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ABSTRACT

Data in tabular format is frequently occurring in real-world applications. Graph
Neural Networks (GNNs) have recently been extended to effectively handle such
data, allowing feature interactions to be captured through representation learning.
However, these approaches essentially produce black-box models, in the form of
deep neural networks, precluding users from following the logic behind the model
predictions. We propose an approach, called IGNNet (Interpretable Graph Neural
Network for tabular data), which constrains the learning algorithm to produce an
interpretable model, where the model shows how the predictions are exactly com-
puted from the original input features. A large-scale empirical investigation is pre-
sented, showing that IGNNet is performing on par with state-of-the-art machine-
learning algorithms that target tabular data, including XGBoost, Random Forests,
and TabNet. At the same time, the results show that the explanations obtained
from IGNNet are aligned with the true Shapley values of the features without
incurring any additional computational overhead.

1 INTRODUCTION

In some application domains, e.g., medicine and law, predictions made by machine learning models
need justification for legal and ethical considerations (Lakkaraju et al., 2017; Goodman & Flaxman,
2017). In addition, users may put trust in such models only with a proper understanding of the
reasoning behind the predictions. A direct solution is to use learning algorithms that produce inter-
pretable models, such as logistic regression (Berkson, 1944), which provides both local (instance-
specific) and global (model-level) explanations for the predictions. However, such algorithms often
result in a substantial loss in predictive performance compared to algorithms that generate black-box
models, e.g., XGBoost (Chen & Guestrin, 2016), Random Forests (Breiman, 2001), and deep learn-
ing algorithms (Pintelas et al., 2020; Mori & Uchihira, 2019). Post-hoc explanation techniques, e.g.,
SHAP (Lundberg & Lee, 2017), LIME (Ribeiro et al., 2016), and Anchors (Ribeiro et al., 2018),
have been put forward as tools to explain predictions of the black-box models. However, the ex-
planations provided by such techniques are limited in that they either do not show how exactly the
predictions are computed, but merely present feature scores, such as LIME and SHAP, or come with
no guarantees on the fidelity, i.e., that the provided explanation agrees with the underlying model
(Yeh et al., 2019; Delaunay et al., 2020). As extensively argued in (Rudin, 2019), there are hence
several reasons to consider generating interpretable models in the first place, if trustworthiness is a
central concern.

Graph Neural Networks (GNNs) have emerged as a powerful framework for representation learning
of graph-structured data (Xu et al., 2019). The application of GNNs has been extended to tabular
data, where a GNN can be used to learn an enhanced representation for the data points (rows)
or to model the interaction between different features (columns). TabGNN (Guo et al., 2021) is
an example of the first approach, where each data point is represented as a node in a graph. In
comparison, TabularNet (Du et al., 2021) and Table2Graph (Zhou et al., 2022) follow the second
approach, where the first uses a Graph Convolutional Network to model the relationships between
features, and the second learns a probability adjacency matrix for a unified graph that models the
interaction between features of the data points. GNNs can also be combined with other algorithms
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suited for tabular data, e.g., as in BGNN (Ivanov & Prokhorenkova, 2021), which combines gradient-
boosted decision trees and a GNN in one pipeline, where the GNN addresses the graph structure and
the gradient-boosted decision trees handle the heterogeneous features of the tabular data. To the
best of our knowledge, all previous approaches to using GNNs for tabular data result in black-box
models and they are hence associated with the issues discussed above when applied in contexts with
strong requirements on trustworthiness. In this work, we propose a novel GNN approach for tabular
data, with the aim to eliminate the need to apply post-hoc explanation techniques without sacrificing
predictive performance.

The main contributions of this study are:

• a novel approach, called Interpretable Graph Neural Network for tabular data (IGNNet),
that exploits powerful graph neural network models while still being able to show exactly
how the prediction is derived from the input features in a transparent way

• a large-scale empirical investigation evaluating the explanations of IGNNet as well as com-
paring the predictive performance of IGNNet to state-of-the-art approaches for tabular data;
XGBoost, Random Forests, as well as to an algorithm generating interpretable models;
TabNet (Arik & Pfister, 2021)

In the next section, we briefly review related work. In Section 3, we describe the proposed inter-
pretable graph neural network. In Section 4, results from a large-scale empirical investigation are
presented and discussed, in which the explanations of the proposed method are evaluated and the
performance is compared both to interpretable and powerful black-box models. Finally, in the con-
cluding remarks section, we summarize the main conclusions and point out directions for future
work.

