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Abstract

Benefiting from pre-trained text-to-image (T2I) diffusion models, real-world im-
age super-resolution (Real-ISR) methods can synthesize rich and realistic details.
However, due to the inherent stochasticity of T2I models, different noise inputs
often lead to outputs with varying perceptual quality. Although this randomness
is sometimes seen as a limitation, it also introduces a wider perceptual quality
range, which can be exploited to improve Real-ISR performance. To this end, we
introduce Direct Perceptual Preference Optimization for Real-ISR (DP2O-SR),
a framework that aligns generative models with perceptual preferences without
requiring costly human annotations. We construct a hybrid reward signal by com-
bining full-reference and no-reference image quality assessment (IQA) models
trained on large-scale human preference datasets. This reward encourages both
structural fidelity and natural appearance. To better utilize perceptual diversity, we
move beyond the standard best-vs-worst selection and construct multiple prefer-
ence pairs from outputs of the same model. Our analysis reveals that the optimal
selection ratio depends on model capacity: smaller models benefit from broader
coverage, while larger models respond better to stronger contrast in supervision.
Furthermore, we propose hierarchical preference optimization, which adaptively
weights training pairs based on intra-group reward gaps and inter-group diversity,
enabling more efficient and stable learning. Extensive experiments across both
diffusion- and flow-based T2I backbones demonstrate that DP2O-SR significantly
improves perceptual quality and generalizes well to real-world benchmarks.

1 Introduction

Image super-resolution (ISR) [13, 60, 25, 59, 10, 23, 56, 16] aims to reconstruct high-resolution (HR)
images from low-resolution (LR) inputs. Traditional methods emphasize pixel-level accuracy but
often produce over-smoothed results that lack realistic textures. To address this, recent approaches
[22, 44, 43, 55, 24, 8] have shifted toward improving perceptual quality, which is particularly
important for real-world ISR (Real-ISR) tasks where degradations are complex and typically unknown.
Generative models [35, 17], especially large-scale pre-trained text-to-image (T2I) diffusion models
such as Stable Diffusion (SD) [1] and FLUX [20], have demonstrated strong potential for Real-ISR
[42, 52, 28, 48, 37, 33, 2] due to their capacity to synthesize plausible and diverse details. However,
these models are inherently stochastic: different noise inputs can lead to significantly different output
qualities. While this randomness is often considered as a drawback [37], it also introduces a broader
perceptual quality range, which can be viewed as a source of supervision, enabling preference-driven
optimization to better exploit T2I model’s generative capability.
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(a) Effect of Perceptual Reward Types. (b) DP²O-SR Generalization Performance.

Figure 1: (a) Visual results of models trained with FR, NR, and hybrid rewards. FR reward suppresses
detail, NR reward encourages hallucinations, while the hybrid reward preserves structure and improves
realism. (b) DP²O-SR significantly boosts perceptual quality on the out-of-domain RealSR benchmark
[5], improving both small and large generative Real-ISR models after only 500 steps. Larger models
like C-FLUX benefit more from preference supervision.

To harness this diversity, we propose DP2O-SR—Direct Perceptual Preference Optimization for
Real-ISR—a training framework that aligns generative ISR models with human-like perceptual
preferences. Instead of relying on costly human annotations, we construct a perceptual reward using
image quality assessment (IQA) models trained on large-scale human preference data. This reward
integrates both full-reference (FR) and no-reference (NR) metrics. FR metrics promote structural
fidelity and help suppress hallucinated content, whereas NR metrics encourage realism and aesthetic
coherence. By combining FR and NR IQA metrics, the hybrid reward provides a balanced signal
that supports both accuracy and naturalness. As illustrated in Fig. 1(a), models trained with only
FR metrics tend to produce oversmoothed outputs, while those trained with NR metrics alone may
generate hallucinated details. In contrast, the hybrid reward leads to outputs with rich and natural
details while remaining structurally consistent with ground-truth (GT).

Unlike Diff-DPO [40], which constructs a single best-vs-worst pair from outputs of different models,
we sample multiple outputs from a single model using different noise seeds. These outputs are
ranked by perceptual reward, and preference pairs are formed by sampling from the top-N and
bottom-N candidates. This richer supervision captures finer perceptual distinctions and better utilizes
the diversity inherent in stochastic generation.

We systematically investigate how the number of rollouts (M ) and the selection ratio (N/M ) influence
learning across two representative backbones: a relatively samller diffusion model (ControlNet-
SD2, denoted as C-SD2) and a larger flow-based model (ControlNet-FLUX, denoted as C-FLUX).
Increasing M improves perceptual diversity and training stability, though with diminishing returns.
The optimal N/M varies by model capacity: smaller models prefer broader coverage (e.g., 1/4) for
smoother gradients, while larger models benefit more from stronger contrast (e.g., 1/16), as their
greater capacity enables them to learn more effectively from larger preference differences. These
findings underscore the need to tailor data curation according to model scale.

Even with well-chosen M and N/M , not all comparisons are equally informative—some are ambigu-
ous or redundant. This motivates a more selective approach to learning. We propose Hierarchical
Preference Optimization (HPO), which adaptively weights training pairs at two levels: intra-group,
by emphasizing comparisons with larger reward gaps; and inter-group, by prioritizing inputs with
greater perceptual spread. By focusing on the most informative signals, HPO improves both training
efficiency and perceptual alignment.

We evaluate DP2O-SR on the out-of-domain RealSR benchmark [5], which contains real-world
LR-HR pairs captured under varying focal lengths, differing from the synthetic degradations used
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during training. As shown in Fig. 1(b), both C-SD2 and C-FLUX achieve significant perceptual
reward improvements within the first 500 training iterations of DP²O-SR, surpassing strong baselines
such as SeeSR [48] and OSEDiff [47]. Specifically, C-FLUX improves from approximately 0.51 to
0.65, while C-SD2 rises to 0.62, achieving top-2 performance early in training.

