝐿2
1 , �𝑜𝑜𝐿𝐿2

1𝑤𝑤𝐿𝐿2
1

�̂�𝑠𝐿𝐿3
1 , �𝑜𝑜𝐿𝐿3

1𝑤𝑤𝐿𝐿3
2

�̂�𝑠𝐿𝐿2
2 , �𝑜𝑜𝐿𝐿2

2𝑤𝑤𝐿𝐿2
2

�̂�𝑠𝐿𝐿3
3 , �𝑜𝑜𝐿𝐿3

3

�̂�𝑠𝐿𝐿2
4 , �𝑜𝑜𝐿𝐿2

4

𝑤𝑤𝐿𝐿3
5

𝑤𝑤𝐿𝐿2
5

Module
1

warm-up steady
Forward Skip

𝑡𝑡 = 6

�̂�𝑠𝐿𝐿1
4 , �𝑜𝑜𝐿𝐿1

4

𝑡𝑡 = 5

𝑤𝑤𝐿𝐿1
4

�̂�𝑠𝐿𝐿3
2 , �𝑜𝑜𝐿𝐿3

2

�̂�𝑠𝐿𝐿2
3 , �𝑜𝑜𝐿𝐿2

3

𝑤𝑤𝐿𝐿3
4

𝑤𝑤𝐿𝐿2
4

𝑤𝑤𝐿𝐿1
3

𝑤𝑤𝐿𝐿3
3

𝑤𝑤𝐿𝐿2
3

𝑡𝑡 = 4

�̂�𝑠𝐿𝐿1
6 , �𝑜𝑜𝐿𝐿1

6 𝑤𝑤𝐿𝐿1
6

�̂�𝑠𝐿𝐿3
4 , �𝑜𝑜𝐿𝐿3

4

�̂�𝑠𝐿𝐿2
5 , �𝑜𝑜𝐿𝐿2

5

𝑤𝑤𝐿𝐿2
6

𝑤𝑤𝐿𝐿2
6

𝑡𝑡 = 7

�̂�𝑠𝐿𝐿1
7 , �𝑜𝑜𝐿𝐿1

7 𝑤𝑤𝐿𝐿1
7

�̂�𝑠𝐿𝐿3
5 , �𝑜𝑜𝐿𝐿3

5

�̂�𝑠𝐿𝐿2
6 , �𝑜𝑜𝐿𝐿2

6

𝑤𝑤𝐿𝐿2
7

𝑤𝑤𝐿𝐿2
7

𝑡𝑡 = 8

𝑖𝑖 = 0 𝑖𝑖 = 1

Update

Figure 5: Details in executon of AsyncFGD-RNN with 3 modules. In the skip stage, only the host
accumulate loss and its jvp value and other workers will jump right into the next state.

G.3 Extension: AsyncFGD-Recursive

In this section, we extend the potential of AsyncFGD by exploring the parallelization of sequential
inputs in RNNs with reduced memory footprint, necessitating the preservation of input for only a
single timestamp.

We adopt a one-to-many RNN network for ease of illustration and denote the equal length of each
sequence as n. We begin by refactoring the original loss for RNNs in terms of cumulative loss and
new activation. Here, stl signifies the hidden state at timestamp t on layer l. At timestamp t, each layer
ingests (stl−1, s

t−1
l) as input, generating stl = Fl(s

t
l−1, s

t−1
l , wl). We represent the stacked latent

states passed from t − 1 as st−1 = [st−1
1 , st−1

2 , . . . , st−1
L] and the output as yt = F (st0, s

t−1;w),
where st0 symbolizes the input data xt. The cumulative loss from timestamp 1 ∼ T is given by:

T∑
t=1

f(F (xt, s
t−1;w), yt) (15)

We next refactor equation 2 for the ith sequential input in iteration i, i ≥ 0 as:

20

wi+1
l = wi

l − γi
∂Li

∂wi
l

, ∀l ∈ 1, 2, . . . , L (16)

where Li :=
∑

t = in+ 1(i+1)nf(F (xt, s
t−1;w), yt) represents the loss for the ith sequence.

