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Abstract. Medical image segmentation has advanced considerably with
foundational models like the Segment Anything Model (SAM) and its
medical variants, yet real-world clinical deployment remains constrained
by heterogeneous imaging protocols, limited data generalization, and
the inefficiency of manual interaction. While recent SAM-based frame-
works (e.g., SAM2, MedSAM?2) introduce memory-aware mechanisms,
they still rely on dense re-encoding and lack targeted correction strate-
gies. We propose “From Single-Round to Sequential: Building
Stateful Interactive Segmentation with SegVol and GRU Cor-
rector”, a lightweight framework that reformulates interactive segmen-
tation as a sequential refinement process guided by uncertainty and er-
ror heuristics. Specifically, we design: (1) a GRU-based temporal mod-
ule to encode interaction history and enable stateful correction, and (2)
an uncertainty-driven region adaptation scheme that selectively focuses
refinement on ambiguous or mis-segmented areas, reducing redundant
computation while improving correction efficiency. On validation data,
our framework achieves a progressive Dice coefficient improvement from
0.661 (single-box prompt) to 0.671 after three refinement rounds, show-
ing a 1.5% absolute gain with diminishing returns in later interactions.
These results highlight that uncertainty-guided, memory-efficient refine-
ment offers a promising direction for practical interactive medical seg-
mentation.
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1 Introduction

1.1 Background

Medical image segmentation has undergone a paradigm shift with the emer-
gence of foundation models such as the Segment Anything Model (SAM) [7]
and its medical extensions [6,8]. By leveraging large-scale pretraining, these
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models demonstrate remarkable generalization across diverse anatomical struc-
tures. However, their clinical translation remains hindered by substantial domain
heterogeneity—multi-center imaging data vary widely in acquisition protocols,
contrast levels, and patient populations [3]. Existing segmentation frameworks
still struggle with small or irregular structures that violate shape priors and
intensity uniformity [3]. Such limitations undermine clinical tasks that rely on
accurate lesion boundaries, including quantitative diagnosis, treatment response
assessment, and longitudinal monitoring [1]. These challenges underscore the
need for interactive and adaptable segmentation systems that can efficiently in-
tegrate human feedback while remaining computationally feasible for routine
use.

1.2 Related Work and Limitations

Interactive segmentation offers a promising way to bridge the gap between auto-
mated inference and clinical reliability. Foundation models such as SAM/SAM?2
[5,9] and MedSAM/MedSAM?2 [6,8] have demonstrated the potential of general-
purpose visual prompts for medical imaging. Notably, recent versions already
incorporate memory-aware processing, enabling limited contextual understand-
ing across multiple prompts. Yet, their refinement process remains computation-
ally expensive, as each correction still triggers dense re-encoding of the entire
volume. Moreover, these models treat all regions uniformly during refinement,
without explicitly prioritizing areas of high uncertainty or segmentation error.
This results in redundant computation and limited gains with repeated interac-
tion, particularly in volumetric 3D settings where localized corrections are more
desirable.

Beyond SAM-based designs, frameworks such as VISTA3D [3] and nnInter-
active [2] improve volumetric reasoning but largely preserve the stateless nature
of interaction, handling each prompt independently. Consequently, they struggle
to capture users’ sequential intent—how each feedback relates to prior correc-
tions—and fail to balance efliciency with accuracy [1]. These gaps motivate a new
perspective: treating interactive segmentation not as isolated refinements, but as
a sequential decision process guided by uncertainty and prior state information.

1.3 Contributions

To address these limitations, we propose “From Single-Round to Sequen-
tial: Building Stateful Interactive Segmentation with SegVol and GRU
Corrector”, a lightweight framework that models interactive refinement as a
temporally coherent process. Our main contributions are as follows.

First, we introduce a GRU-based temporal corrector that encodes the
history of user interactions and segmentation states. Instead of reprocessing the
full volume after each prompt, the model selectively updates predictions based
on the accumulated context, effectively capturing user intent over time.

Second, we develop an uncertainty-driven region adaptation mecha-
nism that heuristically identifies ambiguous or error-prone regions for targeted
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correction. By focusing computation on these uncertain areas—typically near
boundary inconsistencies or low-confidence voxels—the model reduces redundant
processing while maintaining segmentation precision. This makes our approach
particularly efficient for repeated interactions in complex cases such as irregular
tumor margins or fine vascular networks.