2 Related Work
Real-World Image Super-Resolution. Early deep learning-based ISR methods [13, 27, 60, 12]
primarily optimize pixel-level accuracy based on simple degradation assumptions, such as bicubic
downsampling. As a result, they often produce over-smoothed outputs in real-world scenarios. To
enhance perceptual quality, researchers have introduced GAN-based techniques [22], including
BSRGAN [55] and Real-ESRGAN [43], which use complex degradation models to better simulate
complex real-world degradations. However, these GAN-based approaches often suffer from unstable
training and visual artifacts [43, 24]. Recently, diffusion models [17, 35], especially large-scale
pre-trained T2I models [1, 20], have achieved strong results in Real-ISR tasks [42, 37, 48, 50]. These
models excel at generating realistic details, but their outputs vary across different runs for the same
LR input due to the inherent sampling randomness. Many existing works treat this randomness as
a limitation. Some methods aim to stabilize the generation process [37], while others train one-
step models [47, 36, 6, 53, 14] to reduce stochasticity. In contrast, we view this stochasticity as a
useful source of high-quality supervision and consequently develop a preference-based optimization
framework to improve Real-ISR performance.

Preference Alignment. Aligning generative models with human preferences has become a key area
of research, especially in the training of large language models (LLMs) using reinforcement learning
with human feedback (RLHF) [11, 61, 32]. This process typically requires training a separate reward
model, which adds significant computational cost [21]. DPO [34] provides a simpler alternative by
directly optimizing the policy using preference data, without requiring an explicit reward model.
Adapting these alignment techniques to diffusion models introduces additional challenges, mainly
due to their iterative denoising process [29]. Recent work has extended DPO to diffusion models. For
example, Diff-DPO [40] applies preference optimization across diffusion timesteps to improve visual
aesthetics and prompt fidelity. Several follow-up works propose refinements, such as step-aware
preference modeling [26, 18] and sample weighting based on score distributions [30]. Although
DPO-based methods can be applied to Real-ISR, there lack a well-designed reward and carefully
designed training strategies. We address these challenges by introducing a perceptual reward tailored
to Real-ISR and by systematically exploring preference pair construction strategies beyond the
conventional best-vs-worst selection. This enables more reliable learning across models with different
capacities and under limited sampling budgets.

3 Background
Diffusion and Flow-based Models. Both diffusion and flow-based generative models define a
stochastic interpolation between data x∗ ∼ p(x) and noise ϵ ∼ N (0, I) using the unified formulation
xt = αtx

∗ + σtϵ [31], where t is the timestep, and αt, σt are scalar scheduling coefficients. The
goal is to learn a model that reverses this process to sample from the data distribution. Diffusion
models [17] specify this path implicitly via a forward SDE and typically learn the score function
sθ(x, t) = ∇x log pt(x), with a standard constraint α2

t +σ2
t = 1. In contrast, flow-based models [15]

directly define the interpolation with αt + σt = 1, enabling exact transport in finite time, and learn a
velocity field vθ(x, t) =

d
dtxt. Different scheduling schemes lead to distinct sampling trajectories.

From RLHF to Diff-DPO. Aligning generative models with human preferences traditionally relies
on RLHF, which involves training a reward model followed by policy optimization. However, this
multi-stage process is complex and unstable. DPO [34] offers a simpler alternative by directly
optimizing the policy using preference data. Under the Bradley-Terry preference model [4], DPO
derives a loss that encourages higher likelihood ratios for preferred samples. As derived in the work
[40], the training objective of Diff-DPO is formulated as follows:

LDPO =− E(xw
0 ,xl

0)∼D,t∼U(0,T ),xw
t ∼q(xw

t |xw
0 ),xl

t∼q(xl
t|x

l
0)
log σ(−β(

∥ϵw − ϵθ(x
w
t , t)∥22 − ∥ϵw − ϵref(x

w
t , t)∥22 − (∥ϵl − ϵθ(x

l
t, t)∥22 − ∥ϵl − ϵref(x

l
t, t)∥22))), (1)

where xw
t = αtx

w
0 + σtϵ

w and xl
t = αtx

l
0 + σtϵ

l are noisy versions of preferred and dispreferred
samples at timestep t, ϵθ(·, t) is the predicted noise, β controls the deviation between policy and

3



Figure 2: Illustration of our DP2O-SR framework. Given the same LR input and noise, a frozen pre-
trained SR model πref (blue) generates diverse outputs by varying the random seed. These outputs are
first evaluated using our proposed perceptual reward (Sec. 4.1), and then filtered through a perceptual
preference curation process (Sec. 4.2) to construct pairwise comparisons. A trainable policy model
πθ (orange), initialized from πref, is subsequently optimized via hierarchical preference optimization
(Sec. 4.3), which emphasizes informative comparisons and enhances perceptual alignment.

reference models, and σ(·) is the sigmoid function normalizing the preference score. For flow-based
models, we replace the predicted noise with velocity. This loss encourages better denoising of
preferred samples, thereby aligning generation with human preferences.

4 Methodology
We propose DP2O-SR, a preference-driven optimization framework for Real-ISR using diffusion or
flow-based models. Our key insight is to leverage the inherent stochasticity of these models—different
noise seeds naturally produce outputs with varying perceptual quality. By scoring these outputs with
a human-aligned perceptual reward and forming pairwise preferences, we enable direct supervision of
perceptual quality without handcrafted losses or external reward networks. As illustrated in Fig. 2, our
framework comprises three components: (1) generating diverse ISR samples from a frozen reference
model, (2) ranking them with a perceptual reward to curate preference pairs, and (3) optimizing a
trainable policy via uncertainty-aware preference learning. Our design aligns ISR outputs with human
perceptual preferences and improves the perceptual quality of both C-SD2 and C-FLUX.

