DP²O-SR: Direct Perceptual Preference Optimization for Real-World Image Super-Resolution

Rongyuan Wu^{1,2}, Lingchen Sun^{1,2}, Zhengqiang Zhang^{1,2}, Shihao Wang¹,

Tianhe Wu^{2,3}, Qiaosi Yi^{1,2}, Shuai Li¹, Lei Zhang^{1,2,†}

¹The Hong Kong Polytechnic University ²OPPO Research Institute

³City University of Hong Kong

[†]Corresponding author

https://github.com/cswry/DP20-SR

Abstract

Benefiting from pre-trained text-to-image (T2I) diffusion models, real-world image super-resolution (Real-ISR) methods can synthesize rich and realistic details. However, due to the inherent stochasticity of T2I models, different noise inputs often lead to outputs with varying perceptual quality. Although this randomness is sometimes seen as a limitation, it also introduces a wider perceptual quality range, which can be exploited to improve Real-ISR performance. To this end, we introduce Direct Perceptual Preference Optimization for Real-ISR (DP²O-SR), a framework that aligns generative models with perceptual preferences without requiring costly human annotations. We construct a hybrid reward signal by combining full-reference and no-reference image quality assessment (IQA) models trained on large-scale human preference datasets. This reward encourages both structural fidelity and natural appearance. To better utilize perceptual diversity, we move beyond the standard best-vs-worst selection and construct multiple preference pairs from outputs of the same model. Our analysis reveals that the optimal selection ratio depends on model capacity: smaller models benefit from broader coverage, while larger models respond better to stronger contrast in supervision. Furthermore, we propose hierarchical preference optimization, which adaptively weights training pairs based on intra-group reward gaps and inter-group diversity, enabling more efficient and stable learning. Extensive experiments across both diffusion- and flow-based T2I backbones demonstrate that DP²O-SR significantly improves perceptual quality and generalizes well to real-world benchmarks.

1 Introduction

Image super-resolution (ISR) [13, 60, 25, 59, 10, 23, 56, 16] aims to reconstruct high-resolution (HR) images from low-resolution (LR) inputs. Traditional methods emphasize pixel-level accuracy but often produce over-smoothed results that lack realistic textures. To address this, recent approaches [22, 44, 43, 55, 24, 8] have shifted toward improving perceptual quality, which is particularly important for real-world ISR (Real-ISR) tasks where degradations are complex and typically unknown. Generative models [35, 17], especially large-scale pre-trained text-to-image (T2I) diffusion models such as Stable Diffusion (SD) [1] and FLUX [20], have demonstrated strong potential for Real-ISR [42, 52, 28, 48, 37, 33, 2] due to their capacity to synthesize plausible and diverse details. However, these models are inherently stochastic: different noise inputs can lead to significantly different output qualities. While this randomness is often considered as a drawback [37], it also introduces a broader perceptual quality range, which can be viewed as a source of supervision, enabling preference-driven optimization to better exploit T2I model's generative capability.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

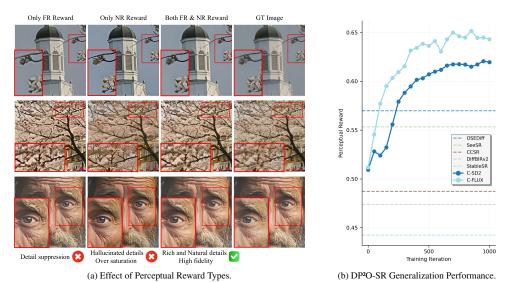


Figure 1: (a) Visual results of models trained with FR, NR, and hybrid rewards. FR reward suppresses detail, NR reward encourages hallucinations, while the hybrid reward preserves structure and improves realism. (b) DP2O-SR significantly boosts perceptual quality on the out-of-domain RealSR benchmark [5], improving both small and large generative Real-ISR models after only 500 steps. Larger models like C-FLUX benefit more from preference supervision.

To harness this diversity, we propose DP²O-SR—Direct Perceptual Preference Optimization for Real-ISR—a training framework that aligns generative ISR models with human-like perceptual preferences. Instead of relying on costly human annotations, we construct a perceptual reward using image quality assessment (IQA) models trained on large-scale human preference data. This reward integrates both full-reference (FR) and no-reference (NR) metrics. FR metrics promote structural fidelity and help suppress hallucinated content, whereas NR metrics encourage realism and aesthetic coherence. By combining FR and NR IQA metrics, the hybrid reward provides a balanced signal that supports both accuracy and naturalness. As illustrated in Fig. 1(a), models trained with only FR metrics tend to produce oversmoothed outputs, while those trained with NR metrics alone may generate hallucinated details. In contrast, the hybrid reward leads to outputs with rich and natural details while remaining structurally consistent with ground-truth (GT).

Unlike Diff-DPO [40], which constructs a single best-vs-worst pair from outputs of different models, we sample multiple outputs from a single model using different noise seeds. These outputs are ranked by perceptual reward, and preference pairs are formed by sampling from the top-N and bottom-N candidates. This richer supervision captures finer perceptual distinctions and better utilizes the diversity inherent in stochastic generation.

We systematically investigate how the number of rollouts (M) and the selection ratio (N/M) influence learning across two representative backbones: a relatively samller diffusion model (ControlNet-SD2, denoted as C-SD2) and a larger flow-based model (ControlNet-FLUX, denoted as C-FLUX). Increasing M improves perceptual diversity and training stability, though with diminishing returns. The optimal N/M varies by model capacity: smaller models prefer broader coverage (e.g., 1/4) for smoother gradients, while larger models benefit more from stronger contrast (e.g., 1/16), as their greater capacity enables them to learn more effectively from larger preference differences. These findings underscore the need to tailor data curation according to model scale.

Even with well-chosen M and N/M, not all comparisons are equally informative—some are ambiguous or redundant. This motivates a more selective approach to learning. We propose Hierarchical Preference Optimization (HPO), which adaptively weights training pairs at two levels: intra-group, by emphasizing comparisons with larger reward gaps; and inter-group, by prioritizing inputs with greater perceptual spread. By focusing on the most informative signals, HPO improves both training efficiency and perceptual alignment.

We evaluate DP²O-SR on the out-of-domain RealSR benchmark [5], which contains real-world LR-HR pairs captured under varying focal lengths, differing from the synthetic degradations used

during training. As shown in Fig. 1(b), both C-SD2 and C-FLUX achieve significant perceptual reward improvements within the first 500 training iterations of DP2O-SR, surpassing strong baselines such as SeeSR [48] and OSEDiff [47]. Specifically, C-FLUX improves from approximately 0.51 to 0.65, while C-SD2 rises to 0.62, achieving top-2 performance early in training.

2 Related Work

Real-World Image Super-Resolution. Early deep learning-based ISR methods [13, 27, 60, 12] primarily optimize pixel-level accuracy based on simple degradation assumptions, such as bicubic downsampling. As a result, they often produce over-smoothed outputs in real-world scenarios. To enhance perceptual quality, researchers have introduced GAN-based techniques [22], including BSRGAN [55] and Real-ESRGAN [43], which use complex degradation models to better simulate complex real-world degradations. However, these GAN-based approaches often suffer from unstable training and visual artifacts [43, 24]. Recently, diffusion models [17, 35], especially large-scale pre-trained T2I models [1, 20], have achieved strong results in Real-ISR tasks [42, 37, 48, 50]. These models excel at generating realistic details, but their outputs vary across different runs for the same LR input due to the inherent sampling randomness. Many existing works treat this randomness as a limitation. Some methods aim to stabilize the generation process [37], while others train one-step models [47, 36, 6, 53, 14] to reduce stochasticity. In contrast, we view this stochasticity as a useful source of high-quality supervision and consequently develop a preference-based optimization framework to improve Real-ISR performance.