Through these designs, our framework enables progressive, memory-efficient
refinement in a stateful manner, achieving effective correction with minimal over-
head. Unlike existing memory-heavy systems, our approach leverages uncertainty
as an implicit guide for interaction, providing a practical and interpretable path
toward adaptive clinical segmentation.

2 Method

Our framework, illustrated in Fig. 1, reformulates interactive medical image
segmentation as a sequential refinement process. It integrates three main com-
ponents: (1) Box-Initialized Segmentation, (2) Uncertainty- Aware Inter-
action Sampling, and (3) GRU-Based Sequential Correction. Together,
these modules enable efficient, memory-aware refinement by focusing computa-
tion on uncertain and error-prone regions.

Box-Initialized Segmentation with SegVol GRU-Based Sequential Correction x5
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Fig. 1: Overview of the proposed framework. (a) SegVol produces an initial mask
from a box prompt. (b) Uncertain and erroneous regions are sampled to build
the sequential state tensor. (¢) The GRU Corrector refines predictions based on
accumulated interaction history.
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2.1 Box-Initialized Segmentation with SegVol

Given a volumetric medical image I € RP*XH>*W and a user-specified bounding
box B € RS®, the SegVol module generates an initial probability map Py €
[0, 1]P>*H>*W and a corresponding binary mask:

My = SegVol(I,B), o = I(My > 0.5), (1)

where I(-) denotes the indicator function and gy is the binarized segmentation
output. This serves as the initial state for interactive refinement.

2.2 Uncertainty-Aware Interaction Sampling

To avoid reprocessing the full volume after every interaction, we design a lightweight
sampling mechanism that identifies only the regions most in need of correction.

At iteration ¢, the current prediction produces a voxel-wise probability map
P: = 0(Z;), where Z; denotes the raw logits from SegVol and o(-) the sigmoid
activation. We define the voxel-wise probability p.(i, 7, k) as:

1

pt(iajv k) = O—(Zt(imj?k)) = ma

(2)
representing the model’s confidence that voxel (i, , k) belongs to the foreground.

Uncertainty is quantified by the proximity of p (i, j, k) to a confidence thresh-
old 7 € (0,0.5], which measures the distance from the decision boundary (p =
0.5). Voxels near this boundary correspond to ambiguous predictions:

Uy = {(Zvjak) | |pt(i’j7 k) - 05' < T}' (3)

In practice, 7 is empirically set to 0.1, indicating that voxels with probabilities
between 0.4 and 0.6 are treated as uncertain.

To incorporate user feedback, corrective clicks are simulated as ¢, = (s, Yn, 2n)
with associated labels I,, € {0,1} (positive for inclusion, negative for exclusion).
The corresponding error region is defined by the mismatch between the current
prediction ¢; and user intent:

& =|J{G.5.k) | IIx = cnlla < 7 and (i, j, k) # I}, (4)

where r denotes the local radius for sampling around each click. The union of
uncertainty and error regions forms the candidate correction set.

Both U; and &; are ranked by confidence and truncated or zero-padded to a
fixed number K (default K = 200) to balance GPU memory usage. Algorithm 1
summarizes the procedure.
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Algorithm 1 Uncertainty- and Error-Guided Sampling at Iteration ¢

Input: Probability map Py, binary mask g, user clicks {cn,l,}, threshold 7, radius
r, limit K
Output: Sets U, &
: Ut — @7 52 < @
: for each voxel (i, j, k) do
if |p:(4,4,k) — 0.5] < 7 then
Uy +— U U{(3, 7, k, |pe(i, 5, k) — 0.5])}
end if
end for
for each click c,, with label [,, do
for voxels x within radius r of ¢,, do
9: if §:(x) # l,, then
10: gt < gt @] {X}
11: end if
12: end for
13: end for
14: Rank U; by |p:+ — 0.5| and select top K entries
15: Randomly sample or pad &; to size K

R TD TN

2.3 State Tensor Construction

After sampling uncertainty points U; and error points &, we construct a struc-
tured state tensor for GRU-based sequential correction.The process for con-
structing the sequential state tensor is illustrated in Fig. 2. It consists of three
horizontally arranged modules: the top module extracts Uncertain Region
Information, the middle module extracts Most Likely Error Region Infor-
mation, and the bottom module constructs the combined State Tensor.