4.1 Perceptual Reward Design

Given an LR input ILR ∈ Rh×w×3, we use a Real-ISR model πref to generate M ISR candidates
S = {I1, . . . , IM} by varying the noise seeds, which often exhibit certain perceptual variations.
To rank the perceptual quality of these outputs, we introduce a perceptual reward that aggregates
multiple IQA metrics. Specifically, we consider two sets of metrics: a set FR of FR metrics, which
compare outputs against GT images, and a set NR of NR metrics, which assess quality without
reference. Specifically, the FR set includes LPIPS [58], TOPIQ-FR [7], and AFINE-FR [9], and the
NR set includes MANIQA [51], MUSIQ [19], CLIPIQ+ [41], TOPIQ-NR [7], AFINE-NR [9], and
Q-Align [46]. Note that the commonly used distortion-based metrics PSNR and SSIM are excluded,
as they are not effective in describing perceptual quality.

For each candidate Im,m = 1, ...,M and each metric ϕ ∈ FR ∪NR, we compute a raw score sϕm.
The scores are first direction-aligned such that higher values indicate better quality. Denote by sϕmax

and sϕmin the maximum and minimum values among the score values of the M candidates, we then
normalize each score sϕm as s̄ϕm = (sϕm − sϕmin)/(s

ϕ
max − sϕmin). To balance fidelity and perception,

we define the perceptual reward of a sample by averaging the normalized scores over the FR and
NR sets, assigning them equal weight regardless of their sizes:

Rm =
0.5

|FR|
∑

ϕ∈FR

s̄ϕm +
0.5

|NR|
∑

ϕ∈NR

s̄ϕm, (2)
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where | · | denotes the cardinality of a set. Based on this reward, we can identify the top-N and
bottom-N candidates to construct preference pairs for training.

4.2 Perceptual Preference Data Curation

Given the reward signal, we construct preference pairs by sampling multiple ISR outputs per input
using different noise seeds from a single stochastic model. In contrast to Diff-DPO [40], which
selects outputs from different models and constructs a single best-versus-worst pair per input, our
approach samples M outputs from the same model and ranks them using the reward function Rm.
We then select the top-N and bottom-N samples as positive and negative sets, respectively, and build
N2 possible preference pairs. This allows us to construct richer training signals from a single model
without relying on external comparisons or ground-truth.

This design introduces two key control parameters: the number of samples per input (M ) and the
selection ratio (N/M ). Varying these parameters enables us to control the contrast and diversity of
the training signal. For example, smaller values of N/M are expected to yield stronger reward gaps
(contrast) between positive and negative samples, potentially accelerating learning. Conversely, larger
N/M ratios increase coverage and diversity but may reduce discriminative signal strength.

To explore the effect of these choices across architectures, we apply this curation strategy to two
representative models of contrasting capacity: C-SD2 (a 0.8B UNet diffusion model) and C-FLUX (a
12B DiT flow model). We hypothesize that higher-capacity models may benefit from stronger contrast
(low N/M ), whereas smaller models may require more redundancy to ensure stable gradients. The
experimental analysis of these hypotheses is provided in Section 5.3.

4.3 Hierarchical Preference Optimization

We propose hierarchical preference optimization (HPO), an extension of Diff-DPO that improves
preference alignment by adaptively weighting training pairs at two levels: intra-group and inter-group.
While Diff-DPO treats all training pairs equally, HPO focuses on learning from more informative
signals by leveraging both local and global variations.

Intra-group. Within each group of SR candidates generated from the same LR input, preference pairs
(xw

0 ,x
l
0) may differ in informativeness. Intuitively, pairs with larger reward gaps ∆R = Rw−Rl offer

stronger supervision. We define the intra-group weight as wintra(x
w
0 ,x

l
0) = |Rw −Rl|+ (1− µgap),

where µgap is the average reward gap over all pairs within the group. This formulation ensures that
high-contrast pairs receive greater emphasis while keeping the expected weight normalized.

Inter-group. Different LR inputs may yield SR candidate groups with varying levels of perceptual
diversity. To prioritize groups that offer stronger supervision, we compute the standard deviation σg

of reward values {Rm} within group g, and assign inter-group weight as winter(g) = σg + (1− µσ),
where µσ is the average standard deviation across all groups. This boosts the contribution of more
informative groups while keeping the expected group weight close to 1.

Final Loss Function. Each training pair (xw
0 ,x

l
0) is assigned a total weight w = wintra(x

w
0 ,x

l
0) ·

winter(g). The final training objective is LHPO =
∑

(xw
0 ,xl

0)
w · ℓ(xw

0 ,x
l
0; θ), where ℓ(·) denotes the

per-pair Diff-DPO loss defined in Eq. 1.

5 Experiment
5.1 Experimental Settings

Baselines. We adopt the ControlNet paradigm [57], where a control branch is trained for the Real-ISR
task, using pre-trained Stable Diffusion 2.0 (SD2) [1] and FLUX.1-Dev (FLUX) [20] as backbones.
For convenience, we refer to the resulting models as C-SD2 and C-FLUX, respectively, and their
improved variants with our method as DP2O-SR (SD2) and DP2O-SR (FLUX). This setup enables us
to evaluate DP2O-SR across models that differ substantially in capacity (0.8B vs. 12B), architecture
(UNet vs. MMDiT), and generative paradigm (diffusion vs. flow matching). The detailed network
architecture of our C-SD2 and C-FLUX can be found in the Appendix.