Preference Alignment. Aligning generative models with human preferences has become a key area of research, especially in the training of large language models (LLMs) using reinforcement learning with human feedback (RLHF) [11, 61, 32]. This process typically requires training a separate reward model, which adds significant computational cost [21]. DPO [34] provides a simpler alternative by directly optimizing the policy using preference data, without requiring an explicit reward model. Adapting these alignment techniques to diffusion models introduces additional challenges, mainly due to their iterative denoising process [29]. Recent work has extended DPO to diffusion models. For example, Diff-DPO [40] applies preference optimization across diffusion timesteps to improve visual aesthetics and prompt fidelity. Several follow-up works propose refinements, such as step-aware preference modeling [26, 18] and sample weighting based on score distributions [30]. Although DPO-based methods can be applied to Real-ISR, there lack a well-designed reward and carefully designed training strategies. We address these challenges by introducing a perceptual reward tailored to Real-ISR and by systematically exploring preference pair construction strategies beyond the conventional best-vs-worst selection. This enables more reliable learning across models with different capacities and under limited sampling budgets.

3 Background

Diffusion and Flow-based Models. Both diffusion and flow-based generative models define a stochastic interpolation between data $x^* \sim p(x)$ and noise $\epsilon \sim \mathcal{N}(0,I)$ using the unified formulation $x_t = \alpha_t x^* + \sigma_t \epsilon$ [31], where t is the timestep, and α_t, σ_t are scalar scheduling coefficients. The goal is to learn a model that reverses this process to sample from the data distribution. Diffusion models [17] specify this path implicitly via a forward SDE and typically learn the score function $s_{\theta}(x,t) = \nabla_x \log p_t(x)$, with a standard constraint $\alpha_t^2 + \sigma_t^2 = 1$. In contrast, flow-based models [15] directly define the interpolation with $\alpha_t + \sigma_t = 1$, enabling exact transport in finite time, and learn a velocity field $v_{\theta}(x,t) = \frac{d}{dt}x_t$. Different scheduling schemes lead to distinct sampling trajectories.

From RLHF to Diff-DPO. Aligning generative models with human preferences traditionally relies on RLHF, which involves training a reward model followed by policy optimization. However, this multi-stage process is complex and unstable. DPO [34] offers a simpler alternative by directly optimizing the policy using preference data. Under the Bradley-Terry preference model [4], DPO derives a loss that encourages higher likelihood ratios for preferred samples. As derived in the work [40], the training objective of Diff-DPO is formulated as follows:

$$L_{DPO} = -\mathbb{E}_{(\boldsymbol{x}_{0}^{w}, \boldsymbol{x}_{0}^{l}) \sim D, t \sim \mathcal{U}(0, T), \boldsymbol{x}_{t}^{w} \sim q(\boldsymbol{x}_{t}^{w} | \boldsymbol{x}_{0}^{w}), \boldsymbol{x}_{t}^{l} \sim q(\boldsymbol{x}_{t}^{l} | \boldsymbol{x}_{0}^{l})} \log \sigma(-\beta(\|\boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{w}, t)\|_{2}^{2} - \|\boldsymbol{\epsilon}^{w} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{w}, t)\|_{2}^{2} - (\|\boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\theta}(\boldsymbol{x}_{t}^{l}, t)\|_{2}^{2} - \|\boldsymbol{\epsilon}^{l} - \boldsymbol{\epsilon}_{\text{ref}}(\boldsymbol{x}_{t}^{l}, t)\|_{2}^{2}))), \quad (1)$$

where $\mathbf{x}_t^w = \alpha_t \mathbf{x}_0^w + \sigma_t \boldsymbol{\epsilon}^w$ and $\mathbf{x}_t^l = \alpha_t \mathbf{x}_0^l + \sigma_t \boldsymbol{\epsilon}^l$ are noisy versions of preferred and dispreferred samples at timestep t, $\boldsymbol{\epsilon}_{\theta}(\cdot,t)$ is the predicted noise, β controls the deviation between policy and

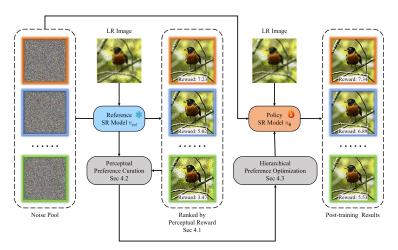


Figure 2: Illustration of our DP²O-SR framework. Given the same LR input and noise, a frozen pretrained SR model π_{ref} (blue) generates diverse outputs by varying the random seed. These outputs are first evaluated using our proposed perceptual reward (Sec. 4.1), and then filtered through a perceptual preference curation process (Sec. 4.2) to construct pairwise comparisons. A trainable policy model π_{θ} (orange), initialized from π_{ref} , is subsequently optimized via hierarchical preference optimization (Sec. 4.3), which emphasizes informative comparisons and enhances perceptual alignment.

reference models, and $\sigma(\cdot)$ is the sigmoid function normalizing the preference score. For flow-based models, we replace the predicted noise with velocity. This loss encourages better denoising of preferred samples, thereby aligning generation with human preferences.

4 Methodology

We propose **DP²O-SR**, a preference-driven optimization framework for Real-ISR using diffusion or flow-based models. Our key insight is to leverage the inherent stochasticity of these models—different noise seeds naturally produce outputs with varying perceptual quality. By scoring these outputs with a human-aligned perceptual reward and forming pairwise preferences, we enable direct supervision of perceptual quality without handcrafted losses or external reward networks. As illustrated in Fig. 2, our framework comprises three components: (1) generating diverse ISR samples from a frozen reference model, (2) ranking them with a perceptual reward to curate preference pairs, and (3) optimizing a trainable policy via uncertainty-aware preference learning. Our design aligns ISR outputs with human perceptual preferences and improves the perceptual quality of both C-SD2 and C-FLUX.

4.1 Perceptual Reward Design

Given an LR input $I_{LR} \in \mathbb{R}^{h \times w \times 3}$, we use a Real-ISR model π_{ref} to generate M ISR candidates $\mathcal{S} = \{I_1, \dots, I_M\}$ by varying the noise seeds, which often exhibit certain perceptual variations. To rank the perceptual quality of these outputs, we introduce a perceptual reward that aggregates multiple IQA metrics. Specifically, we consider two sets of metrics: a set \mathcal{FR} of FR metrics, which compare outputs against GT images, and a set \mathcal{NR} of NR metrics, which assess quality without reference. Specifically, the \mathcal{FR} set includes LPIPS [58], TOPIQ-FR [7], and AFINE-FR [9], and the \mathcal{NR} set includes MANIQA [51], MUSIQ [19], CLIPIQ+ [41], TOPIQ-NR [7], AFINE-NR [9], and Q-Align [46]. Note that the commonly used distortion-based metrics PSNR and SSIM are excluded, as they are not effective in describing perceptual quality.

For each candidate $I_m, m=1,...,M$ and each metric $\phi \in \mathcal{FR} \cup \mathcal{NR}$, we compute a raw score s_m^ϕ . The scores are first direction-aligned such that higher values indicate better quality. Denote by s_{\max}^ϕ and s_{\min}^ϕ the maximum and minimum values among the score values of the M candidates, we then normalize each score s_m^ϕ as $\bar{s}_m^\phi = (s_m^\phi - s_{\min}^\phi)/(s_{\max}^\phi - s_{\min}^\phi)$. To balance fidelity and perception, we define the perceptual reward of a sample by averaging the normalized scores over the \mathcal{FR} and \mathcal{NR} sets, assigning them equal weight regardless of their sizes:

$$R_m = \frac{0.5}{|\mathcal{FR}|} \sum_{\phi \in \mathcal{FR}} \bar{s}_m^{\phi} + \frac{0.5}{|\mathcal{NR}|} \sum_{\phi \in \mathcal{NR}} \bar{s}_m^{\phi}, \tag{2}$$

where $|\cdot|$ denotes the cardinality of a set. Based on this reward, we can identify the top-N and bottom-N candidates to construct preference pairs for training.

4.2 Perceptual Preference Data Curation

Given the reward signal, we construct preference pairs by sampling multiple ISR outputs per input using different noise seeds from a single stochastic model. In contrast to Diff-DPO [40], which selects outputs from different models and constructs a single best-versus-worst pair per input, our approach samples M outputs from the same model and ranks them using the reward function R_m . We then select the top-N and bottom-N samples as positive and negative sets, respectively, and build N^2 possible preference pairs. This allows us to construct richer training signals from a single model without relying on external comparisons or ground-truth.