We break the dependency between timestamps and iterations by employing dynamic staleness in
AsynFGD. Specifically, the computation in module k ∈ 1, 2, · · · ,K at timestamp t is defined as
follows:

ŝLk
t−k = fk

(
ŝLk−1

t−k, ŝG(k)t−k−1
;wG(k)t−2K+k+2

)
(17)

ôLk
t−k = Jfk

(
ŝLk − 1t−k, ŝG(k)t−k−1

;wG(k)t−2K+k+2
)
ut−k
G(k), (18)

where ut−k
G(k) = [ôLk − 1t−k⊺, ôG(k)t−k−1⊺

, uwG(k)
t−k⊺]⊺

Given that tasks belonging to the same iteration use identical parameters, we use δ(k, t, i) =
t−ni−k−1, t ∈ [in+1, (i+1)n] to quantify this difference for the ith sequential. If δ(k, t, i) ≤ 0,
then module k uses stale parameters from iteration i − 1 at timestamp t. AsyncFGD-RNN only
updates the parameter upon the completion of the last computation in the sequence. Specifically, we
use:

wt−K+2 =


wt−K+1, if

t−K + 1

n
/∈ N∗

wt−K+1 − γ⌊ t−K
n ⌋Euw

t

((
∂L⌊ t−K

n ⌋
∂sLK

t−K
ot−K
LK

)
u(t−K)
w

)
, otherwise

Refer to figure 5 for detailed execution instructions. By combining training and prediction, we
can process data from different timestamps of sequential input, maintain a buffer for just a single
timestamp, and still achieve parallelization among various workers.

H Training Details

In this section, we explain some details in the trainning process.

H.1 Random Seed

The seeds for all experiments are fixed to 0.

H.2 Description of Network Architecture

H.2.1 Models Deployed in Section 6.2.

The network structures of ConvS,ConvL, FCS and FCL are enumerated in Tables 8, 11, 9, and
10 correspondingly. In these designations, the subscripts ReLU and Tanh signify the particular acti-
vation function used in the model. Moreover, the larger models, denoted as counterparts, incorporate
batch normalization layers for enhanced performance.

H.2.2 Models used in Section 6.3.

We delve into the specific models employed in Section 6.3. For MobileNet, we utilize the structure
of MobileNet_V3_Small. The ResNet-18 structure is used when implementing ResNet. The model
EfficientNet_B0 signifies the EfficientNet architecture. The MNASNet0_5 is used for MNasNet.
Lastly, we adopt ShuffleNet_V2_X0_5 for ShuffleNet.

21

H.3 Model Splitting

In this section, we provide details for how to split the model into consective moduels and distribute
them in different worker, we will first provide how to split models in Section 6.2, then we provide
how to split model in 6.3.

H.3.1 Model Splitting in Section 6.2

In Section 6.2, all models are split with K = 3. Details for how to split the ConvS, ConvL, FCS, FCL
are repented in Table 5 Table 6, Table3 and Table 4, respectively.

Table 3: Details for model splitting
for ConvS, definition for layers can
be found in Table 8

K Layers

1 conv1, act

2 pool1, fc1

3 act2, fc2

Table 4: Details for model splitting for ConvL, definition for
layers can be found in Table 11

K Layers

1 conv1, bn1, act1, pool1, conv2, bn2, act2, pool2

2 conv3, bn3, act3, pool3,conv4, bn4, act4, pool4

3 conv5, bn5, act5, pool5, fc1

Table 5: Details for model splitting
for FCS, definition for layers can
be found in Table 9

K Layers

1 fc1,ac1

2 fc2,ac2

3 fc3,ac3

Table 6: Details for model splitting for FSL, definition for
layers can be found in Table10

K Layers

1 fc1, bn1, ac1, fc2, bn2, ac2

2 fc3, bn3, ac3 ,fc4, bn4, ac4

3 fc5,bn5,ac5,fc5

H.3.2 Model Splitting in Section 6.3

In section 6.3, all models are divided into four parts (K = 4). Detailed descriptions of how each
model is split are provided below. Note that ’head’ and ’tail’ refer to the layers before and after the
main blocks of each architecture, respectively, which are assigned to the first and the last worker:

• ResNet-18: The core of ResNet-18 consists of 4 Residual Blocks, each distributed to one of
the four workers.