Each sampled voxel is represented by an 8-dimensional feature vector that
encodes spatial, probabilistic, and interaction information. Specifically, the first
three dimensions correspond to the voxel’s normalized spatial coordinates

(i/D,j/H, k/W), capturing its relative position within the volumetric input.
The fourth dimension stores either the model’s predicted probability p:(i, 7, k)
for uncertainty points or the user-provided label yyser € {0,1} for error points.
The fifth dimension is a binary validity flag m € {0,1}, which distinguishes
real voxels from padding entries introduced to maintain a fixed tensor size. The
final three dimensions encode the coordinates of the initial user click (xo, yo, 20),
providing global contextual information that is repeated for all sampled points.

Concatenating these components gives the final 8-dimensional feature vec-
tor for each voxel. Features from uncertainty and error points are separately
organized as tensors:

FltlnC c RKXS, (5)
Fgrr c ]%K><87 (6)
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Fig.2: Workflow for constructing the sequential state tensor from interaction
points. The top horizontal container illustrates the extraction of Uncertain
Region Information, where voxels with probabilities near the segmentation
threshold (7) are identified. The middle container depicts the extraction of Most
Likely Error Region Information, highlighting regions around user-provided
corrective clicks where the current prediction disagrees with the user label. The
bottom container shows the State Construction process, where features from
both uncertainty and error regions are combined into a structured tensor suitable
for GRU-based sequential correction.

and then vertically concatenated to form the combined input:
Xt _ [F;mc; Fgrr] c R2K><8. (7)

For geometric alignment during refinement, the original spatial coordinates
are stored separately as

C; = [coordinates(U; ); coordinates(&;)] € R2K*3, ()

This tensor X; together with C; is passed to the GRU network at step ¢,
allowing the model to incorporate both local uncertainty/error cues and global
contextual information while maintaining a fixed-size, memory-efficient repre-
sentation.

2.4 GRU-Based Sequential Correction

To capture temporal dependencies across interactions, we employ a Gated Re-
current Unit (GRU) network parameterized by 6. At each iteration ¢, it processes
the current feature tensor X; and hidden state h;_; to output probability and
coordinate adjustments:

Apg, AC; = GRUy(Xy, he—q), 9)
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where Ap; € R?X denotes the predicted probability offsets for the selected voxels,
and AC; € R?>5*3 represents the coordinate refinements. The updated hidden
state h; encodes accumulated interaction history.

2.5 Iterative Refinement

After each iteration, voxel probabilities at sampled coordinates C; are updated
by:
pt+1(iaj7 k) :pt(lvja k) +Ap1(fn)v for (Zvjvk) Ecta (10)

followed by mask binarization:

G411 = I(pr41 > 0.5). (11)

This process continues for 7" interaction rounds or until convergence. In contrast
to previous memory-heavy methods, only a sparse set of uncertain or erroneous
voxels is refined at each step, significantly improving computational efficiency
while maintaining segmentation accuracy.

3 Experiments

3.1 Dataset and evaluation metrics

The development set is an extension of the CVPR 2024 MedSAM on Laptop
Challenge [7], including more 3D cases from public datasets' and covering com-
monly used 3D modalities, such as Computed Tomography (CT), Magnetic Reso-
nance Imaging (MRI), Positron Emission Tomography (PET), Ultrasound, and
Microscopy images. The hidden testing set is created by a community effort
where all the cases are unpublished. The annotations are either provided by the
data contributors or annotated by the challenge organizer with 3D Slicer [4] and
MedSAM?2 [8]. In addition to using all training cases, the challenge contains a
coreset track, where participants can select 10% of the total training cases for
model development.

For each iterative segmentation, the evaluation metrics include Dice Simi-
larity Coefficient (DSC) and Normalized Surface Distance (NSD) to evaluate
the segmentation region overlap and boundary distance, respectively. The final
metrics used for the ranking are:

DSC AUC and NSD_AUC Scores The AUC (Area Under the Curve)
for DSC and NSD measures cumulative improvement across interactions. This
metric quantifies performance gains over the five click predictions, offering a
comprehensive view of segmentation refinement. Notably, the AUC is computed
solely based on click predictions, excluding the initial bounding box prediction
(which is optional).