This design introduces two key control parameters: the number of samples per input (M) and the selection ratio (N/M). Varying these parameters enables us to control the contrast and diversity of the training signal. For example, smaller values of N/M are expected to yield stronger reward gaps (contrast) between positive and negative samples, potentially accelerating learning. Conversely, larger N/M ratios increase coverage and diversity but may reduce discriminative signal strength.

To explore the effect of these choices across architectures, we apply this curation strategy to two representative models of contrasting capacity: C-SD2 (a 0.8B UNet diffusion model) and C-FLUX (a 12B DiT flow model). We hypothesize that higher-capacity models may benefit from stronger contrast (low N/M), whereas smaller models may require more redundancy to ensure stable gradients. The experimental analysis of these hypotheses is provided in Section 5.3.

4.3 Hierarchical Preference Optimization

We propose hierarchical preference optimization (HPO), an extension of Diff-DPO that improves preference alignment by adaptively weighting training pairs at two levels: *intra-group* and *inter-group*. While Diff-DPO treats all training pairs equally, HPO focuses on learning from more informative signals by leveraging both local and global variations.

Intra-group. Within each group of SR candidates generated from the same LR input, preference pairs $(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l)$ may differ in informativeness. Intuitively, pairs with larger reward gaps $\Delta R = R_w - R_l$ offer stronger supervision. We define the intra-group weight as $w_{\text{intra}}(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l) = |R_w - R_l| + (1 - \mu_{\text{gap}})$, where μ_{gap} is the average reward gap over all pairs within the group. This formulation ensures that high-contrast pairs receive greater emphasis while keeping the expected weight normalized.

Inter-group. Different LR inputs may yield SR candidate groups with varying levels of perceptual diversity. To prioritize groups that offer stronger supervision, we compute the standard deviation σ_g of reward values $\{R_m\}$ within group g, and assign inter-group weight as $w_{\text{inter}}(g) = \sigma_g + (1 - \mu_\sigma)$, where μ_σ is the average standard deviation across all groups. This boosts the contribution of more informative groups while keeping the expected group weight close to 1.

Final Loss Function. Each training pair $(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l)$ is assigned a total weight $w = w_{\text{intra}}(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l) \cdot w_{\text{inter}}(g)$. The final training objective is $\mathcal{L}_{HPO} = \sum_{(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l)} w \cdot \ell(\boldsymbol{x}_0^w, \boldsymbol{x}_0^l; \theta)$, where $\ell(\cdot)$ denotes the per-pair Diff-DPO loss defined in Eq. 1.

5 Experiment

5.1 Experimental Settings

Baselines. We adopt the ControlNet paradigm [57], where a control branch is trained for the Real-ISR task, using pre-trained Stable Diffusion 2.0 (SD2) [1] and FLUX.1-Dev (FLUX) [20] as backbones. For convenience, we refer to the resulting models as C-SD2 and C-FLUX, respectively, and their improved variants with our method as DP²O-SR (SD2) and DP²O-SR (FLUX). This setup enables us to evaluate DP²O-SR across models that differ substantially in capacity (0.8B vs. 12B), architecture (UNet vs. MMDiT), and generative paradigm (diffusion vs. flow matching). The detailed network architecture of our C-SD2 and C-FLUX can be found in the **Appendix**.

Evaluation Metrics. We evaluate our method using a total of 14 IQA metrics, categorized into four groups: (1) *Trained FR metrics*: LPIPS [58], TOPIQ-FR [7], and AFINE-FR [9]; (2) *Trained NR*

Table 1: Performance comparison of different methods. Metric types are categorized into trained FR perceptual (in blue), trained NR perceptual (in green)), untrained NR perceptual (in yellow)), and untrained FR fidelity (in purple)) based metrics. **Red bold** values indicate better performance between the baseline C-SD2, C-FLUX and their boosted versions by DP²O-SR. Arrows indicate whether higher (\uparrow) or lower (\downarrow) values are better.

Datasets	Metrics	StableSR	DiffBIRv2	SeeSR	CCSR	AddSR	OSEDiff	C-SD2	DP ² O-SR (SD2)	C-FLUX	DP ² O-SR (FLUX)
Syn-Test	LPIPS↓	0.4219	0.4471	0.4322	0.4080	0.4930	0.4043	0.4332	0.4268	0.4260	0.4187
	TOPIQ-FR↑	0.4208	0.4108	0.4238	0.4357	0.3577	0.4375	0.4336	0.4396	0.4364	0.4489
	AFINE-FR↓	-0.6309	-0.9339	-1.0931	-0.3396	-0.7704	-1.0567	-1.1433	-0.8962	-1.0164	-0.8341
	MANIQA↑	0.5707	0.6528	0.6513	0.5956	0.7025	0.6327	0.6684	0.7165	0.6857	0.7199
	MUSIQ↑	60.34	70.59	71.37	64.34	73.33	70.04	71.66	74.87	72.28	75.06
	CLIPIQA+↑	0.6313	0.7491	0.7385	0.6421	0.7742	0.7164	0.7595	0.8124	0.7473	0.7993
	TOPIQ-NR↑	0.5019	0.7084	0.7098	0.5941	0.7629	0.6341	0.7155	0.7611	0.7019	0.7645
	AFINE-NR↓	-0.8693	-0.9683	-1.0483	-0.7937	-1.0751	-0.9879	-1.0097	-1.2263	-1.2026	-1.2764
	QALIGN↑	3.2196	4.1382	4.1614	3.3266	4.2086	3.9801	4.2481	4.5526	4.4266	4.7060
	VQ-R1↑	3.78	4.34	4.42	3.88	4.38	4.40	4.43	4.57	4.53	4.65
	NIMA↑	4.8936	5.4096	5.3862	4.7765	5.5352	5.2029	5.3894	5.6417	5.4458	5.5986
	TOPIQ-IAA↑	4.7056	5.3929	5.3595	4.8338	5.6047	5.1199	5.4123	5.6106	5.3457	5.5292
	PSNR↑	22.75	22.43	22.41	23.54	21.00	22.61	22.46	21.48	21.26	21.27
	SSIM↑	0.5865	0.5355	0.5648	0.5928	0.4832	0.5775	0.5449	0.5259	0.5158	0.5143
	LPIPS↓	0.3877	0.4288	0.3883	0.3645	0.4539	0.3729	0.4146	0.4045	0.4004	0.4024
	TOPIQ-FR↑	0.4923	0.4747	0.4881	0.5367	0.4093	0.5059	0.4756	0.4656	0.4824	0.4867
	AFINE-FR↓	-0.7699	-0.8059	-0.7439	-0.9548	-0.1243	-0.7174	-0.6578	-0.3331	-0.5916	-0.6097
	MANIQA↑	0.6230	0.6502	0.6451	0.6034	0.6810	0.6335	0.6629	0.7031	0.6632	0.6918
	MUSIQ↑	65.88	69.28	69.82	63.57	71.39	69.09	70.44	73.16	69.60	72.77
RealSR	CLIPIQA+↑	0.6501	0.7235	0.6910	0.6216	0.7438	0.6964	0.7295	0.7852	0.6798	0.7571
	TOPIQ-NR↑	0.5748	0.6760	0.6891	0.5735	0.7262	0.6254	0.6828	0.7429	0.6522	0.7416
	AFINE-NR↓	-1.0120	-0.9860	-1.0368	-0.9157	-1.1449	-1.0489	-1.0357	-1.1555	-1.0985	-1.0905
	QALIGN↑	3.2337	3.6866	3.6723	3.1317	3.7625	3.6399	3.6490	4.0206	3.6499	4.1492
	VQ-R1↑	3.78	4.12	3.98	3.80	4.08	4.09	4.08	4.21	4.02	4.32
	NIMA↑	4.8150	4.9190	4.9193	4.4545	5.1601	4.8952	4.9914	5.2324	4.9780	5.0740
	TOPIQ-IAA↑	4.5856	4.8981	4.8553	4.3509	5.0890	4.7545	4.9238	5.1144	4.7427	4.9798
	PSNR↑	24.64	24.83	25.15	26.21	23.31	25.15	23.61	22.49	23.58	23.49
	SSIM↑	0.7077	0.6500	0.7213	0.7363	0.6404	0.7340	0.6566	0.6500	0.6594	0.6590

metrics: MANIQA [51], MUSIQ [19], CLIPIQA+ [41], TOPIQ-NR [7], AFINE-NR [9], and Q-Align [46], which together form the perceptual reward used in training. These two groups constitute the sets \mathcal{FR} and \mathcal{NR} defined in Sec. 4.1 for reward computation. (3) *Untrained NR perceptual metrics*: VQ-R1 [49], NIMA [38], and TOPIQ-IAA [7], used to assess perceptual generalization beyond training targets; (4) *Untrained FR fidelity metrics*: PSNR and SSIM [45], included for completeness. This comprehensive setting allows us to evaluate both in-distribution performance and out-of-distribution generalization of Real-ISR models.