• EfficientNet: The core of EfficientNet consists of 7 Mobile Inverted Bottlenecks (MBConv).
The first worker handles MBConv 1, the second handles MBConv 2 to 3, the third manages
MBConv 4 to 6, and the last one manages MBConv 7.

• MoblieNet: The core of MoblieNetV3-small includes 13 layers of bottlenecks. The first
worker handles layers 1 to 3, the second manages layers 4 to 7, the third manages layers 8 to
11, and the last worker handles layers 12 to 13.

• MnasNet: The core of MnasNet consists of 6 blocks of inverted residuals. Blocks 1 to 2,
3 to 5, and 6 are assigned to workers 2, 3, and 4 respectively, while the first worker only
handles the head.

• ShuffleNet: The core of ShuffleNet consists of 3 stages, each assigned to workers 2, 3, and
4, respectively.

22

I Additional Experimental Results

I.1 Ablation study in α

We have incremented the value of αbias gradually, with a step size of 0.0075, over 20 epochs. This
process can be generalized using the following equations:

αbias =

t× α∗
bias

20
, t <= 20

α∗
bias, otherwise

Here, α∗
bias control the rate of increase and the maximum attainable value of αbias, respectively. The

ablation study with respect to α∗
bias is presented in Table 7.

We observe that reducing α∗
bias to 0, which corresponds to only updating the classifier, still results

in performance gains compared to updating the full model. This improvement can be attributed to
reduced variance. As α∗

bias increases, we generally see better results, since the norm of the gradient
approximation increases. However, when α∗

bias exceeds 0.25, we sometimes observe a performance
drop due to the corresponding increase in variance.

Table 7: Ablation study on different value of α∗
bias

Dataset Model
α∗
bias

0.00 0.03 0.06 0.09 0.12 0.15 0.20 0.25

CIFAR10

Res-18 0.838 0.838 0.845 0.855 0.865 0.878 0.872 0.885

Mobile 0.898 0.912 0.911 0.910 0.913 0.911 0.914 0.909

Efficient 0.892 0.900 0.902 0.903 0.902 0.902 0.887 0.895

Shuffle 0.788 0.805 0.808 0.812 0.820 0.820 0.822 0.825

Mnas 0.782 0.790 0.788 0.789 0.788 0.789 0.777 0.782

FMNIST

Res-18 0.866 0.869 0.871 0.873 0.875 0.880 0.882 0.884

Mobile 0.890 0.908 0.906 0.906 0.906 0.906 0.899 0.901

Efficient 0.889 0.904 0.906 0.902 0.905 0.904 0.908 0.897

Shuffle 0.849 0.854 0.857 0.860 0.864 0.870 0.870 0.877

Mnas 0.854 0.868 0.870 0.870 0.870 0.870 0.864 0.864

I.2 Acceleration across Various Platforms and Architectures

In Section 6.5, we examined the acceleration of AsyncFGD in comparison to vanilla FGD on ResNet-
18, using two hardware platforms: 1) NVIDIA AGX Orin, an embedded device, and 2) a cluster of
four NVIDIA 1080 Ti GPUs. These platforms were chosen to reflect real-world edge device scenarios
and to simulate situations of ample computational power, such as in the case of stacked chips.

In this section, we expand our scope of investigation by incorporating two additional devices: 1)
NVIDIA A100, and 2) Intel(R) Xeon(R) CPU E5-2678 v3 @2.50GHZ. These additions allow us
to further examine acceleration under various conditions. We also provide supplementary results
on acceleration with respect to different batch sizes to reflect variable input streams. Moreover, to
emulate streamlined input, the mini-batch size of the synchronized pipeline is set to 1.

