
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REWRITING PRE-TRAINING DATA BOOSTS LLM PER-
FORMANCE IN MATH AND CODE

Anonymous authors
Paper under double-blind review

ABSTRACT

The performance of large language models (LLMs) in program synthesis and
mathematical reasoning is fundamentally limited by the quality of their pre-training
corpora. We introduce two openly licensed pre-training datasets, released under
the Llama 3.3 Community License, that significantly enhance LLM performance
by systematically rewriting public data. SwallowCode (≈16.1 billion tokens)
refines Python snippets from The-Stack-v2 through a novel four-stage pipeline:
syntax validation, pylint-based style filtering, and a two-stage LLM rewriting
process that enforces style conformity and transforms snippets into self-contained,
algorithmically efficient examples. Unlike prior methods that rely on exclusionary
filtering or limited transformations, our transform-and-retain approach refines low-
quality code, maximizing data utility. SwallowMath (≈2.3 billion tokens) enhances
Finemath-4+ by removing boilerplate, restoring context, and reformatting solutions
into concise, step-by-step explanations. Within a fixed 50 billion token training
budget, continual pre-training of Llama-3.1-8B with SwallowCode boosts pass@1
by +17.0 on HumanEval and +16.1 on HumanEval+ compared to Stack-Edu,
surpassing the baseline model’s code generation capabilities. Similarly, substituting
SwallowMath yields +12.4 accuracy on GSM8K and +7.6 on MATH. Ablation
studies confirm that each pipeline stage contributes incrementally, with rewriting
yielding the largest gains. By releasing datasets, prompts, checkpoints, and pipeline
code, we ensure reproducibility and provide a transferable transform-and-retain
methodology that can be adapted to other base models and LLM rewriting setups.

1 INTRODUCTION

Figure 1: Comparison of Python-only datasets in a 50 billion tokens continual pre-training setting. SwallowCode
achieves the highest pass@1 on HumanEval(left) and HumanEval+(right) compared to CodeParrot-Clean,
The-Stack-v1, The-Stack-v2-Smol, and Stack-Edu.

Large Language Models (LLMs) have demonstrated remarkable zero-shot and few-shot capabilities
across diverse tasks, yet their proficiency in mathematical reasoning and program synthesis remains
constrained by the quality of pre-training corpora. Existing public datasets for specialized domains,
such as The-Stack-v1 and v2 for code (Kocetkov et al., 2022; Lozhkov et al., 2024) and Finemath-
4+ for mathematics (Allal et al., 2025), rely primarily on rule-based extraction from web crawls

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(e.g., CommonCrawl) (Paster et al., 2023) or model-based scoring to filter low-quality samples.
However, these approaches often retain noisy, redundant, or stylistically inconsistent data, limiting
their effectiveness–particularly in the growing trend of multi-stage pre-training (or mid-training)
aimed at enhancing mathematical reasoning and program synthesis (e.g., OLMo 2 (OLMo et al.,
2025), Nemotron-H (NVIDIA et al., 2025), and Phi-4 (Abdin et al., 2024)).

Compounding this challenge, leading open-weight frontier model families (e.g., Qwen3 (Yang et al.,
2025), DeepSeek-V3 (DeepSeek-AI et al., 2025)) do not release their pre-training corpora. As a result,
the open community lacks access to high-quality code and mathematics corpora comparable to those
used in the state-of-the-art open-weight models, creating a growing “data quality gap”. To address
this gap, we propose SwallowCode and SwallowMath, two openly licensed datasets designed to raise
the ceiling of open pre-training for code generation and mathematical reasoning. Our contribution
is data-centric and reproducible—open corpora and a continually updatable transform-and-retain
methodology—in contrast to irreproducible model comparisons that rely on undisclosed training data.

Unlike prior methods that solely filter or preserve original samples, our approach rewrites pre-
training corpora to eliminate noise and redundancy, yielding high-quality, self-contained data that
enables efficient learning. SwallowCode refines Python snippets from The-Stack-v2 via a four-stage
pipeline—sequential syntax validation, pylint-based style filtering, and a two-stage LLM rewriting
process that enforces style conformity and transforms snippets into algorithmically efficient, self-
contained examples. By rewriting rather than merely filtering, we remove persistent defects that
remain in datasets like Stack-Edu (Allal et al., 2025) and obtain data that drives rapid accuracy gains
(Figure 1). To demonstrate the generality of our transform-and-retain approach beyond code, we
also applied it to the mathematics domain. Specifically, SwallowMath transforms Finemath-4+ by
removing boilerplate, restoring missing context, and reformatting solutions into concise, step-by-step
explanations.

We deliberately avoided continual pre-training from near-frontier models (e.g., Qwen-2.5/3, gpt-oss).
These models already achieve very high performance in mathematics and code, so additional data
yields only marginal gains. Such settings obscure whether improvements stem from the dataset
itself or from incidental model factors, confounding the attribution of results. In contrast, Llama-3.1-
8B (Grattafiori et al., 2024) provides a more informative starting point: it is strong enough to serve as
a realistic baseline for open-community efforts, yet remains sufficiently below the frontier to avoid
saturation, thereby allowing improvements to be clearly attributed to dataset quality.

Under this protocol, continual pre-training for 50B tokens on a mixed dataset containing SwallowCode
and multilingual corpora improves pass@1 by +17.0 on HumanEval and +16.1 on HumanEval+
compared to an equivalent budget using Stack-Edu. Substituting Finemath-4+ with SwallowMath
yields +12.4 accuracy on GSM8K and +7.6 on MATH. To verify generality beyond the Llama-
3 family, we also conduct 20B-token continual pre-training from Qwen2-7B (Yang et al., 2024),
where the model trained with SwallowCode surpasses Stack-Edu, improving HumanEval by +10.3
and HumanEval+ by +10.3 (see Appendix B). We conduct rigorous decontamination checks for
SwallowCode against HumanEval and HumanEval+ prompts (no exact matches or high-similarity
documents; see Appendix H) and apply analogous procedures for SwallowMath against GSM8K and
MATH (no contamination). We further examine potential self-contamination from the rewriting LLM
(Llama-3.3-70B-Instruct) using post-cutoff benchmarks (Appendix H). All datasets, prompts, and
checkpoints are publicly released to ensure reproducibility and to enable adaptation to other base
models and rewriting using LLMs.

2 RELATED WORK

2.1 CLASSIFIER-BASED FILTERING FOR CODE CORPORA

Recent work has shown that classifier-based filtering strategies, such as the FineWeb-Edu ap-
proach (Penedo et al., 2024), can be effective for curating high-quality web datasets (Allal et al., 2024).
These methods aim to improve model performance on code-related tasks by selecting semantically
rich and well-documented samples from large-scale corpora. In this context, Stack-Edu represents a
significant effort to create a filtered variant of StarCoder2Data (Lozhkov et al., 2024) prioritizing
high-quality code. Stack-Edu begins by selecting the 15 most prevalent programming languages
from StarCoder2Data, forming a subset of approximately 450 billion tokens. To assess code qual-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

ity, Stack-Edu leverages Llama-3-70B-Instruct to generate synthetic annotations for 500,000 code
fragments, rating each on a 0–5 scale based on educational and structural quality. These annotations
train language-specific classifiers based on the StarEncoder model (Li et al., 2023), achieving F1
scores above 0.7 for most languages when applying a threshold of 3 for binary classification. The
resulting dataset comprises 125 billion tokens and demonstrates improved model convergence and
higher pass@1 scores on HumanEval compared to unfiltered corpora (Allal et al., 2025). However,
Stack-Edu’s exclusionary filtering strategy discards low-scoring snippets rather than rewriting or aug-
menting them, leaving residual issues—such as missing context or inconsistent naming conventions
in the retained data.

2.2 LLM-DRIVEN PRE-TRAINING CORPUS REWRITING

Efforts to improve datasets using LLMs have gained traction. Cosmopedia (Ben Allal et al., 2024)
demonstrated the potential of synthetic data generation, using Mixtral-8×7B-Instruct (Jiang et al.,
2024) to create high-quality text corpora, although it did not address code-specific challenges. Related
techniques have also emerged in other domains, particularly for general web data refinement. For
example, Rephrasing the Web (Maini et al., 2024) and Nemotron-CC (Su et al., 2025) transform noisy
Common Crawl text into improved corpora through large-scale rephrasing or QA-style conversions.
These approaches, however, target non-code/math domains and often perform format changes that
overlap with instruction-tuning objectives. In contrast, our method applies domain-specific rewriting
while ensuring that the outputs remain pure code snippets, thereby preserving the original data’s
semantics. Unlike web data rephrasing approaches that introduce style conversions and may implicitly
boost instruction-following abilities during pre-training, our approach is not designed to gain such
capabilities but rather to improve the quality of pre-training data itself. This distinction makes
our work fundamentally different from prior web data rephrasing efforts and highlights its unique
contribution. MegaMath (Zhou et al., 2025) represents another recent attempt to refine math data, but
adopts a QA-style interleaved text-code format. This design aligns more closely with general web
data refinement methods that restructure content into instruction-response format, in contrast to our
approach of retaining pure, self-contained snippets.

Jain et al. (2023) is closest to our work, applying LLM-driven code transformations to instruction
tuning exemplars, e.g., variable renaming, modularization, and comment addition. While effective for
fine-tuning, their approach is limited in scope and context compared to our SwallowCode pipeline.
Their transformations address only a subset of stylistic improvements, whereas our Style-Guided
Code Rewriting (SGCR) pipeline comprehensively enforces ten criteria from the Google Python
Style Guide, including descriptive variable naming, effective type annotations, modular function
design, error handling, and readability-focused formatting (see Section 3.3.1). Furthermore, our Self-
Contained Optimization Rewriting (SCOR) pipeline introduces semantic enhancements, ensuring
self-containment by resolving dependencies, optimizing algorithms, and transforming trivial snippets
into instructive examples, which are absent in Jain et al.’s work (see Section 3.3.2). Although Jain et
al. target instruction-tuning data, a smaller and more curated dataset, SwallowCode systematically
rewrites large-scale pre-training corpora. This is a more challenging task due to the diversity and
volume of code samples. Our pipeline integrates rigorous preprocessing with syntax error and
linter-based filtering to ensure high-quality inputs for rewriting.

Taken together, SwallowCode’s transform-and-retain paradigm refines low-quality code rather than
discarding it, addressing limitations of existing datasets such as The Stack v1/v2 and Stack-Edu,
which rely on filtering. By combining filtering, SGCR, and SCOR, SwallowCode produces a high-
quality corpus that significantly improves performance on HumanEval and HumanEval+, advancing
the state-of-the-art in open code datasets. Similarly, adhering to the same transform-and-retrain
paradigm, SwallowMath rewrites noisy mathematical data, significantly improving performance on
GSM8K and MATH.