Finetuning, Post-Training and Testing Datasets. The C-FLUX model is finetuned for the Real-ISR task using approximately 1 million high-quality images. We use a batch size of 32, a learning rate of 1×10^{-4} , and train the model for 45,000 steps. The C-SD2 variant follows a similar setup, but is trained with a batch size of 256, a learning rate of 2×10^{-4} , and 35,000 steps.

To support perceptual post-training, we curate a semantically diverse dataset from the Internet, containing 30,100 high-quality images spanning six major scene types and 266 sub-categories. Among them, 30,000 images are used for post-training, while the remaining 100 images form the *Syn-Test* set. We adopt the first-order degradation pipeline from ResShift [54], which better simulates real-world degradation than the second-order version used in RealESRGAN [43]. We further evaluate generalization performance on real-world benchmarks such as *RealSR* [5].

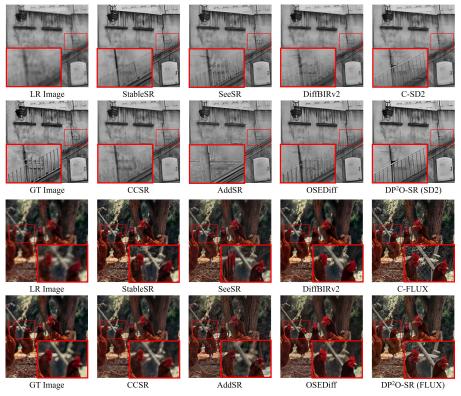


Figure 3: Qualitative comparisons of different Real-ISR methods. Please zoom in for a better view.

DP²O-SR Training Configuration. We train DP²O-SR with a batch size of 1024, a learning rate of 2×10^{-5} , and set the preference weighting hyperparameter β to 5,000. The model is trained for 1,000 iterations. All experiments are conducted on $8\times A800$ GPUs. To account for the stochasticity of the generative SR models, we sample up to M=64 outputs per LR image during training. Preference pairs are constructed from C-FLUX and C-SD2 outputs, each sampled using 25 and 50 inference steps, respectively. The corresponding classifier-free guidance (CFG) scales are set to 2.5 and 3.5. These settings are kept consistent throughout both training and evaluation.

Offline Candidate Generation and IQA Labeling. For offline preference pair construction, we sample 64 outputs per LR image across 30,000 training images using the same 8×A800 GPU setup. This process requires approximately 168 hours for C-SD2 and 432 hours for C-FLUX. The resulting 1.92 million generated images are labeled using our suite of IQA models (Section 4), which takes an additional 72 hours. All configurations are held fixed to ensure reproducibility and fair comparison.

5.2 Results on Perceptual Preference Alignment

Improvement over Baselines. To evaluate the effectiveness of DP²O-SR, we compare it with the baseline models C-SD2 and C-FLUX using the four categories of metrics. As shown in Tab. 1, our method consistently improves performance in almost all perceptual categories, demonstrating strong alignment with training signals and good generalization beyond them.

On the *Syn-Test* dataset, where the degradation process matches that used during training, we observe clear improvements on trained FR metrics such as LPIPS (\downarrow 0.4332 \rightarrow 0.4268) and TOPIQ-FR (\uparrow 0.4336 \rightarrow 0.4396) for SD2, along with similar trends on C-FLUX. For trained NR metrics, performance is also enhanced across the board, including MANIQA (\uparrow 0.6684 \rightarrow 0.7165), CLIP-IQA+(\uparrow 0.7595 \rightarrow 0.8124), and QALIGN (\uparrow 4.2481 \rightarrow 4.5526), indicating that preference-guided finetuning effectively aligns outputs with perceptual quality signals. Importantly, our method generalizes well to perceptual metrics not used during training. For example, on the untrained metric VQ-R1, we observe consistent improvements over both baselines (*e.g.*, 4.38 \rightarrow 4.57 for SD2, 4.40 \rightarrow 4.65 for FLUX), suggesting that the learned preferences transfer beyond the supervised objectives. This aligns with the well-established perception-distortion tradeoff [3], which suggests that improving perceptual quality often comes at the cost of lower PSNR or SSIM.

Comparison with SOTA. Our DP²O-SR models outperform a wide range of state-of-the-art Real-ISR methods on the challenging *RealSR* benchmark, including StableSR [42], DiffBIRv2 [28], SeeSR [48], CCSR [37], AddSR [50], and OSEDiff [47], especially in perceptual metrics. For instance, DP²O-SR (SD2) achieves the highest MANIQA (\uparrow 0.7031) and CLIPIQA+ (\uparrow 0.7852) among all methods, indicating strong perceptual quality and alignment with human preferences.

In untrained perceptual metrics such as VQ-R1 and NIMA, DP²O-SR (FLUX) also exhibits strong generalization, achieving top-tier results (e.g., VQ-R1 \uparrow 4.32, QALIGN \uparrow 4.1492). These results demonstrate that our method not only boosts perceptual alignment on seen metrics but also generalizes to diverse evaluation criteria beyond the training objectives. This highlights the ability of DP²O-SR to transform moderate diffusion backbones into highly competitive Real-ISR models.

Qualitative Comparisons. Fig. 3 presents visual comparisons of different Real-ISR methods. In the first example, the C-SD2 baseline produces dense, irregular stripe artifacts in the region of the staircase. After applying DP²O-SR, these artifacts are effectively removed and replaced with regular clean fence structures, achieving even better reconstruction quality than SeeSR and OSEDiff. In contrast, AddSR and CCSR partially erase the stair details. In the second example, C-FLUX generates grid-like artifacts in the background, which are largely eliminated after applying DP²O-SR. DiffBIRv2 and StableSR fail to reconstruct meaningful facial features, yielding smeared or indistinct results. AddSR distorts the beak geometry, while CCSR over-sharpens edges but lacks semantic accuracy. In addition, some methods tend to hallucinate unnatural chicken heads. In comparison, the results of DP²O-SR (C-FLUX) are visually clean and semantically faithful. It should be noted that both C-SD2 and C-FLUX use the same noise seed before and after applying DP²O-SR. This confirms that our method effectively suppresses semantic artifacts while preserving the overall structure and content of the original generation. Due to space limitations, more visualization results, as well as a user study, can be found in the **Appendix**.

5.3 Effect of Sample Count and Selection Ratio

To validate the impact of sample count and selection ratio in our preference curation pipeline, we conduct experiments on two contrasting architectures: C-SD2 and C-FLUX. For each model, we vary the total number of rollouts M and the selection ratio N/M. The results reveal several consistent patterns and architecture-specific sensitivities:

Larger M generally improves performance, but with diminishing returns. For a fixed N/M, increasing M consistently improves training stability and final reward, although the benefit decreases as M increases (e.g., M=64).