The performance of ResNet-18 with different batch sizes on the four NVIDIA 1080Ti GPUs, A100,
and AGX Orin platforms is illustrated in Figures 6, 7, and 8, respectively. Results for MobileNetV3-
small on AGX Orin are presented in Figure 10. A notable observation is that AsyncFGD performance
appears largely insensitive to batch size. In contrast, other algorithms typically exhibit poorer
performance with smaller batch sizes. Particularly, when the batch size is reduced to 1, these
algorithms offer negligible performance improvements over vanilla FGD. Furthermore, the overall

23

acceleration on a single device is constrained by computational power. For instance, while AsyncFGD
achieves a speedup of 2.84× on a four GPU cluster, it only delivers a 2.11 × speedup on a single
AGX Orin. Communication also imposes a limit on the overall acceleration, as demonstrated by the
superior performance on the A100 in comparison to the four-GPU cluster. This is attributable to
the elimination of communication overhead on a single device, except for the sending and receiving
operations of CUDA kernels.

Results for MobileNetV3-small with different batch sizes on CPU are depicted in Figure 9. Due to
the inherently sequential execution pattern of CPUs, the acceleration is constrained, resulting in only
modest speedup and advantage over other algorithms.

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.53

2.12

2.81

0.95 0.95 0.960.98 0.98 1.010.93 0.92 0.94

Async
FGD-DP
FGD-MP
Sync

(a) Batch size = 1

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.52

2.17

2.8

1.1 1.14 1.21
1.02 1.01 1.011.15 1.27 1.2

Async
FGD-DP
FGD-MP
Sync

(b) Batch size = 2

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.56

2.11

2.83

1.15
1.33 1.33

1.01 0.99 0.99
1.2

1.53 1.53

Async
FGD-DP
FGD-MP
Sync

(c) Batch size = 3

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.54

2.15

2.84

1.11
1.34

1.88

1.01 1.02 1.03
1.23

1.65

2.11

Async
FGD-DP
FGD-MP
Sync

(d) Batch size = 4

Figure 6: Acceleration with differernt batch size on ResNet-18, cluster with 4 Nvidia 1080 Ti

I.3 Memory Profiling on Other Basic Units of Convolutional Neural Networks

This section outlines memory profiling for basic units within a Convolutional Neural Network
(CNN). Commonly, a CNN layer is coupled with a batch normalization layer and an activation
layer using ReLU, so we’ve combined these elements for our memory testing. We examine the
memory consumption against the number of layers and present the results in Figure 11(a). For further
examination, we also assess the memory consumption against the number of output channels and
batch size, with results shown in Figures 11(b) and 11(c), respectively.

Our findings reveal that implementing forward gradients can significantly reduce memory consump-
tion. Generally, the majority of memory usage in CNNs stems from intermediate results, since CNNs
often operate in a ’broadcast then product’ pattern (to be specific, they are referred as ’img2col’).
Consequently, the additional memory required by the random tangent in AsyncFGD is minimal. As
such, the memory consumption appears to be invariant to the number of layers, mainly because in the
forward pass we discard almost all the intermediate variables.