2 RELATED WORK

2.1 SELF-EXPLAINING GRAPH NEURAL NETWORKS

The Self-Explaining GNN (SE-GNN) (Dai & Wang, 2021) uses similarities between nodes to make
predictions on the nodes’ labels and provide explanations using the most similar K nodes with la-
bels. ProtGNN (Zhang et al., 2022) also computes similarities, but between the input graph and
prototypical graph patterns that are learned per class. Cui et al. (2022) proposed a framework to
build interpretable GNNs for connectome-based brain disorder analysis that resembles the signal
correlation between different brain areas.

The approaches that target explainable graph neural networks provide abstract views of the predic-
tions; the users cannot trace the exact computations, in contrast to when using transparent models,
which in principle allows for the inferences to be executed by hand.

2.2 INTERPRETABLE DEEP LEARNING FOR TABULAR DATA

In an endeavor to provide an interpretable regression model for tabular data while retaining the per-
formance of deep learning models, and inspired by generalized linear models (GLM), LocalGLMnet
was proposed to make the regression parameters of a GLM feature dependent, allowing for quantify-
ing variable importance and also conducting variable selection (Richman & Wüthrich, 2022). Tab-
Net (Arik & Pfister, 2021) is another interpretable method proposed for tabular data learning, which
employs a sequential attention mechanism and learnable masks for selecting a subset of meaningful
features to reason from at each decision step. The feature selection is instance-based, i.e., it differs
from one instance to another. The feature selection masks can be visualized to highlight important
features and show how they are combined. However, it is not obvious how the features are actually
used to form the predictions.
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3 THE PROPOSED APPROACH: IGNNET

3.1 INTERPRETABLE GRAPH NEURAL NETWORK

The input to a GNN learning algorithm is a set of graphs denoted by G = (V,E,X,W), consisting
of a set of nodes V , a set of edges E, a set of node feature vectors X , and a set of edge weightsW ,
where V = {v1, . . . , vN}, E ⊆ {(vi, vj)|vi, vj ∈ V }, X = {x1, . . . ,xN}, and the weight of edge
(vi, vj) is represented by a scalar value δi,j in the set of edge weightsW , where δi,j = W(i, j). A
GNN algorithm learns a representation vector hi for each node vi, which is initialized as h(0)

i = xi.
The key steps in a GNN for graph classification can be summarized by the following two phases
(Xu et al., 2019):

(a) Message Passing: Each node passes a message to the neighboring nodes, then aggregates
the passed information from the neighbors. Finally, the node representation is updated with
the aggregated information. The message passing phase can be formulated as:

h
(l+1)
i = φ

w(l+1)

δi,ih
(l)
i +

∑
u∈N (i)

δi,uh
(l)
u

 (1)

where δi,u is the weight assigned to the edge between node vi and node vu.

h
(l)
i is the hidden representation of the node vi in the l-th layer, w(l+1) represents the

learnable parameters, and φ is a non-linearity function.
The adjacency matrix A of size |V |× |V | contains the edge weights and can be normalized
similar to a Graph Convolutional Network (GCN) (Kipf & Welling, 2017) as shown in
equation 2.

Ã = D− 1
2AD− 1

2 (2)

Here D is the degree matrix Dii =
∑
j

Aij (Kipf & Welling, 2017).

(b) Graph Pooling (Readout): A representation of the whole graph G is learned using a simple
or advanced function (Xu et al., 2019), e.g, sum, mean, or MLP.

The whole graph representation obtained from the graph pooling phase can be submitted to a clas-
sifier to predict the class of the graph, which can be trained in an end-to-end architecture (Zhang
et al., 2018; Ying et al., 2018).