1 A complete list is available at https://medsam-datasetlist.github.io/
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Final DSC and NSD Scores These scores reflect the model’s segmentation per-
formance after all refinements, representing the ultimate accuracy achieved. In
addition, the algorithm runtime will be limited to 90 seconds per class. Exceed-
ing this limit will lead to all DSC and NSD metrics being set to 0 for that test
case.

3.2 Implementation details

Preprocessing Following the practice in MedSAM [(], all images were pro-
cessed to npz format with an intensity range of [0,255]. Specifically, for CT
images, we initially normalized the Hounsfield units using typical window width
and level values: soft tissues (W:400, L:40), lung (W:1500, L:-160), brain (W:80,
L:40), and bone (W:1800, L:400). Subsequently, the intensity values were rescaled
to the range of [0,255]. For other images, we clipped the intensity values to the
range between the 0.5th and 99.5th percentiles before rescaling them to the range
of [0, 255]. If the original intensity range is already in [0, 255], no preprocessing
was applied.

Following the practice in SegVol-for-SegFM,to enhance foreground contrast,
we implemented dynamic intensity normalization through the ForegroundNorm
method, which first identifies foreground voxels using an adaptive mean-intensity
threshold. The intensities are then clipped to the 0.05th and 99.95th percentiles
of the foreground distribution before standardization, reducing sensitivity to
extreme outliers while preserving tissue contrast. For multi-class segmentation
tasks, ground truth masks are automatically decomposed into binary channels
for each non-background category, with explicit validation of spatial alignment
between image and mask dimensions.

For memory-efficient processing of high-resolution volumetric data, we utilize
sparse matrix storage (NPZ format) for ground truth masks during loading, con-
verting to dense arrays only when necessary for computational operations. The
preprocessing pipeline supports both file-based and direct array inputs, allow-
ing flexible integration with different data sources while maintaining consistent
internal representations. All spatial transformations, including resizing and crop-
ping, are applied after initial intensity normalization to minimize intermediate
memory allocation. During training, stochastic patch extraction is performed
through a weighted augmentation strategy that balances computational cost
and diversity, prioritizing positive-negative sampling crops where appropriate.

Environment settings The development environments and requirements are
presented in Table 1.

Training protocols Building upon the successful practices established in SegVol [1],
we have developed an enhanced training methodology with optimized data aug-
mentation and sampling strategies.
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Table 1: Development environments and requirements. (mandatory table)

System Ubuntu 22.04.2 LTS

CPU Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
RAM 16x32GB; 3200MT/s

GPU (number and type) Two NVIDIA GeForce RTX 4090 24G

CUDA version 12.4

Programming language Python 3.10.16
Deep learning framework torch 2.7.0+cul26 torchvision 0.14.1+cull?

Data Augmentation: The training pipeline incorporates several spatial and
intensity transformations to improve model generalization. Spatial augmenta-
tions include random flipping along all three axes (sagittal, coronal, and axial
planes) with a probability of 0.2 for each orientation. For volumetric data, we em-
ploy a mixed strategy of either full-volume resizing or patch extraction through
positive-negative sampling, with sampling weights favoring the latter (3:1 ratio).
The patch extraction uses RandCropByPosNegLabeld with 3 positive samples for
every negative sample, ensuring adequate representation of both foreground and
background regions. Intensity augmentations consist of random scaling (factor
range +20%) and shifting (+£20% of intensity range), each applied with 20%
probability.

Data Sampling Strategy: We implement a dynamic sampling approach that
adapts to the multi-class nature of segmentation tasks. During batch construc-
tion, the system automatically balances class representation by: 1) Preserving
all available foreground classes in each sample through binary mask decompo-
sition 2) Applying foreground cropping to concentrate computation on relevant
regions 3) Using sparse storage formats for ground truth masks during loading
to enable memory-efficient handling of large 3D volumes 4) Supporting both
whole-volume processing and patch-based training, with the latter preferentially
sampling regions containing segmentation targets when available. The sampling
weights for patch extraction favor positive regions (3:1 positive-to-negative ratio)
to address class imbalance while maintaining context. For inference, we process
full volumes with optional overlapping sliding window when necessary for large
scans.