24

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.6

2.35

3.13

1.02 0.98 1.020.98 0.98 0.960.93 0.92 0.94

Async
FGD-DP
FGD-MP
Sync

(a) Batch size = 1

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.61

2.34

3.13

1.01 1.02 1.011.02 1.01 1.0
1.2 1.12

1.53

Async
FGD-DP
FGD-MP
Sync

(b) Batch size = 2

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.63

2.41

3.15

1.0 0.99 0.981.01 0.99 1.01
1.37

1.67
1.88

Async
FGD-DP
FGD-MP
Sync

(c) Batch size = 3

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.65

2.4

3.26

1.02 1.01 1.01.0 1.0 1.04

1.45

1.87

2.35

Async
FGD-DP
FGD-MP
Sync

(d) Batch size = 4

Figure 7: Acceleration with differernt batch size on ResNet-18, A100

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.38

1.87
2.2

1.02 0.98 1.020.98 0.98 0.960.93 0.92 0.94

Async
FGD-DP
FGD-MP
Sync

(a) Batch size = 1

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.4

1.91
2.27

1.01 1.02 1.011.02 1.01 1.01.12 1.12 1.23

Async
FGD-DP
FGD-MP
Sync

(b) Batch size = 2

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.4

1.94
2.31

1.0 0.99 0.981.01 0.99 1.01
1.18

1.44
1.65

Async
FGD-DP
FGD-MP
Sync

(c) Batch size = 3

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.41

1.95
2.31

1.02 1.01 1.01.0 1.0 1.04
1.2

1.55
1.75

Async
FGD-DP
FGD-MP
Sync

(d) Batch size = 4

Figure 8: Acceleration with differernt batch size on ResNet-18, AGX Orin

25

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.2

1.59
1.9

0.97 0.94 0.970.94 0.94 0.92
0.7 0.69 0.7

Async
FGD-DP
FGD-MP
Sync

(a) Batch size = 1

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.21

1.58
1.9

0.96 0.97 0.960.97 0.96 0.950.9 0.84
1.15

Async
FGD-DP
FGD-MP
Sync

(b) Batch size = 2

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.22

1.63
1.91

0.95 0.94 0.940.96 0.94 0.961.03
1.25

1.41

Async
FGD-DP
FGD-MP
Sync

(c) Batch size = 3

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.24

1.62
1.98

0.97 0.96 0.950.95 0.95 0.981.09
1.4

1.76

Async
FGD-DP
FGD-MP
Sync

(d) Batch size = 4

Figure 9: Acceleration with differernt batch size on MobileNetV3-small, Intel(R) Xeon(R) CPU
E5-2678 v3 @ 2.50GHz

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.49

2.19

2.91

0.95 0.92 0.950.91 0.92 0.90.87 0.86 0.88

Async
FGD-DP
FGD-MP
Sync

(a) Batch size = 1

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.5

2.18

2.92

0.94 0.96 0.940.96 0.95 0.93
1.13 1.05

1.42

Async
FGD-DP
FGD-MP
Sync

(b) Batch size = 2

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.52

2.25

2.93

0.93 0.93 0.920.94 0.93 0.95
1.28

1.56
1.75

Async
FGD-DP
FGD-MP
Sync

(c) Batch size = 3

2 3 4
K

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Sp
ee

du
p

1.54

2.24

3.03

0.96 0.95 0.940.94 0.94 0.97

1.36

1.75

2.19

Async
FGD-DP
FGD-MP
Sync

(d) Batch size = 4

Figure 10: Acceleration with differernt batch size on MobileNetV3-small, AGX Orin

26

Table 8: Network architecture for ConvSReLU and ConvSTanh. ConvSReLU denotes using ReLU
for the activation functions and ConvSTanh denotes using Tanh as activation functions

Layer Type Params

conv1 Conv2d out_channels=32, kernel_size=5, stride=1, padding=2

act1 ReLU/Tanh N/A

pool1 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

fc1 Linear out_features=1000

act2 ReLU/Tanh N/A

fc2 Linear out_features=10

Table 9: Network architecture for FCSReLU and
FCSTanh. FCSReLU denotes using ReLU for
the activation functions and FCSTanh denotes us-
ing Tanh as activation functions

Layer Type Params

flatten Flatten N/A

fc1 Linear out_features=1024

ac1 ReLU/Tanh N/A

fc2 Linear out_features=512

ac2 ReLU/Tanh N/A

fc3 Linear out_features=256

Table 10: Network architecture for FCLReLU and
FCLTanh. FCLReLU denotes using ReLU for
the activation functions and FCLTanh denotes
using Tanh as activation functions