The pooling function can be designed to provide an interpretable graph classification layer. Thus,
the final hidden representation of each node is mapped to a single value, for instance, through a
neural network layer or dot product (R(h(l+1)

i ∈ Rn) = hi ∈ R1), and concatenated to obtain the
final representation g of the graph G where a scalar value in g corresponds to a node in the graph.
Consequently, if a set of weights is applied to classify the graph, we can trace the contribution
of each node to the predicted outcome, i.e., the user can find out which nodes contributed to the
predicted class. For example, g can be used directly as follows:

ŷ = link

(
n∑

i=1

wigi

)
(3)

where wi is the weight assigned to node vi represented in gi.The link function is applied to accom-
modate a valid range of outputs, e.g., the sigmoid function for binary and softmax for multi-class
classification. This is equivalent to:

ŷ = link

(
n∑

i=1

wiR(h(l+1)
i )

)
(4)

In the case of binary classification, one vector of weights (w) is applied, and for multiple classes,
each class has a separate vector of weights.
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3.2 REPRESENTING TABULAR DATA POINTS AS GRAPHS

The proposed readout function in the previous subsection allows for determining the contribution
of each node in a prediction, if a white-box classification layer is used for the latter. Therefore, we
propose representing each data instance as a graph where the features are the nodes of that graph
and the linear correlation between features are the edge weights, as we assume that not all features
are completely independent. The initial representation of a node is a vector of one dimension, and
the value is just the feature value, which can be embedded into a higher dimensionality. The idea is
illustrated in Figure 1 and outlined in Algorithm 1.

Figure 1: An overview of our proposed approach. Each data instance is represented as a graph
by embedding the feature values into a higher dimensionality, and the edge between two features
(nodes) is the correlation value. Multiple iterations of message passing are then applied. Finally,
the learned node representation is projected into a single value, and a whole graph representation is
obtained by concatenating the projected values.

Algorithm 1: IGNNet
Data: a set of graphs G and labels Y
Result: Model parameters θ
Initialize θ
for number of training iterations do
L ← 0
for each Gj ∈ G do

for each layer l ∈ messagePassing layers do
H

(l+1)
j ←messagePassing(H(l)

j )

end
gj ←readout(H(l+1)

j )

ŷj ←predict(gj)
L ← L+loss(ŷj , yj ∈ Y)

end
Compute gradients∇θL
Update θ ← θ −∇θL

end

3.3 HOW CAN IGNNET ACHIEVE HIGH PERFORMANCE WHILE MAINTAINING
INTERPRETABILITY?

An expressive GNN can potentially capture complex patterns and dependencies in the graph, allow-
ing nodes to be mapped to distinct representations based on their characteristics and relationships
(Li & Leskovec, 2022). Moreover, a GNN with an injective aggregation scheme can not only distin-
guish different structures but also map similar structures to similar representations (Xu et al., 2019).
Therefore, if the tabular data are properly presented as graphs, GNNs with the aforementioned ex-
pressive capacities can model relationships and interactions between features, and consequently
approximate complex non-linear mappings from inputs to predictions. On top of that, it has been
shown by Ennadir et al. (2023) that GCNs based on 1-Lipschitz continuous activation functions can
be improved in stability and robustness with Lipschitz normalization and continuity analysis; similar
findings have also been demonstrated on graph attention networks (GAT) (Dasoulas et al., 2021).
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This property is of particular importance when the application domain endures adversarial attacks
or incomplete tabular data.

The proposed readout function in subsection 3.1 can produce an interpretable output layer. However,
it does not guarantee the interpretability of the whole GNN without message-passing layers that
consistently maintain relevant representations of the input features. Accordingly, we constrain the
message-passing layer to produce interpretable models using the following conditions:

1. Each feature is represented in a distinct node throughout the consecutive layers.

2. Each node is bounded to interact with a particular neighborhood, where it maintains cor-
relations with the nodes within that neighborhood. As a result, the aggregated messages
could potentially hold significance to the input feature values.

Since the edge weights are the correlation values, they determine the strength and the sign of the
messages obtained from a neighborhood, allowing each node to store information not only concern-
ing the original input feature but also features that are correlated with it. The proposed graph pooling
function, combined with the constrained message-passing layers that keep representative informa-
tion about the input features, allows tracking each feature’s contribution at the output layer and also
through the message-passing layers all the way to the input features.