2.3 SYNTHETIC DATA GENERATION FOR CODE

Recent approaches, such as Magpie (Xu et al., 2024), leverage high-performance LLMs to generate
synthetic instruction-tuning datasets from prompts and desired characteristics without relying on ex-
isting data. However, we opted against generating synthetic code data from scratch for SwallowCode
due to two key limitations. First, previous work (Chen et al., 2024) demonstrates that low-diversity

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Four-stage pipeline for constructing SwallowCode: (1) syntax filtering to remove invalid Python code,
(2) linter-based filtering using pylint to enforce coding standards, and (3–4) two-stage LLM rewriting with
Style-Guided Code Rewriting (SGCR), which enforces consistent style and readability, and Self-Contained
Optimization Rewriting (SCOR), which ensures self-containment and optimizes algorithms for efficiency.

synthetic data restricts LLM performance. Second, achieving high diversity in synthetic code datasets
requires diverse topics and keywords as seeds, as seen in Nemotron-4 340B’s synthetic instruction
data (Nvidia et al., 2024). For code, defining such seeds (e.g., varied algorithmic paradigms or prob-
lem domains) remains an open challenge, as no established methodology ensures sufficient diversity
across programming tasks. Instead, our approach leverages high-quality code from The-Stack-v2,
filtered for syntactic and stylistic rigor (Section 3.2), and applies LLM-driven rewriting to enhance
quality while preserving the inherent diversity of real-world code. This transform-and-retain strategy
maximizes data utility and avoids the risks of synthetic data homogeneity.

3 CONSTRUCTION OF THE CODE CORPUS

The development of SwallowCode is driven by an empirical and exploratory approach, informed
by data ablation experiments evaluating each stage of the data processing pipeline, as illustrated in
Figure 2. Specifically, we continually pre-trained the baseline model with the dataset, only differing
in the code text subset: before and after applying a specific stage in the pipeline, and decided if we
should adopt or discard the stage based on the evaluation results. In this section, we present the
experimental results and describe the design choices shaping the pipeline. Please refer to Appendix J.1
for detailed results.

3.1 EXPERIMENTAL SETUP

To evaluate the impact of each design choice in our pre-training data processing pipeline, we conduct
systematic data ablation studies. Each ablation trains a model that differs only in the target pre-training
dataset, holding all other factors constant, including model architecture, parameter count, non-target
data, total token budget, and hyperparameters. Specifically, we perform continual pre-training starting
from Llama-3.1-8B, using a total of approximately 50 billion tokens. The target dataset is processed
with less than one epoch within each ablation. We evaluated model checkpoints approximately every
10 billion tokens using ten downstream benchmarks.

Continual pre-training is conducted using Megatron-LM (Shoeybi et al., 2020). For evaluation, we
use evalplus (Liu et al., 2023) and lm-evaluation-harness (Gao et al., 2024) on a suite of benchmarks,
with individual tasks detailed in Appendix J. The effectiveness of the code corpus is specifically
assessed using HumanEval and HumanEval+. The pre-training data mixture consists of 84% multi-
lingual text and 16% code. Detailed proportions and data source are provided in Appendix A.4.1,
with detailed training hyperparameters reported in Appendix A.1. All ablation models, associated
checkpoints, and supporting materials are publicly available in our Hugging Face repository to ensure
full reproducibility.

3.2 FILTERING

To construct the SwallowCode corpus, a high-quality Python code dataset, we implement a rigorous
filtering pipeline starting with the-stack-v2-train-smol-ids (Lozhkov et al., 2024) as the base dataset.
The filtering process is critical to ensure that only syntactically correct and well-structured code
is retained, enhancing downstream performance in code generation tasks. We focus exclusively
on Python code to maintain consistency across ablation studies and enable fair comparisons with

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 3: Performance comparison of filtering methods on HumanEval (left) and HumanEval+ (right) bench-
marks. The original dataset (Stack v2) is compared against datasets processed with syntax error filtering,
linter-based filtering, and LLM-based scoring (evaluated in ablation studies but not adopted). Syntax and
linter-based filtering enhance code generation performance, while LLM-based scoring provides marginal gains,
considering the computational cost.

existing public corpora. Our pipeline employs two key filtering techniques, syntax error filtering
and linter-based filtering, that significantly improve code quality. We also evaluated LLM-based
scoring in ablation experiments, but did not adopt it in the final pipeline due to its limited performance
gains relative to computational cost. Figure 3 summarizes the performance of these methods on the
HumanEval and HumanEval+ benchmarks, demonstrating the impact of our filtering strategy.

3.2.1 SYNTAX ERROR FILTERING

Despite the heuristic filtering in the BigCode project, the-stack-v2-train-smol-ids includes Python
code samples with invalid syntax according to Python 3.10 specifications. To address this, we apply
syntax error filtering by compiling each code sample using Python’s built-in compile() function,
discarding any samples that fail to compile. This process reduces the dataset from approximately
41 million to 37 million samples, a 9.7% reduction. As shown in Figure 3, removing syntactically
invalid samples improves the performance of HumanEval and HumanEval+1. Consequently, we
adopt syntax error filtering as a standard step in all subsequent experiments.

3.2.2 LINTER-BASED FILTERING

Beyond syntactic correctness, code quality depends on adherence to coding standards. Many samples
in the initial dataset exhibit poor structure, generating numerous warnings when analyzed by static
analysis tools. We employ pylint, a widely-used Python linter, to enforce a quality threshold, excluding
samples with scores below 7.0 on a 0–10 scale based on rule violations. Additionally, we penalize
overly verbose comments using a custom heuristic scoring algorithm (detailed in Appendix C). This
step reduces the dataset from 36.7 million to 24.1 million samples (34.3% reduction). Figure 3
illustrates the performance gains of more than 1 point in HumanEval and HumanEval+ achieved by
linter-based filtering. We first remove syntax errors to avoid wasting computation on files that cannot
be linted2. Consequently, we adopt linter-based filtering, with a threshold of 7.0, as a standard step in
all subsequent experiments.

3.2.3 LLM-BASED SCORE FILTERING

Recent approaches leverage LLM to generate synthetic annotations for training quality classi-
fiers, which are then used to filter web-scale corpora by retaining high-quality samples (e.g.,
FineWeb (Penedo et al., 2024), Stack-Edu). Instead of training a separate classifier, we directly

1The performance trajectory of The Stack v2 exhibits an initial decline followed by a recovery, consistent
with forgetting and subsequent adaptation observed in prior continual pre-training studies (Fujii et al., 2024).
This behavior is not particularly notable.

2While pylint can also surface syntax errors, performing linter-only filtering would be computationally
inefficient compared to a staged pipeline of (i) syntax error filtering and (ii) linter-based filtering; the resulting
retained set is effectively the same up to linter version/config nuances.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 4: Performance comparison of LLM-driven rewriting steps on HumanEval (left) and HumanEval+ (right)
benchmarks. The pre-rewriting (syntax-error and linter-based filtering) is compared against SGCR and SCOR.
SGCR improves performance by over 7-9 points, while SCOR, applied after SGCR, further enhances scores by
over 5-6 points, demonstrating the effectiveness of stylistic and semantic rewrites in the SwallowCode pipeline.

prompt Llama-3.3-70B-Instruct to evaluate each Python code snippet on a scale of 0–10, based on
ten criteria, including code readability, modularity, and adherence to naming conventions, derived
from the Google Python Style Guide. The detailed scoring prompt and the distribution of the quality
scores are provided in Appendix D.

We exclude samples scoring below 6, retaining only those deemed sufficiently high-quality, and
use this filtered subset alongside multilingual data for continual pre-training in our ablation studies.
As shown in Figure 3, LLM-based filtering yields modest improvements (less than 1 point) over
linter-based filtering on the HumanEval and HumanEval+ benchmarks.

Given these limited gains, we compare LLM-based scoring to our LLM-driven rewriting pipeline,
which refines code snippets by enhancing clarity and correctness (Section 3.3). Comparing Figure 3
and Figure 4, although the rewriting pipeline requires 1.22 times the computational resources of LLM-
based scoring (a 22% increase), it achieves significantly greater performance gains on HumanEval
and HumanEval+ (detailed in Appendix G). Consequently, we do not incorporate LLM-based scoring
in subsequent experiments, which favors the more effective and cost-effective rewriting approach.

3.3 LLM-DRIVEN REWRITING

Recent studies highlight the potential of LLMs to transform training data, enhancing the performance
of instruction-tuned models. Jain et al. (2023) proposed three transformations—variable renaming,
modularization, and plan annotation—for code cleaning, demonstrating their effectiveness for instruc-
tion tuning. However, their approach is limited to curated instruction-tuning data and a narrow set of
stylistic improvements, lacking semantic optimizations or preprocessing integration.

To address these limitations, we propose the SwallowCode pipeline, which systematically rewrites
large-scale pre-training corpora using two complementary LLM-driven processes: Style-Guided Code
Rewriting (SGCR) and Self-Contained Optimization Rewriting (SCOR). SGCR revises Python code
snippets based on the Google Python Style Guide, enforcing stylistic improvements like clear naming
and modular design (Section 3.3.1). SCOR extends SGCR by ensuring self-containment and applying
semantic optimizations, such as efficient algorithms and instructive examples (Section 3.3.2). To
clarify, SwallowCode retains the code-only format of The-stack-v2-train-smol-ids, consisting solely
of Python snippets without the text-code pair structure typical of instruction-tuning datasets. The
rewriting pipeline, powered by Llama-3.3-70B-Instruct, enhances code quality through stylistic and
semantic transformations without introducing instructional prompts or responses. Thus, performance
gains in HumanEval and HumanEval+ (Section 3.4) stem from improved data quality, not from
distillation of instruction tuning capabilities.

To illustrate the scope of these transformations, Table 1 compares the coverage of SGCR and SCOR
against the approach of Jain et al. (2023). While SGCR addresses stylistic criteria like type hints,
error handling, and docstrings, SCOR introduces semantic enhancements, including self-containment
and optimization (algorithm and data structure), broadening the scope of the SwallowCode pipeline.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison of code transformation coverage for Jain et al. (2023), SGCR, and SCOR.

Criterion Jain et al. SGCR SCOR

Variable Renaming ✓ ✓ ×
Modularization ✓ ✓ ×
Comments ✓ ✓ ×
Type Hint × ✓ ×
Error Handling × ✓ ×
Docstring × ✓ ×
Self-Contained × × ✓
Optimized × × ✓

3.3.1 SGCR: STYLE-GUIDED CODE REWRITING

SGCR enhances code readability by adding docstrings and type hints, unifying variable reassignment
patterns, and standardizing function and class names in accordance with the Google Python Style
Guide. Compared to the pre-rewriting (syntax-error and linter-based filtering), SGCR achieves
improvements over 7-9 points on HumanEval and HumanEval+ as shown Figure 4. We also evaluate
SGCR applied directly to the raw the-stack-v2-train-smol-ids corpus versus SGCR applied after
syntax error and linter-based filtering. As illustrated in Figure 4, the SGCR pipeline with syntax
and linter filtering outperforms direct SGCR by 0.4-2.1 points on downstream code generation
benchmarks. Consequently, we adopt a pipeline that applies syntax and linter-based filtering prior to
SGCR in all subsequent experiments.