 $\mathbf{DP^2O\text{-}SR}$ (C-FLUX) is significantly more stable than $\mathbf{DP^2O\text{-}SR}$ (C-SD2). C-SD2 exhibits reward collapse under low N or high N/M settings, likely due to overfitting to sparse or low-contrast supervision. In contrast, C-FLUX maintains stable and monotonic reward curves across most configurations, implying resilience to noisy or weak preference signals.

Both models exhibit architecture-specific optimal N/M regimes. For C-SD2, N/M=1/4 yields the best trade-off between stability and reward contrast; lower ratios often lead to collapse, while higher ratios converge more slowly. C-FLUX, on the other hand, performs best at lower ratios such as 1/16, but suffers degraded performance at 1/2. This suggests that more capable models can effectively learn from stronger contrast signals, whereas smaller models benefit from greater redundancy and smoother gradients.

These results highlight the importance of tailoring preference curation strategies to model capacity. While moderate N/M ratios consistently perform well, the optimal configuration depends on the model's ability to generalize from noisy or low-contrast supervision. Our approach provides a scalable framework for systematically exploring these trade-offs. Based on these findings, we select N=8 and M=32 for C-SD2, and N=4 and M=64 for C-FLUX in all experiments.

5.4 Stochasticity and the Effect of DP²O-SR

Diffusion and flow-based SR models generate diverse outputs due to their inherent stochasticity. To analyze this, we sample M outputs per input and compute perceptual reward statistics: Best@M, Mean@M, and Worst@M. As shown in Fig. 5, for both C-SD2 and C-FLUX baselines, Mean@M remains relatively stable as M increases, suggesting that a single sample is generally representative

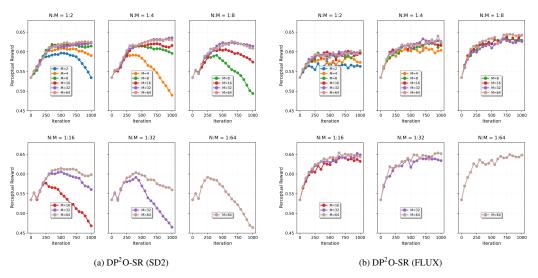


Figure 4: Training curves of DP²O-SR on SD2 and FLUX under varying M and N/M configurations. Larger M generally improves reward, while optimal N/M differs across model capacities.

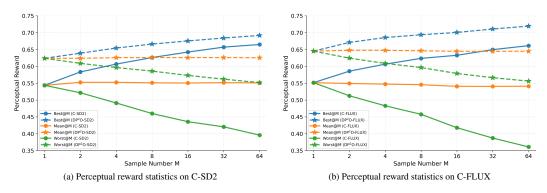


Figure 5: Perceptual reward statistics by increasing sample count M on (a) C-SD2 and (b) C-FLUX backbones. In both cases, the baseline models (solid) show a widening quality range with more samples, while DP^2O -SR (dashed) consistently improves all statistics—especially Worst@M—highlighting stronger robustness and reduced output variability.

of average performance. In contrast, Best@M increases and Worst@M decreases with larger M, indicating increased variability in output quality. DP^2O -SR consistently improves all the three statistics across both backbones, with the most notable gain in Worst@M. This indicates that our method not only improves average and best-case outcomes, but more importantly, raises the quality floor—leading to more consistent and perceptually robust outputs.

To further assess model stability, we follow the evaluation protocol of CCSR [37], randomly sampling 10 outputs per input and computing the mean and standard deviation of perceptual scores. As shown in Tab. 2, DP²O-SR achieves both better average performance and lower variance across various metrics, confirming its superior robustness and reliability.

5.5 Global Reward, Local Refiner

Although our reward function is composed entirely of global IQA metrics, which assess overall image quality, we observe an intriguing behavior: localized refinement. As shown in Fig. 6, we compare the outputs of baseline model C-FLUX and its improved variant DP²O-FLUX across three random seeds, using the same LR input. All inference hyperparameters, including the number of inference steps (25) and classifier-free guidance scale (CFG=2.5), are kept fixed to ensure a controlled comparison. The only varying factor is the random seed. Two noteworthy observations can be made.

Table 2: Performance comparison of different methods on RealSR bench [5].

	racio 2. I errormanee comparison of affectent meaneds on recursive senting [2].								
Method	LPIPS↓	TOPIQ-FR↑	$\mathbf{AFINE}\text{-}\mathbf{FR}\!\!\downarrow$	$\mathbf{MANIQA} \!\!\uparrow$	MUSIQ↑	CLIPIQA+↑	TOPIQ-NR↑	AFINE-NR↓	QALIGN↑
C-SD2	0.416±0.018	0.473±0.022	-0.698±0.239	0.664±0.019	70.34±1.79	0.730±0.028	0.684±0.034	-1.032±0.057	3.630±0.187
DP ² O-SR (SD2)	0.405±0.009	0.467±0.013	-0.329±0.150	0.705±0.012	73.24±0.81	0.784±0.017	0.745±0.015	-1.157±0.041	4.017±0.117
C-FLUX	0.400±0.023	0.480±0.027	-0.539±0.274	0.665±0.025	69.70±2.15	0.682±0.036	0.654±0.046	-1.096±0.070	3.654±0.231
DP ² O-SR (FLUX)	0.403±0.013	0.485±0.016	-0.549±0.176	0.694±0.013	72.78±0.93	0.758±0.019	0.743±0.013	-1.100±0.047	4.143±0.113
Office of the last	Section 1	- Page 6				· · · · · · · · · · · · · · · · · · ·		<u> </u>	
	200								
	200		5		(A)	The state of		65	
			A P		7 \			AF	
LR Image	8 J. 1	C-FLUX	K, Seed 1		C-FLUX, Se	ed 2	C-F	LUX, Seed 3	11 1
							- Paris		
					VA.				
PAR		1			-10	1		3	

Figure 6: Comparison between C-FLUX and DP²O-FLUX across three random seeds. Trained with global IQA rewards, DP²O-FLUX demonstrates localized refinement (*e.g.*, wing structure), while keeping other regions (*e.g.*, head reflections) almost unchanged.

Seed Sensitivity in Local Details. Even within the same model (C-FLUX or DP²O-FLUX), varying the random seed leads to noticeable differences in local structures, such as wing venation and insect head details. This highlights the stochastic nature of diffusion-based generation, especially with under-constrained guidance.

Local Enhancement from Global Reward. More surprisingly, under the same seed, DP²O-FLUX often produces visibly sharper and more accurate local structures compared to C-FLUX. For instance, the wing texture (red box) is significantly refined and more faithful to the ground truth, while other regions—such as the specular highlight on the insect's head (green box, white arrow)—remain largely unchanged. This suggests that the model implicitly learns to prioritize perceptually salient regions, even though the reward is computed globally across the entire image.

This phenomenon implies that preference-based training, when guided by global IQA rewards, can lead to localized improvements without any explicit local supervision.

The ablation study on the effectiveness of HPO can be found in the **Appendix**.

6 Conclusion

We introduced DP²O-SR, a preference-driven framework for Real-ISR. We defined a perceptual reward that jointly considered naturalness and fidelity. Different from traditional best-vs-worst DPO sampling, we leveraged multiple pairwise comparisons within each group, leading to significantly improved optimization. We further analyzed how the optimal usage of preference samples varied across model scales and proposed a practical hyperparameter optimization strategy to adaptively balance generalization and stability. Extensive experiments demonstrated that our approach brought notable gains over strong baselines, both perceptually and quantitatively.

Limitations. DP²O-SR has two main limitations. First, although the IQA-based reward correlates reasonably with human preference, it lacks interpretability and does not fully capture subjective perceptual quality. Designing more accurate and explainable reward models remains an important direction for future work. Second, our current training pipeline is fully offline. Incorporating iterative or online preference optimization may further improve performance and adaptability.