Interactive Optimization Strategy We present a two-stage training strategy
that harmonizes global shape consistency with local detail refinement to achieve
an optimal balance between interaction efficiency and segmentation accuracy
in medical image analysis. The framework employs box prompt losses in the
first stage to establish topological validity through global similarity metrics,
followed by a second stage that combines both box and point prompt losses to
enable precise boundary refinement using distance metrics, thereby preventing
overfitting to initial prompts while ensuring robust convergence.
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To accurately reflect clinical workflows where users typically perform limited
refinements, we implement a weighted training protocol that prioritizes 2-3 GRU-
based refinement iterations as the most frequent scenario, with 1 and 4 itera-
tions occurring less frequently, and 0 or 5 iterations representing rare cases. This
distribution ensures the model learns predominant interaction patterns while
maintaining adaptability to extreme cases. The optimization process incorpo-
rates sequential refinement mechanisms that maintain memory states between
iterations, coupled with a composite loss function that simultaneously optimizes
global structural similarity, voxel-wise prediction accuracy, and consistency be-
tween initial and refined outputs. The conditional execution architecture enables
differentiated processing of multimodal interaction prompts while ensuring stable
gradient flow throughout the refinement cascade, providing both the efficiency
required for clinical practice and the flexibility needed for complex segmentation
tasks.

Table 2: Training protocols. (mandatory table) Please fill out all rows

Pre-trained Model SegVol (for SegFM)
Batch size 4

Patch size 256 x256x32

Total epochs 25

Optimizer AdamW

Initial learning rate (Ir) le-5

Lr decay schedule None

Training time 2 days 9 hours
Loss function Dice loss + BCE loss
Number of model parameters 295.35M>

Number of flops 264.18G?

4 Results

4.1 Analysis of the Iterative Refinement Mechanism

Our framework is fundamentally designed to enhance segmentation accuracy
through a progressive, multi-stage correction process. To validate the effective-
ness of this core mechanism, we first conducted an analysis focused on the per-
formance gains achieved at each step of the iterative refinement. This evaluation
was performed on a representative 5% subset of the validation set to enable rapid
prototyping and assessment of the iterative dynamics.

As detailed in Table 3, the model demonstrates a clear and consistent pattern
of improvement with each correction iteration. Starting from an initial segmenta-
tion generated by the first prompt, which achieved a Dice Similarity Coefficient
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(DSC) of 0.661, the model’s performance steadily increases. The first correction
step yields the most substantial improvement, boosting the DSC to 0.669 rela-
tive gain of 1.18%. Subsequent corrections continue to fine-tune the segmentation
boundaries, with the second and third iterations contributing further incremen-
tal gains of +0.17% and +0.11%, respectively. After three refinement stages, the
final DSC score stabilized at 0.671, achieving a total absolute improvement of
approximately +0.01 over the initial baseline.

This iterative enhancement pattern confirms that our proposed correction
module effectively identifies and rectifies initial segmentation errors. The dimin-
ishing returns in later stages suggest that the model converges towards a more
accurate solution. Having established the internal validity and efficacy of our
iterative approach, we then proceeded to conduct a comprehensive comparative
evaluation against state-of-the-art methods across the full spectrum of imaging
modalities to benchmark its overall performance.

Table 3: Performance Improvement Through Iterative Refinement (based on 5%
validation set)

Iteration DSC Value Absolute Improvement Relative Improvement (%)
Initial Prompt 0.661081 - -
First Correction  0.668906 +0.00783 +1.18%
Second Correction 0.670053 +0.00115 +0.17%
Third Correction 0.670816 -+0.00076 +0.11%

4.2 Comparative Evaluation on Multi-Modal Datasets

We conducted a comprehensive comparative evaluation to benchmark our frame-
work against several state-of-the-art (SOTA) interactive segmentation meth-
ods, including SAM-Med3D, VISTA3D, SegVol and nnlnteractive. The evalu-
ation was performed across a diverse range of five medical imaging modalities:
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Microscopy,
Positron Emission Tomography (PET), and Ultrasound (US). The objective was
to assess the generalization capability and overall performance of our method in
various clinical and research scenarios.