Ablation studies reveal that SGCR significantly improves HumanEval and HumanEval+ scores but
results in an approximate 10-point decrease on the MBPP benchmark (Austin et al., 2021) (detailed
in Appendix I). Analysis indicates that MBPP’s solutions often use non-standard function and class
names, and SGCR’s automated renaming introduces function name mismatches with MBPP’s unit
tests, leading to “undefined” errors during evaluation. The identified mismatches obscure the model’s
true code-generation capabilities, motivating us to exclude MBPP from our evaluation benchmarks
across all experiments.

3.3.2 SCOR: SELF-CONTAINED OPTIMIZATION REWRITING

Although SGCR ensures adherence to stylistic criteria, it does not modify the program semantics.
Manual observation of models trained on SGCR-processed data reveals three recurring issues: (i)
missing dependencies, where models attempt to import non-existent libraries or call undefined
functions, causing runtime errors; (ii) inefficient algorithms, such as naive recursion or quadratic-time
algorithms for problems that admit linear-time or dynamic programming solutions; and (iii) trivial
snippets, such as code that merely prints constants or performs basic arithmetic, offering minimal
training value.

To address these limitations while preserving SGCR’s stylistic improvements, we introduce Self-
Contained Optimization Rewriting (SCOR). Guided by a ten-rule prompt (detailed in Appendix E.4),
SCOR rewrites each snippet to ensure self-containment by inlining or satisfying external dependencies,
replaces inefficient algorithms with more computationally efficient alternatives, and transforms trivial
code into meaningful executable examples. As illustrated in Figure 4, SCOR improves HumanEval
and HumanEval+ scores by over 5-6 points compared to SGCR. These results underscore the
importance of semantic-level rewrites beyond stylistic enhancements, establishing SCOR as the
final stage of the SwallowCode construction pipeline. We did not conduct an ablation experiment
evaluating SCOR in isolation without SGCR. However, prompt validation experiments with Llama-
3.3-70B-Instruct indicated that simultaneously applying SGCR and SCOR often reduced the quality
of the rewritten code due to the challenges LLMs face in balancing multiple objectives. This led to
the adoption of a two-stage SGCR and SCOR approach, with the isolated SCOR evaluation deferred
to future work.

Compared to the approximately 1-2 points performance gain achieved during the filtering stages
(green line in Figure 4), the rewriting stages using SGCR and SCOR led to a total performance
improvement of 14 points—7-9 points from SGCR and 5-6 points from SCOR. This highlights the
significant potential for enhancing dataset curation by incorporating LLM-driven rewriting approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

3.4 THE FINAL SWALLOWCODE DATASET

Applying the complete pipeline, including syntax error filtering, Pylint-based filtering, Style-Guided
Code Rewriting (SGCR), and Self-Contained Optimization Rewriting (SCOR), to the-stack-v2-
train-smol-ids produces the SwallowCode corpus, comprising 16.1 billion tokens. All intermediate
artifacts, including non-optimal variants, are publicly available to support future research efforts.

Comparison with existing corpora Figure 1 compares SwallowCode with several widely used
open code datasets: CodeParrot-Clean (12.8 billion tokens), The Stack v1 (98.2 billion tokens) The
Stack v2-Smol (36.1 billion tokens), and Stack-Edu (17.9 billion tokens). For a fair comparison, we
extract only the Python subsets of each corpus and, following the protocol outlined in Section 3.1,
allocate 16% (8 billion) code tokens within a 50 billion-token mixed batch, ensuring each sample is
processed no more than once. SwallowCode outperforms all comparable publicly available corpora on
the HumanEval (pass@1) and HumanEval+ (pass@1) benchmarks, demonstrating the effectiveness
of our pipeline design. Detailed results are provided in Appendix J.1.

4 CONSTRUCTION OF THE MATH CORPUS

Section 3 demonstrated that LLM-driven rewriting significantly boosts coding performance. To
evaluate the transferability of this approach, we apply a tailored rewriting pipeline to mathematical
data. We select finemath-4+, a high-quality, publicly available math corpus, as the starting point and
process it through a rewriting pipeline. According to the evaluation in finemath, it outperforms other
open mathematical datasets, including OpenWebMath (Paster et al., 2023), InfiMM-WebMath (Han
et al., 2024), and finemath-3+, in terms of the performance on benchmarks such as GSM8K and
MATH. Given its reported superior performance and public availability, we adopt finemath-4+ as the
foundation corpus for constructing our mathematical corpus to maximize the effectiveness of our
rewriting approach.

4.1 EXPERIMENTAL SETUP

We adhere to the protocol outlined in Section 3.1, performing continual pre-training of Llama-3.1-8B
for approximately 50 billion tokens, varying only the target math corpus. The evaluation benchmarks
mirror those of Section 3.1, with HumanEval+ replaced by the MATH dataset (Hendrycks et al.,
2021b), with GSM8K and MATH as the primary math-focused benchmarks. The pre-training mixture
comprises 82.2% multilingual text, 13.0% code, and 4.79% math; detailed proportions and data
sources are provided in Appendix A.4.2. The complete hyperparameters are listed in Appendix A.1.

4.2 LLM-DRIVEN REWRITING

Figure 5: Performance gains from LLM-driven rewriting of finemath-4+. The rewritten corpus
improves GSM8K(left) by 12.4 points and MATH(right) by 7.6 points.

The Finemath-4+ corpus is a collection of documents in which snippets of mathematical text are
embedded within passages that are otherwise unrelated to mathematics. In addition, the mathematical
content ranges widely, from elementary arithmetic to advanced topics. This heterogeneity renders
rule-based filtering challenging, as it struggles to distinguish relevant mathematical content from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

irrelevant artifacts. To address this, we design an LLM-driven rewriting pipeline using Llama-3.3-
70B-Instruct, which not only cleans and refines the data but also enhances its quality for mathematical
reasoning tasks.

The rewriting prompt instructs the model to: (1) remove residual web headers, footers, and privacy
notices; (2) eliminate irrelevant metadata, such as question and answer timestamps; (3) restore
missing context in incomplete questions or answers; (4) rewrite derivation steps to be concise yet
comprehensive; and (5) provide clear, step-by-step solutions. Steps (1) and (2) are analogous to the
syntax error and linter-based filtering applied to SwallowCode (Section 3), addressing inappropriate
content that rule-based methods alone could not effectively filter. Steps (3) through (5) parallel
the self-containment and style enhancements of the code rewriting pipeline, adapting them to the
mathematical domain. The complete prompt is provided in Appendix F.

As shown in Figure 5, the rewritten corpus yields substantial improvements: 12.4 points on GSM8K
and 7.6 points on MATH. These results demonstrate that LLM-driven rewriting, while tailored to the
unique characteristics of mathematical data, successfully enhances the already high-quality finemath-
4+ corpus. This confirms the generalizability of our rewriting approach beyond code, offering a
robust method for improving open-domain datasets for mathematical reasoning.

5 LIMITATIONS

While SwallowCode and SwallowMath significantly improve code generation and mathematical
reasoning performance of LLMs, several limitations should be noted. First, the rewriting pipelines
may preserve biases present in the source data. For example, the Stack v2 may over-represent certain
coding patterns, and Finemath-4+ may favor specific problem types. Additionally, as the rewriting
process relies on Llama-3.3-70B-Instruct, the resulting datasets may reflect this model’s preferences,
such as favoring certain variable naming conventions or solution strategies. Second, our evaluations
are confined to continual pre-training with a 50 billion token budget, as detailed in Section 3.1, to
ensure controlled and reproducible experiments within computational constraints. The impact of
extending pre-training beyond this budget remains unexplored, and performance trends at larger scales
may differ, particularly for tasks requiring extensive training data. Third, although the SwallowCode
pipeline is designed to be language-agnostic, requiring only static syntax checking and linter tools,
our experiments focus exclusively on Python to facilitate automated evaluation. Empirical validation
for other programming languages was not feasible due to resource constraints, limiting evidence of
the pipeline’s broader applicability.

6 CONCLUSION

We introduced SwallowCode and SwallowMath, which are openly released pre-training corpora built
using a transform-and-retain rewriting pipeline. Beyond filtering, our approach normalizes style
and structure and produces self-contained, semantically improved snippets. Under a fixed compute
budget, this yields consistent pre-training gains on code and math benchmarks. Ablations isolate
where improvements arise, providing actionable data-design principles rather than model-specific
tricks. Our scope is data-centric and evaluates pre-training effects without SFT or RL to avoid stage
conflation. The main limitations are the current focus on Python for code and the computing required
for rewriting. As analyzed in Appendix G.4, the upfront cost of rewriting is offset by higher data
efficiency during training. Rewritten corpora deliver larger gains with the same or fewer tokens,
while noisy baselines saturate and would require substantially more tokens to approach the same
accuracy, if at all possible. The pipeline is modular and scalable, allowing researchers to rewrite
only high-leverage subsets or directly utilize our released corpora to avoid the rewrite overhead.
Because the refined datasets are reusable across models and studies, the initial cost becomes a durable
community asset. We release the data, prompts, and checkpoints to enable reproduction and future
updates as rewriting LLMs improve.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We affirm adherence to the ICLR Code of Ethics. This work introduces and releases SwallowCode
and SwallowMath, billion-token–scale corpora focused on source code and mathematical reasoning.
The datasets do not involve human subjects or interventions, and are not designed to encode or
amplify sensitive attributes.

Data were curated from publicly accessible sources with licenses that permit redistribution and
commercial use; we preserved license information and require users to respect the original terms. To
the best of our knowledge, the datasets do not contain personally identifiable information or secrets.
However, residual risks remain (e.g., insecure coding patterns or biased stylistic conventions present
in public code).

We maintain an open feedback and takedown process. If any privacy, licensing, security, or other
ethical concerns are identified, stakeholders can contact the authors via the issues page on our
Hugging Face repositories; we will review and remediate reports promptly (including correction or
removal of problematic data). We are not aware of conflicts of interest related to this release.

8 REPRODUCIBILITY STATEMENT

We are committed to reproducible research. Complete experimental details are provided in Ap-
pendix A, including (i) model architectures used for training, (ii) all hyperparameters, (iii) GPU
resources, (iv) distributed training configurations, (v) library and framework versions, and (vi)
composition of the training data.

As supplementary material, we release the dataset pipeline code used to construct our corpora.
In addition, the methodology and implementation details for the data pipeline are documented in
Appendices C, D, and E. The evaluation datasets and framework settings are described in Section 3.1
and 4.1, with further specifics in Appendix J.

We also make public all model checkpoints produced in ablation studies. However, to respect
OpenReview’s anonymity requirements and because the aggregate checkpoint size substantially
exceeds 100 GB, we do not attach these artifacts as supplementary files. For the same reasons, we do
not include the full training datasets as supplementary material (they are of a billion-token scale).
However, SwallowCode, SwallowMath, and all associated checkpoints are already available on
Hugging Face, ensuring full reproducibility of our results.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Marah I Abdin, Jyoti Aneja, Harkirat S. Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa,
Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang,
and Yi Zhang. Phi-4 technical report, 2024. URL https://doi.org/10.48550/arXiv.
2412.08905.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. Smollm -
blazingly fast and remarkably powerful, 2024.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw, Hugo
Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big – data-centric training of a small language model,
2025. URL https://arxiv.org/abs/2502.02737.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021. URL https://arxiv.org/abs/2108.07732.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von
Werra. Cosmopedia, February 2024. URL https://huggingface.co/datasets/
HuggingFaceTB/cosmopedia. Software dataset.