4 EMPIRICAL INVESTIGATION

4.1 EXPERIMENTAL SETUP

We propose a general GNN architecture for our empirical investigation.1 However, it is up to the
user to modify the architecture as long as the conditions in subsections 3.1 and 3.3 are satisfied.
The hyperparameters, e.g., the number of message-passing layers and the number of units in linear
transformations, were found based on a quasi-random search on development sets of the following
datasets: Churn, Electricity, and Higgs. We have six message-passing layers in the proposed ar-
chitecture, each with a Relu activation function. Multiple learnable weights are also applied to the
nodes’ representation, followed by a Relu function. Besides three batch normalization layers, four
skip connections are added as illustrated in Figure 2. After all the GNN layers, we use a feedforward
neural network (FNN) to map the multidimensional representation of each node into a single value.
In the FNN, we do not include any activation functions in order to keep the mapping linear, but a
sigmoid function is applied after the final layer to obtain a value between 0 and 1 for each node.
The FNN is composed of 8 layers with the following numbers of units (128, 64, 32, 16, 8, 4, 2, 1)
and 3 batch normalization layers after the second, fourth, and sixth hidden layers. After the FNN,
the nodes’ final values are concatenated to form a representation of the whole graph (data instance).
Finally, the weights that are output are used to make predictions. The GNN is trained end-to-end,
starting from the embeddings layer and ending with the class prediction.

In the experiments, 20 publicly available datasets are used.2 Each dataset is split into training, de-
velopment, and test sets. The development set is used for overfitting detection and early stopping of
the training process, the training set is used to train the model, and the test set is used to evaluate
the model.3 For a fair comparison, all the compared learning algorithms are trained without hyper-
parameters tuning using the default settings on each dataset. In cases where the learning algorithm
does not employ the development set to measure performance progress for early stopping, the de-
velopment and training subsets are combined into a joint training set. The adjacency matrix uses the
correlation values computed on the training data split. The weight on edge from the node to itself
(self-loop) is a user-adjustable hyperparameter, constitutes between 70% to 90% (on average) of the
weighted summation to keep a strong message per node that does not fade out with multiple layers
of message-passing. Weak correlation values are excluded from the graph, so if the absolute cor-
relation value is below 0.2, the edge is removed unless no correlation values are above 0.2; in case
of the latter, the procedure is repeated using a reduced threshold of 0.05. The Pearson correlation
coefficient (Pearson, 1895) is used to estimate the linear relationship between features. In the data

1The source code is available at: https://github.com/amrmalkhatib/IGNNet
2All the datasets were obtained from https://www.openml.org
3Detailed information about each dataset is provided in the Appendix C.
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Figure 2: IGNNet default architecture. It starts with the embedding layer, a linear transformation
from one dimension to 64 dimensions. A Relu activation function follows each message-passing
layer and each green block as well. The feedforward network at the end has no activation functions
between layers to ensure a linear transformation into a single value. A sigmoid activation function
follows the feedforward network to obtain the final value for each feature between 0 and 1.

preprocessing step, the categorical features are binarized using one-hot encoding, and all the feature
values are normalized using min-max normalization (the max and min values are computed on the
training split). The normalization keeps the feature values between 0 and 1, which is essential for
the IGNNet to have one scale for all nodes.

The following algorithms are also evaluated in the experiments: XGBoost, Random Forests and
TabNet. XGBoost and Random Forests are trained on the combined training and development sets.
TabNet is trained with early stopping after 20 consecutive epochs without improvement on the de-
velopment set, and the best model is used in the evaluation.

For imbalanced binary classification datasets, we randomly oversample the minority class in the
training set to align the size with the majority class. All the compared algorithms are trained using
the oversampled training data. While for multi-class datasets, no oversampling is conducted.

The area under the ROC curve (AUC) is used to measure the predictive performance, as it is not
affected by the decision threshold. For the multi-class datasets, weighted AUC is calculated, i.e., the
AUC is computed for each class against the rest and weighted by the support.