References

- [1] Stability.ai. https://stability.ai/stable-diffusion.
- [2] Yuang Ai, Xiaoqiang Zhou, Huaibo Huang, Xiaotian Han, Zhengyu Chen, Quanzeng You, and Hongxia Yang. Dreamclear: High-capacity real-world image restoration with privacy-safe dataset curation. Advances in Neural Information Processing Systems, 37:55443–55469, 2024.
- [3] Yochai Blau and Tomer Michaeli. The perception-distortion tradeoff. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6228–6237, 2018.
- [4] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- [5] Jianrui Cai, Hui Zeng, Hongwei Yong, Zisheng Cao, and Lei Zhang. Toward real-world single image super-resolution: A new benchmark and a new model. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3086–3095, 2019.
- [6] Bin Chen, Gehui Li, Rongyuan Wu, Xindong Zhang, Jie Chen, Jian Zhang, and Lei Zhang. Adversarial diffusion compression for real-world image super-resolution. *arXiv preprint arXiv:2411.13383*, 2024.
- [7] Chaofeng Chen, Jiadi Mo, Jingwen Hou, Haoning Wu, Liang Liao, Wenxiu Sun, Qiong Yan, and Weisi Lin. Topiq: A top-down approach from semantics to distortions for image quality assessment. *IEEE Transactions on Image Processing*, 2024.
- [8] Chaofeng Chen, Xinyu Shi, Yipeng Qin, Xiaoming Li, Xiaoguang Han, Tao Yang, and Shihui Guo. Real-world blind super-resolution via feature matching with implicit high-resolution priors. In *Proceedings* of the 30th ACM International Conference on Multimedia, pages 1329–1338, 2022.
- [9] Du Chen, Tianhe Wu, Kede Ma, and Lei Zhang. Toward generalized image quality assessment: Relaxing the perfect reference quality assumption. *arXiv preprint arXiv:2503.11221*, 2025.
- [10] Xiangyu Chen, Xintao Wang, Jiantao Zhou, Yu Qiao, and Chao Dong. Activating more pixels in image super-resolution transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22367–22377, 2023.
- [11] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. Advances in neural information processing systems, 30, 2017.
- [12] Tao Dai, Jianrui Cai, Yongbing Zhang, Shu-Tao Xia, and Lei Zhang. Second-order attention network for single image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11065–11074, 2019.
- [13] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a deep convolutional network for image super-resolution. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pages 184–199. Springer, 2014.
- [14] Linwei Dong, Qingnan Fan, Yihong Guo, Zhonghao Wang, Qi Zhang, Jinwei Chen, Yawei Luo, and Changqing Zou. Tsd-sr: One-step diffusion with target score distillation for real-world image super-resolution. arXiv preprint arXiv:2411.18263, 2024.
- [15] Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.
- [16] Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple baseline for image restoration with state-space model. In *European conference on computer vision*, pages 222–241. Springer, 2024.
- [17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- [18] Zijing Hu, Fengda Zhang, Long Chen, Kun Kuang, Jiahui Li, Kaifeng Gao, Jun Xiao, Xin Wang, and Wenwu Zhu. Towards better alignment: Training diffusion models with reinforcement learning against sparse rewards. *arXiv preprint arXiv:2503.11240*, 2025.
- [19] Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image quality transformer. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5148–5157, 2021.

- [20] Black Forest Labs. Flux. https://github.com/black-forest-labs/flux, 2024.
- [21] Nathan Lambert, Louis Castricato, Leandro von Werra, and Alex Havrilla. Illustrating reinforcement learning from human feedback (rlhf). *Hugging Face Blog*, 2022. https://huggingface.co/blog/rlhf.
- [22] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image superresolution using a generative adversarial network. In *Proceedings of the IEEE conference on computer* vision and pattern recognition, pages 4681–4690, 2017.
- [23] Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and Luc Van Gool. Efficient and explicit modelling of image hierarchies for image restoration. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18278–18289, 2023.
- [24] Jie Liang, Hui Zeng, and Lei Zhang. Details or artifacts: A locally discriminative learning approach to realistic image super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5657–5666, 2022.
- [25] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir: Image restoration using swin transformer. In *Proceedings of the IEEE/CVF international conference on computer* vision, pages 1833–1844, 2021.
- [26] Zhanhao Liang, Yuhui Yuan, Shuyang Gu, Bohan Chen, Tiankai Hang, Ji Li, and Liang Zheng. Step-aware preference optimization: Aligning preference with denoising performance at each step. arXiv preprint arXiv:2406.04314, 2(3), 2024.
- [27] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. Enhanced deep residual networks for single image super-resolution. In *Proceedings of the IEEE conference on computer vision and pattern recognition workshops*, pages 136–144, 2017.
- [28] Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Yu Qiao, Wanli Ouyang, and Chao Dong. Diffbir: Toward blind image restoration with generative diffusion prior. In *European Conference on Computer Vision*, pages 430–448. Springer, 2024.
- [29] Buhua Liu, Shitong Shao, Bao Li, Lichen Bai, Zhiqiang Xu, Haoyi Xiong, James Kwok, Sumi Helal, and Zeke Xie. Alignment of diffusion models: Fundamentals, challenges, and future. arXiv preprint arXiv:2409.07253, 2024.
- [30] Runtao Liu, Haoyu Wu, Zheng Ziqiang, Chen Wei, Yingqing He, Renjie Pi, and Qifeng Chen. Videodpo: Omni-preference alignment for video diffusion generation. *arXiv* preprint arXiv:2412.14167, 2024.
- [31] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. In *European Conference on Computer Vision*, pages 23–40. Springer, 2024.
- [32] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in neural information processing systems, 35:27730–27744, 2022.
- [33] Yunpeng Qu, Kun Yuan, Kai Zhao, Qizhi Xie, Jinhua Hao, Ming Sun, and Chao Zhou. Xpsr: Cross-modal priors for diffusion-based image super-resolution. In *European Conference on Computer Vision*, pages 285–303. Springer, 2024.
- [34] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
- [35] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.
- [36] Lingchen Sun, Rongyuan Wu, Zhiyuan Ma, Shuaizheng Liu, Qiaosi Yi, and Lei Zhang. Pixel-level and semantic-level adjustable super-resolution: A dual-lora approach. arXiv preprint arXiv:2412.03017, 2024.
- [37] Lingchen Sun, Rongyuan Wu, Zhengqiang Zhang, Hongwei Yong, and Lei Zhang. Improving the stability of diffusion models for content consistent super-resolution. *arXiv* preprint arXiv:2401.00877, 2023.
- [38] Hossein Talebi and Peyman Milanfar. Nima: Neural image assessment. IEEE transactions on image processing, 27(8):3998–4011, 2018.

- [39] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers, 2022. Accessed: 2025-05-09.
- [40] Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8228–8238, 2024.
- [41] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel of images. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pages 2555–2563, 2023.
- [42] Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin CK Chan, and Chen Change Loy. Exploiting diffusion prior for real-world image super-resolution. arXiv preprint arXiv:2305.07015, 2023.
- [43] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. Real-esrgan: Training real-world blind superresolution with pure synthetic data. In *Proceedings of the IEEE/CVF international conference on computer* vision, pages 1905–1914, 2021.
- [44] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: Enhanced super-resolution generative adversarial networks. In *Proceedings of the European conference on computer vision (ECCV) workshops*, pages 0–0, 2018.
- [45] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
- [46] Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao, Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching Imms for visual scoring via discrete text-defined levels. arXiv preprint arXiv:2312.17090, 2023.
- [47] Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, and Lei Zhang. One-step effective diffusion network for real-world image super-resolution. Advances in Neural Information Processing Systems, 37:92529–92553, 2024.
- [48] Rongyuan Wu, Tao Yang, Lingchen Sun, Zhengqiang Zhang, Shuai Li, and Lei Zhang. Seesr: Towards semantics-aware real-world image super-resolution. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 25456–25467, 2024.
- [49] Tianhe Wu, Jian Zou, Jie Liang, Lei Zhang, and Kede Ma. Visualquality-r1: Reasoning-induced image quality assessment via reinforcement learning to rank. arXiv preprint arXiv:2505.14460, 2025.
- [50] Rui Xie, Ying Tai, Kai Zhang, Zhenyu Zhang, Jun Zhou, and Jian Yang. Addsr: Accelerating diffusion-based blind super-resolution with adversarial diffusion distillation. arXiv preprint arXiv:2404.01717, 2024.
- [51] Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assessment. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1191–1200, 2022.
- [52] Tao Yang, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion for realistic image super-resolution and personalized stylization. *arXiv preprint arXiv:2308.14469*, 2023.
- [53] Zongsheng Yue, Kang Liao, and Chen Change Loy. Arbitrary-steps image super-resolution via diffusion inversion. arXiv preprint arXiv:2412.09013, 2024.
- [54] Zongsheng Yue, Jianyi Wang, and Chen Change Loy. Resshift: Efficient diffusion model for image super-resolution by residual shifting. arXiv preprint arXiv:2307.12348, 2023.
- [55] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. Designing a practical degradation model for deep blind image super-resolution. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 4791–4800, 2021.
- [56] Leheng Zhang, Yawei Li, Xingyu Zhou, Xiaorui Zhao, and Shuhang Gu. Transcending the limit of local window: Advanced super-resolution transformer with adaptive token dictionary. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2856–2865, 2024.