Hao Chen, Abdul Waheed, Xiang Li, Yidong Wang, Jindong Wang, Bhiksha Raj, and Marah I. Abdin.
On the diversity of synthetic data and its impact on training large language models, 2024. URL
https://arxiv.org/abs/2410.15226.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens
Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis,
Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas
Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher
Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec Radford,
Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario
Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large language
models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi
Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang,
Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha

11

https://doi.org/10.48550/arXiv.2412.08905
https://doi.org/10.48550/arXiv.2412.08905
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2108.07732
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://arxiv.org/abs/2410.15226
https://arxiv.org/abs/2107.03374

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su,
Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng,
Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan
Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu,
Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou,
Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu
Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan.
Deepseek-v3 technical report, 2025. URL https://arxiv.org/abs/2412.19437.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hiroki Iida, Masanari Ohi, Kakeru Hattori, Hirai
Shota, Sakae Mizuki, Rio Yokota, and Naoaki Okazaki. Continual pre-training for cross-lingual
llm adaptation: Enhancing japanese language capabilities, 2024. URL https://arxiv.org/
abs/2404.17790.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal
Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier

12

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2404.17790
https://arxiv.org/abs/2404.17790
https://zenodo.org/records/12608602

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya
Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz,
Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Xiaotian Han, Yiren Jian, Xuefeng Hu, Haogeng Liu, Yiqi Wang, Qihang Fan, Yuang Ai, Huaibo
Huang, Ran He, Zhenheng Yang, and Quanzeng You. Infimm-webmath-40b: Advancing multi-

13

https://arxiv.org/abs/2407.21783

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

modal pre-training for enhanced mathematical reasoning, 2024. URL https://arxiv.org/
abs/2409.12568.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021a. URL https://
arxiv.org/abs/2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021b.

Naman Jain, Tianjun Zhang, Wei-Lin Chiang, Joseph E. Gonzalez, Koushik Sen, and Ion Stoica.
Llm-assisted code cleaning for training accurate code generators, 2023. URL https://arxiv.
org/abs/2311.14904.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association for
Computational Linguistics.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von
Werra, and Harm de Vries. The stack: 3 tb of permissively licensed source code, 2022. URL
https://arxiv.org/abs/2211.15533.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan Bitton,
Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner, Maciej Kilian,
Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis Daras, Kalyani
Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor Vasiljevic, Sham
Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke Zettlemoyer, Kyle Lo,
Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang, Dirk Groeneveld, Luca
Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G. Dimakis, Yair Carmon, Achal
Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-lm: In search of the next generation of
training sets for language models, 2025. URL https://arxiv.org/abs/2406.11794.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng Kong, and Wei Bi. Gsm-plus: A comprehensive
benchmark for evaluating the robustness of llms as mathematical problem solvers, 2024. URL
https://arxiv.org/abs/2402.19255.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy, Jason
Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas,
Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire
Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel Fried,
Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas Wolf, Arjun
Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!, 2023.
URL https://arxiv.org/abs/2305.06161.

14

https://arxiv.org/abs/2409.12568
https://arxiv.org/abs/2409.12568
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2311.14904
https://arxiv.org/abs/2311.14904
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2406.11794
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2305.06161

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatGPT really correct? rigorous evaluation of large language models for code generation.
In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https:
//openreview.net/forum?id=1qvx610Cu7.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian, Denis Kocetkov,
Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul,
Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii,
Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He, Manan
Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang, Muhtasham Oblokulov,
Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra, Alex Gu, Binyuan Hui, Tri
Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten
Scholak, Sebastien Paquet, Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa
Patwary, Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder 2 and the stack v2:
The next generation, 2024. URL https://arxiv.org/abs/2402.19173.

Pratyush Maini, Skyler Seto, He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly. Rephrasing
the web: A recipe for compute and data-efficient language modeling, 2024. URL https:
//arxiv.org/abs/2401.16380.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Anand Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro,
Amar Phanishayee, and Matei Zaharia. Efficient large-scale language model training on gpu
clusters using megatron-lm, 2021. URL https://arxiv.org/abs/2104.04473.

Nvidia, :, Bo Adler, Niket Agarwal, Ashwath Aithal, Dong H. Anh, Pallab Bhattacharya, Annika Brun-
dyn, Jared Casper, Bryan Catanzaro, Sharon Clay, Jonathan Cohen, Sirshak Das, Ayush Dattagupta,
Olivier Delalleau, Leon Derczynski, Yi Dong, Daniel Egert, Ellie Evans, Aleksander Ficek, Denys
Fridman, Shaona Ghosh, Boris Ginsburg, Igor Gitman, Tomasz Grzegorzek, Robert Hero, Jining
Huang, Vibhu Jawa, Joseph Jennings, Aastha Jhunjhunwala, John Kamalu, Sadaf Khan, Oleksii
Kuchaiev, Patrick LeGresley, Hui Li, Jiwei Liu, Zihan Liu, Eileen Long, Ameya Sunil Mahabalesh-
warkar, Somshubra Majumdar, James Maki, Miguel Martinez, Maer Rodrigues de Melo, Ivan
Moshkov, Deepak Narayanan, Sean Narenthiran, Jesus Navarro, Phong Nguyen, Osvald Nitski,
Vahid Noroozi, Guruprasad Nutheti, Christopher Parisien, Jupinder Parmar, Mostofa Patwary,
Krzysztof Pawelec, Wei Ping, Shrimai Prabhumoye, Rajarshi Roy, Trisha Saar, Vasanth Rao Naik
Sabavat, Sanjeev Satheesh, Jane Polak Scowcroft, Jason Sewall, Pavel Shamis, Gerald Shen,
Mohammad Shoeybi, Dave Sizer, Misha Smelyanskiy, Felipe Soares, Makesh Narsimhan Sreedhar,
Dan Su, Sandeep Subramanian, Shengyang Sun, Shubham Toshniwal, Hao Wang, Zhilin Wang,
Jiaxuan You, Jiaqi Zeng, Jimmy Zhang, Jing Zhang, Vivienne Zhang, Yian Zhang, and Chen Zhu.
Nemotron-4 340b technical report, 2024. URL https://arxiv.org/abs/2406.11704.

NVIDIA, :, Aaron Blakeman, Aarti Basant, Abhinav Khattar, Adithya Renduchintala, Akhiad
Bercovich, Aleksander Ficek, Alexis Bjorlin, Ali Taghibakhshi, Amala Sanjay Deshmukh,
Ameya Sunil Mahabaleshwarkar, Andrew Tao, Anna Shors, Ashwath Aithal, Ashwin Poojary,
Ayush Dattagupta, Balaram Buddharaju, Bobby Chen, Boris Ginsburg, Boxin Wang, Brandon
Norick, Brian Butterfield, Bryan Catanzaro, Carlo del Mundo, Chengyu Dong, Christine Harvey,
Christopher Parisien, Dan Su, Daniel Korzekwa, Danny Yin, Daria Gitman, David Mosallanezhad,
Deepak Narayanan, Denys Fridman, Dima Rekesh, Ding Ma, Dmytro Pykhtar, Dong Ahn, Dun-
can Riach, Dusan Stosic, Eileen Long, Elad Segal, Ellie Evans, Eric Chung, Erick Galinkin,
Evelina Bakhturina, Ewa Dobrowolska, Fei Jia, Fuxiao Liu, Gargi Prasad, Gerald Shen, Guilin
Liu, Guo Chen, Haifeng Qian, Helen Ngo, Hongbin Liu, Hui Li, Igor Gitman, Ilia Karmanov,
Ivan Moshkov, Izik Golan, Jan Kautz, Jane Polak Scowcroft, Jared Casper, Jarno Seppanen, Ja-
son Lu, Jason Sewall, Jiaqi Zeng, Jiaxuan You, Jimmy Zhang, Jing Zhang, Jining Huang, Jinze
Xue, Jocelyn Huang, Joey Conway, John Kamalu, Jon Barker, Jonathan Cohen, Joseph Jennings,
Jupinder Parmar, Karan Sapra, Kari Briski, Kateryna Chumachenko, Katherine Luna, Keshav
Santhanam, Kezhi Kong, Kirthi Sivamani, Krzysztof Pawelec, Kumar Anik, Kunlun Li, Lawrence

15

https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2401.16380
https://arxiv.org/abs/2401.16380
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2406.11704

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

McAfee, Leon Derczynski, Lindsey Pavao, Luis Vega, Lukas Voegtle, Maciej Bala, Maer Rodrigues
de Melo, Makesh Narsimhan Sreedhar, Marcin Chochowski, Markus Kliegl, Marta Stepniewska-
Dziubinska, Matthieu Le, Matvei Novikov, Mehrzad Samadi, Michael Andersch, Michael Evans,
Miguel Martinez, Mike Chrzanowski, Mike Ranzinger, Mikolaj Blaz, Misha Smelyanskiy, Mo-
hamed Fawzy, Mohammad Shoeybi, Mostofa Patwary, Nayeon Lee, Nima Tajbakhsh, Ning Xu,
Oleg Rybakov, Oleksii Kuchaiev, Olivier Delalleau, Osvald Nitski, Parth Chadha, Pasha Shamis,
Paulius Micikevicius, Pavlo Molchanov, Peter Dykas, Philipp Fischer, Pierre-Yves Aquilanti,
Piotr Bialecki, Prasoon Varshney, Pritam Gundecha, Przemek Tredak, Rabeeh Karimi, Rahul
Kandu, Ran El-Yaniv, Raviraj Joshi, Roger Waleffe, Ruoxi Zhang, Sabrina Kavanaugh, Sahil
Jain, Samuel Kriman, Sangkug Lym, Sanjeev Satheesh, Saurav Muralidharan, Sean Narenthi-
ran, Selvaraj Anandaraj, Seonmyeong Bak, Sergey Kashirsky, Seungju Han, Shantanu Acharya,
Shaona Ghosh, Sharath Turuvekere Sreenivas, Sharon Clay, Shelby Thomas, Shrimai Prabhumoye,
Shubham Pachori, Shubham Toshniwal, Shyamala Prayaga, Siddhartha Jain, Sirshak Das, Slawek
Kierat, Somshubra Majumdar, Song Han, Soumye Singhal, Sriharsha Niverty, Stefania Alborghetti,
Suseella Panguluri, Swetha Bhendigeri, Syeda Nahida Akter, Szymon Migacz, Tal Shiri, Terry
Kong, Timo Roman, Tomer Ronen, Trisha Saar, Tugrul Konuk, Tuomas Rintamaki, Tyler Poon,
Ushnish De, Vahid Noroozi, Varun Singh, Vijay Korthikanti, Vitaly Kurin, Wasi Uddin Ahmad,
Wei Du, Wei Ping, Wenliang Dai, Wonmin Byeon, Xiaowei Ren, Yao Xu, Yejin Choi, Yian Zhang,
Ying Lin, Yoshi Suhara, Zhiding Yu, Zhiqi Li, Zhiyu Li, Zhongbo Zhu, Zhuolin Yang, and Zijia
Chen. Nemotron-h: A family of accurate and efficient hybrid mamba-transformer models, 2025.
URL https://arxiv.org/abs/2504.03624.