Evaluation Metrics. We evaluate our method using a total of 14 IQA metrics, categorized into four
groups: (1) Trained FR metrics: LPIPS [58], TOPIQ-FR [7], and AFINE-FR [9]; (2) Trained NR
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Table 1: Performance comparison of different methods. Metric types are categorized into trained
FR perceptual (in blue), trained NR perceptual (in green)), untrained NR perceptual (in yellow)),
and untrained FR fidelity (in purple)) based metrics. Red bold values indicate better performance
between the baseline C-SD2, C-FLUX and their boosted versions by DP2O-SR. Arrows indicate
whether higher (↑) or lower (↓) values are better.

Datasets Metrics StableSR DiffBIRv2 SeeSR CCSR AddSR OSEDiff C-SD2
DP2O-SR

(SD2)
C-FLUX

DP2O-SR

(FLUX)

Syn-Test

LPIPS↓ 0.4219 0.4471 0.4322 0.4080 0.4930 0.4043 0.4332 0.4268 0.4260 0.4187
TOPIQ-FR↑ 0.4208 0.4108 0.4238 0.4357 0.3577 0.4375 0.4336 0.4396 0.4364 0.4489
AFINE-FR↓ -0.6309 -0.9339 -1.0931 -0.3396 -0.7704 -1.0567 -1.1433 -0.8962 -1.0164 -0.8341

MANIQA↑ 0.5707 0.6528 0.6513 0.5956 0.7025 0.6327 0.6684 0.7165 0.6857 0.7199
MUSIQ↑ 60.34 70.59 71.37 64.34 73.33 70.04 71.66 74.87 72.28 75.06

CLIPIQA+↑ 0.6313 0.7491 0.7385 0.6421 0.7742 0.7164 0.7595 0.8124 0.7473 0.7993
TOPIQ-NR↑ 0.5019 0.7084 0.7098 0.5941 0.7629 0.6341 0.7155 0.7611 0.7019 0.7645
AFINE-NR↓ -0.8693 -0.9683 -1.0483 -0.7937 -1.0751 -0.9879 -1.0097 -1.2263 -1.2026 -1.2764
QALIGN↑ 3.2196 4.1382 4.1614 3.3266 4.2086 3.9801 4.2481 4.5526 4.4266 4.7060
VQ-R1↑ 3.78 4.34 4.42 3.88 4.38 4.40 4.43 4.57 4.53 4.65
NIMA↑ 4.8936 5.4096 5.3862 4.7765 5.5352 5.2029 5.3894 5.6417 5.4458 5.5986

TOPIQ-IAA↑ 4.7056 5.3929 5.3595 4.8338 5.6047 5.1199 5.4123 5.6106 5.3457 5.5292
PSNR↑ 22.75 22.43 22.41 23.54 21.00 22.61 22.46 21.48 21.26 21.27
SSIM↑ 0.5865 0.5355 0.5648 0.5928 0.4832 0.5775 0.5449 0.5259 0.5158 0.5143

RealSR

LPIPS↓ 0.3877 0.4288 0.3883 0.3645 0.4539 0.3729 0.4146 0.4045 0.4004 0.4024

TOPIQ-FR↑ 0.4923 0.4747 0.4881 0.5367 0.4093 0.5059 0.4756 0.4656 0.4824 0.4867
AFINE-FR↓ -0.7699 -0.8059 -0.7439 -0.9548 -0.1243 -0.7174 -0.6578 -0.3331 -0.5916 -0.6097
MANIQA↑ 0.6230 0.6502 0.6451 0.6034 0.6810 0.6335 0.6629 0.7031 0.6632 0.6918
MUSIQ↑ 65.88 69.28 69.82 63.57 71.39 69.09 70.44 73.16 69.60 72.77

CLIPIQA+↑ 0.6501 0.7235 0.6910 0.6216 0.7438 0.6964 0.7295 0.7852 0.6798 0.7571
TOPIQ-NR↑ 0.5748 0.6760 0.6891 0.5735 0.7262 0.6254 0.6828 0.7429 0.6522 0.7416
AFINE-NR↓ -1.0120 -0.9860 -1.0368 -0.9157 -1.1449 -1.0489 -1.0357 -1.1555 -1.0985 -1.0905
QALIGN↑ 3.2337 3.6866 3.6723 3.1317 3.7625 3.6399 3.6490 4.0206 3.6499 4.1492
VQ-R1↑ 3.78 4.12 3.98 3.80 4.08 4.09 4.08 4.21 4.02 4.32
NIMA↑ 4.8150 4.9190 4.9193 4.4545 5.1601 4.8952 4.9914 5.2324 4.9780 5.0740

TOPIQ-IAA↑ 4.5856 4.8981 4.8553 4.3509 5.0890 4.7545 4.9238 5.1144 4.7427 4.9798
PSNR↑ 24.64 24.83 25.15 26.21 23.31 25.15 23.61 22.49 23.58 23.49

SSIM↑ 0.7077 0.6500 0.7213 0.7363 0.6404 0.7340 0.6566 0.6500 0.6594 0.6590

metrics: MANIQA [51], MUSIQ [19], CLIPIQA+ [41], TOPIQ-NR [7], AFINE-NR [9], and Q-
Align [46], which together form the perceptual reward used in training. These two groups constitute
the sets FR and NR defined in Sec. 4.1 for reward computation. (3) Untrained NR perceptual
metrics: VQ-R1 [49], NIMA [38], and TOPIQ-IAA [7], used to assess perceptual generalization
beyond training targets; (4) Untrained FR fidelity metrics: PSNR and SSIM [45], included for
completeness. This comprehensive setting allows us to evaluate both in-distribution performance and
out-of-distribution generalization of Real-ISR models.

Finetuning, Post-Training and Testing Datasets. The C-FLUX model is finetuned for the Real-ISR
task using approximately 1 million high-quality images. We use a batch size of 32, a learning rate of
1 × 10−4, and train the model for 45,000 steps. The C-SD2 variant follows a similar setup, but is
trained with a batch size of 256, a learning rate of 2× 10−4, and 35,000 steps.