- [57] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3836–3847, 2023.
- [58] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 586–595, 2018.
- [59] Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. Efficient long-range attention network for image super-resolution. In *European Conference on Computer Vision*, pages 649–667. Springer, 2022.
- [60] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-resolution using very deep residual channel attention networks. In *Proceedings of the European conference on computer* vision (ECCV), pages 286–301, 2018.
- [61] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv preprint arXiv:1909.08593, 2019.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions, which propose a new paradigm for enhancing diffusion-based Real-ISR performance. These claims are well-supported by experiments and empirical results throughout the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in the "Conclusion and Limitation" section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (*e.g.*, independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, *e.g.*, if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: We do not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have given the detailed experimental setting for reproducing in the "Experiment" section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (*e.g.*, a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (*e.g.*, with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (*e.g.*, to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The code and data will be released upon publication, but are not included in the supplementary materials as they are still being organized.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (*e.g.*, for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (*e.g.*, data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have presented all the experimental settings in the "Experiment" section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [NA]

Justification: We follow the same experimental settings and comparison steps as in previous work, which do not include such experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (*e.g.*, Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We have reported the details of the system in the "Experiment" section.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (*e.g.*, preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully complies with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (*e.g.*, if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of this research.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (*e.g.*, gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (*e.g.*, pretrained language models, image generators, or scraped datasets)?

Answer: [No]

Justification: We follow previous works that do not include such safeguards. The safeguards are valuable. We will consider this in future work.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (*e.g.*, code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited all the referenced papers.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (*e.g.*, website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We will release the detailed document of codes and models.

Guidelines:

- The answer NA means that the paper does not release new assets.
- · Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- · For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Appendix / supplemental material

In this supplementary file, we provide the following materials:

- The detailed network architecture of our C-SD2 and C-FLUX.
- The ablation study on the effectiveness of HPO.
- More visual comparisons.
- Results of user study.

A.1 The Architecture of C-SD2 and C-FLUX

Fig. 7 illustrates the architectures of the two baseline models, C-SD2 [1] and ControlNet-FLUX [20], both integrated with the proposed DP²O-SR module. The left subfigure shows C-SD2, which is built upon a UNet-based architecture. Its control branch is initialized by duplicating the entire encoder of SD2. Following the standard ControlNet paradigm [57], the low-resolution (LR) condition is first encoded by an image encoder and then added to the input of the frozen pre-trained backbone. The resulting combined features are then processed by the control branch. In C-SD2, the control features are injected into the decoder blocks of the UNet.

The right subfigure presents C-FLUX, which adapts the MMDiT-based [20] architecture. To reduce computational overhead, its control branch is initialized by copying only the first four Double Transformer Blocks from the pre-trained model. Similar to C-SD2, the LR condition is encoded and fused with the model's input before being passed to the control branch. However, in contrast to C-SD2, the control features in C-FLUX are added to the intermediate representations within the Double Transformer blocks, rather than the decoder. This architectural difference reflects the underlying backbone discrepancy between UNet and MMDiT. All pretraining procedures follow the official diffusers [39] training recipes to ensure consistency.

A.2 Effectiveness of HPO

To assess the contributions of the two components in our hierarchical preference optimization (HPO), we conduct an ablation study by separating the effects of intra-group and inter-group weighting. As

Table 3: Ablation study on HPO.

	base	intra	inter	both
Perceptual Reward	0.645	0.648	0.649	0.651

shown in Tab. 3, applying only intra-group weighting—focusing on local contrast within each SR candidate group—already provides a noticeable improvement over the baseline. Similarly, using only inter-group weighting, which emphasizes groups with higher reward dispersion, also leads to better performance. Combining both strategies yields the highest perceptual reward, confirming that the two weighting mechanisms are complementary.

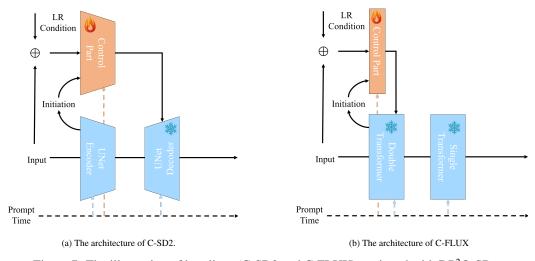


Figure 7: The illustration of baselines (C-SD2 and C-FLUX) equipped with DP²O-SR.

A.3 More Visual Comparisons

We present additional qualitative comparisons to demonstrate the effectiveness of our proposed method **DP**²**O-SR** over the two strong baselines: C-SD2 and C-FLUX. For each baseline, we show visual comparisons between it and its improved versions, *i.e.*, C-SD2 vs. DP²O-SR (SD2) and C-FLUX vs. DP²O-SR (FLUX), alongside results from several state-of-the-art methods, including StableSR [42], DiffBIRv2 [28], SeeSR [48], CCSR [37], AddSR [50], and OSEDiff [47].

Below, we first present four representative cases based on the C-SD2 baseline, as shown in Fig. 8. These comparisons highlight the improvements made by DP²O-SR (SD2) in terms of structural fidelity and visual detail, as well as its advantages over existing SOTA methods.

- Case 1: Text Restoration. In this example, our method demonstrates clear superiority in restoring corrupted text. The baseline C-SD2 fails to recover the correct structure of the letters, especially the letter "m", which is severely distorted. In contrast, DP²O-SR (SD2) produces accurate and sharp letterforms, closely resembling the ground-truth. Notably, the structure of the letter "e" is also cleaner and more distinguishable. While methods like OSEDiff and SeeSR partially recover "e", their outputs remain ambiguous, often appearing between "e" and "o".
- Case 2: Roof Tile Reconstruction. The second case highlights the reconstruction of architectural details, specifically roof tiles. Although C-SD2 manages to recover a tile-like structure, the spacing and arrangement are overly dense compared to the ground-truth. DP²O-SR (SD2) significantly improves the regularity and spacing of the tiles, resulting in a pattern much more faithful to the original. Other SOTA methods struggle in this case, with most failing to recover the tile layout.
- Case 3: Road Surface Texture. In the third example, we examine the restoration of road textures and surface patterns. C-SD2 restores the general layout of the path but incorrectly renders the gaps between the bricks as white. Our improved model, DP²O-SR (SD2), not only recovers the brick layout more accurately but also generates clearer and more structurally consistent gap lines. Competing methods mostly fail to reconstruct the pattern or texture meaningfully.
- Case 4: Building Structure Recovery. The fourth case focuses on complex architectural structures. While C-SD2 recovers a reasonable amount of building details, DP²O-SR (SD2) significantly enriches the reconstruction with finer structural elements and sharper contours. Compared to other methods, the output of DP²O-SR (SD2) shows clear advantages in both structural fidelity and visual realism. Although methods like OSEDiff and DiffBIRv2 generate plausible building forms, their results often include distorted or wavy line structures.

We then present visual comparisons between C-FLUX and DP²O-SR (FLUX), as shown in Fig. 9, to further validate the generality and robustness of our method.