Naoaki Okazaki, Kakeru Hattori, Hirai Shota, Hiroki Iida, Masanari Ohi, Kazuki Fujii, Taishi
Nakamura, Mengsay Loem, Rio Yokota, and Sakae Mizuki. Building a large japanese web corpus
for large language models, 2024. URL https://arxiv.org/abs/2404.17733.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia,
Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira
Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri,
Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill,
Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman
Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael
Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious,
2025. URL https://arxiv.org/abs/2501.00656.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023. URL https://arxiv.org/abs/2310.
06786.

Guilherme Penedo, Hynek Kydlı́ček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for the
finest text data at scale, 2024. URL https://arxiv.org/abs/2406.17557.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad, 2018.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. Megatron-lm: Training multi-billion parameter language models using model parallelism,
2020. URL https://arxiv.org/abs/1909.08053.

Dan Su, Kezhi Kong, Ying Lin, Joseph Jennings, Brandon Norick, Markus Kliegl, Mostofa Patwary,
Mohammad Shoeybi, and Bryan Catanzaro. Nemotron-cc: Transforming common crawl into
a refined long-horizon pretraining dataset, 2025. URL https://arxiv.org/abs/2412.
02595.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261,
2022.

Alexey Tikhonov and Max Ryabinin. It’s all in the heads: Using attention heads as a baseline for
cross-lingual transfer in commonsense reasoning, 2021.

16

https://arxiv.org/abs/2504.03624
https://arxiv.org/abs/2404.17733
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2310.06786
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/1909.08053
https://arxiv.org/abs/2412.02595
https://arxiv.org/abs/2412.02595

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing, 2024. URL https://arxiv.org/abs/2406.08464.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,
Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin
Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024. URL
https://arxiv.org/abs/2407.10671.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, 2019.

Fan Zhou, Zengzhi Wang, Nikhil Ranjan, Zhoujun Cheng, Liping Tang, Guowei He, Zhengzhong
Liu, and Eric P. Xing. Megamath: Pushing the limits of open math corpora, 2025. URL https:
//arxiv.org/abs/2504.02807.

17

https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2407.10671
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2504.02807
https://arxiv.org/abs/2504.02807

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A DETAILED SETUP FOR DATA ABLATION EXPERIMENTS

This section provides details on the training hyperparameters, training library versions, training
environments, distributed training settings, and data mixture used in the dataset ablation experiments
described in Sections 3 and 4.

A.1 TRAINING HYPERPARAMETERS

We performed continual pre-training from Llama-3.1-8B3 using approximately 50 billion tokens. As
shown in Table 2, the model architecture and tokenizer are identical to those of Llama-3.1-8B. The
training hyperparameters are detailed in Table 3.

Table 2: Training model’s architecture

Hyperparameter Value
Architecture Llama-3
Hidden size 4 096
FFN hidden size 14 336
Number of layers 32
Number of attention heads 32
Number of key/value heads 8
Sequence length 8 192
Normalization RMSNorm
RMSNorm epsilon 1.0× 10−5

RoPE base 500000
Attention dropout 0.0
Hidden dropout 0.0
Tokenizer Llama-3 tokenizer

Table 3: Training hyperparameters

Hyperparameter Value
Adam beta1 0.9
Adam beta2 0.95
Adam epsilon 1.0× 10−8

Gradient clipping 1.0
Weight Decay 0.1
Learning rate (max) 2.5× 10−5

Learning rate (min) 2.5× 10−6

Warmup steps 1000
Warmup style linear
Decay style cosine

A.2 TRAINING ENVIRONMENT

We utilized the H100 supercomputer for training. We utilized mixed precision (bfloat16) and
employed multiple NVIDIA H100 nodes for distributed parallel training. Each node is equipped with
four NVIDIA H100 94GB GPUs, and the nodes are interconnected via InfiniBand NDR200.

We conducted continual pre-training with libraries shown in Table 4.

A.3 DISTRIBUTED TRAINING SETTINGS

Training LLMs on a single GPU is challenging due to both GPU memory constraints and the time
required for training. In terms of GPU memory, even with the latest H100 80GB, training the 8B

3https://huggingface.co/meta-llama/Llama-3.1-8B

18

https://huggingface.co/meta-llama/Llama-3.1-8B

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Training library versions

Component / Library Version
Training library Megatron-LM
mcore 0.9.0
CUDA Toolkit 12.4
cuDNN 9.1.0
NCCL 2.21.5
HPC-X 2.17.1
ninja 1.11.1
PyTorch 2.5.0
TransformerEngine 1.12

model used in this study is challenging. Moreover, even if the model parameters, gradients, and
optimizer states could fit on a single GPU, training on a single GPU would require an unrealistic
amount of time to complete. Therefore, in this study, we adopted distributed parallel training,
combining data parallelism and model parallelism. We conducted all ablation experiments with the
distributed setting shown in Table 5.

Table 5: Distributed training setting for ablation experiments

Hyperparameter Value
Data Parallelism (DP) 32
Tensor Parallelism (TP) 2
Context Parallelism (CP) 1
Pipeline Parallelism (PP) 1
Micro batch size 2
Global batch size 512
Sequence Parallelism true
Distributed optimizer true
Tensor Parallelism Communication Overlap true

A.4 DATA MIXTURE FOR ABLATION EXPERIMENTS

Our research project aims to develop open-source LLMs with strong capabilities in both Japanese and
English. A key challenge in continual pre-training from high-performing models like Llama-3.1-8B,
Qwen-3 is mitigating catastrophic forgetting, particularly in maintaining or improving mathematical
reasoning and code generation performance. To address this, our ablation experiments were designed
to improve Llama-3.1-8B performance on HumanEval, HumanEval+, GSM8K, and MATH while
incorporating multilingual datasets predominantly composed of Japanese and English text. This
approach led to the development of SwallowCode and SwallowMath, as detailed in Sections 3 and 4.
The data mixture reflects a high proportion of Japanese text, consistent with our project’s focus
on bilingual proficiency. However, as described in Sections 3.1 and 4.1, all ablation experiments
maintain identical settings except for the target code or math dataset, ensuring a fully controlled
experimental design. To explore the impact of the high Japanese text proportion in our ablation
mixtures on English-centric benchmarks, we conducted additional experiments with an English-heavy
alternative mixture; see Appendix A.5 for details.

This continual pre-training strategy aligns with established practices in high-quality LLM develop-
ment, as seen in models like OLMo-2 (OLMo et al., 2025) and Nemotron-H (NVIDIA et al., 2025).
Specifically, adopting a staged pre-training approach, as observed in OLMo-2 and Nemotron-H,
where later training phases leverage high-quality multilingual text alongside specialized math and
code datasets to enhance LLM capabilities, ensures that our ablation experiments align with realistic
LLM training scenarios.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 6: Data ratio for SwallowCode ablation experiments.

A.4.1 CODE ABLATION DATA MIXTURE

The training dataset for the code ablation experiments comprises approximately 50 billion tokens.
The distribution of the dataset components is illustrated in Figure 6, with the following components
and their respective token counts. Note that the Target Code Data varies depending on the specific
ablation experiment conducted.

• Japanese Wikipedia4: 0.84 billion tokens
• Japanese Swallow Corpus v2 (Okazaki et al., 2024): 26.1 billion tokens
• Laboro-ParaCorpus5: 0.22 billion tokens
• English Wikipedia6: 1.1 billion tokens
• English Cosmopedia (Ben Allal et al., 2024): 3.7 billion tokens
• English DCLM (Li et al., 2025): 10.0 billion tokens
• Target Code Data: 8.0 billion tokens

A.4.2 MATH ABLATION DATA MIXTURE

Figure 7: Data ratio for SwallowMath ablation experiments.

The training dataset for the math ablation experiments also consists of approximately 50 billion
tokens. The composition of the dataset is shown in Figure 7, with the following components and their

4https://dumps.wikimedia.org/jawiki/
5https://github.com/laboroai/Laboro-ParaCorpus
6https://dumps.wikimedia.org/enwiki/

20

https://dumps.wikimedia.org/jawiki/
https://github.com/laboroai/Laboro-ParaCorpus
https://dumps.wikimedia.org/enwiki/

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

respective token counts. Note that the Target Math Data varies depending on the specific ablation
experiment conducted.

• Japanese Wikipedia: 0.84 billion tokens
• Japanese Swallow Corpus v2: 33.0 billion tokens
• Laboro-ParaCorpus: 0.22 billion tokens
• English Wikipedia: 1.1 billion tokens
• English Cosmopedia: 3.3 billion tokens
• English DCLM: 2.2 billion tokens
• SwallowCode (Syntax, Pylint Filtered): 6.5 billion tokens
• Target Math Data: 2.4 billion tokens

A.5 IMPACT OF LANGUAGE MIXTURE ON ABLATION EXPERIMENTS

Our ablation experiments utilize a data mixture with a high proportion of Japanese text, which is
controlled for fair comparisons but represents an unconventional setup for English-centric benchmarks
like HumanEval. To investigate potential subtle effects on learning from the code and math portions,
we performed additional experiments using an alternative mixture: 70% English text (sourced from
DataComp-LM and Cosmopedia), 20% code (SwallowCode), and 10% math (SwallowMath). The
experimental setup otherwise follows that described in Section 3.1, with continual pre-training of
Llama-3.1-8B for 50B tokens. The results are summarized in Table 6.

Table 6: Performance on Key Benchmarks with English-Heavy Mixture

Benchmark GSM8K MATH HumanEval HumanEval+
Accuracy 0.700 0.354 0.583 0.540

These scores are higher on English-centric math and code benchmarks compared to our original
Japanese-heavy mixture, suggesting that a high Japanese proportion may diminish performance
on such tasks within a limited 50B-token budget, possibly due to reduced exposure to English-
aligned patterns. However, since the original experiments in Sections 3.1 and 4.1 are controlled, the
improvements of SwallowCode and SwallowMath remain robust and unaffected by the composition
of the mixture.

B GENERALIZABILITY BEYOND LLAMA-3: QWEN2-7B

To assess generalizability beyond the Llama-3 family, we conduct 20B-token continual pre-training
starting from Qwen2-7B. We use the final SwallowCode (post-SCOR) as the code component and
adopt an alternative mixture of 70% English text (DataComp-LM and Cosmopedia), 20% code, and
10% math (SwallowMath). Unless otherwise noted, all hyperparameters and evaluation benchmarks
follow the protocol in Section 3.1 and Appendix J, except that we use LR=1.0E-5, a global batch
size of 1,024, and a sequence length of 4,096. As a code baseline, we replace SwallowCode with
Stack-Edu under the same token budget and mixture ratios. Compared to Stack-Edu, SwallowCode
yields +10.3 pass@1 on HumanEval and +10.3 pass@1 on HumanEval+, reaching 49.6 and 44.6
respectively (Table 7). These results indicate that the benefits of our transform-and-retain pipeline are
not specific to Llama-3–based models.