The quantitative results on validation sets, summarized in Table 4, reveal
a highly competitive performance landscape. Our method consistently places
among the top performers, demonstrating particular strength in clinically preva-
lent modalities. Notably, it achieves state-of-the-art results in MRI, securing
the highest scores in both DSC AUC (2.960) and NSD AUC (3.449). Further-
more, our framework delivers top-tier performance in CT and US modalities,
outperforming most competing approaches and underscoring its robustness and
versatility.

This quantitative superiority is directly corroborated by a qualitative analysis
of the segmentation results. For modalities with well-defined structures, such as
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CT scans with clear anatomical boundaries, our method consistently produces
high-fidelity segmentations. As shown in Figure 3, our approach (1) successfully
renders a smooth and coherent 3D model that is visibly more complete than
that of SegVol (i), directly explaining its improved accuracy reported in Table 4.

The advantages of our framework are even more pronounced in MRI datasets,
which are characterized by high soft-tissue contrast. This environment is partic-
ularly well-suited for our iterative refinement mechanism. As illustrated in Fig-
ure 5, our method (1) excels at producing a remarkably complete and detailed
3D segmentation, overcoming the challenges of ambiguous tissue boundaries that
lead to fragmented results in other models like SegVol (i). This superior capa-
bility to handle complex soft-tissue anatomy is the primary driver behind our
state-of-the-art quantitative scores in the MRI category.

Conversely, the evaluation highlights the shared challenges posed by modali-
ties with inherent physical limitations. The primary failure cases for all methods
occur in PET images with low spatial resolution, where the limited anatomical
detail and inherent blurriness hinder the accurate delineation of fine structures
(Figure 6). Similarly, while our method performs well quantitatively on Ultra-
sound data, the presence of speckle noise and acoustic shadowing artifacts re-
mains a challenge for achieving perfect boundary precision (Figure 7), an area
for future improvement for all segmentation algorithms.

In summary, the comprehensive benchmark validates our framework’s posi-
tion as a robust and high-performing interactive segmentation tool. The analysis
confirms that our iterative refinement strategy is particularly effective in com-
plex clinical modalities like MRI and CT, while soberly acknowledging the shared
challenges faced by all current methods in lower-quality imaging environments.

This strong quantitative performance is directly corroborated by a qualitative
analysis of the segmentation results, which reveals the underlying reasons for our
method’s success and limitations in different imaging environments.

For modalities with well-defined structures, such as CT scans with clear
anatomical boundaries, our method consistently produces high-fidelity segmen-
tations. As shown in Figure 3, our approach (1) successfully renders a smooth
and coherent 3D model. Compared to SegVol (i), which misses several smaller
anatomical components, our method’s result is visibly more complete, which
directly explains its improved segmentation accuracy reported in Table 4.

The advantages of our framework are even more pronounced in MRI datasets,
which are characterized by high soft-tissue contrast. This environment is partic-
ularly well-suited for our iterative refinement mechanism. As illustrated in Fig-
ure 5, our method (1) excels at producing a remarkably complete and detailed
3D reconstruction, overcoming the challenges of ambiguous tissue boundaries
that lead to fragmented results in other models like SegVol (i). This superior
capability to handle complex soft-tissue anatomy is the primary driver behind
our state-of-the-art quantitative scores in the MRI category.

Conversely, the model’s performance, along with that of all competing meth-
ods, is challenged by modalities with inherent physical limitations. The primary
failure cases occur in: PET images with low spatial resolution: As seen in Fig-
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(f) SAMMed3D (g) SegVol (h) nnlInteractive

(i) VISTA3D (j) Ours

Fig. 3: Qualitative comparison of different segmentation methods on an abdom-
inal CT scan. The first row (a-e) shows the 2D cross-sectional segmentation
results from SAMMed3D, SegVol, nnlnteractive, VISTA3D, and our method,
respectively. The second row (f-j) shows the corresponding 3D rendered visual-
izations.