To support perceptual post-training, we curate a semantically diverse dataset from the Internet,
containing 30,100 high-quality images spanning six major scene types and 266 sub-categories.
Among them, 30,000 images are used for post-training, while the remaining 100 images form the
Syn-Test set. We adopt the first-order degradation pipeline from ResShift [54], which better simulates
real-world degradation than the second-order version used in RealESRGAN [43]. We further evaluate
generalization performance on real-world benchmarks such as RealSR [5].

6



Figure 3: Qualitative comparisons of different Real-ISR methods. Please zoom in for a better view.

DP2O-SR Training Configuration. We train DP2O-SR with a batch size of 1024, a learning rate of
2×10−5, and set the preference weighting hyperparameter β to 5,000. The model is trained for 1,000
iterations. All experiments are conducted on 8×A800 GPUs. To account for the stochasticity of the
generative SR models, we sample up to M = 64 outputs per LR image during training. Preference
pairs are constructed from C-FLUX and C-SD2 outputs, each sampled using 25 and 50 inference
steps, respectively. The corresponding classifier-free guidance (CFG) scales are set to 2.5 and 3.5.
These settings are kept consistent throughout both training and evaluation.

Offline Candidate Generation and IQA Labeling. For offline preference pair construction, we
sample 64 outputs per LR image across 30,000 training images using the same 8×A800 GPU setup.
This process requires approximately 168 hours for C-SD2 and 432 hours for C-FLUX. The resulting
1.92 million generated images are labeled using our suite of IQA models (Section 4), which takes an
additional 72 hours. All configurations are held fixed to ensure reproducibility and fair comparison.

5.2 Results on Perceptual Preference Alignment

Improvement over Baselines. To evaluate the effectiveness of DP2O-SR, we compare it with the
baseline models C-SD2 and C-FLUX using the four categories of metrics. As shown in Tab. 1, our
method consistently improves performance in almost all perceptual categories, demonstrating strong
alignment with training signals and good generalization beyond them.

On the Syn-Test dataset, where the degradation process matches that used during training, we
observe clear improvements on trained FR metrics such as LPIPS (↓0.4332 → 0.4268) and TOPIQ-
FR (↑0.4336 → 0.4396) for SD2, along with similar trends on C-FLUX. For trained NR metrics,
performance is also enhanced across the board, including MANIQA (↑0.6684 → 0.7165), CLIP-IQA+
(↑0.7595 → 0.8124), and QALIGN (↑4.2481 → 4.5526), indicating that preference-guided fine-
tuning effectively aligns outputs with perceptual quality signals. Importantly, our method generalizes
well to perceptual metrics not used during training. For example, on the untrained metric VQ-R1,
we observe consistent improvements over both baselines (e.g., 4.38 → 4.57 for SD2, 4.40 → 4.65
for FLUX), suggesting that the learned preferences transfer beyond the supervised objectives. This
aligns with the well-established perception-distortion tradeoff [3], which suggests that improving
perceptual quality often comes at the cost of lower PSNR or SSIM.
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Comparison with SOTA. Our DP2O-SR models outperform a wide range of state-of-the-art Real-
ISR methods on the challenging RealSR benchmark, including StableSR [42], DiffBIRv2 [28],
SeeSR [48], CCSR [37], AddSR [50], and OSEDiff [47], especially in perceptual metrics. For
instance, DP2O-SR (SD2) achieves the highest MANIQA (↑0.7031) and CLIPIQA+ (↑0.7852) among
all methods, indicating strong perceptual quality and alignment with human preferences.

In untrained perceptual metrics such as VQ-R1 and NIMA, DP2O-SR (FLUX) also exhibits strong
generalization, achieving top-tier results (e.g., VQ-R1 ↑4.32, QALIGN ↑4.1492). These results
demonstrate that our method not only boosts perceptual alignment on seen metrics but also generalizes
to diverse evaluation criteria beyond the training objectives. This highlights the ability of DP2O-SR
to transform moderate diffusion backbones into highly competitive Real-ISR models.

Qualitative Comparisons. Fig. 3 presents visual comparisons of different Real-ISR methods. In
the first example, the C-SD2 baseline produces dense, irregular stripe artifacts in the region of
the staircase. After applying DP2O-SR, these artifacts are effectively removed and replaced with
regular clean fence structures, achieving even better reconstruction quality than SeeSR and OSEDiff.
In contrast, AddSR and CCSR partially erase the stair details. In the second example, C-FLUX
generates grid-like artifacts in the background, which are largely eliminated after applying DP2O-SR.
DiffBIRv2 and StableSR fail to reconstruct meaningful facial features, yielding smeared or indistinct
results. AddSR distorts the beak geometry, while CCSR over-sharpens edges but lacks semantic
accuracy. In addition, some methods tend to hallucinate unnatural chicken heads. In comparison, the
results of DP2O-SR (C-FLUX) are visually clean and semantically faithful. It should be noted that
both C-SD2 and C-FLUX use the same noise seed before and after applying DP2O-SR. This confirms
that our method effectively suppresses semantic artifacts while preserving the overall structure and
content of the original generation. Due to space limitations, more visualization results, as well as a
user study, can be found in the Appendix.

5.3 Effect of Sample Count and Selection Ratio

To validate the impact of sample count and selection ratio in our preference curation pipeline, we
conduct experiments on two contrasting architectures: C-SD2 and C-FLUX. For each model, we vary
the total number of rollouts M and the selection ratio N/M . The results reveal several consistent
patterns and architecture-specific sensitivities:

Larger M generally improves performance, but with diminishing returns. For a fixed N/M ,
increasing M consistently improves training stability and final reward, although the benefit decreases
as M increases (e.g., M = 64).