4.2 EVALUATION OF PREDICTIVE PERFORMANCE

Detailed results for IGNNet and the three competing algorithms on the 20 datasets are shown in
Table 1.The ranking of the four algorithms across 20 datasets, based on their AUC values, reveals
IGNNet to exhibit superior performance, claiming the top position, followed by XGBoost. In order
to investigate whether the observed differences are statistically significant, the Friedman test (Fried-
man, 1939) was employed, which did not allow to reject the null hypothesis at the 0.05 level. The
results show that IGNNet maintains the performance level of other powerful algorithms for tabular
data, e.g., XGBoost and Random Forests.

4.3 EVALUATION OF EXPLANATIONS

The feature scores produced by IGNNet should ideally reflect the contribution of each feature to-
ward the predicted outcome and, therefore, they should be equivalent to the true Shapley values.
As it has been shown that KernelSHAP converges to the true Shapley values when provided with
an infinite number of samples (Covert & Lee, 2021; Jethani et al., 2022), it is anticipated that the
explanations generated by KernelSHAP will progressively converge to more similar values to the
scores of IGNNet as the sampling process continues. This convergence arises from KernelSHAP
moving towards the true values, while the scores of IGNNet are expected to align with these true
values. To examine this conjecture, we explain IGNNet using KernelSHAP and measure the sim-
ilarity between KernelSHAP’s explanations and IGNNet’s scores following each iteration of data
sampling and KernelSHAP evaluation.4 For the feasibility of the experiment, 500 examples are ran-

4KernelSHAP experiments were conducted using the following open-source implementation:
https://github.com/iancovert/shapley-regression
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Table 1: The AUC of IGNNet, Random Forests, and XGBoost. The best-performing model is
colored in blue , and the second best-performing is colored in light blue .

Dataset IGNNet TabNet Random Forests XGBoost

Abalone 0.881 0.857 0.876 0.869
Ada Prior 0.905 0.848 0.885 0.894
Bank 32 nh 0.887 0.881 0.876 0.874
Covertype 0.984 0.969 0.995 0.967
Electricity 0.901 0.894 0.97 0.973
First Order Theorem Proving 0.776 0.495 0.854 0.858
Helena 0.875 0.884 0.855 0.875
Heloc 0.783 0.772 0.778 0.775
Higgs 0.762 0.804 0.793 0.797
Indian Pines 0.984 0.99 0.979 0.987
Jannis 0.856 0.867 0.861 0.872
JM1 0.739 0.711 0.747 0.733
Microaggregation2 0.778 0.752 0.768 0.781
MC1 0.957 0.89 0.844 0.943
Numerai28.6 0.526 0.52 0.519 0.514
PC2 0.881 0.844 0.55 0.739
Satellite 0.998 0.911 0.998 0.992
Speed Dating 0.853 0.797 0.845 0.86
Vehicle sensIT 0.918 0.917 0.912 0.916
waveform-5000 0.965 0.933 0.959 0.957

Figure 3: Comparison of KernelSHAP’s approximations and the importance scores obtained
from IGNNet. We measure the similarity of KernelSHAP’s approximations to the scores of IGNNet
at each iteration of data sampling and evaluation of KernelSHAP. KernelSHAP exhibits improve-
ment in approximating the scores derived from IGNNet with more data sampling.

domly selected from the test set of each dataset to be explained. The cosine similarity and Spearman
rank-order correlation are used to quantify the similarity between explanations. The cosine simi-
larity measures the similarity in the orientation (Han et al., 2012), while the Spearman rank-order
measures the similarity in ranking the importance scores (Rahnama et al., 2021).

The results demonstrate a general trend wherein KernelSHAP’s explanations converge to more simi-
lar values to IGNNet’s scores across various data instances and the 20 datasets, as depicted in Figure
3.5 The consistent convergence to more similar values clearly indicates that IGNNet provides trans-
parent models with feature scores aligned with the true Shapley values.

5The complete results of the 20 datasets are provided in Appendix B.
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5 CONCLUDING REMARKS

We have proposed IGNNet, an algorithm for tabular data classification, which exploits graph neural
networks to produce transparent models. In contrast to post-hoc explanation techniques, IGNNet
does not approximate or require costly computations, but provides the explanation while computing
the prediction, and where the explanation prescribes exactly how the prediction is computed.