Layer Type Params

flatten Flatten N/A

fc1 Linear out_features=1024

bn1 BatchNorm1d N/A

ac1 ReLU/Tanh N/A

fc2 Linear out_features=1024

bn2 BatchNorm1d N/A

ac2 ReLU/Tanh N/A

fc3 Linear out_features=1024

bn3 BatchNorm1d N/A

ac3 ReLU/Tanh N/A

fc4 Linear out_features=1024

bn4 BatchNorm1d N/A

ac4 ReLU/Tanh N/A

fc5 Linear out_features=512

bn5 BatchNorm1d N/A

ac5 ReLU/Tanh N/A

fc6 Linear out_features=10

27

102 103

Number of Layers

0

500

1000

1500
M

em
or

y
Co

ns
um

pt
io

n
(M

B) Async
Async
BP
Sublinear

(a) Different number of layers

0 250 500 750 1000
Channels

0

2500

5000

7500

10000

12500

M
em

or
y

Co
ns

um
pt

io
n

(M
B) Async

BP

(b) Different channels

0 200 400 600 800 1000
Batch Size

0

100

200

300

400

M
em

or
y

Co
ns

um
pt

io
n

(M
B) Async

BP

(c) Different batch size

Figure 11: Memory consumpition of basic units in convoluntional networks, batch size=64, chan-
nels=3 and number of layers=18 unless appears as in the x axis

Table 11: Network architecture for ConvLReLU and ConvLTanh. ConvLReLU denotes using
ReLU for the activation functions and ConvLTanh denotes using Tanh as activation functions

Layer Type Params

conv1 Conv2d out_channels=32, kernel_size=3, stride=1, padding=2

bn1 BatchNorm2d N/A

act1 ReLU/Tanh N/A

pool1 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv2 Conv2d out_channels=64, kernel_size=3, stride=1, padding=2

bn2 BatchNorm2d N/A

act2 ReLU/Tanh N/A

pool2 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv3 Conv2d out_channels=128, kernel_size=3, stride=1, padding=2

bn3 BatchNorm2d N/A

act3 ReLU/Tanh N/A

pool3 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv4 Conv2d out_channels=256, kernel_size=3, stride=1, padding=2

bn4 BatchNorm2d N/A

act4 ReLU/Tanh N/A

pool4 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

conv5 Conv2d out_channels=512, kernel_size=3, stride=1, padding=2

bn5 BatchNorm2d N/A

act5 ReLU/Tanh N/A

pool5 Maxpooll2d kernel_size=2, stride=2, padding=0, dilation=1

flatten Flatten N/A

fc1 Linear out_features=10

28

	Introduction
	Related Works
	Forward Gradient with Reinforcement Learning
	Parallel Strategies and Asynchronous Approaches

	Preliminaries
	AsyncFGD
	Detaching Iteration Dependency
	Stochastic AsyncFGD Alogrithm
	Acceleration of AsyncFGD

	Convergence Analysis
	Experiments
	Experimental Setup
	Effectiveness of Directional Derivative and Asynchronism
	Efficacy of Efficient Transfer Learning
	Memory Footprint
	Acceleration on Input Stream

	Limitations and Discussion
	Conclusion
	Appendix
	Proof of Lemma 3.1
	Proof of Lemma 5.3
	proof of Lemma 5.6
	Proof of Theorem 5.6
	Proof of Theorem 5.7
	Details of AsyncFGD
	Working with Adam
	Execution Details
	Extension: AsyncFGD-Recursive

	Training Details
	Random Seed
	Description of Network Architecture
	Models Deployed in Section 6.2.
	Models used in Section 6.3.

	Model Splitting
	Model Splitting in Section 6.2
	Model Splitting in Section 6.3

	Additional Experimental Results
	Ablation study in .
	Acceleration across Various Platforms and Architectures
	Memory Profiling on Other Basic Units of Convolutional Neural Networks