14 Chuanyi Huang et al.

(e) Ours

(f) SAMMed3D (g) SegVol (h) nnInteractive

(i) VISTA3D (j) Ours

Fig. 4: Qualitative comparison of different segmentation methods on an abdom-
inal Microscopy scan. The first row (a-e) shows the 2D cross-sectional seg-
mentation results from SAMMed3D, SegVol, nnInteractive, VISTA3D, and our
method, respectively. The second row (f-j) shows the corresponding 3D rendered
visualizations.
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(i) VISTA3D (j) Ours

Fig. 5: Qualitative comparison of different segmentation methods on an abdom-
inal MRI scan. The first row (a-e) shows the 2D cross-sectional segmentation
results from SAMMed3D, SegVol, nnlnteractive, VISTA3D, and our method,
respectively. The second row (f-j) shows the corresponding 3D rendered visual-
izations.
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Fig. 6: Qualitative comparison of different segmentation methods on an abdom-
inal PET scan. The first row (a-e) shows the 2D cross-sectional segmentation
results from SAMMed3D, SegVol, nnlnteractive, VISTA3D, and our method,
respectively. The second row (f-j) shows the corresponding 3D rendered visual-
izations.
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(d) VISTA3D (e) Ours

(i) VISTA3D (j) Ours

Fig. 7: Qualitative comparison of different segmentation methods on an abdom-
inal US scan. The first row (a-e) shows the 2D cross-sectional segmentation
results from SAMMed3D, SegVol, nnlnteractive, VISTA3D, and our method,
respectively. The second row (f-j) shows the corresponding 3D rendered visual-
izations.
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Table 4: Comparison of segmentation methods on validation sets.

Modality Method DSC_AUC NSD_AUC DSC_ Final NSD_ Final

SAM-Med3D 2.2408 2.2213 0.5590 0.5558

VISTA3D 3.1689 3.2652 0.8041 0.8344

oT SegVol 2.9809 3.1235 0.7452 0.7809

nnlnteractive 3.4337 3.5743 0.8764 0.9165

Our 3.155 3.383 0.789 0.846

SAM-Med3D 1.5222 1.5226 0.3903 0.3964

VISTA3D 2.5895 2.9683 0.6545 0.7493

MR SegVol 2.6719 3.1535 0.6680 0.7884

nnlnteractive 2.6975 3.0292 0.7302 0.8227

Our 2.960 3.449 0.743 0.879

SAM-Med3D 0.1163 0.0000 0.0291 0.0000

VISTA3D 2.1196 3.2259 0.5478 0.8243

. SegVol 1.6846 2.9716 0.4211 0.7429
Microscopy .

nnlnteractive 2.3311 3.1109 0.5943 0.7890

Our 2.108 3.107 0.526 0.776

SAM-Med3D 2.1304 1.7250 0.5344 0.4560

VISTA3D 2.6398 2.3998 0.6779 0.6227

PET SegVol 2.9683 2.8563 0.7421 0.7141

nnlnteractive 3.1877 3.0722 0.8156 0.7915

Our 2.923 2.805 0.730 0.701

SAM-Med3D 1.4347 1.9176 0.4102 0.5435

VISTA3D 2.8655 2.8441 0.8105 0.8079

Us SegVol 1.2438 1.8045 0.3109 0.4511

nnlnteractive 3.3481 3.3236 0.8547 0.8494

Our 3.038 3.146 0.759 0.786

* All methods exclude failed cases from metrics. Empty segmentations receive score
0 in official evaluation.
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Table 5: Performance comparison across modalities and methods on test sets.
Modality Method DSC_AUC NSD_AUC DSC_ Final NSD_ Final

SAM-Med3D 2.1937 1.7846 0.5711 0.4672
VISTA3D 2.3482 2.1062 0.6198 0.5616
CT SegVol 2.4358 2.3213 0.6089 0.5803
nnlnteractive 3.1831 3.1286 0.8342 0.8355
our 2.3187 2.2183 0.5824 0.5570
SAM-Med3D 2.1064 2.0427 0.5317 0.5169
VISTA3D 2.4891 2.5825 0.6516 0.6859
MR SegVol 2.8377 3.1261 0.7094 0.7815
nnlnteractive 3.3866 3.6611 0.8680 0.9416
our 2.7898 3.0283 0.6984 0.7576
SAM-Med3D 0.3115 0.1726 0.0778 0.0431
VISTA3D 2.4526 3.4035 0.6231 0.8528
Microscopy SegVol 2.9603 3.9472 0.7401 0.9868
nnlnteractive 3.4580 3.9895 0.8743 0.9980
our 3.0123 3.9737 0.7551 0.9942
SAM-Med3D 1.3004 0.7297 0.3285 0.1844
VISTA3D 1.8687 1.3919 0.4688 0.3523
PET SegVol 2.9844 2.5108 0.7461 0.6277
nnlnteractive 3.2230 3.0753 0.8170 0.7854
our 2.9323 2.4794 0.7329 0.6202
SAM-Med3D 0.8313 0.7004 0.2078 0.1751
VISTA3D 0.9072 1.2257 0.2953 0.4789
UsS SegVol 0.9429 1.4435 0.2357 0.3609
nnlnteractive 2.4088 3.0407 0.7073 0.8886
our 0.9949 1.5788 0.2652 0.4112