Table 7: Qwen2-7B, 20B-token continual pre-training. Scores are pass@1.

Corpus HumanEval HumanEval+

Stack-Edu 39.3 34.3
SwallowCode (ours) 49.6 (+10.3) 44.6 (+10.3)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C CODE LINTING FILTERING

A threshold of 7.0 balances code quality and dataset size, while the comment penalty reduces overly
verbose or non-functional scripts. As described in Section 3.2.2, the code for performing linter
filtering is publicly available. The relevant code is also provided below.

When pylint is applied, warnings and errors dependent on the linting environment, such as import
errors, are excluded using the --disable option. Additionally, some files with Python extensions
contain primarily comments with textual content and have minimal script functionality. To address
this, as discussed in Section 3.2.2, we introduced a mechanism that imposes a heuristic penalty based
on the proportion of comments to filter out such files.

1 def check_comment_ratio(code: str):
2 total_lines = 0
3 comment_lines = 0
4

5 try:
6 tokens = tokenize.generate_tokens(StringIO(code).readline)
7 for token_type, _, _, _, _ in tokens:
8 total_lines += 1
9 if token_type == tokenize.COMMENT:

10 comment_lines += 1
11

12 except tokenize.TokenError as e:
13 print(f"Token error encountered: {str(e)}")
14 return 0
15 except IndentationError as e:
16 print(f"indentation error encountered {str(e)}")
17 return 0
18

19 if total_lines == 0:
20 return 0
21

22 return comment_lines / total_lines
23

24

25 def apply_comment_penalty(score: float, comment_ratio: float) -> float:
26 if comment_ratio == 1.0:
27 return 0.0
28 elif comment_ratio > 0:
29 penalty_factor = 1 - comment_ratio
30 score *= penalty_factor
31 return score
32

33

34 def check_code_quality(code: str):
35 with tempfile.NamedTemporaryFile(delete=False, suffix=".py") as

temp_file:
36 temp_file.write(code.encode())
37 temp_file.flush()
38

39 result = subprocess.run(
40 ["pylint", "--persistent=n","--disable=E0401,C0114,C0301,

C0103,C0116,C0411,R0903,W0511,C0412", temp_file.name],
41 capture_output=True,
42 text=True,
43)
44

45 pylint_output = result.stdout
46 score = None
47

48 for line in pylint_output.split("\n"):
49 if "Your code has been rated at" in line:
50 score = float(line.split("/")[0].split()[-1])

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

51

52 comment_ratio = check_comment_ratio(code)
53

54 if score is not None:
55 score = apply_comment_penalty(score, comment_ratio)
56

57 return score, pylint_output

D CODE LLM-BASED SCORING

As described in Section 3.2.3, this section presents the prompt used for LLM-based scoring. The
prompt was provided to Llama-3.3-70B-Instruct to evaluate code quality. The scoring criteria were
developed with reference to the Google Python Style Guide7.

Prompt Used for Code Quality Evaluation

You are a smart software engineer. Please evaluate the following
code on a scale of 1 to 10 based on the following criteria:
1. Are variable names descriptive and consistent with naming
conventions?
2. Are comments and docstrings appropriately written to explain the
purpose and functionality of the code?
3. Are type annotations used effectively where applicable?
4. Are functions appropriately modularized, with well-defined
responsibilities and clear separation of concerns?
5. Are variables’ lifetimes intentionally managed, avoiding
frequent reassignment or overly long scopes?
6. Is error handling implemented appropriately where necessary?
7. Is the code properly indented and follows standard formatting
guidelines?
8. Do comments provide context and rationale, rather than merely
describing what the code does?
9. Are functions and classes designed with clear, single
responsibilities?
10. Is the code formatted in a way that enhances readability?

E CODE LLM REWRITING

As described in Section 3.3, this section presents the prompts used for LLM-based rewriting, specifi-
cally for Style-Guided Code Rewriting (SGCR) and Self-Contained Optimization Rewriting (SCOR).
Each prompt was provided to Llama-3.3-70B-Instruct to perform data rewriting.

E.1 TOKEN RETENTION ANALYSIS

The rewriting processes in SGCR and SCOR inherently modify the token lengths of data samples. To
provide insights into these transformations and their implications for training efficiency, we computed
the average input and output token lengths across the dataset, as summarized in Table 8.

Table 8: Average Input and Output Token Lengths for Rewriting Methods

Rewriting Method Input Tokens Output Tokens

SGCR 836 548
SCOR 548 835

For SGCR, output lengths are shorter than input lengths on average due to the pipeline discarding
samples where the original code combined with the prompt and generated text exceeds the model’s

7https://google.github.io/styleguide/pyguide.html

23

https://google.github.io/styleguide/pyguide.html

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

maximum context length, or where generated code cannot be reliably extracted (e.g., absence of
a code block like ‘‘‘python) Our analysis shows that SGCR generally condenses the data. In
contrast, SCOR expands the data.

E.2 SYNTAX ERROR ANALYSIS

While LLM rewriting can potentially introduce syntax errors or other implementation issues, con-
structing a dataset at the billion-token scale renders it infeasible to detect and remove all such
anomalies comprehensively. To provide insights into the extent of code error accumulation during the
LLM rewriting process, we measured the syntax error rates after each rewriting stage on a random
subset of 100,000 samples, finding rates of 0.73% post-SGCR and 0.46% post-SCOR. These results
indicate that errors do not accumulate across the two-stage rewriting process, alleviating concerns
about progressive degradation. Furthermore, incorporating syntax error filtering at each rewriting
step holds promise for enhancing dataset quality in future works.

E.3 STYLE-GUIDED CODE REWRITING (SGCR)

The prompt used for SGCR is provided below.

Prompt Used for SGCR

You are a smart software engineer. Please evaluate the following
code on a scale of 1 to 10 based on the following criteria:
1. Are variable names descriptive and consistent with naming
conventions?
2. Are comments and docstrings appropriately written to explain the
purpose and functionality of the code?
3. Are type annotations used effectively where applicable?
4. Are functions appropriately modularized, with well-defined
responsibilities and clear separation of concerns?
5. Are variables’ lifetimes intentionally managed, avoiding
frequent reassignment or overly long scopes?
6. Is error handling implemented appropriately where necessary?
7. Is the code properly indented and follows standard formatting
guidelines?
8. Do comments provide context and rationale, rather than merely
describing what the code does?
9. Are functions and classes designed with clear, single
responsibilities?
10. Is the code formatted in a way that enhances readability?

And provide suggestions for improvement based on the evaluation
criteria. You can also provide an improved version of the code in
the following style:

Evaluation: 7
Suggestions: Provide specific, actionable suggestions to
improve the code based on the evaluation criteria.

Improved Code: Provide a revised version of the code
incorporating the suggested improvements.
‘‘‘python
def improved function(arg1: int, arg2: str) -> str:
Your improved code here
pass
‘‘‘

E.4 SELF-CONTAINED OPTIMIZATION REWRITING (SCOR).

The prompt used for SCOR is provided below.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt Used for SCOR

You are a smart software engineer. Please change a given code into
self-contained and well-structured code following the below best
practices and pythonic way.
1. Use meaningful variable and function names.
2. Write a clear and concise docstring for the function.
3. Use type hints for the function signature.
4. Write a clear and concise comment for the code block.
5. Ensure the code is self-contained and does not depend on
external variables.
6. Ensure the code is well-structured and easy to read.
7. Ensure the code is free of errors and runs correctly.
8. Ensure the code is optimized and does not have redundant
operations.
9. Ensure the algorithm and data structures are efficient and
concise.

If given code is not self-contained or too simple, please change
it to a more educational and useful code.

F MATH LLM REWRITING

As described in Section 4.2, this section presents the prompt used for LLM rewriting in the construc-
tion of SwallowMath. The prompt consists of five components: (1) remove residual web headers,
footers, and privacy notices; (2) delete extraneous metadata such as question and answer timestamps;
(3) fill in missing context when either the question or answer is incomplete; (4) rewrite explanations to
be concise yet information-dense; and (5) present a clear step-by-step solution. Steps (1)–(2) parallel
our syntax-error and linter filtering for code, while steps (3)–(5) correspond to the self-containment
and style rewrites used in SwallowCode.

Prompt Used for Math Rewriting

You are an intelligent math tutor. You are given the following
math problem and answer with some unnecessary parts. Please remove
the unneeded parts of the questions. For example, the date of the
question submitted, the answer date, the privacy policy, the footer,
the header, etc., should be removed. However, please keep the main
question and answer.
If questions or answers lack some information or are not elaborate,
please make them more informative and easy to understand. If
needed, please add more detail about the step-by-step calculation
process.

G COMPUTATIONAL COST

This section quantifies the computational resources, measured in H100 GPU hours, required for the
LLM scoring, LLM rewriting, and ablation experiments in this study. These estimates are derived
from empirical measurements. By detailing these costs, we aim to illustrate the trade-offs between the
resource requirements of our data refinement pipeline and the resulting enhancements in downstream
task performance. Additionally, we provide these figures to support the reproducibility of our results
and inform future research efforts. Importantly, both the syntax-error filtering and the pylint-based
filtering stages are CPU-only; although the dataset scale implies nontrivial processing time, their
cost is negligible compared to the GPU-bound rewriting stage, which dominates the overall compute
budget.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

G.1 COMPUTATIONAL COST OF LLM SCORING

The LLM scoring process employed vLLM 0.7.2 and PyTorch 2.5.1, with a global batch size of 2048
and tensor parallelism of 4. Data generation utilized four H100 (94 GB) GPUs per job. At an input
processing speed of approximately 2000 tokens/s and an output generation speed of approximately
3000 tokens/s, with an average input length of 836 tokens, an average output length of 1271 tokens,
and a total of 20,826,548 samples, we estimate that the dataset creation for the experiments in
Section 3.2.3 required 19,477 H100 GPU hours. This figure excludes vLLM initialization and
safetensor loading times.

G.2 COMPUTATIONAL COST OF LLM REWRITING

Similarly, the LLM rewriting synthesis used vLLM 0.7.2 and PyTorch 2.5.1, configured with a global
batch size of 2048 and tensor parallelism of 4. Generation was performed on four H100 (94 GB)
GPUs per job, achieving an input processing speed of about 2000 tokens/s and an output generation
speed of about 3000 tokens/s. With an average input length of 836 tokens, an average output length of
1819 tokens, and 20,826,548 samples in total, the dataset creation for the experiments in Section 3.3.1
is estimated to have consumed 23,703 H100 GPU hours, excluding vLLM initialization and safetensor
loading.

G.3 COMPUTATIONAL COST OF CONTINUAL PRE-TRAINING DATA ABLATION EXPERIMENTS

The ablation experiments outlined in Sections 3.1 and 4.1 were executed using 64 H100 (94 GB) GPUs
for 24.7 hours per run, resulting in 1,580 H100 GPU hours per experiment. Across 15 experiments
(13 for code ablations and 2 for math ablations), the total computational expenditure was 23,700
H100 GPU hours. These runs achieved a training throughput of 530 TFLOP/s/GPU and 590,000
tokens/s, calculated using the FLOP/s formula from the Megatron-LM paper (Narayanan et al., 2021).
This represents approximately 53.5% of the H100’s peak BF16 Tensor Core performance.