- Case 1: Dice Number Restoration. In this example, most competing methods fail to reconstruct the dice numbers accurately. While C-FLUX is able to recover the correct "5" on the lower-left white dice, it mistakenly generates "9" on the upper blue and red dice, deviating from the ground truth. In contrast, our DP²O-SR (FLUX) restores the correct "6" patterns with sharp and well-aligned dots, achieving the highest structural fidelity among all methods.
- Case 2: Parrot Eye and Beak Details. In this case, C-FLUX fails to recover the black eye of the red parrot, resulting in an unnatural facial appearance. DP²O-SR (FLUX) successfully reconstructs the eye region while maintaining a coherent and realistic texture. Although AddSR also restores the eye, it introduces an unnaturally rigid beak that does not exist in the ground-truth. Overall, DP²O-SR (FLUX) provides a more natural and visually consistent reconstruction.
- Case 3: Artifact Removal and Structural Clarity. For the third example, C-FLUX produces noticeable vertical artifacts that degrade the overall visual quality. Our DP²O-SR (FLUX) effectively suppresses these artifacts while preserving local details and edge sharpness. In comparison, methods such as StableSR, DiffBIRv2, and OSEDiff exhibit a strong "oil-painting" effect, leading to flatter textures and less realistic structures.
- Case 4: Fence Reconstruction. In the final case, C-FLUX fails to reconstruct the fence structure, resulting in missing geometric elements. DP²O-SR (FLUX) not only restores the complete fence but also aligns well with the ground-truth. Although DiffBIRv2 and OSEDiff generate fence-like patterns, their results appear noisy and irregular. These comparisons further demonstrate that DP²O-SR (FLUX) achieves superior structural accuracy and perceptual realism across diverse scenes.

A.4 User Study

In the user study, we conduct two categories of experiments. In the first category, we evaluate the effectiveness of DP^2O through pairwise comparisons between the DP^2O -enhanced model and its original (non-enhanced) counterpart. In the second category, we perform a multi-way comparison between the DP^2O -enhanced model and existing state-of-the-art methods.

In each trial of the experiments, participants are presented with a low-quality (LQ) image along with either two images (for pairwise comparisons) or seven images (for multi-way comparison), and are asked the following question:

Given the LQ image, which one of the candidate images is the best high-quality version of it?

For each backbone model, we invited 10 participants to evaluate 20 distinct scenarios. In each scenario, the participants completed two pairwise comparisons and one multi-way comparison, resulting in 3 evaluations per scenario. This yielded a total of $10 \times 20 \times 2 = 400$ evaluations per backbone. Since the experiments were conducted on two backbones, the entire user study comprised $2 \times 400 = 800$ evaluation outputs.

The results of our user study are summarized in Fig. 10. In the pairwise comparisons (top row), participants consistently preferred the DP²O-enhanced models over the original pre-trained models. Specifically, for C-SD2 (Fig. 10a), 67.5% of selections favor DP²O over the pre-trained model. For C-FLUX (Fig. 10b), DP²O outperforms the pre-trained with preference rates of 69.5%.

In the multi-way comparison (bottom row), where participants selected the most plausible high-resolution candidate among seven methods, DP^2O again performs the best. For C-SD2, DP^2O accounts for 28.0% of total votes, ahead of OSEDiff (19.5%) and SeeSR (18.5%). For C-FLUX, DP^2O receives a dominant 44.0% of the votes, significantly outperforming the second-best method, OSEDiff (12%).

These results collectively demonstrate the consistent superiority of DP²O-SR across diverse backbone models and evaluation settings, reflecting its robustness and perceptual quality gains over baselines and state-of-the-art alternatives.

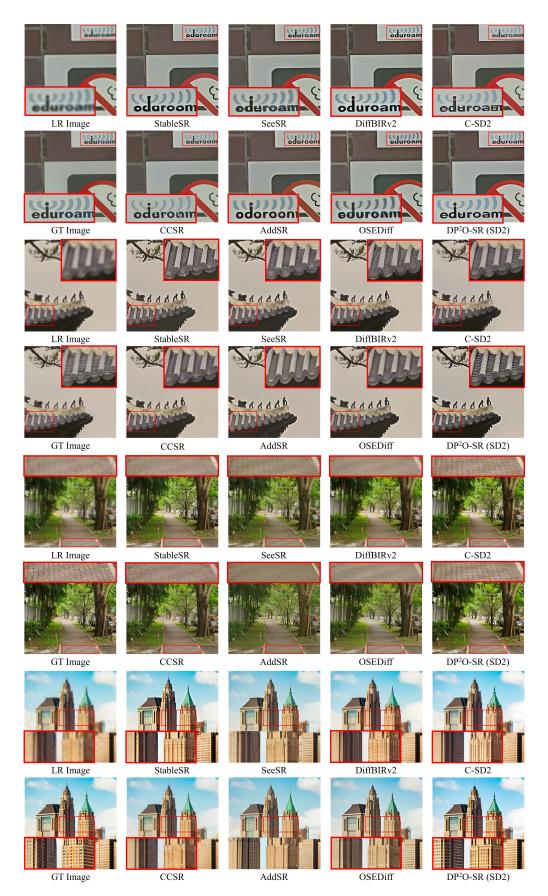


Figure 8: Qualitative comparison between C-SD2, DP2O-SR (SD2), and other Real-ISR methods. Zoom in for visual details.

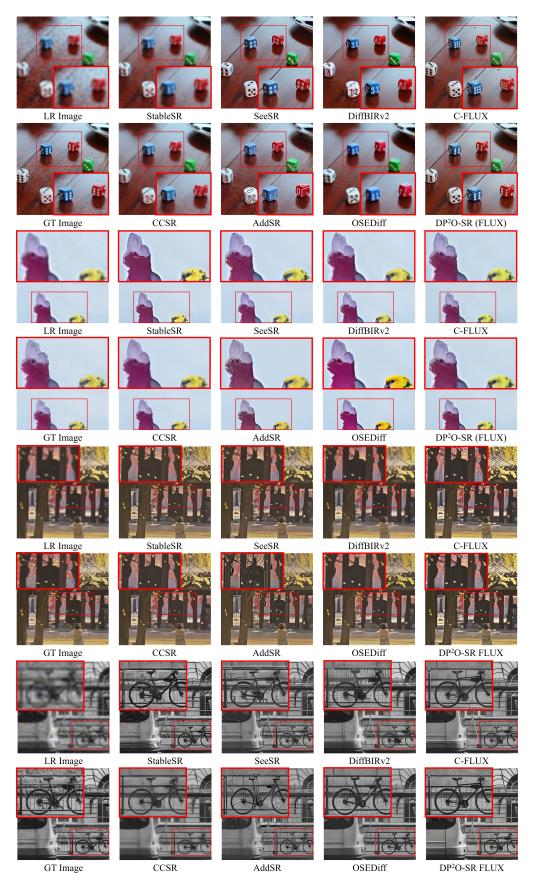
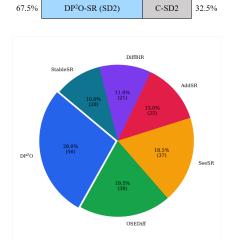
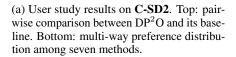


Figure 9: Qualitative comparison between C-FLUX, DP²O-SR (FLUX), and other Real-ISR methods. Zoom in for visual details.

26

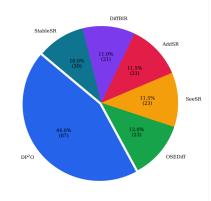




C-FLUX 30.5%

DP2O-SR (FLUX)

69.5%



(b) User study results on C-FLUX. Top: pairwise comparison between DP2O and its baseline. Bottom: multi-way preference distribution among seven methods.

Figure 10: Summary of user study results on C-SD2 and C-FLUX. In both pairwise and multi-way comparisons, DP²O consistently outperforms baselines and state-of-the-art methods, indicating its strong perceptual advantage in recovering high-quality images from low-resolution inputs.