DP2O-SR (C-FLUX) is significantly more stable than DP2O-SR (C-SD2). C-SD2 exhibits reward
collapse under low N or high N/M settings, likely due to overfitting to sparse or low-contrast
supervision. In contrast, C-FLUX maintains stable and monotonic reward curves across most
configurations, implying resilience to noisy or weak preference signals.

Both models exhibit architecture-specific optimal N/M regimes. For C-SD2, N/M = 1/4 yields
the best trade-off between stability and reward contrast; lower ratios often lead to collapse, while
higher ratios converge more slowly. C-FLUX, on the other hand, performs best at lower ratios
such as 1/16, but suffers degraded performance at 1/2. This suggests that more capable models
can effectively learn from stronger contrast signals, whereas smaller models benefit from greater
redundancy and smoother gradients.

These results highlight the importance of tailoring preference curation strategies to model capacity.
While moderate N/M ratios consistently perform well, the optimal configuration depends on the
model’s ability to generalize from noisy or low-contrast supervision. Our approach provides a scalable
framework for systematically exploring these trade-offs. Based on these findings, we select N = 8
and M = 32 for C-SD2, and N = 4 and M = 64 for C-FLUX in all experiments.

5.4 Stochasticity and the Effect of DP2O-SR

Diffusion and flow-based SR models generate diverse outputs due to their inherent stochasticity. To
analyze this, we sample M outputs per input and compute perceptual reward statistics: Best@M,
Mean@M, and Worst@M. As shown in Fig. 5, for both C-SD2 and C-FLUX baselines, Mean@M
remains relatively stable as M increases, suggesting that a single sample is generally representative
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(a) DP2O-SR (SD2) (b) DP2O-SR (FLUX)

Figure 4: Training curves of DP2O-SR on SD2 and FLUX under varying M and N/M configurations.
Larger M generally improves reward, while optimal N/M differs across model capacities.

(a) Perceptual reward statistics on C-SD2 (b) Perceptual reward statistics on C-FLUX

Figure 5: Perceptual reward statistics by increasing sample count M on (a) C-SD2 and (b) C-
FLUX backbones. In both cases, the baseline models (solid) show a widening quality range
with more samples, while DP2O-SR (dashed) consistently improves all statistics—especially
Worst@M—highlighting stronger robustness and reduced output variability.

of average performance. In contrast, Best@M increases and Worst@M decreases with larger M ,
indicating increased variability in output quality. DP2O-SR consistently improves all the three
statistics across both backbones, with the most notable gain in Worst@M. This indicates that our
method not only improves average and best-case outcomes, but more importantly, raises the quality
floor—leading to more consistent and perceptually robust outputs.

To further assess model stability, we follow the evaluation protocol of CCSR [37], randomly sampling
10 outputs per input and computing the mean and standard deviation of perceptual scores. As shown
in Tab. 2, DP2O-SR achieves both better average performance and lower variance across various
metrics, confirming its superior robustness and reliability.

5.5 Global Reward, Local Refiner

Although our reward function is composed entirely of global IQA metrics, which assess overall image
quality, we observe an intriguing behavior: localized refinement. As shown in Fig. 6, we compare the
outputs of baseline model C-FLUX and its improved variant DP2O-FLUX across three random seeds,
using the same LR input. All inference hyperparameters, including the number of inference steps
(25) and classifier-free guidance scale (CFG=2.5), are kept fixed to ensure a controlled comparison.
The only varying factor is the random seed. Two noteworthy observations can be made.
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Table 2: Performance comparison of different methods on RealSR bench [5].
Method LPIPS↓ TOPIQ-FR↑ AFINE-FR↓ MANIQA↑ MUSIQ↑ CLIPIQA+↑ TOPIQ-NR↑ AFINE-NR↓ QALIGN↑

C-SD2 0.416±0.018 0.473±0.022 -0.698±0.239 0.664±0.019 70.34±1.79 0.730±0.028 0.684±0.034 -1.032±0.057 3.630±0.187

DP2O-SR (SD2) 0.405±0.009 0.467±0.013 -0.329±0.150 0.705±0.012 73.24±0.81 0.784±0.017 0.745±0.015 -1.157±0.041 4.017±0.117

C-FLUX 0.400±0.023 0.480±0.027 -0.539±0.274 0.665±0.025 69.70±2.15 0.682±0.036 0.654±0.046 -1.096±0.070 3.654±0.231

DP2O-SR (FLUX) 0.403±0.013 0.485±0.016 -0.549±0.176 0.694±0.013 72.78±0.93 0.758±0.019 0.743±0.013 -1.100±0.047 4.143±0.113

Figure 6: Comparison between C-FLUX and DP2O-FLUX across three random seeds. Trained with
global IQA rewards, DP2O-FLUX demonstrates localized refinement (e.g., wing structure), while
keeping other regions (e.g., head reflections) almost unchanged.

Seed Sensitivity in Local Details. Even within the same model (C-FLUX or DP2O-FLUX), varying
the random seed leads to noticeable differences in local structures, such as wing venation and insect
head details. This highlights the stochastic nature of diffusion-based generation, especially with
under-constrained guidance.

Local Enhancement from Global Reward. More surprisingly, under the same seed, DP2O-FLUX
often produces visibly sharper and more accurate local structures compared to C-FLUX. For instance,
the wing texture (red box) is significantly refined and more faithful to the ground truth, while other
regions—such as the specular highlight on the insect’s head (green box, white arrow)—remain largely
unchanged. This suggests that the model implicitly learns to prioritize perceptually salient regions,
even though the reward is computed globally across the entire image.

This phenomenon implies that preference-based training, when guided by global IQA rewards, can
lead to localized improvements without any explicit local supervision.

The ablation study on the effectiveness of HPO can be found in the Appendix.