We have presented results from a large-scale empirical investigation, in which IGNNet was evalu-
ated with respect to explainability and predictive performance. IGNNet was shown to generate ex-
planations with feature scores aligned with the Shapley values without further computational cost.
IGNNet was also shown to achieve a similar predictive performance as XGBoost, Random Forests,
and TabNet, which are all well-known for their ability to generate high-performing models.

One direction for future research is to explore approaches to model feature interactions in the ad-
jacency matrix that go beyond linear correlations. Understanding how such non-linear interactions
between features may impact the model’s interpretability could be an intriguing area of exploration.
A second direction is to investigate alternative encoders for categorical features rather than relying
on one-hot encoding. It would also be interesting to extend IGNNet to handle non-tabular datasets,
including images and text, which would require entirely different approaches to representing each
data point as a graph.
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A ILLUSTRATION OF EXPLANATIONS

In this section, we show how the computed feature scores by IGNNet can be used to understand the
feature contributions toward a specific prediction. Note that this is done in exactly the same way
as how one would interpret the predictions of a logistic regression model or the feature importance
scores generated by the SHAP explainer (Lundberg & Lee, 2017). As the computed feature scores
reveal exactly how IGNNet formed the prediction, the user can directly see which features have the
greatest impact on the final prediction, and possibly also how they may be modified to affect the
outcome. To demonstrate this, we present the feature scores for predictions made by IGNNet using
two examples from the Adult dataset and the Churn dataset. In the following illustrations, we display
the feature scores centered around the bias value, which, when summed with the bias, will produce
the exact outcome of IGNNet if the sigmoid function is applied. The scores are sorted according to
their absolute values, and only the top 10 features are plotted for ease of presentation. A displayed
score τi of feature xi represents all the weights and the computations applied to the input value, as
shown in equation 5.

τi =wif(φ(w(l+1)(
∑

u∈N (i)

δi,uh(l)
u

+ δi,iφ(w(l)(
∑

u∈N (i)
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+ δi,i(...φ(w(1)(
∑

u∈N (i)

δi,uxu + δi,ixi)...))))))

(5)

(a) The original data point. (b) The data point with a modified capital gain value.

Figure 4: Explanation to a single prediction on Adult dataset.

(a) The original data point. (b) The data point with a modified total day charge
value.

Figure 5: The explanation of a single prediction on Churn dataset.

The first example, from the Adult dataset, shown in Figure 4a. IGNNet predicted the negative
class (≤ 50K) with a narrow margin (0.495). The explanation shows that a single feature (capital-
gain=2885) has the highest contribution compared to any other feature value. In the training data,
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Figure 6: The correlation matrix of the features of the Churn dataset.

the capital-gain has a maximum value of 99999.0, a minimum value of 0, a mean value of 1068.36,
and a 7423.08 standard deviation. To test if the explanation reflects the actual reasoning of IGNNet,
we raise the capital-gain value by a smaller value than the standard deviation to be 6000 while
leaving the remaining feature values constant, and it turns out to be enough to alter the prediction to
a positive (> 50K) with 0.944 as the predicted value. We can also see that the negative score of the
capital-gain feature went from -3.67 in the original instance (4a) to -0.82 in the modified instance,
as shown in Figure 4b. So the user can adjust the value of an important feature as much as needed
to alter the prediction.

The data point, from the Churn dataset, has a positive prediction with a narrow margin (0.565).
Consequently, the reduction of the top positively important feature (total day charge), as illustrated
in Fig. 5a, may be enough to obtain a negative prediction. The total day charge has a maximum
value of 59.76, a minimum of 0.44, a mean of 30.64, and a 9.17 standard deviation in the training
set. However, the total day charge is highly correlated with the total day minutes by more than
0.99, as shown in Fig. 6. The high correlation effect is obvious in the outcome when the total day
charge value is reduced by one standard deviation, from 44.56 to 35.39, as the scores of both total
day charge and total day minutes drop from 1.06 and 0.99 to 0.72 and 0.5, respectively, as shown
in Fig. 5b. Moreover, the sum of feature scores and bias falls below 0.5 after the sigmoid function,
resulting in a negative prediction with a predicted value of 0.297.