G.4 COST-BENEFIT ANALYSIS

While rewriting at the full 16.1B-token scale for SwallowCode demands substantial GPU hours,
our approach demonstrates clear efficiency gains in downstream training. As illustrated in Figure 1,
continual pre-training on unrefined or noisy datasets like The-Stack-v2 or Stack-Edu results in only
marginal improvements on benchmarks such as HumanEval and HumanEval+. In contrast, our
rewritten data achieves significant performance boosts with equivalent or fewer tokens, highlighting
enhanced data efficiency. Although we did not extend baseline experiments beyond 50B tokens,
extrapolating the trends in Figure 1 indicates that unprocessed datasets would struggle to match our
rewriting method’s performance, even at scales exceeding 100B tokens. To enhance practicality for
teams with limited computational resources, our pipeline is modular and scalable, allowing selective
application to data subsets or direct use of our publicly released datasets, thereby bypassing the
rewriting overhead. This one-time investment in data refinement produces high-quality, reusable
corpora that can be shared across the community, amortizing costs over multiple applications and
studies. Unlike transient expenditures on model training, resources allocated to data curation yield
enduring assets that advance broader research. As evidenced in works like Qwen3 (Yang et al., 2025),
which invested heavily in synthesizing trillions of high-quality text tokens, such commitments are
standard in LLM development and deliver substantial long-term value.

H CONTAMINATION ANALYSIS

In this section, we detail our efforts to mitigate and verify the absence of data contamination in the
SwallowCode and SwallowMath corpora. Contamination, whether through direct test-set leakage or
indirect self-contamination introduced by the rewriting LLM, can inflate performance metrics and
undermine the validity of experimental results. We address both concerns systematically to ensure
the integrity of our findings.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H.1 DECONTAMINATION AGAINST EVALUATION BENCHMARKS

To prevent test-set leakage, we performed rigorous decontamination checks on both corpora against
their respective downstream benchmarks. For SwallowCode, we streamed the entire 16.1B token
corpus and scanned for overlaps with HumanEval and HumanEval+ prompts. This involved checking
for exact matches and computing Jaccard similarity scores, with a threshold of ≥ 0.8 considered
indicative of high similarity. No such instances were detected, confirming that SwallowCode is
free of direct contamination from these benchmarks. Similarly, for SwallowMath, we conducted
an analogous procedure against the prompts and solutions from GSM8K and MATH. Using exact
match detection and Jaccard similarity (≥ 0.8 threshold), we verified that there are no contamination
overlaps in the corpus.

H.2 ADDRESSING SELF-CONTAMINATION FROM THE REWRITING LLM

A subtler risk arises from ”self-contamination,” where the rewriting of LLM, Llama-3.3-70B-Instruct,
might inadvertently incorporate patterns or knowledge from benchmark problems into the rewritten
data. This model has a knowledge cutoff date of December 2023, meaning it lacks exposure to
post-cutoff data or benchmarks. To evaluate this, we assessed the performance on GSM-Plus, a mathe-
matics benchmark released after the cutoff date, which the rewriting LLM could not have encountered
during its training. Continual pre-training of Llama-3.1-8B with Finemath-4+ yields 35.75 points
on GSM-Plus (Li et al., 2024), while using SwallowMath achieves 46.52 points. This substantial
improvement demonstrates that the gains from SwallowMath are attributable to enhanced data quality
rather than embedded contamination from the rewriting process. These analyses collectively affirm
that our performance improvements stem from genuine advancements in data refinement, rather than
artifacts of contamination.

I MBPP

As discussed in Section 3.3.1, the MBPP dataset8 contains Python functions with naming conventions
that deviate from standard Python style guidelines. For example, the following code snippet uses
camelCase instead of the recommended snake case:

1 def is_Power_Of_Two(x):
2 return x and (not(x & (x - 1)))
3 def differ_At_One_Bit_Pos(a, b):
4 return is_Power_Of_Two(a ˆ b)

As described in Section 3.3.1, Style-Guided Code Rewriting (SGCR) rewrites code to conform to
Python’s naming conventions9, specifically enforcing snake case for function names. Consequently,
when tasked with implementing functions that use non-standard naming (e.g., camelCase), an LLM
trained on SGCR-processed data may rewrite function names to adhere to snake case. This leads to
mismatches during MBPP evaluation, where calling a function with its original non-standard name
results in an “is not defined” error.

Figure 8 illustrates this issue: models trained on SGCR-processed data exhibit lower MBPP@1
and MBPP@10 scores compared to models trained on data processed only with syntax-error and
linter-based filtering (Section 3.2.2). This performance drop stems from the naming mismatches
described above, which obscure the model’s true code generation capabilities. Based on this finding,
we concluded that MBPP is not a suitable benchmark for evaluating LLM code generation in our
experiments, as its evaluation framework penalizes adherence to standard Python naming conventions.
Therefore, we excluded MBPP from the benchmarks used in this study.

8https://github.com/google-research/google-research/blob/master/mbpp/
mbpp.jsonl

9https://peps.python.org/pep-0008/#descriptive-naming-styles

27

https://github.com/google-research/google-research/blob/master/mbpp/mbpp.jsonl
https://github.com/google-research/google-research/blob/master/mbpp/mbpp.jsonl
https://peps.python.org/pep-0008/#descriptive-naming-styles

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 8: Comparison of MBPP@1 and MBPP@10 scores for models trained on linter-filtered data versus
SGCR-rewritten data in a 50B-token continual pre-training ablation study. SGCR’s enforcement of snake case
naming conventions leads to lower scores due to mismatches with MBPP’s non-standard function names.

J EVALUATIONS

In this section, we present the evaluation results of models trained through ablation experiments
on code and math datasets, assessed across ten benchmarks encompassing code and mathematical
downstream tasks.

J.1 CODE ABLATION EXPERIMENTS RESULTS

As described in Section 3.1, we evaluated models continually pre-trained from Llama-3.1-8B on
ten English downstream tasks. In the following, we report the evaluation results for 13 code
ablation experiments, with their relationships illustrated in Figure 9. Experiments exp1, exp8,
exp9, and exp13 serve as baselines, utilizing only Python data extracted from existing open code
corpora. The remaining experiments are conducted to construct the SwallowCode dataset. We
evaluated performance using the following ten benchmarks: OpenBookQA (Mihaylov et al., 2018),
TriviaQA (Joshi et al., 2017), HellaSwag (Zellers et al., 2019), SQuAD 2.0 (Rajpurkar et al., 2018),
XWinograd (Tikhonov & Ryabinin, 2021), MMLU (Hendrycks et al., 2021a), GSM8K (Cobbe et al.,
2021), BBH (Suzgun et al., 2022), HumanEval (Chen et al., 2021), and HumanEval+ (Liu et al.,
2023).

Table 9: Performance across benchmarks in the-stack-v2-train-smol-ids Python subset ablation.

Experiment 1: the-stack-v2-train-smol-ids Python subset

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3640 0.6659 0.5995 0.3354 0.9032 0.6294 0.4602 0.6019 0.3366 0.2994
20 0.3540 0.6567 0.6019 0.3360 0.9024 0.6238 0.4852 0.5898 0.3433 0.2890
30 0.3700 0.6588 0.6034 0.3377 0.9045 0.6263 0.5072 0.5939 0.3402 0.2951
40 0.3800 0.6618 0.6053 0.3380 0.9097 0.6341 0.5011 0.6016 0.3659 0.3079
50 0.3700 0.6679 0.6054 0.3350 0.9045 0.6340 0.5027 0.6091 0.3689 0.3140

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 9: Relationships between code ablation experiments.

Table 10: Performance across benchmarks in syntax-error-free data ablation from Experiment 1.

Experiment 2: Syntax-error-free data from Experiment 1

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3560 0.6675 0.6015 0.3385 0.9062 0.6321 0.4784 0.5881 0.3604 0.3030
20 0.3520 0.6635 0.6026 0.3364 0.9049 0.6252 0.4784 0.5781 0.3591 0.2970
30 0.3560 0.6637 0.6012 0.3375 0.9080 0.6313 0.5019 0.5950 0.3701 0.3122
40 0.3580 0.6679 0.6046 0.3346 0.9062 0.6330 0.5019 0.5998 0.3720 0.3067
50 0.3660 0.6694 0.6055 0.3340 0.9084 0.6325 0.5155 0.6044 0.3787 0.3110

Table 11: Performance across benchmarks in syntax-error and Pylint-filtered (score ≥ 7) data ablation
from Experiment 2.

Experiment 3: Syntax-error and Pylint-filtered (score ≥ 7) data from Experiment 2

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3560 0.6628 0.6010 0.3340 0.9071 0.6235 0.4564 0.6007 0.3500 0.2811
20 0.3500 0.6613 0.6015 0.3361 0.9054 0.6237 0.4860 0.5838 0.3744 0.3207
30 0.3620 0.6596 0.6008 0.3359 0.9080 0.6307 0.4867 0.5921 0.3957 0.3134
40 0.3720 0.6650 0.6030 0.3352 0.9058 0.6326 0.4822 0.5990 0.3890 0.3341
50 0.3740 0.6677 0.6054 0.3291 0.9019 0.6327 0.4996 0.6145 0.3945 0.3317

Table 12: Performance across benchmarks in comment-language-restricted (English and Japanese)
data ablation from Experiment 3.

Experiment 4: Comment-language-restricted (English and Japanese) data from Experiment 3

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3640 0.6713 0.5988 0.3329 0.9054 0.6312 0.4708 0.5953 0.3549 0.3079
20 0.3520 0.6601 0.6011 0.3306 0.9067 0.6250 0.4898 0.5802 0.3689 0.3134
30 0.3680 0.6596 0.6047 0.3365 0.9118 0.6301 0.4989 0.5890 0.3768 0.3299
40 0.3660 0.6671 0.6049 0.3363 0.9071 0.6333 0.5155 0.6024 0.3756 0.3348
50 0.3700 0.6703 0.6061 0.3357 0.9101 0.6347 0.5133 0.6036 0.3841 0.3354

Table 13: Performance across benchmarks in SGCR-rewritten data ablation from Experiment 3.

Experiment 5: SGCR-rewritten data from Experiment 3

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3560 0.6689 0.5996 0.3295 0.9054 0.6256 0.4875 0.5991 0.4128 0.3652
20 0.3460 0.6610 0.6031 0.3352 0.9032 0.6262 0.4920 0.5801 0.4311 0.3805
30 0.3620 0.6637 0.6043 0.3378 0.9110 0.6269 0.5216 0.5984 0.4726 0.4293
40 0.3660 0.6645 0.6053 0.3372 0.9045 0.6328 0.4989 0.5945 0.4610 0.4128
50 0.3660 0.6667 0.6066 0.3325 0.9058 0.6352 0.5027 0.6065 0.4860 0.4110

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 14: Performance across benchmarks in LLM-scored (score ≥ 6) data ablation from Experiment
3.