6 Conclusion

We introduced DP2O-SR, a preference-driven framework for Real-ISR. We defined a perceptual
reward that jointly considered naturalness and fidelity. Different from traditional best-vs-worst DPO
sampling, we leveraged multiple pairwise comparisons within each group, leading to significantly
improved optimization. We further analyzed how the optimal usage of preference samples varied
across model scales and proposed a practical hyperparameter optimization strategy to adaptively
balance generalization and stability. Extensive experiments demonstrated that our approach brought
notable gains over strong baselines, both perceptually and quantitatively.

Limitations. DP2O-SR has two main limitations. First, although the IQA-based reward correlates
reasonably with human preference, it lacks interpretability and does not fully capture subjective
perceptual quality. Designing more accurate and explainable reward models remains an important
direction for future work. Second, our current training pipeline is fully offline. Incorporating iterative
or online preference optimization may further improve performance and adaptability.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main contributions, which
propose a new paradigm for enhancing diffusion-based Real-ISR performance. These claims
are well-supported by experiments and empirical results throughout the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the “Conclusion and Limitation” section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: We do not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have given the detailed experimental setting for reproducing in the "Exper-
iment" section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The code and data will be released upon publication, but are not included in
the supplementary materials as they are still being organized.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have presented all the experimental settings in the "Experiment" section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We follow the same experimental settings and comparison steps as in previous
work, which do not include such experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have reported the details of the system in the "Experiment" section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully complies with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of this research.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We follow previous works that do not include such safeguards. The safeguards
are valuable. We will consider this in future work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have cited all the referenced papers.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will release the detailed document of codes and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix / supplemental material

In this supplementary file, we provide the following materials:

• The detailed network architecture of our C-SD2 and C-FLUX.
• The ablation study on the effectiveness of HPO.
• More visual comparisons.
• Results of user study.

A.1 The Architecture of C-SD2 and C-FLUX

Fig. 7 illustrates the architectures of the two baseline models, C-SD2 [1] and ControlNet-FLUX [20],
both integrated with the proposed DP2O-SR module. The left subfigure shows C-SD2, which is built
upon a UNet-based architecture. Its control branch is initialized by duplicating the entire encoder of
SD2. Following the standard ControlNet paradigm [57], the low-resolution (LR) condition is first
encoded by an image encoder and then added to the input of the frozen pre-trained backbone. The
resulting combined features are then processed by the control branch. In C-SD2, the control features
are injected into the decoder blocks of the UNet.

The right subfigure presents C-FLUX, which adapts the MMDiT-based [20] architecture. To reduce
computational overhead, its control branch is initialized by copying only the first four Double
Transformer Blocks from the pre-trained model. Similar to C-SD2, the LR condition is encoded
and fused with the model’s input before being passed to the control branch. However, in contrast
to C-SD2, the control features in C-FLUX are added to the intermediate representations within
the Double Transformer blocks, rather than the decoder. This architectural difference reflects the
underlying backbone discrepancy between UNet and MMDiT. All pretraining procedures follow the
official diffusers [39] training recipes to ensure consistency.

A.2 Effectiveness of HPO

Table 3: Ablation study on HPO.

base intra inter both

Perceptual Reward 0.645 0.648 0.649 0.651

To assess the contributions of the two
components in our hierarchical preference
optimization (HPO), we conduct an ab-
lation study by separating the effects of
intra-group and inter-group weighting. As
shown in Tab. 3, applying only intra-group weighting—focusing on local contrast within each SR
candidate group—already provides a noticeable improvement over the baseline. Similarly, using only
inter-group weighting, which emphasizes groups with higher reward dispersion, also leads to better
performance. Combining both strategies yields the highest perceptual reward, confirming that the
two weighting mechanisms are complementary.

(a) The architecture of C-SD2. (b) The architecture of C-FLUX

Figure 7: The illustration of baselines (C-SD2 and C-FLUX) equipped with DP2O-SR.
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A.3 More Visual Comparisons

We present additional qualitative comparisons to demonstrate the effectiveness of our proposed
method DP2O-SR over the two strong baselines: C-SD2 and C-FLUX. For each baseline, we show
visual comparisons between it and its improved versions, i.e., C-SD2 vs. DP2O-SR (SD2) and
C-FLUX vs. DP2O-SR (FLUX), alongside results from several state-of-the-art methods, including
StableSR [42], DiffBIRv2 [28], SeeSR [48], CCSR [37], AddSR [50], and OSEDiff [47].

Below, we first present four representative cases based on the C-SD2 baseline, as shown in Fig. 8.
These comparisons highlight the improvements made by DP2O-SR (SD2) in terms of structural
fidelity and visual detail, as well as its advantages over existing SOTA methods.

Case 1: Text Restoration. In this example, our method demonstrates clear superiority in restoring
corrupted text. The baseline C-SD2 fails to recover the correct structure of the letters, especially the
letter “m”, which is severely distorted. In contrast, DP2O-SR (SD2) produces accurate and sharp
letterforms, closely resembling the ground-truth. Notably, the structure of the letter “e” is also cleaner
and more distinguishable. While methods like OSEDiff and SeeSR partially recover “e”, their outputs
remain ambiguous, often appearing between “e” and “o”.

Case 2: Roof Tile Reconstruction. The second case highlights the reconstruction of architectural
details, specifically roof tiles. Although C-SD2 manages to recover a tile-like structure, the spacing
and arrangement are overly dense compared to the ground-truth. DP2O-SR (SD2) significantly
improves the regularity and spacing of the tiles, resulting in a pattern much more faithful to the
original. Other SOTA methods struggle in this case, with most failing to recover the tile layout.

Case 3: Road Surface Texture. In the third example, we examine the restoration of road textures
and surface patterns. C-SD2 restores the general layout of the path but incorrectly renders the
gaps between the bricks as white. Our improved model, DP2O-SR (SD2), not only recovers the
brick layout more accurately but also generates clearer and more structurally consistent gap lines.
Competing methods mostly fail to reconstruct the pattern or texture meaningfully.