B TRANSPARENCY EVALUATION

In this section, we demonstrate the detailed results of the explanations evaluation experiment using
20 datasets. The results show a general trend across the 20 datasets where the explanations obtained
using KernelSHAP converge to more similar values to the feature scores produced by IGNNet, given
more sampled data. The results are displayed in Figure 7 and Figure 8.
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Figure 7: Comparison of KernelSHAP’s approximations and the importance scores obtained
from IGNNet. We measure the similarity of KernelSHAP’s approximations to the scores of IGNNet
at each iteration of data sampling and evaluation of KernelSHAP. KernelSHAP exhibits improve-
ment in approximating the scores derived from IGNNet with more data sampling.
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Figure 8: Comparison of KernelSHAP’s approximations and the importance scores obtained
from IGNNet. We measure the similarity of KernelSHAP’s approximations to the scores of IGNNet
at each iteration of data sampling and evaluation of KernelSHAP. KernelSHAP exhibits improve-
ment in approximating the scores derived from IGNNet with more data sampling.

14



ICLR 2024 Data-centric Machine Learning Research (DMLR) Workshop

C INFORMATION ABOUT THE USED DATASETS AND SPECIFICATIONS OF THE
HARDWARE

This subsection provides a summary of the datasets utilized in the experiments. In Table 2, we
provide information about the used datasets, including the number of classes (Num of Classes), the
number of features, the size of the dataset, the size of the training, validation, and test splits, as well
as, the used correlation threshold (Corr. Thr.) of each dataset, the weight on the self-loop (SL Wt.),
the number of training epochs, and finally the ID of each dataset on OpenML.

The experiments have been performed in a Python environment on an Intel(R) Core(TM) i9-10885H
CPU @ 2.40GHz system with 64.0 GB of RAM, and the GPUs are NVIDIA® GeForce® GTX 1650
Ti with 4 GB GDDR6, and NVIDIA® GeForce® GTX 1080 Ti with 8 GB. All the software and
package dependencies are documented with the source code.

Table 2: The dataset information.

Dataset Classes Features Size Train. Set Dev. Set Test Set Corr. Thr. SL Wt. Epochs ID

Abalone 2 8 4177 2506 836 835 0.2 20 220 720
Ada Prior 2 14 4562 2737 913 912 0.2 4 216 1037
Bank 32 nh 2 32 8192 5734 1229 1229 0.2 2 540 833
Covertype 7 54 581012 524362 27599 29051 0.2 10 300 1596
Electricity 2 8 45312 36249 4532 4531 0.2 3 396 151
1st Order Theorem 6 51 6118 3915 979 1224 0.2 30 848 1475
Helena 100 27 65196 41724 10432 13040 0.2 10 550 41169
Heloc 2 22 10000 7500 1250 1250 0.2 20 234 45023
Higgs 2 28 98050 88245 4903 4902 0.05 4 394 23512
Indian Pines 8 220 9144 5852 1463 1829 0.2 400 394 41972
Jannis 4 54 83733 53588 13398 16747 0.05 20 300 41168
JM1 2 21 10885 8708 1089 1088 0.2 50 187 1053
Microaggregation2 5 20 20000 12800 3200 4000 0.2 15 599 41671
MC1 2 38 9466 7478 994 994 0.2 80 198 1056
Numerai28.6 2 21 96320 86688 4816 4816 0.2 20 36 23517
PC2 2 36 5589 3353 1118 1118 0.2 60 37 1069
Satellite 2 36 5100 2805 1148 1147 0.2 60 287 40900
Speed Dating 2 120 8378 5864 1257 1257 0.2 10 58 40536
Vehicle sensIT 2 100 98528 88675 4927 4926 0.2 10 172 357
waveform-5000 2 40 5000 3000 1000 1000 0.2 4 97 979

15


	Introduction
	Related Work
	Self-Explaining Graph Neural Networks
	Interpretable Deep Learning for Tabular Data

	The Proposed Approach: IGNNet
	Interpretable Graph Neural Network
	Representing Tabular Data Points as Graphs
	How can IGNNet achieve high performance while maintaining interpretability?

	Empirical Investigation
	Experimental Setup
	Evaluation of Predictive Performance
	Evaluation of Explanations

	Concluding Remarks
	Illustration of Explanations
	Transparency Evaluation
	Information about the Used Datasets and Specifications of the Hardware