ure 6, the limited anatomical detail and inherent blurriness of PET scans hinder
the accurate delineation of fine structures, a fundamental challenge for any seg-
mentation algorithm. Ultrasound artifacts: Despite achieving strong quantitative
results, ultrasound imaging (Figure 7) remains a difficult modality. The presence
of speckle noise and acoustic shadowing effects can occasionally compromise the
model’s robustness, leading to less precise boundaries compared to CT or MRI.
The strong performance reported in Table 4 highlights our model’s notable re-
silience to these artifacts compared to other methods, though it remains an area
for future improvement. In summary, the comprehensive benchmark across five
distinct modalities validates our framework’s position as a robust, versatile, and
high-performing interactive segmentation tool. The qualitative analysis confirms
that our iterative refinement strategy is particularly effective in complex clinical
modalities like MRI and CT, while soberly acknowledging the shared challenges
faced by all current methods in lower-quality imaging environments.
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5 Discussion and Limitation

Our framework redefines interactive 3D medical image segmentation by empha-
sizing targeted, lightweight correction based on uncertainty and error heuristics.
Unlike prior works that rely on memory-aware backbone architectures or multi-
modal generalization strategies, our method selectively processes only those re-
gions with high uncertainty or localized label disagreements, substantially re-
ducing computational overhead while maintaining effective refinement. This ap-
proach enables progressive improvement in segmentation accuracy with each
interaction, demonstrating diminishing yet consistent gains over successive iter-
ations.

Despite its effectiveness, several limitations remain. First, the notion of un-
certainty—voxels with probabilities near the decision threshold—is useful for
identifying ambiguous regions but is not explicitly calibrated; it does not guar-
antee coverage of all true error regions. Similarly, the “error” set, defined by
local disagreement with user-provided clicks, may overlook systematic or spa-
tially distributed prediction errors. Consequently, the GRU corrector can only
address a subset of potential errors, and comprehensive volumetric correction is
not ensured.

Additional limitations include memory-constrained input sampling and the
external nature of sequential modeling. At each interaction step, only a fixed
number of points (e.g., 200) are sampled due to GPU constraints, limiting the
model’s ability to capture long-range spatial context. Moreover, the GRU op-
erates outside the segmentation backbone, receiving low-dimensional features
rather than full encoder-decoder representations. This separation restricts deeper
temporal context modeling and may constrain correction potential in complex
anatomical regions.

To address these limitations, several avenues for future work are envisioned.
Scaling up the number of sampled points would allow richer contextual cues
from both uncertainty and error distributions. Integrating the GRU directly into
the segmentation backbone could enable prompt-aware, temporally consistent
refinement within high-dimensional feature space. Finally, end-to-end temporal
learning would allow joint optimization of segmentation and memory updates,
potentially improving both convergence and overall accuracy.

6 Conclusion

We have presented a novel framework for interactive 3D medical image segmen-
tation that leverages sequential, history-aware refinement driven by uncertainty
and error heuristics. By focusing computation on the most informative regions,
our approach achieves a lightweight yet effective correction mechanism, improv-
ing segmentation accuracy progressively over multiple interactions.
Extensive evaluation across diverse imaging modalities—CT, MRI, Microscopy,

PET, and Ultrasound—demonstrates that our method consistently enhances
segmentation quality, particularly in anatomically complex regions or modalities
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with challenging contrast. While our current heuristics may not guarantee ex-
haustive coverage of all error regions, the approach provides a practical balance
between efficiency, memory usage, and interactive performance.

Overall, this work underscores the value of targeted, iterative correction in

interactive segmentation, offering a robust and versatile tool that can accelerate
medical image annotation and support precise, clinically relevant analyses.
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images publicly available and CodaLab [10] for hosting the challenge platform.
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