Case 4: Building Structure Recovery. The fourth case focuses on complex architectural structures.
While C-SD2 recovers a reasonable amount of building details, DP2O-SR (SD2) significantly enriches
the reconstruction with finer structural elements and sharper contours. Compared to other methods,
the output of DP2O-SR (SD2) shows clear advantages in both structural fidelity and visual realism.
Although methods like OSEDiff and DiffBIRv2 generate plausible building forms, their results often
include distorted or wavy line structures.

We then present visual comparisons between C-FLUX and DP2O-SR (FLUX), as shown in Fig. 9, to
further validate the generality and robustness of our method.

Case 1: Dice Number Restoration. In this example, most competing methods fail to reconstruct the
dice numbers accurately. While C-FLUX is able to recover the correct “5” on the lower-left white
dice, it mistakenly generates “9” on the upper blue and red dice, deviating from the ground truth. In
contrast, our DP2O-SR (FLUX) restores the correct “6” patterns with sharp and well-aligned dots,
achieving the highest structural fidelity among all methods.

Case 2: Parrot Eye and Beak Details. In this case, C-FLUX fails to recover the black eye of the
red parrot, resulting in an unnatural facial appearance. DP2O-SR (FLUX) successfully reconstructs
the eye region while maintaining a coherent and realistic texture. Although AddSR also restores the
eye, it introduces an unnaturally rigid beak that does not exist in the ground-truth. Overall, DP2O-SR
(FLUX) provides a more natural and visually consistent reconstruction.

Case 3: Artifact Removal and Structural Clarity. For the third example, C-FLUX produces
noticeable vertical artifacts that degrade the overall visual quality. Our DP2O-SR (FLUX) effectively
suppresses these artifacts while preserving local details and edge sharpness. In comparison, methods
such as StableSR, DiffBIRv2, and OSEDiff exhibit a strong “oil-painting” effect, leading to flatter
textures and less realistic structures.

Case 4: Fence Reconstruction. In the final case, C-FLUX fails to reconstruct the fence structure,
resulting in missing geometric elements. DP2O-SR (FLUX) not only restores the complete fence but
also aligns well with the ground-truth. Although DiffBIRv2 and OSEDiff generate fence-like patterns,
their results appear noisy and irregular. These comparisons further demonstrate that DP2O-SR
(FLUX) achieves superior structural accuracy and perceptual realism across diverse scenes.
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A.4 User Study

In the user study, we conduct two categories of experiments. In the first category, we evaluate the
effectiveness of DP2O through pairwise comparisons between the DP2O-enhanced model and its
original (non-enhanced) counterpart. In the second category, we perform a multi-way comparison
between the DP2O-enhanced model and existing state-of-the-art methods.

In each trial of the experiments, participants are presented with a low-quality (LQ) image along with
either two images (for pairwise comparisons) or seven images (for multi-way comparison), and are
asked the following question:

Given the LQ image, which one of the candidate images is the best high-quality
version of it?

For each backbone model, we invited 10 participants to evaluate 20 distinct scenarios. In each
scenario, the participants completed two pairwise comparisons and one multi-way comparison,
resulting in 3 evaluations per scenario. This yielded a total of 10 × 20 × 2 = 400 evaluations per
backbone. Since the experiments were conducted on two backbones, the entire user study comprised
2× 400 = 800 evaluation outputs.

The results of our user study are summarized in Fig. 10. In the pairwise comparisons (top row),
participants consistently preferred the DP2O-enhanced models over the original pre-trained models.
Specifically, for C-SD2 (Fig. 10a), 67.5% of selections favor DP2O over the pre-trained model. For
C-FLUX (Fig. 10b), DP2O outperforms the pre-trained with preference rates of 69.5%.

In the multi-way comparison (bottom row), where participants selected the most plausible high-
resolution candidate among seven methods, DP2O again performs the best. For C-SD2, DP2O
accounts for 28.0% of total votes, ahead of OSEDiff (19.5%) and SeeSR (18.5%). For C-FLUX,
DP2O receives a dominant 44.0% of the votes, significantly outperforming the second-best method,
OSEDiff (12%).

These results collectively demonstrate the consistent superiority of DP2O-SR across diverse backbone
models and evaluation settings, reflecting its robustness and perceptual quality gains over baselines
and state-of-the-art alternatives.
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Figure 8: Qualitative comparison between C-SD2, DP²O-SR (SD2), and other Real-ISR methods.
Zoom in for visual details. 25



Figure 9: Qualitative comparison between C-FLUX, DP²O-SR (FLUX), and other Real-ISR methods.
Zoom in for visual details.
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(a) User study results on C-SD2. Top: pair-
wise comparison between DP2O and its base-
line. Bottom: multi-way preference distribu-
tion among seven methods.

(b) User study results on C-FLUX. Top: pair-
wise comparison between DP2O and its base-
line. Bottom: multi-way preference distribu-
tion among seven methods.

Figure 10: Summary of user study results on C-SD2 and C-FLUX. In both pairwise and multi-way
comparisons, DP2O consistently outperforms baselines and state-of-the-art methods, indicating its
strong perceptual advantage in recovering high-quality images from low-resolution inputs.

27


	Introduction
	Related Work
	Background
	Methodology
	Perceptual Reward Design
	Perceptual Preference Data Curation
	Hierarchical Preference Optimization

	Experiment
	Experimental Settings
	Results on Perceptual Preference Alignment
	Effect of Sample Count and Selection Ratio
	Stochasticity and the Effect of DP2O-SR
	Global Reward, Local Refiner

	Conclusion
	Appendix / supplemental material
	The Architecture of C-SD2 and C-FLUX
	Effectiveness of HPO
	More Visual Comparisons
	User Study