Experiment 6: LLM-scored (score ≥ 6) data from Experiment 3

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3640 0.6679 0.6002 0.3277 0.9041 0.6280 0.4701 0.5976 0.3640 0.3134
20 0.3540 0.6593 0.6010 0.3358 0.9045 0.6249 0.4822 0.5810 0.3659 0.3110
30 0.3660 0.6594 0.6021 0.3398 0.9071 0.6226 0.5140 0.5893 0.3994 0.3396
40 0.3700 0.6636 0.6021 0.3370 0.9080 0.6300 0.5027 0.6019 0.4018 0.3329
50 0.3640 0.6684 0.6046 0.3353 0.9084 0.6324 0.5011 0.6090 0.3951 0.3402

Table 15: Performance across benchmarks in mixed (1:1) data ablation from Experiments 3 and 5.

Experiment 7: Mixed (1:1) data from Experiments 3 and 5

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3620 0.6660 0.5994 0.3293 0.9032 0.6242 0.4738 0.6156 0.3616 0.3061
20 0.3460 0.6585 0.6018 0.3297 0.9024 0.6293 0.4845 0.5809 0.3823 0.3427
30 0.3680 0.6611 0.6022 0.3384 0.9062 0.6241 0.5110 0.6045 0.3848 0.3427
40 0.3640 0.6666 0.6028 0.3327 0.9088 0.6323 0.5072 0.6056 0.4018 0.3634
50 0.3680 0.6695 0.6052 0.3320 0.9097 0.6300 0.5027 0.6051 0.4116 0.3573

Table 16: Performance across benchmarks in the-stack-v1 Python subset ablation.

Experiment 8: the-stack-v1 Python subset

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3660 0.6646 0.6033 0.3310 0.9028 0.6219 0.4784 0.5955 0.3244 0.2780
20 0.3500 0.6595 0.6018 0.3233 0.9037 0.6246 0.4701 0.5898 0.3220 0.2720
30 0.3640 0.6575 0.6014 0.3279 0.9071 0.6226 0.5057 0.5878 0.3244 0.2957
40 0.3680 0.6638 0.6029 0.3265 0.9067 0.6320 0.5004 0.5984 0.3445 0.3116
50 0.3620 0.6650 0.6053 0.3212 0.9084 0.6273 0.5080 0.5998 0.3561 0.3177

Table 17: Performance across benchmarks in codepartto-clean Python subset ablation.

Experiment 9: codepartto-clean Python subset

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3540 0.6651 0.6006 0.3221 0.9062 0.6295 0.4708 0.5875 0.3598 0.3128
20 0.3560 0.6556 0.6013 0.3358 0.9067 0.6289 0.4731 0.5870 0.3549 0.2927
30 0.3680 0.6570 0.6045 0.3390 0.9071 0.6290 0.4890 0.5976 0.3524 0.3201
40 0.3720 0.6613 0.6048 0.3352 0.9075 0.6300 0.4958 0.6108 0.3543 0.2988
50 0.3600 0.6638 0.6055 0.3321 0.9097 0.6273 0.5072 0.6139 0.3616 0.3134

Table 18: Performance across benchmarks in SGCR-rewritten data ablation from Experiment 1.

Experiment 10: SGCR-rewritten data from Experiment 1

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3640 0.6667 0.5996 0.3325 0.9032 0.6164 0.4845 0.5959 0.4457 0.3518
20 0.3460 0.6592 0.6032 0.3324 0.9067 0.6231 0.4890 0.5655 0.4579 0.3994
30 0.3660 0.6585 0.6029 0.3379 0.9101 0.6176 0.5064 0.5855 0.4494 0.3884
40 0.3600 0.6650 0.6024 0.3339 0.9067 0.6284 0.5148 0.5967 0.4622 0.4067
50 0.3600 0.6687 0.6047 0.3337 0.9084 0.6317 0.5057 0.6041 0.4646 0.4067

Table 19: Performance across benchmarks in SCOR-rewritten data ablation from Experiment 5.

Experiment 11: SCOR-rewritten data from Experiment 5

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3580 0.6680 0.6006 0.3317 0.9067 0.6237 0.4655 0.6108 0.4567 0.4348
20 0.3500 0.6564 0.6026 0.3349 0.9084 0.6241 0.4981 0.5718 0.5384 0.4628
30 0.3620 0.6640 0.6023 0.3385 0.9054 0.6253 0.5095 0.5928 0.5256 0.4817
40 0.3640 0.6705 0.6041 0.3401 0.9088 0.6317 0.5095 0.5982 0.5226 0.4768
50 0.3700 0.6685 0.6055 0.3359 0.9114 0.6322 0.5110 0.6062 0.5396 0.4805

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 20: Performance across benchmarks in mixed (90% Experiment 11, 10% Japanese-translated
comments) data ablation.

Experiment 12: Mixed (90% Experiment 11, 10% Japanese-translated comments)

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3640 0.6625 0.6020 0.3341 0.9054 0.6221 0.4738 0.5697 0.4799 0.4280
20 0.3500 0.6551 0.6021 0.3361 0.9058 0.6266 0.4943 0.5776 0.5165 0.4646
30 0.3640 0.6595 0.6034 0.3410 0.9080 0.6250 0.5011 0.6008 0.5110 0.4415
40 0.3640 0.6640 0.6022 0.3361 0.9054 0.6330 0.4898 0.6008 0.5299 0.4768
50 0.3600 0.6655 0.6057 0.3340 0.9080 0.6315 0.5072 0.6057 0.5329 0.4866

Table 21: Performance across benchmarks in Stack Edu Python subset ablation.

Experiment 13: Stack Edu Python subset

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU GSM8K BBH HumanEval HumanEval+

10 0.3640 0.6696 0.5986 0.3358 0.9037 0.6246 0.4761 0.6004 0.3470 0.2963
20 0.3520 0.6632 0.6021 0.3364 0.9067 0.6233 0.4898 0.5942 0.3537 0.2957
30 0.3660 0.6600 0.6024 0.3439 0.9097 0.6251 0.4989 0.5916 0.3713 0.2988
40 0.3700 0.6650 0.6033 0.3402 0.9067 0.6325 0.4958 0.6084 0.3701 0.3226
50 0.3740 0.6665 0.6061 0.3368 0.9062 0.6350 0.5087 0.6173 0.3695 0.3195

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

J.2 MATH ABLATION EXPERIMENTS RESULTS

As described in Section 4.1, we evaluated models continually pre-trained from Llama-3.1-8B on ten
English downstream tasks. Below, we present the evaluation results for two math ablation experiments.
Specifically, we adopted the following ten evaluation benchmarks: OpenBookQA (Mihaylov et al.,
2018), TriviaQA (Joshi et al., 2017), HellaSwag (Zellers et al., 2019), SQuAD 2.0 (Rajpurkar et al.,
2018), XWinograd (Tikhonov & Ryabinin, 2021), MMLU (Hendrycks et al., 2021a), GSM8K (Cobbe
et al., 2021), BBH (Suzgun et al., 2022), HumanEval (Chen et al., 2021), and MATH (Hendrycks
et al., 2021a).

Table 22: Performance across benchmarks in finemath-4+ ablation.

Experiment 1: finemath-4+

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU HumanEval GSM8K BBH MATH

10 0.3700 0.6626 0.5990 0.3350 0.8985 0.6243 0.3439 0.4685 0.6057 0.1760
20 0.3720 0.6536 0.5963 0.3510 0.9032 0.6261 0.3622 0.5011 0.5896 0.2080
30 0.3700 0.6574 0.5999 0.3506 0.8998 0.6253 0.3561 0.5019 0.5971 0.2260
40 0.3720 0.6577 0.6024 0.3499 0.9049 0.6312 0.3701 0.5231 0.6054 0.2260
50 0.3740 0.6608 0.6001 0.3550 0.9058 0.6329 0.3561 0.5292 0.6166 0.2400

Table 23: Performance across benchmarks in finemath-4+ rewritten with Llama-3.3-70B-Instruct
ablation.

Experiment 2: finemath-4+ rewritten(Llama-3.3-70B-Instruct)

Tokens (B) OpenBookQA TriviaQA HellaSwag SQuAD2.0 XWINO MMLU HumanEval GSM8K BBH MATH

10 0.3720 0.6643 0.5970 0.3443 0.9015 0.6343 0.3439 0.5603 0.5535 0.2480
20 0.3800 0.6580 0.5946 0.3428 0.8994 0.6293 0.3762 0.6156 0.5669 0.2860
30 0.3660 0.6618 0.5964 0.3470 0.9011 0.6298 0.3530 0.6262 0.6383 0.3040
40 0.3700 0.6610 0.5973 0.3535 0.9088 0.6358 0.3738 0.6422 0.6237 0.3100
50 0.3800 0.6637 0.5972 0.3537 0.9045 0.6337 0.3683 0.6535 0.6414 0.3160

K THE USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policy on responsible use of language models, we disclose that
LLMs were used only for nonsubstantive copy editing. Specifically, LLMs were employed to (i)
suggest alternative word choices, (ii) correct minor grammatical issues, and (iii) improve the clarity
and fluency of sentences originally written by the authors.

No LLM was used to generate scientific content, conduct data analysis, design or execute experi-
ments, create figures or tables, select citations, or draw conclusions. All technical ideas, methods,
experiments, results, and interpretations were conceived, written, and verified by the authors.

The use of LLMs does not affect the reproducibility or integrity of the work.

32

	Introduction
	Related work
	Classifier-based filtering for code corpora
	LLM-driven pre-training corpus rewriting
	Synthetic Data Generation for Code

	Construction of the code corpus
	Experimental setup
	Filtering
	Syntax error filtering
	Linter-based filtering
	LLM-based score filtering

	LLM-driven rewriting
	SGCR: Style-Guided Code Rewriting
	SCOR: Self-Contained Optimization Rewriting

	The Final SwallowCode dataset

	Construction of the math corpus
	Experimental setup
	LLM-driven rewriting

	Limitations
	Conclusion
	Ethics statement
	Reproducibility Statement
	Detailed setup for data ablation experiments
	Training hyperparameters
	Training environment
	Distributed training settings
	Data mixture for ablation experiments
	Code ablation data mixture
	Math ablation data mixture

	Impact of Language Mixture on Ablation Experiments

	Generalizability beyond Llama-3: Qwen2-7B
	Code linting filtering
	Code LLM-based scoring
	Code LLM rewriting
	Token Retention Analysis
	Syntax Error Analysis
	Style-Guided Code Rewriting (SGCR)
	Self-Contained Optimization Rewriting (SCOR).

	Math LLM rewriting
	Computational cost
	Computational cost of LLM scoring
	Computational cost of LLM rewriting
	Computational cost of continual pre-training data ablation experiments
	Cost-Benefit Analysis

	Contamination Analysis
	Decontamination Against Evaluation Benchmarks
	Addressing Self-Contamination from the Rewriting LLM

	MBPP
	Evaluations
	Code ablation experiments results
	Math ablation experiments results

	The Use of Large Language Models

